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ABSTRACT

Frenkel excitons are the primary photoexcitations in organic semiconductors and are ultimately responsible for the optical properties of such
materials. They are also predicted to form bound exciton pairs, termed biexcitons, which are consequential intermediates in a wide range of
photophysical processes. Generally, we think of bound states as arising from an attractive interaction. However, here, we report on our recent
theoretical analysis, predicting the formation of stable biexciton states in a conjugated polymer material arising from both attractive and
repulsive interactions. We show that in J-aggregate systems, 2J-biexcitons can arise from repulsive dipolar interactions with energies Ez; > 2Ej,
while in H-aggregates, 2H-biexciton states with energies Exy < 2Ep can arise corresponding to attractive dipole exciton/exciton interactions.
These predictions are corroborated by using ultrafast double-quantum coherence spectroscopy on a [poly(2,5-bis(3-hexadecylthiophene-2-yl)
thieno[3,2-b]thiophene)] material that exhibits both J- and H-like excitonic behavior.

Published under an exclusive license by AIP Publishing.

I. INTRODUCTION In Ref. 4, we noted that bimolecular annihilation may be medi-
ated both by resonance energy transfer and by diffusion-limited
exciton-exciton scattering, but in the either case, we invoke the
key intermediate [25,]%. Examples of this occur in biological light
harvesting complexes where multi-exciton interactions may play
important roles® in the excitonic transport process, and biexcitons
can be crucial in cascade quantum emitters as a source of entangled
photons.” While ample theoretical work points toward the exis-
tence of biexcitons in organic solids” ~ and in optical lattices,

there has been only indirect evidence of the dynamic formation of

It is generally understood that the primary photoexcitations
in organic semiconducting materials are molecular -7 electronic
singlet states (S1) termed Frenkel excitons." While local in nature, at
sufficiently high packing densities, excitons can be delocalized over
several molecular units and sufficiently higher excitation densities,
exciton-exciton interactions begin to dominate the optical prop-
erties of such materials.” Biexcitons, bound pairs of excitons, are
consequential intermediates in a wide range of photophysical pro-
cesses, such as exciton dissociation into electrons (¢”) and holes

(h*) two-quantum exciton bound states in polymeric semiconductors by
’ incoherent, sequential ultrafast excitation.

So + 2w — [231]i —>2¢ +2h*, (1) Recently, we reported on the direct spectroscopic observation
) o of bound Frenkel biexcitons, i.e,, bound two-exciton quasiparti-
bimolecular annihilation, cles ([251]%), in a model polymeric semiconductor [poly(2,5-bis
t (3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene)] (PBTTT)
S48 — 28] — So+ S0, 2) using coherent two-dimensional ultrafast spectroscopy.'” The
and singlet fission producing triplet (T) states, chemical structure of PBTTT is given in . PBTTT is unique
in that depending on processing conditions, it can support the
So + 2hw — [25, ]3t — T1 + T (3) formation of both H and ] aggregate single exciton states, suggesting
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FIG. 1. (a) Chemical structure of the PBTTT polymer. (b) Local packing of excitonic
units (ellipsoids) with superimposed transition dipoles (yellow arrows) with J-like
interactions along the harizontal axis and H-like interactions along the vertical axis.

an arrangement as sketched in in which intra-chain
J-like excitons can form along the chains spanning over several
PBTTT subunits, while inter-chain H-like excitons can form due
to the parallel stacking of several chains within the aggregate. The
experimental observations revealed a correlation between peaks
in the single and double quantum spectra that correspond to the
formation of 2H and 2J biexciton species. This conclusion was
supported by both a computational model and theoretical analysis
based on a quasi-one-dimensional continuum model.

Here, we present an overview of the theoretical model we
developed for biexcitons and use it to discuss biexcitons in related
organic polymer materials. First, we show how one can reduce the
two-dimensional lattice problem into two separate one-dimensional
problems and use Green'’s function approach to account for the con-
tact interaction between excitons. This gives the criterion for the
overall stability of the bound biexciton states in terms of the exci-
ton bandwidth and contact interaction. Formally, the lattice model
reduces to a one-dimensional continuum model with §-function
potential. We append to this “text-book™ model a deformable classi-
cal medium to examine the contribution of the lattice reorganization
about the bound-biexciton states and find that this stabilizes the
attractively bound biexciton state but destabilizes the repulsively
bound states. We conclude by discussing the experimental observa-
tions and the need for a better theoretical understanding of bound
biexciton states.

Il. THEORETICAL MODEL

A. Homogeneous lattice model in one-
and two-dimensions

To explore the possibility of having multiple species of bound,
biexcitons in the same system, we begin by writing a generic lattice
model for the system by defining exciton operators a, and af,

a.,uL - (—l)a"“‘af,,a., = Snm. 4
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These operators are Paulion operators that create and remove single
excitations on a site labeled n. On a given site, they obey the Fermion
relation {an,a/,} = 1, which enforces Pauli exclusion but commutes
“off-site” with [an,afn] =0 when n # m. This is different from the
usual Fermion algebra where the anti-commutation rule applies
over all sites, ultimately giving rise to the exchange interaction.
Furthermore, we can write a generic multi-exciton Hamiltonian as

1
H = humaham + EZUnmaLafnanam, )

nm nm

where hnm describes the single-exciton dynamics and Unm repre-
sents the exciton/exciton interaction. In principle, the parameters
entering into the Hamiltonian in Eq. (5) are defined by the system
of interest. For the case of excitons, the diagonal elements of the sin-
gle particle term define the energy to place an exciton in site n, and
we write han = €,. For a homogeneous lattice, all site energies are the
same and €, = €,. Similarly, the off-diagonal elements of hpm cor-
respond to the matrix elements for transferring an excitation from
site n - m. To a good approximation, the single-exciton transfer
interaction can be described within the dipole-dipole approxima-
tion as described above. This model differs from the Hubbard model
commonly studied in condensed matter physics in that we explicitly
exclude double occupancy of each lattice and the exciton/exciton
interaction is taken to be between occupied neighbors. Formally, a
Frenkel exciton corresponds to a single electron/hole excitation on a
given site. However, molecules are not point particles and excitons
may acquire some intramolecular charge-transfer character. There-
fore, we anticipate that Unm is also dipole-dipole-like and reflects
the relative orientation of the static exciton dipole moments.

For a one-dimensional chain with lattice spacing a, n is sim-
ply an index along the chain such that the site location is given by
ra = na. However, for two- and three-dimensional systems, we shall
take it as an n-tuple index specifying the site location. For the single
particle term, hny is the excitation energy for single site (&) and hnm
(for n # m) corresponds to the hopping integral between sites. Upon
transforming into the reciprocal space,

= e (6)

1
—=).e
Vip
one finds the single particle energy dispersion as

(e(k) = E)e*™ = 3 home™™ @)
m
To determine the two-exciton states, we begin by writing
I¥) = Do ®)
i

where ¢ are the expansion coefficients for this state. At this
point, there are various approaches one can take to find the general
solutions for the Schrédinger equation for the two-exciton system.
Indeed, for a small enough lattice, one can simply directly diagonal-
ize the Hamiltonian in Eq. (5) for a finite sized grid. However, we
are not interested in the full solution of this problem. Rather, we
are only focused on solutions corresponding to bound exciton pairs,
especially those bound pairs that retain their J- or H-like excitonic
character. With this in mind, we develop an analytical solution that
naturally extends to the full model.
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B. Local exciton approximation

In Ref. 19, both direct diagonalization and a lattice Greens
function approach developed by Vektaris” were employed to study
the properties of the biexciton, including its dispersion and the
effects of local disorder. A key assumption in our model is that
we can define two equivalent quasi-one-dimensional representations
for H-like or J-like excitons. For this, let us define a new set of exciton
operators, ]it, (n) and f;_(n), which creates or removes an exciton
with wavevector k. in the x-direction localized on the nth row of
sites. Similarly, we define operators PIL (m) and H, ¥, (m), which cre-
ate and remove excitons with wavevector ky in the y-direction, but
are localized to the m—th column, as sketched in . These can be
written in terms of the original lattice operators

R 1 i

Tk, = ﬁZe”‘*”mm» ©)
N 1 ik,
Hyg, = ﬁzej ’ma(n,m). (10)

Both are equivalent representations, and we can choose to use
either (but not both) to rewrite the original problem in this new
representation.

Thus, we can write

Zhnmalam = Z (& (ke)Emm + tH(mm')]Tn.kxfm,,kx
nm

k,mm'

= > (er(ky)Oum + f;(ﬂn’))H:,k,ank,, (11)

’
kynn

where in the first line, we diagonalized in the J-direction, and in the
second, we diagonalized in the H-direction. This implies that we can
think of a J-exciton state as moving in the H-direction with hop-
ping integral ¢ty and H-exciton states as moving in the J-direction
with hopping integrals ;. The dispersion relations are, then, as usual
given as

g7 (ks) = €0 + 2ty cos(kx), (12)
en(ky) = o + 2ty cos(k,), (13)

where t; < 0 is the nearest-neighbor coupling along the x-direction
and ty > 0 is the nearest-neighbor coupling taken in the y-direction.

A [k i) B ‘H'F‘EI‘yHm’k;> "
ovoo0 Saada
OO OO o &0 &0

eeooe (oo

o000 A A A
o000 S5O
t<0,U<0

FIG. 2. Sketch of the 2D lattice model with a superimposed transition dipole for
each site. In (a), we define a J-aggregate basis and create 2J biexciton configura-
tions along each row. In (b), we define an H-aggregate basis along each column.
As discussed in the text, these are equivalent representations of the full 2D prab-
lem and are useful in reducing the 2D problem into two separate (but formally
identical) 1D problems.
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To remind, throughout, we are taking the (dimensionless) wavevec-
tor k € [-m, m]. Since the problem is formally separable between
x and y directions, the single-particle terms do not mix wavevector
components since k, and k, are “good” quantum numbers for
this system. Using the [ and H operators, we can reduce the two-
particle/two-dimensional problem into one for a pair of particles
within a one-dimensional frame without loss of generality. In both
cases, the allowed optical transition occurs at kx = ky = 0.

This decomposition suggests that motion in one direction can
be very different from the motion in the perpendicular direction due
to the orientations of the transition dipoles between neighboring
units. In , we suggest how this can be accomplished within
the context of molecular aggregates with 7-stacking. Here, excitonic
sites are denoted as blue ellipsoids along with their respective local
transition dipole moments (yellow arrows). Along the x-direction of
the two-dimensional lattice sketched here, the transition moments
are oriented more or less in a “head-to-tail” arrangement, pro-
ducing a hopping matrix element in hym < 0. In the y-direction,
however, the transition moments are aligned co-facially, producing a
single-particle hopping matrix element hiym > 0. In the former case,
the optically bright state occurs at the bottom of the energy band
(J-aggregate), while in the latter case, the optically bright state occurs
at the top of the energy band (H-aggregate). The PBTTT material is
unique in that both J- and H-aggregate states can be readily observed
depending on the sample preparation.

If we use the J,, (or Hy,) states as a basis for a given value of
k, we can use Green’s function approach to find the biexciton
energies as

Exx(k) = 2ec + %cosz(k) +U, (14)

where e, is the excitation energy of either the J or H single exciton
and U is the contact interaction.” This expression is predicated on
|U/2t| > 1in order for the biexciton wavefunction to decay exponen-
tially with exciton—exciton separation. These dispersions are plotted
in for both 2H and 2] biexcitons. In each case, the energy
origin should be shifted to twice the ] or H exciton energy. Atk = 0,
the difference between the interacting and localized excitons is the
contact energy U, which defines the binding energy for the exciton
pair. The binding energy must be at least greater in magnitude than

(E-2¢)/4t|

1.0 T
\ =3 0.8
05 DN ez

(@) (b)

FIG. 3. (a) Energy bands for attractive (2H) and repulsively (2J) bound biexci-
tons. The dashed lines corespond to the non-interacting U — 0 limit of the model.
The solid curves are plotted for the case of U/2t > 1 as indicated. The dispersion
curves need to be taken at the corresponding points in k-space with a correspond-
ing shift in the energy origins for each exciton species. (b) Variation in the biexciton
binding energy at k = 0 with increasing exciton/exciton interactions.
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4t; else, the lowest energy interacting state will be still within the
band for the freely dissociated pairs. These bands will split from the
freely dissociated bands once U/2t > 1.

C. Biexciton stability

According to our model, Frenkel biexcitons mix J-like and
H-like character in terms of their collective quantum behavior with
the requirement that the ratio of the exciton/exciton interaction
and the perpendicular hopping term be U/t > 0, which gives rise
to localized biexciton states in the perpendicular direction. For the
1D §-function potential, any attractive interaction with U/t > 0 pro-
duces a localized state with localization length A = ¥ = 2t/U.” For
the 1D lattice, bound biexciton states occur outside the band for
free biexcitons. To gain further insights into the stability of these
states, we turn to a continuum model and work in a relative coor-
dinate reference frame where x = |r; — r2| is the separation between
two localized excitons. Thus, the biexciton Schrodinger equation can
be approximated as

ty' + US(x)y = Ey, (15)

where U is the contact interaction between the two excitons. For
bound states, y(x) must vanish as x — + oo, giving that

(16)

*) Vre™, x>0,
x) =
¥ Vre™, x<o0,

where x = U2t is a positive constant and E = tx*. In general, we
take f = —hz/Zyeﬁ, and U < 0 for an attractive potential, giving rise

to a bound state energetically below the continuum for the scattering
states.

1. Lattice reorganization in the impurity model

Generally speaking, one cannot discount the role of lattice
reorganization and relaxation when discussing excitons and biex-
citons in organic polymer semiconducting systems. To study this,
we append to the 1D impurity model a continuum model for the
medium, a term coupling the biexciton to the lattice as per the
Davydov model. The resulting equations of motion read as

i (x) = (69 + US(x) + (Bo + 207u(x)))p (),
17
a—ﬁvzuzzlvw. an

m m

where u(x) is the lattice deformation, y describes the linear coupling
between the biexciton and the lattice, m is the mass of the lattice
“atoms,” and k is the elastic modulus. If we seek traveling wave solu-
tions, u(x,t) = u(x — vt), where v is the group velocity, we find a
closure relation

- Zx 2
k- gy e

that gives us a non-linear Schrddinger equation
ihy = (tv° + gly” + US(x))y, (19)

COMMUNICATION scitation.orgljournalfjcp

where g = —4y*/(k(1 - (v/c)*)) and c is the sound velocity. Note
that E, is a constant, given by

E,=E-2t+ %[:(m‘al + ku'")dx, (20)

which we can ignore for purposes of this analysis. The §-function
potential implies that the wavefunction should have the form in
Eq. . Taking « as a variational parameter and minimizing the
total energy, one obtains

k=—+ % 1)

Here, « > 0 is necessary to produce a localized state, and from the
above equation, U/t > 0, and g < 0 from its definition; we have a sta-
bility requirement that if U > 0 and ¢ > 0, then —g < 4U. Solving for
the binding energy,

_ (4U+g)?

E
B 64t

(22)

we obtain a straightforward estimate of the contribution of both
the lattice and the exciton/exciton coupling to the biexciton
binding.

In , we plot the biexciton binding energy vs the non-
linearity parameter, g. For the attractively bound 2H case, lattice
reorganization is expected to stabilize the biexciton state by further
localizing the state (x increases as g increases in magnitude). On the
other hand, for the 2] state, increasing the magnitude of g decreases
x and destabilizes the otherwise bound 2] state. When —g = 2U, the
state is fully delocalized and further increases in the lattice coupling
lead to unbound solutions.

Epgl|t|

0.2
2J

-9/l

—_
N
w
Lo

2H

FIG. 4. Biexciton binding energy (in reduced units) for the 2J and 2H cases vs
increasing exciton/lattice coupling. For the attractively bound 2H case, lattice reor-
ganization is expected to stabilize the biexciton state while destabilizing the 2J
case. The dashed line indicates the limit of stability for the 2J case.
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FIG. 5. Spectral cuts along the two-quantum coherence energy axis, relative to the
two-quantum diagonal energy axis (hwyq = 2hw1q, Exx) at fixed hws; = 2.06 (H-
aggregate resonance, blue), 1.99 (J-aggregate resonance, purple), and 1.94 eV (J-
aggregate resonance, red). Reprinted with permission from Gutiérrez-Meza et al.,
Sci. Adv. 7, eabi5197 (2021). Copyright 2021 Author(s), licensed under a Creative
Commons Attribution (CC BY) license.

lIl. COMPARISON TO EXPERIMENTAL MEASUREMENT

We have examined the theoretical concepts by means of two-
dimensional coherent excitation spectroscopy on PBTTT, with the
structure depicted in , which we reported extensively in
Ref. 19. In that work, we identified spectral features associated with
the 0-0 excitation peak of both the H- and J-aggregate components
of the hybrid aggregate, with cross peaks reflecting spectral correla-
tions due to their shared ground state. The origin of the H-aggregate
vibronic progression was centered at 2.06 eV, while a weaker peak
at 1.99 eV was assigned to the J-aggregate vibronic origin. By per-
forming two-quantum coherence measurements, we found spectral
signatures of both 2H and 2] biexcitons. A cross section of the 2D
spectral data along the two-quantum energy axis (hwq — htging)
relative to the two-quantum diagonal (@giag = w2q = 2w1q) is shown
in . We found that 2H biexcitons displayed attractive biexciton
binding with energy —64 + 6 meV, whereas 2] biexcitons displayed
repulsive correlations with binding energy +106 + 6 meV, which is
that the energy of the 2H-biexciton resonance is lower than twice
the H-aggregate resonance energy, while the corresponding energy
for the 2]J-biexciton resonance is higher.

We rationalized this observation, as depicted in : two
quantum interactions for excitons dispersed along the polymer
backbone (] aggregates) are with J < 0, while J > 0 for those between
excitons dispersed on several chains (H aggregates). Considering
physically reasonable parameters, we concluded that biexcitons in
PBTTT are stable by the arguments depicted in

IV. PERSPECTIVE

We presented here theoretical and experimental evidence sup-
porting the formation of bound Frenkel biexcitons in a molecular
aggregate material. In our theoretical analysis, we solved the full 2D
interacting model and gave the conditions necessary for the for-
mation of stable, stationary states corresponding to bound exciton
pairs. This model provides a road-map for developing a bi-exciton
material genome in terms of the properties of the J- and H-excitons.
We showed that for bound biexcitons, both the exciton-exciton

COMMUNICATION scitation.orgljournalfjcp

interaction U and the single-particle hopping integral + must have
the same sign. Furthermore, U/t > 2 so that the exciton/exciton
potential interaction is greater than their total kinetic energy. Curi-
ously, we found that while H-like excitons form bound biexci-
tons with attractive interactions, J-like exciton pairs form bound
states arising from a repulsive interaction. Curiously, we found that
while the 2H biexciton is stabilized by interactions with the lattice
phonons, the 2] biexciton is destabilized to the extent that strong
lattice/exciton interactions will only produce unbound biexciton
states, which certainly complicates the observation of these states in
systems with strong exciton/phonon coupling. Nonetheless, the 2]
biexciton is clearly apparent in the 2D two-quantum experiments in
Ref.

An open question, however, is the nature of the exciton-exciton
interaction itself. Here, we introduced it as a parameter into our
model with a dipole-dipole-like form in that the exciton-exciton
coupling in one direction is different from that in the perpendicular
direction. It is also important to point out that while this interac-
tion seems to have a dipole-like form, it necessarily must reflect the
static dipole of the local Frenkel excitons rather than their transi-
tion dipole moments, which are responsible for the single exciton
transfer between local sites. Computing these interactions from a
first-principle ab initio theory remains a formidable challenge since
it necessitates the accurate calculation of doubly excited states with
some degree of charge-separation.
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