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We investigate the hadron-quark phase transition at finite density in the presence of a

magnetic field taking into account the anisotropy created by a uniform magnetic field in
the system’s equations of state. We find a new anisotropic equilibrium condition that will

drive the first-order phase transition along the boundary between the two phases. Fixing

the magnetic field in the hadronic phase, the phase transition is realized by increasing
the baryonic chemical potential at zero-temperature. It is shown that the magnetic field

is mildly boosted after the system transitions from the hadronic to the quark phase. The

magnetic-field discontinuity between the two phases is supported by a surface density of
magnetic monopoles, which accumulate at the boundary separating the two phases. The

mechanism responsible for the monopole charge density generation is discussed. Each

phase is found to be paramagnetic with higher magnetic susceptibility in the quark phase.
The connection with the physics of neutron stars is highlighted throughout the paper.

Keywords: Hadron-quark phase transitions; magnetized dense nuclear matter;

anisotropic EOS in a magnetic field; mechanical equilibrium between magnetized phases.
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1. Introduction

Isolated quarks cannot be seen in nature. The reason for this is that quarks forming

color neutral bound states, called hadrons, are favored at low energies. This phe-

nomenon is called color confinement. However, at sufficiently high temperatures,

∗Corresponding author.

This is an Open Access article published by World Scientific Publishing Company. It is distributed

under the terms of the Creative Commons Attribution 4.0 (CC BY) License which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

2250048-1

In
t. 

J. 
M

od
. P

hy
s. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
 O

F 
TE

X
A

S-
PA

N
 A

M
ER

IC
A

N
 o

n 
05

/2
6/

22
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.

http://dx.doi.org/10.1142/S0217751X22500488
mailto:efrain.ferrer@utrgv.edu


May 11, 2022 21:12 IJMPA S0217751X22500488 page 2
FA

E. J. Ferrer & A. Hackebill

which occur for example in heavy-ion collisions, the bound states will eventually

melt forming a state called quark-gluon plasma, where quarks and gluons become

weakly coupled due to asymptotic freedom.

On the other hand, it is also accepted that for strongly interacting matter a

transition from a color insulator (hadronic matter) to a color conductor (quark-

gluon plasma), takes place once the density of color charges is sufficiently high to

make the Debye radius smaller than the hadron radius.1 Since the Debye radius

decreases with matter density, at sufficiently high density, the long-range confining

part of the interacting color potential becomes screened and it also yields to quark

deconfinement.

The natural system where deconfinement may be realized due to high densities

is the core of a neutron star (NS). The matter density in the interior of a NS

increases from its surface to its core reaching values that possibly exceed that of

nuclear matter ρnuc = 2.8 × 1014 g/cm3.2 At such densities, individual nucleons

overlap substantially implying that under such conditions matter might consist of

deconfined quarks rather than hadrons.3

Since baryons can only be created and annihilated in pair with anti-baryons,

the baryon number NB , which is the number of baryons minus the number of

anti-baryons, is a conserved quantum number that maintains its value even after

deconfinement. If NB is allowed to vary in the system, we can introduce a baryonic

chemical potential µ as a Lagrange multiplier in the grand canonical ensemble. For

large baryon number, µ will be large, and in principle the critical value where the

phase transition from hadronic matter to quark matter takes place can be reached.

When considering the inner medium of compact stars as a natural medium to

study quark deconfinement, we should take into account another ingredient that is

also present in that context: a strong magnetic field. It has been found, from the

measured periods and spin down of soft-gamma repeaters (SGR) and anomalous

X-ray pulsars (AXP), as well as from the observed X-ray luminosities of AXP, that

a certain class of NS named magnetars can have surface magnetic fields as large as

1014–1016 G.4 Moreover, since the stellar medium has a very high electric conduc-

tivity, the magnetic flux should be conserved. Hence, the magnetic field strength

increases with increasing matter density, and consequently a much stronger mag-

netic field in the star’s inner core should be expected. Although the inner magnetic

field of NS is not accessible to observation, its value has been estimated. Estimates

based on the equipartition of energy principle between gravity and nuclear,5 or

quark matter while considering both gravitationally bound and self-bound stars,6

have led to maximum fields ∼1018 and ∼1020 G, respectively. Nevertheless, when

the hydrodynamic equilibrium between gravity and matter pressures has been taken

into account following different approaches,7–9 the resultant maximum field value

for stable configurations has been of order eB∼1017 G.

Using QCD inspired models, several studies have suggested that the transition

from hadronic matter to quark matter at high baryon chemical potential,10 as well

as in the presence of a magnetic field at finite temperature and zero density,11 is
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a first-order phase transition. The main goal of the present paper is to investigate

how the magnetic field affects such a transition. Attempts to answer this question

already exist in the literature.12,13 But in all those previous works an isotropic

Maxwell or Gibbs mechanical equilibrium condition was used, where the pressure

of each magnetized phase was the same in all directions. Nevertheless, it has been

shown in Refs. 6 and 14 that for a system of charged fermions the pressure in the

presence of a uniform magnetic field becomes anisotropic having different values

along the direction and transverse to the direction of the magnetic field. Later on,

in Ref. 9, the pressure anisotropy was investigated for neutral composite fermions

(neutrons), where the interaction with the magnetic field was through the particle

anomalous magnetic moment (AMM). In Refs. 6 and 9, the transverse and lon-

gitudinal pressures were found by taking the quantum-statistical average of the

energy–momentum tensor using the path-integral approach. The obtained results

coincide with those obtained years ago by using the many-particle density matrix

in a second-quantization approach.14 Thus, the main goal of the present paper is

to investigate the consequences of considering an anisotropic equilibrium condition

in the hadron-quark phase transition. We will use in particular the Maxwell con-

struction15 with local charge conservation. A major result in this regard is that

in passing from the hadronic phase to the quark phase the magnetic field will be

boosted by an increment that depends on how paramagnetic the quark phase is rel-

ative to the hadronic phase. That is, the difference between the magnetization of

the two phases determines the jump in the magnetic field. As a consequence of that

we will discuss how at the boundary between the two phases a density of magnetic

monopoles will be accumulated.

The physical framework of the system under consideration is as follows: First,

in the hadronic phase we will use the nonlinear Walecka (NLW) model,16 where

the interaction between the hadrons is mediated by several meson fields. We will

calculate the energy density and pressures for these new particles starting with their

corresponding stress-energy tensor as was done in Refs. 6 and 9 for fermions. We

will show, that in the mean-field approximation, there is no anisotropy in the meson

pressures, which is in agreement with the fact that the considered meson fields are

electrically neutral and do not interact with the applied magnetic field. Second, we

will show that the condensates of the zero components of the meson fields enter

as new components of the effective chemical potential. Third, we will consider, for

the sake of simplicity, that the quark deconfinement will give rise to a free-quark

system described by the MIT bag model. Nevertheless, the possibility of having

other magnetized phases after the transition such as those with inhomogeneous

chiral condensates17–20 or color superconductivity21 are feasible. This will be a

valuable goal for future investigations.

Finally, we derived the anisotropic thermodynamic pressures, which originate

in the presence of a uniform magnetic field, using thermodynamic principles. On

the same footing, we derive the anisotropic equilibrium conditions characterizing

a magnetized thermodynamic system. We show that the thermodynamic pressures
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derived for an anisotropic magnetized system coincide with those obtained from the

quantum-statistical average of the stress-energy tensor.

The paper is organized as follows: In Sec. 2, for the sake of clarity and to facili-

tate the reader’s understanding, we review the main ideas that yield an anisotropic

equation of state (EOS) in the presence of a magnetic field. In particular, we

will show how the pressures obtained from the quantum-statistical average of the

energy–momentum tensor coincide with the thermodynamic pressures derived from

the thermodynamic potentials. In Sec. 3, we derive from the equilibrium thermo-

dynamic equations the anisotropic equilibrium conditions valid for a magnetized

system of charged relativistic particles. Using the obtained mechanical equilibrium

conditions in the Maxwell construction we show that the magnetic field value jumps

through the boundary of the first-order phase transition. We discuss how the differ-

ence between the two magnetic fields positioned on both sides of the border between

the hadronic phase (HP) and the quark phase (QP) induce a density of magnetic

monopoles in that region. In Sec. 4, we discuss how the EOS for a magnetized-

dense-hadron system with meson interactions, as well as for a magnetized system

of free quarks, can be derived from quantum statistical averaging of the energy–

momentum tensor and we explicitly calculate the EOS for the NLW and MIT bag

models in a uniform background magnetic field. At the end of this section, numeri-

cal calculations are reported showing how the different thermodynamic parameters

behave around the phase-transition boundary. In Sec. 5, we determine the magnetic

susceptibility of the HP and QP, and we discuss how it helps explain our results

from Sec. 4. In Sec. 6, we make our concluding remarks and indicate some pos-

sible future directions for the investigations of hadron-quark phase transitions in

strong magnetic fields. In App. A, we derive from first principles, the meson contri-

bution to the system EOS in the mean-field approximation. Finally, in App. B we

derive the main formulas we use for the thermodynamic potential in the weak-field

approximation.

2. Anisotropic Equations of State of Dense Matter

in a Magnetic Field

In this section, we review for the sake of clarity and a better understanding the EOSs

of a relativistic system of charged particles in a magnetic field as was introduced

in Ref. 6. To this end, we consider that the EOS of a magnetized system can

be obtained through the quantum-statistical averaging of the components of the

symmetrized field theoretic energy–momentum tensor. From the components of the

average stress-energy tensor, we can find the system pressures and energy density.

2.1. Covariant structure of the energy–momentum tensor at B 6= 0

In Ref. 6, it was found that in a magnetized medium the energy–momentum tensor

has three independent structures that in a covariant formulation are given by

τµν = a1η
µν + a2u

µuν + a3F̂
µρF̂ νρ , (1)
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where ηµν is the Minkowski metric, uµ is the medium four-velocity, which in the rest

frame takes the value uµ = (1,
−→
0 ), F̂µρ = Fµρ/B is the normalized electromagnetic

strength tensor and ai, i = 1, 2, 3 are scalar coefficients, which when defining the

quantum-statistical average of the energy–momentum tensor, 〈τ̂µν〉, depend on the

external parameters such as temperature, chemical potentials, magnetic field, etc.

The existence of the three independent structures in (1) is in agreement with the

symmetries of a magnetized system. A relativistic system in a vacuum is completely

symmetric and its energy–momentum tensor is expressed through the only tensor

at our disposal, which is in this case the metric tensor ηµν . In the presence of

a medium (i.e. at finite temperature and/or density), the Lorentz symmetry is

broken and a new vector (the four-velocity of the medium uµ) gives rise to a new

structure, which appears with coefficient a2 in (1). Now, in the presence of a uniform

magnetic field, another symmetry is broken: the rotation symmetry SO(2), and

this loss of symmetry has to be reflected in the system’s energy–momentum tensor

and consequently in the EOS. In this case, there is an extra tensor to form a

new structure in τµν . It is the electromagnetic strength tensor Fµν . Hence, the

energy–momentum tensor with the reduced rotational symmetry can be written as

a linear combination of three terms. Another way to understand how the magnetic

field reduces the system symmetry is by noticing that because of the breaking of

the rotational symmetry the Minkowskian metric is split into two structures one

transverse ηµν⊥ = F̂µρF̂ νρ , and another longitudinal ηµν‖ = ηµν− F̂µρF̂ νρ with respect

to the field direction.

2.2. Determination of the covariant-structure coefficients

To find the ai coefficients in (1), a calculation of the quantum-statistical average of

the energy–momentum tensor is needed,

〈τ̂µν〉 =
Tr[τ̂µνe−β(Ĥ−µN̂)]

Z
, (2)

where Ĥ is the system Hamiltonian operator, N̂ is the particle number operator,

µ is the chemical potential and Z is the partition function of the grand canonical

ensemble, which is given by

Z = Tr[e−β(Ĥ−µN̂)]. (3)

Using functional methods, it was found in Ref. 6 that the coefficients are given by

1

βV
〈τ̂µν〉 = Ωηµν + (µρ+ TS)uµuν +BMηµν⊥ , (4)

where Ω is the system thermodynamic potential, ρ = −(∂Ω/∂µ)V,T is the average

particle-number density, S = −(∂Ω/∂T )V,µ is the entropy, M = −(∂Ω/∂B)V,T,µ
is the system magnetization, V is the system volume, B is the magnetic field and

β = 1/T is the inverse absolute temperature.
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2.3. EOS in the presence of a magnetic field

From (4) we can find the system EOS by calculating the different components of

〈τ̂µν〉. For a magnetic field directed along the third-spatial direction, the energy

density ε, parallel pressure P‖ and perpendicular pressure P⊥, can be found from

ε =
1

βV
〈τ̂00〉, P‖ =

1

βV
〈τ̂33〉, P⊥ =

1

βV
〈τ̂⊥⊥〉 (5)

to be given at T = 0 by

ε = Ω + µρ+
B2

2
, (6)

P‖ = −Ω− B2

2
, P⊥ = −Ω−MB +

B2

2
. (7)

In (6)–(7), the quadratic terms in B arise from the Maxwell contribution to the

energy–momentum tensor

τµνM =
B2

2
(ηµν‖ − η

µν
⊥ ). (8)

The reason why we are neglecting the temperature effects on the EOS is that

for NS in equilibrium µ � T , and therefore, the zero-temperature limit is a good

approximation.

It is important to understand the sources of the pressure anisotropy in a mag-

netized system. First, we have the pure anisotropic effect of the uniform field given

by the Maxwell contributions (8), which are proportional to (±B2) and second,

the one produced by the system magnetization through the term BM . This last

term, as was earlier noticed in Ref. 14, is introduced by the anisotropy of the sys-

tem energy states. We can model that by considering that the volume occupied by

the charged particles in the presence of the magnetic field is given by V = L(clB)2,

where L is the length along the field direction, lB = 1/
√
eB is the so-called mag-

netic length and c a numerical coefficient. This expression for the volume takes into

account that in the transverse direction the energy states are quantized in Landau

orbits with radii proportional to lB . Then, introducing in the partition function the

variable changes: x3 → Lx3 and x⊥i → clBx
⊥
i ,6 we can derive the longitudinal and

perpendicular pressures as

P‖ =
1

βV
〈τ33〉 =

1

βV
L
dZ/dL
Z

, (9)

P⊥ =
1

βV
〈τ⊥⊥〉 =

1

βV
lB
dZ/dlB
Z

. (10)

A final essential ingredient to generate the BM term in P⊥ is to take into

account that the total derivative in (10) has two terms6

d

dlB
=

∂

∂lB
+

(
∂B

∂lB

)
∂

∂B
=

∂

∂lB
− 2Bl−1

B

∂

∂B
. (11)
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The first term on the right-hand side of (11) measures the effect on the pressure of

the variation of the physical volume in the transverse direction, while the second

term measures the effect produced by the variation of the effective transverse area

occupied by the charged particles under a variation of the magnetic field. From

a semiclassical point of view, we can imagine that the field variation produces a

redistribution of the Landau orbits, which determine the effective transverse area

for the charged particles. If only the first term is considered, then the anisotropy is

erased and the system can only be under the Pauli pressure in all directions. Hence,

the factor, BM , which accounts for the anisotropy in the pressure’s transverse

direction, manifests when the anisotropy in the energy states is considered. In our

approach, it was introduced taking into account the variation of the magnetic length

with the magnetic field, while in Ref. 14, it was done by taking the explicit form of

the energy states in a second quantized approach.

We should notice that from the form of the system volume we are consider-

ing (V = L(clB)2), the corresponding magnetic flux is independent of the mag-

netic field. This is in agreement with the classical results of London and Onsager22

and Saglam and Boyacioglu23 who considered using a nonrelativistic semiclassical

approach, where the orbit of the charged particle (the electron in their case) is

quantized in the presence of the magnetic field, and obtained that the magnetic

flux is given as Φ = nΦ0, n = 0, 1, 2, . . . , with Φ0 = 2π
e being the so-called quan-

tum fluxoid. Later on in Ref. 24, using a quantum relativistic theory, the previous

result was validated, showing that the magnetic flux of the charged particles does

not depend on the magnetic field. The flux quantization taking place in this system

was experimentally confirmed as early as 1961.25

2.4. Thermodynamic pressures at B 6= 0

To finalize this section, we want to show that the pressures obtained from the

quantum-statistical average of the spatial components of the energy–momentum

tensor coincide with what is understood as the thermodynamic pressures, which are

obtained as the variation of the system’s grand canonical potential with respect to

the volume.

Let us consider a magnetized system whose grand canonical potential,

Φ(T, µ,B, V ), is a function of temperature, chemical potential, magnetic field and

volume. Now we assume that in the presence of a uniform magnetic field the pressure

along the magnetic field direction, p‖, and transverse to that direction, p⊥, are dif-

ferent. Hence, it is natural to expect that the works done by those pressures through

their corresponding displacements are in principle not equal. Thus, we differenti-

ate between the variation of the volume along the field direction, dV‖ = (L⊥)2dL‖,

and that in the transverse direction, dV⊥ = 2(L‖L⊥)dL⊥. (Here, for the sake of

simplicity we change the notation to L⊥ = clB .)
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Thus, the grand canonical potential variation is given in this case as

dΦ =

(
∂Φ

∂T

)
dT +

(
∂Φ

∂µ

)
dµ+

(
∂Φ

∂B

)
dB +

(
∂Φ

∂L⊥

)
dL⊥ +

(
∂Φ

∂L‖

)
dL‖. (12)

As is known, the thermodynamic pressure can be found as the reaction to a

virtual change of the effective volume occupied by the particles, and it is related

to the work done by the system under such a virtual volume deformation. This

work depends in general on the interaction affecting the particles in the system. In

the case under analysis, we can consider that for the longitudinal deformation of

the volume, dV‖, the particle displacements are along the field direction where no

magnetic force is acting. This, together with the fact that in our formalism the inter-

particle interaction is neglected, implies that p‖ = −(∂Φ/∂V‖) only depends on the

Pauli pressure. For the transverse deformation, dV⊥, the situation is different. Now,

the particles’ displacements in the transverse direction feel the magnetic interaction.

A way to extract the corresponding contribution to the pressure of this magnetic

interaction was given in Ref. 6 and discussed above. The guiding idea for this

matter is to consider that under a magnetic field the charged particle transverse

motion is quantized in Landau orbits with radii given in units of the magnetic

length lB = 1/
√
eB. Thus, to completely determine the work related to the particle

displacement in the transverse direction we have to consider the work done by the

variation of the effective area available to the charged particles when it is changed

by varying the number density of Landau orbits. The density is changed in this

case through the variation of the orbits’ radii (i.e. by changing lB) while keeping

the physical area constant. This contribution is included in the third term of the

right-hand side of (12) when taking(
∂Φ

∂B

)
dB =

(
∂Φ

∂B

)(
∂lB
∂B

)−1

dlB ≡
(
∂Φ

∂B

)(
∂L⊥
∂B

)−1

dL⊥. (13)

Hence, the expression (12) can be rewritten as

dΦ =

(
∂Φ

∂T

)
dT +

(
∂Φ

∂µ

)
dµ+

(
∂Φ

L2
⊥∂L‖

)
dV‖

+

[(
∂Φ

2L‖L⊥∂L⊥

)
dV⊥ +

(
∂Φ

∂B

)(
∂L⊥
∂B

)−1

dL⊥

]
, (14)

from where we obtain

p‖ = − 1

L2
⊥

(
∂Φ

∂L‖

)
= −

(
∂Φ

∂V‖

)
= −Ω, (15)

p⊥ = − 1

2L‖L⊥

[(
∂Φ

∂L⊥

)
+

(
∂Φ

∂B

)(
∂L⊥
∂B

)−1
]

= −
(
∂Φ

∂V⊥

)
+

B

L‖(L⊥)2

∂Φ

∂B
= −Ω−BM, (16)

where we took into account that Φ = V Ω.
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Hadron-quark phase transition at finite density in the presence of a magnetic field

Expressions (15) and (16) coincide with the many-particle contribution of (7)

(i.e. we obtain (7) without the pure Maxwell contribution). Thus, the thermody-

namic pressures coincide with those obtained from 〈τ̂µν〉, but once again, the con-

tribution of the magnetic field to the variation of the effective volume due to the

redistribution of Landau levels has to be taken into account to produce the pressure

anisotropy.

3. First-Order Phase Transition at B 6= 0

As has been indicated by different calculations26,27 the deconfinement phase tran-

sition at high densities is a first-order phase transition. In this section, we will ana-

lyze how this first-order phase transition is modified in the presence of a magnetic

field when the anisotropic EOS when is taken into account.

3.1. Anisotropic equilibrium conditions at B 6= 0

To derive the equilibrium conditions governing the first-order phase transition in

this magnetized system, we consider two subsystems A(1) and A(2), representing

two phases in contact, such that the total system

A = A(1) +A(2) (17)

is isolated. Any process inside A should satisfy the following conditions:

(1) The total internal energy U (A) = U (1) + U (2) remains fixed (i.e. dU (A) = 0),

(2) The total volume V (A) = V (1)+V (2) remains fixed, so that no work is exchanged

with the environment.

(3) The number of particles of each specie j (i.e. baryons, leptons, etc.) remains

fixed inside A. Thus, dN
(A)
j = dN

(1)
j + dN

(2)
j = 0.

Now, taking into account the results of the previous section, the differential

entropy of system A can be given as the sum of those of the two subsystems

dSA = dS(1) + dS(2)

=
dU (1) + p

(1)
‖ dV

(1)
‖ + p

(1)
⊥ dV

(1)
⊥ −

∑
j µ

(1)
j dN

(1)
j

T (1)

+
dU (2) + p

(2)
‖ dV

(2)
‖ + p

(2)
⊥ dV

(2)
⊥ −

∑
j µ

(2)
j dN

(2)
j

T (2)
, (18)

where µ(1,2) denotes the chemical potentials of subsystems A(1) and A(2), respec-

tively, N
(i)
j the corresponding particle numbers, p

(i)
‖ the thermodynamic parallel

pressures and p
(i)
⊥ the transverse pressures, for subsystems i = 1, 2, respectively.

Notice that we are separating the longitudinal and transverse volume deformations

in agreement with previous analysis.
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Equation (18) can be rewritten as

dSA =

(
dU (1)

T (1)
+
dU (2)

T (2)

)
−
∑
j

(
µ

(1)
j

T (1)
dN

(1)
j +

µ
(2)
j

T (2)
dN

(2)
j

)

+

p(1)
‖ dV

(1)
‖

T (1)
+
p

(2)
‖ dV

(2)
‖

T (2)

+

(
p

(1)
⊥ dV

(1)
⊥

T (1)
+
p

(2)
⊥ dV

(2)
⊥

T (2)

)
. (19)

From the isolation conditions we have

dUA = dU (1) + dU (2) = 0, (20)

dV
(1)
‖ + dV

(2)
‖ = 0, (21)

dV
(1)
⊥ + dV

(2)
⊥ = 0, (22)

dN
(A)
j = dN

(1)
j + dN

(2)
j = 0. (23)

Substituting with (20)–(23) into (19), we find

dSA =

(
1

T (1)
− 1

T (2)

)
dU (1) −

∑
j

(
µ

(1)
j

T (1)
−
µ

(2)
j

T (2)

)
dN

(1)
j

+

 p
(1)
‖

T (1)
−
p

(2)
‖

T (2)

 dV
(1)
‖ +

(
p

(1)
⊥
T (1)

−
p

(2)
⊥
T (2)

)
dV

(1)
⊥ . (24)

As is well known, the equilibrium condition requires that the entropy is at a

maximum and as a consequence, any change in the entropy will be second-order in

its variables. Hence, there is no linear term at the maximum, so dSA = 0.

Therefore, taking into account that dU1, dV
(1)
‖ , dV

(1)
⊥ and dN1 are independent

variations, dSA = 0 can only hold if the coefficient of each variation in (24) vanishes

identically. Thus, it follows that

T (1) = T (2), (25)

µ
(1)
j = µ

(2)
j , (26)

p
(1)
‖ = p

(2)
‖ , (27)

p
(1)
⊥ = p

(2)
⊥ , (28)

where (25) is the thermal equilibrium condition, (26) is the chemical equilib-

rium condition and (21)–(22) are the mechanical equilibrium conditions for the

anisotropic system.

3.2. The neutrality condition

As is well known, symmetries associated with global gauge transformations produce

conservations of different charges. For NS astrophysics, the conservation of the
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electric charge and in particular its neutrality are of interest since the stellar matter

is considered electrically neutral and in beta equilibrium. Hence, when modeling

the inner composition of the star, which is formed by two phases in contact through

a phase transition boundary there exist two different constructions:

Gibbs Construction. In this case,13,15,28 a global neutrality condition is imposed,

in such a way that the two coexisting phases have opposite electric charges and a

unique electric chemical potential, µe. This condition can be written by requiring

that the average charge in the mixed phase formed close to the border between the

two phases is zero

F
∂Ω1

∂µe
+ (1− F )

∂Ω2

∂µe
= 0. (29)

Here, Ω1,2 correspond to the thermodynamic potentials of phases 1 and 2, respec-

tively, and F = V1/V is the volume fraction of phase 1, which takes values in the

interval 0 ≤ F ≤ 1. Thus, this mixed phase is a mixture of the two phases with

F = 0 corresponding to pure phase 1 and F = 1 to pure phase 2. For F values

in between, a mixture of phases takes place occupying different spatial volumes.

Thus, this mixed phase will be an inhomogeneous state of matter with domains

corresponding to the two different phases.27

Maxwell Construction. In this construction,27,29 two pure phases are considered

in direct contact with each other and each of the phases is independently treated as

electrically neutral. In this case, to realize the local neutrality conditions we have

to introduce two chemical potentials, µ
(1)
e for phase 1 and µ

(2)
2 for phase 2. The

local neutrality conditions are then written as

∂Ω1

∂µ
(1)
e

= 0,
∂Ω2

∂µ
(2)
e

= 0. (30)

Moreover, while for the electric chemical potential there is a jump from one

phase to the other, in the case of having additional chemical potentials associated to

nongauge global symmetries, such as baryonic or leptonic ones, the chemical equi-

librium for them will imply the continuity of the corresponding chemical potentials

between the two phases as in (26).

We should point out that the Gibbs construction was taken to be the most

stable phase when considering more than one chemical potential associated with

a system of conserved charges (in our case the baryonic and electric charges).15

The alternative Maxwell construction was then considered unstable due to the

possibility for particles to fall from higher energy levels corresponding to the higher

electric chemical potential of one phase to the lower energy levels of the other

phase. Nevertheless, those conclusions were reached without taking into account the

contribution of the surface tension effect and Coulomb interaction across the mixed

phase. Once the surface tension λ is introduced after assuming a sharp boundary

between the two phases, one or the other construction may be more appropriate
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depending on the value of λ.30 There are even arguments31 pointing out that the

Gibbs mixed phase is energetically too expensive and that it may be expelled from

the stellar medium.

The value of the surface tension of the hadron-quark interface is poorly

known. At zero magnetic field there exist some estimates in the range λ ≈
10−100 MeV/fm

232 and in the presence of a magnetic field in the range of

1017−1018 G and for the characteristic values of baryon densities (2no−4no) the

values of λ were found to be between 0.2 MeV/fm
2

and 15 MeV/fm
2
.33 In Ref. 34,

it was found that at low values of λ the general construction approaches the Gibbs

construction, while for λ > λcrit = 60 MeV/fm
2

it approaches the Maxwell con-

struction. Moreover, it was shown that Gibbs constructions including λ and/or

Coulomb interaction do not give rise to significant differences with respect to

the Maxwell construction regarding the bulk properties of compact stars, such

as the mass-radius relationship. Nevertheless, due to significant uncertainties in

the model parameters, as for instance, the interface energy, the results are yet

inconclusive.27

Another open question related to finite-size effects that merits investigation is

the following. In Ref. 35, it was found that the Landau quantization is modified for

a magnetized system with cylindrical boundary conditions. This new quantization

could in principle alter the thermodynamic potential and consequently the derived

quantities, such as magnetization, etc.

3.3. Magnetic boundary conditions and magnetic monopoles

From the expressions in (7), we can rewrite the transverse pressure as

p⊥ = p‖ −MB +B2. (31)

Then, using (31) in the mechanical equilibrium equations (27) and (28) we

obtain

(B1)2 −B1M1 = (B2)2 −B2M2. (32)

From (32), a jump in the magnetic field from one phase to the other is implied

by the fact that the magnetization, being the first derivative of the thermodynamic

potential with respect to the magnetic field, should be discontinuous along the first-

order phase transition boundary. Thus, if we were to consider that the magnetic field

is the same in the two phases, then, from Eq. (32), we would have that M1 = M2,

which is contradictory. Hence, we should expect that B1 6= B2.

The jump in the magnetic field around the border of the two phases implies

that the divergence of the magnetic field will be nonzero in that region. Hence, the

existence of magnetic monopoles on the phase boundary should be expected with

a density ρM given by

5 ·B = 4πρM . (33)
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The jump in the magnetic field will be then given by

B2 −B1 = 4πσM , (34)

where if assuming that the stellar magnetic field is in the outward direction, B2 is the

field component perpendicular to the surface separating the two phases immediately

above, and B1 is just below the surface. In (34), σM is the monopole surface density

on the phase boundary.

Here, the following comment is in order to explain how the magnetic monopole

charge density can be created in the phase-transition boundary. The creation of

magnetic monopoles in the presence of a sufficiently high magnetic field has been

already conceived.36 The proposed monopole pair production mechanism proceeds

via the magnetic dual of Schwinger pair production,37 where as is known, in the

presence of an electric field, empty space is unstable to the production of electron-

positron pairs. Magnetic monopoles created by stellar magnetic fields, specifically

for those of magnetars, have been considered in Ref. 38. Even in Ref. 39, a method

to detect the created magnetic monopoles through the observation of gravitational

waves has been proposed.

Now, to explain the accumulation of magnetic monopoles in the phase-transition

boundary, let us assume that the star inner magnetic field on a small patch on

the phase boundary is pointing from the star center to its surface and take into

account that if a pair of magnetic monopoles are produced in the hadronic phase

near the phase-transition boundary, the magnetic field of this phase would pull the

magnetic monopole with a negative magnetic charge to the boundary and expel

the one with a positive charge toward the surface, while the magnetic field in the

quark phase will push the magnetic monopoles with positive magnetic charge to the

phase-transition boundary and expel to the star center the monopoles with negative

magnetic charge. Since the production rate of monopoles depends on the magnetic-

field strength36,40 and because in our approach the magnitude of the magnetic field

performs a jump around the phase transition region, it follows that close to the

phase-transition boundary a net accumulation of magnetic charge is created.

4. Anisotropic Hadron-Quark Phase Transition

To investigate the hadron-quark phase transition we consider, for example, that

the quark phase occupies the subsystem A(1), while the hadronic phase is in the

subsystem A(2), with the quark phase occupying the region closer to the star center

where there is a larger density. To study the first-order phase transition we will

consider the Maxwell construction, where the set of equations to be solved are as

follows.

The mechanical equilibrium conditions (27)–(28) for the anisotropic system

under consideration

pHP
‖ = pQP

‖ , (35)

pHP
⊥ = pQP

⊥ , (36)
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where we are introducing the notation HP and QP to denote variables in the

hadronic and quark phases, respectively. They are replacing, respectively, the

subindices 2 and 1 used previously.

The neutrality conditions

∂ΩHP

∂µHP
e

= 0,
∂ΩQP

∂µQP
e

= 0, (37)

which in terms of the particle number densities can be written as

ρp − ρHP
e = 0,

2

3
ρu −

1

3
ρd − ρQP

e = 0, (38)

where the subindex p is for proton, e for electron, u and d for the corresponding

quark flavors.

On the other hand, the chemical equilibrium condition for the baryonic chemical

potential reads

µHP = µQP = µ, (39)

which means that we have the same chemical potentials µ in both phases.

Moreover, we consider that the system is β-equilibrated, which imposes the

following constraints on the chemical potentials of the participating particles:

µn = µ, µp = µ− µHP
e , µu =

1

3
µ− 2

3
µQP
e , µd =

1

3
µ+

1

3
µQP
e . (40)

Finally, we should impose the minimum equations for the expectation values of

the meson fields σ, ω0 and ρ0 that participate in the hadronic phase,

∂ΩHP

∂σ
=
∂ΩHP

∂ω0
=
∂ΩHP

∂ρ0
= 0. (41)

These equations give nontrivial expectation values ω̄0 = 〈ω0〉, ρ̄0 = 〈ρ0〉 thanks

to the nonzero particle number densities. The same is not true for the spatial

expectation values of the meson fields, since there is only trivial values for the

current densities.

Therefore, there are eight unknown parameters in the system: BQP, BHP, µ,

µQP
e , µHP

e , σ, ω0, ρ0 and seven independent equations given in (35), (36), (38) and

(41). Then, by fixing BHP we can find the rest of the parameters.

In the next section, we find the EOS for each phase from where we can solve

the phase-transition equations (35), (36), (38) and (41).

We should point out, that as we discussed in Subsec. 3.2, due to significant

uncertainties in the model parameters, which of the two constructions (Maxwell or

Gibbs) is more favorable in describing the hadron-quark phase transition has not

yet been definitively determined. Thus, in this paper, we arbitrarily selected the

Maxwell construction and left the analysis of the anisotropic hadron-quark phase

transition in the Gibbs construction for a later study.
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4.1. Hadron sector equations of state at B 6= 0

Here, 〈ˆ̃τ
µν
〉 is the quantum-statistical average of the energy–momentum tensor

given by

〈ˆ̃τ
µν
〉 =

Tr[ˆ̃τ
µν
e−β(Ĥ−

∑
i µiN̂i)]

Z
, (42)

where Ĥ is the system Hamiltonian and

ˆ̃τ
µν

=

∫ β

0

dτ

∫
d3x[τ̂µνM + τ̂µνf ] (43)

with τ̂µνM and τ̂µνf being the contributions to the canonically quantized energy–

momentum tensor arising from the pure magnetic field (Maxwell contribution) and

from the many-particle system, respectively, and Z being the partition function of

the grand canonical ensemble, which is given by

Z = Tr[e−β(Ĥ−
∑
i µiN̂i)]. (44)

As we already pointed out in the Introduction, for the HP we will consider

the NLW model, where several mesons (σ, ωµ and ρµ) will mediate the interac-

tion between hadrons. For these boson fields we will show in App. A, that in the

mean-field approximation, where the meson field components with nonvanishing

expectation values are σ̄, ω̄0 and ρ̄0, the corresponding statistical average of the

corresponding pure meson stress-energy tensor is given by

1

βV
〈ˆ̃τ
µν

m 〉 = Ωmη
µν + (ω̄0ρω + ρ̄0ρρ)u

µuν , (45)

where Ωm is the meson contribution to the thermodynamic potential (see

Eq. (A.19)), ρω = −∂Ωm/∂ω̄0 and ρρ = −∂Ωm/∂ρ̄0. We can see from (45) that

〈ˆ̃τ
µν

m 〉 is an isotropic stress-energy tensor, which does not give rise to any splitting

in the pressure, as was the case with the fermions (4). Notice that in (45) the field

expectation values ω̄0 and ρ̄0 play the role of chemical potentials.

From (45), we have that the meson contribution to the EOS is given by

εm = Ωm + (ω̄0ρω + ρ̄0ρρ), P‖ = P⊥ = −Ωm. (46)

The meson fields also enter the fermion Lagrangian density through Yukawa

couplings. We show in App. A that (4) is modified such that µ → µ∗, where µ∗ is

the effective chemical potential, which includes the expectation values ω̄0 and ρ̄0

(see Eq. (57)).

In what follows, we will derive the corresponding EOS for the magnetized HP

taking into consideration the pressure anisotropy created by the magnetic field by

itself, as well as by its interaction with the charged fermions.

We start by calculating the thermodynamic potential that describes the HP of

hybrid stars. With this goal in mind, we consider the NLW model in a uniform

background magnetic field B directed along the z-axis. The Lagrangian density of
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this system can be expressed as a sum over its baryon (b), lepton (l), meson (m)

and Maxwell (M) components

LHP =
∑
b

Lb +
∑
l

Ll + Lm + LM , (47)

where

Lb = ψ̄b(iγµ∂
µ − qbγµAµ −mb + gσbσ − gωbγµωµ − gρbτ3bγµρµ)ψb,

Ll = ψ̄l(iγµ∂
µ − qlγµAµ −ml)ψl,

Lm =
1

2
∂µσ∂

µσ − 1

2
m2
σσ

2 − U(σ) +
1

2
m2
ωωµω

µ − 1

4
ΩµνΩµν +

1

2
m2
ρρµρ

µ

− 1

4
PµνPµν ,

LM = −1

4
FµνFµν .

(48)

The baryon index b may include a substantial subset of the lighter baryons,

however here we only consider a system with baryon content composed of neutrons

and protons b = n, p. Similarly, we take the lepton content to be composed only

of electrons, l = e. In (48), τ3b denotes the baryon isospin projection operator, gσb,

gωb and gρb are the baryon–meson couplings (see Table 141), and the mesonic and

electromagnetic field tensors are given by Ωµν = ∂µων − ∂νωµ, Pµν = ∂µρν − ∂νρµ
and Fµν = ∂µAν − ∂νAµ.

The scalar self-interaction potential is (see Table 1 for a list of parameter values)

U(σ) =
1

3
cmn(gσNσ)3 +

1

4
d(gσNσ)4. (49)

In Ref. 42, it was found that the magnetic field-anomalous magnetic moment

(B-AMM) interaction does not significantly affect the EOS of charged fermions and

in Ref. 9, it was found that the B-AMM interaction is insignificant for neutrons at

magnetic field strengths less than 1018 G. We omit the B-AMM interaction terms

in (48), however the effects of the neutron B-AMM on the hadron-quark phase

transition at magnetic fields of order 1018 G will be studied later on in the paper.

In the NLW model, mesons are taken in the mean-field approximation, where

only their field expectation values σ̄ = 〈σ〉, ω̄0 = 〈ω0〉, ρ̄0 = 〈ρ0〉 contribute to the

one-loop thermodynamic potential.

Table 1. Scalar, gσN , and vector meson-nucleon, gωN , gρN , cou-

plings as well as meson self-interaction coefficients, c, d, chosen to

reproduce the binding energy, baryon density, symmetry energy
coefficient and effective mass at nuclear saturation for a compres-
sion modulus K = 30, as reported in Refs. 13 and 41.

gσN gωN gρN c d

8.910 10.610 8.196 0.002947 −0.001070
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The fermion Lagrangian densities (48) admit global symmetries, which have

associated conserved number densities given by

ρi = ψ̄iγ
0ψi, i = p, n, e. (50)

These conserved number densities enter the partition function (44) through

the relation
∑
i µiρi, where the chemical potentials µi play the role of Lagrange

multipliers.

The fermion contribution to the thermodynamic potential in the HP is given by

ΩHP
f = Ωn + Ωp + Ωe, (51)

where in the one-loop approximation we have

Ωn = − 1

β

∑
p4

∫ ∞
−∞

d3p

(2π)3
ln det(/p

∗
n

+m∗n),

Ωp = −eB
β

∑
p4

∫ ∞
−∞

dp3

(2π)2

{
1

2
ln det[/̄p

∗
p
(l = 0)−m∗p] +

∞∑
l=1

ln det[/̄p
∗
p
(l)−m∗p]

}
,

Ωe = −eB
β

∑
p4

∫ ∞
−∞

dp3

(2π)2

{
1

2
ln det[/̄p

∗
e
(l = 0)−me] +

∞∑
l=1

ln det[/̄p
∗
e
(l)−me]

}
.

(52)

Here, p4 = (2n+1)π
β for n = (n = 0,±1,±2, . . .) are the Matsubara frequencies

for fermions. The four momenta and effective masses for the different particles

are

p∗n = (p1, p2, p3, p4 + iµn − igωN ω̄0 − igρNτ3n ρ̄0),

p̄∗p = (0,−
√

2eBl, p3, p4 + iµp − igωN ω̄0 − igρNτ3p ρ̄0),

p̄∗e = (0,−
√

2eBl, p3, p4 + iµHP
e ),

m∗n = mn − gσN σ̄,

m∗p = mp − gσN σ̄.

(53)

Note that a factor of 1/2 appears in front of the lowest Landau level (LLL)

contributions to the charged fermion thermodynamic potentials in (52) since in the

LLL only one spin projection contributes (i.e. there is no spin degeneracy.)

Performing the sums in Matsubara frequencies and calculating the determinants

in (52), we obtain the one-loop fermion thermodynamic potential as a sum of its

vacuum (QFT) and finite temperature-statistical (S) components.

ΩHP
f = ΩQFT

n + ΩSn + ΩQFT
p + ΩSp + ΩQFT

e + ΩSe , (54)
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where

ΩQFT
n = −2

∫ ∞
−∞

d3p

(2π)3
En,

ΩQFT
p = −eB

∫ ∞
−∞

dp3

(2π)2

{
Ep(l = 0) + 2

∞∑
l=1

Ep

}
,

ΩQFT
e = −eB

∫ ∞
−∞

dp3

(2π)2

{
Ee(l = 0) + 2

∞∑
l=1

Ee

}
(55)

and

ΩSn = −2

∫ ∞
−∞

d3p

(2π)3

{
1

β
ln[1 + e−β(En+µ∗

n)] +
1

β
ln[1 + e−β(En−µ∗

n)]

}
,

ΩSp = −eB
∫ ∞
−∞

dp3

(2π)2

{
1

β
ln[1 + e−β(Ep(l=0)+µ∗

p)] +
1

β
ln[1 + e−β(Ep(l=0)−µ∗

p)]

}

− 2eB

∞∑
l=1

∫ ∞
−∞

dp3

(2π)2

{
1

β
ln[1 + e−β(Ep+µ∗

p)] +
1

β
ln[1 + e−β(Ep−µ∗

p)]

}
,

ΩSe = −eB
∫ ∞
−∞

dp3

(2π)2

{
1

β
ln[1 + e−β(Ee(l=0)+µHP

e )] +
1

β
ln[1 + e−β(Ee(l=0)−µHP

e )]

}

− 2eB
∞∑
l=1

∫ ∞
−∞

dp3

(2π)2

{
1

β
ln[1 + e−β(Ee+µ

HP
e )] +

1

β
ln[1 + e−β(Ee−µHP

e )]

}
.

(56)

Here

µ∗n = µn − gωN ω̄0 − gρNτ3n ρ̄0, µ∗p = µp − gωN ω̄0 − gρNτ3p ρ̄0 (57)

and En, Ep and Ee are given by

En =
√
p2

1 + p2
2 + p2

3 +m∗n
2, Ep =

√
p2

3 + 2eBl +m∗p
2,

Ee =
√
p2

3 + 2eBl +me
2.

(58)

Since for NS the high particle density makes the chemical potentials the leading

parameters, it is natural to expect the many-particle contribution to provide the

largest contribution to the thermodynamic potential. Dropping the vacuum terms

and taking the zero-temperature limit we arrive at the many-particle-fermion ther-

modynamic potential

Ωµf
HP

= Ωµn + Ωµp + Ωµe , (59)

2250048-18

In
t. 

J. 
M

od
. P

hy
s. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
 O

F 
TE

X
A

S-
PA

N
 A

M
ER

IC
A

N
 o

n 
05

/2
6/

22
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



May 11, 2022 21:12 IJMPA S0217751X22500488 page 19
FA

Hadron-quark phase transition at finite density in the presence of a magnetic field

where

Ωµn = −2

∫ ∞
−∞

d3p

(2π)3
(µ∗n − En)Θ(µ∗n − En),

Ωµp = −eB
∫ ∞
−∞

dp3

(2π)2

{
(µ∗p − Ep(l = 0))Θ(µ∗p − Ep(l = 0))

+ 2
∞∑
l=1

(µ∗p − Ep)Θ(µ∗p − Ep)

}
,

Ωµe = −eB
∫ ∞
−∞

dp3

(2π)2

{
(µHP
e − Ee(l = 0))Θ(µHP

e − Ee(l = 0))

+ 2
∞∑
l=1

(µHP
e − Ee)Θ(µHP

e − Ee)

}
.

(60)

It is also expected that eB < µ2
n; hence, we can limit our calculation to the

weak-field approximation (WFA). Carrying out the integration over momentum and

using the WFA to approximate the sum over Landau levels (see App. B for details

on carrying out the WFA), we arrive at

Ωµn ≈
−1

24π2

(2µ∗n
4 − 5m∗n

2µ∗n
2)

√
1−

(
m∗n
µ∗n

)2

+ 3m∗n
4 ln

[
µ∗n +

√
µ∗n

2 −m∗n2

m∗n

],
Ωµp ≈

−1

24π2

(2µ∗p
4 − 5m∗p

2µ∗p
2)

√
1−

(
m∗p
µ∗p

)2

+ (3m∗p
4 + 2(eB)2) ln

µ∗p +
√
µ∗p

2 −m∗p2

m∗p

,
Ωµe ≈

−1

24π2

(2(µHP
e )4 − 5me

2(µHP
e )2)

√
1−

(
me

µHP
e

)2

+ (3me
4 + 2(eB)2) ln

[
µHP
e +

√
(µHP
e )2 −me

2

me

].
(61)

Plugging (59) together with (61) into (6)–(7), taking into account that µb → µ∗b
in the energy density expression according to (57), and adding the pure meson

contribution (46), we obtain for the EOS of the hadronic phase

ε = Ωµf
HP

+
∑
i

µ∗i ρ
µHP
i +

B2

2
+

{
1

2
m2
σσ̄

2 + U(σ̄) +
1

2
m2
ωω̄

2
0 +

1

2
m2
ρρ̄

2
0

}
,
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P⊥ = −Ωµf
HP −BMµHP

f +
B2

2
+

{
−1

2
m2
σσ̄

2 − U(σ̄) +
1

2
m2
ωω̄

2
0 +

1

2
m2
ρρ̄

2
0

}
,

P‖ = −Ωµf
HP − B2

2
+

{
−1

2
m2
σσ̄

2 − U(σ̄) +
1

2
m2
ωω̄

2
0 +

1

2
m2
ρρ̄

2
0

}
,

(62)

where the index i runs over fermion species, MµHP
f = −∂ΩµHP

f /∂B is the zero-

temperature-finite density fermion magnetization, and ρµHP
i = −∂ΩµHP/∂µi are

the ith particle species number densities at zero-temperature and finite density,

which are given by

ρµn =
1

3π2
(µ∗n

2 −m∗n
2)

3
2 ,

ρµp =
1

3π2

(µ∗p
2 −m∗p

2)
3
2 +

(eB)2

4
√
µ∗p

2 −m∗p2

,
ρµe =

1

3π2

[
((µHP

e )2 −m2
e)

3
2 +

(eB)2

4
√

(µHP
e )2 −m2

e

]
(63)

and the baryonic charge density in the hadron phase is given by

ρHP
b =

∑
i

qHP
i ρHP

i = ρµn + ρµp , (64)

where qHP
i is the baryonic charge of the ith particle species in the hadron phase.

4.2. Quark sector equations of state at B 6= 0

We consider that the QP is formed by quarks of two flavors and electrons. To

describe the quark content of the QP, we employ the MIT bag model where the

quarks are considered to be free inside of an effective bag, which is realized in the

theory by adding (subtracting) a fixed constant to the energy density (pressure),

which accounts for the inward pressure needed to confine the quarks into the bag.

The electron content and pure magnetic field contribution are described by the same

Lagrangians used to describe the lepton and Maxwell contributions in the hadron

sector, keeping in mind that the magnetic field and electric chemical potential may

differ in the QP. The QP Lagrangian is given by

LQP =
∑
q

Lq + Le + LM , (65)

where

Lq = ψ̄q(iγµ∂
µ − qqγµAµ −mq)ψq. (66)
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The quark index q runs over up and down flavors, u, d, respectively, and is

degenerate in the three color charges. We use mu = md = 5.5 MeV. The quark

Lagrangian densities also admit global symmetries, which give rise to conserved

number densities given by

ρq = ψ̄qγ
0ψq. (67)

To each conserved number density a chemical potential µq can be introduced as

a Lagrange multiplier.

In the WFA, the finite-density thermodynamic potential for each quark is arrived

at by taking me → mq, e → qq, µ
HP
e → µQP

q in Ωµe , and multiplying by an overall

factor of 3 to account for the color degeneracy. We then have

Ωµf
QP

= Ωµu + Ωµd + Ωµe , (68)

Ωµu ≈
−1

8π2

(2µu
4 − 5mu

2µu
2)

√
1−

(
mu

µu

)2

+

(
3mu

4 +
8

9
(eB)2

)
ln

[
µu +

√
µu2 −mu

2

mu

],
Ωµd ≈

−1

8π2

(2µd
4 − 5md

2µd
2)

√
1−

(
md

µd

)2

+

(
3md

4 +
2

9
(eB)2

)
ln

[
µd +

√
µd2 −md

2

md

],
Ωµe ≈

−1

24π2

(2(µQP
e )4 − 5me

2(µQP
e )2)

√
1−

(
me

µQP
e

)2

+(3me
4 + 2(eB)2) ln

µQP
e +

√
(µQP
e )2 −me

2

me

.

(69)

The EOS for the QP is determined the same way as was done for the HP except

here the meson field contribution (46) is removed and the bag constant is added to

and subtracted from the energy density and pressures, respectively,

ε = Ωµf
QP

+
∑

i=u,d,e

µiρ
µQP
i + Bag,

PQP
⊥ = −Ωµf

QP −BMµQP
f +

B2

2
− Bag,

PQP
‖ = −Ωµf

QP − B2

2
− Bag.

(70)

2250048-21

In
t. 

J. 
M

od
. P

hy
s. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
 O

F 
TE

X
A

S-
PA

N
 A

M
ER

IC
A

N
 o

n 
05

/2
6/

22
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



May 11, 2022 21:12 IJMPA S0217751X22500488 page 22
FA

E. J. Ferrer & A. Hackebill

The quark number densities are given by

ρµu =
1

π2

[
(µu

2 −m2
u)

3
2 +

(eB)2

9
√
µu2 −m2

u

]
,

ρµd =
1

π2

[
(µd

2 −m2
d)

3
2 +

(eB)2

36
√
µd2 −m2

d

] (71)

and the electron number density is similar to that in (63). The quark phase baryonic

charge density is given by

ρQP
b =

1

3
ρu +

1

3
ρd. (72)

In the following, for the numerical calculations we will take Bag = (180 MeV)4

to be the value of the bag constant.

4.3. Numerical solutions for the anisotropic quark-hadron phase

transition at B 6= 0 in the Maxwell construction

In this section, we draw our attention to the inner region of a NS, which has its

hadronic phase closer to its surface. When the radial distance is decreased, it is

expected that the matter density increases and eventually, if the density increases

enough, a first-order phase transition occurs toward a quark phase. Our goal now is

to determine, through Eqs. (35), (36), (38) and (41), the critical values of the param-

eters that characterize the first-order phase transition in the Maxwell construction.

In Fig. 1, by fixing the magnetic-field value in the hadronic phase, BHP = 1016 G,

we determine the relation between the baryonic chemical potential and the baryonic

charge density. There, the solid line corresponds to the hadronic phase and the

dashed line to the quark phase. By increasing µ we reach the phase-transition

point separating the hadronic phase from the quark phase at the critical value

µc = 1.367 GeV. It can be noticed how the baryonic density jumps at that critical

value indicating the first-order nature of the phase transition.

In Fig. 2, we plot the parallel and perpendicular pressures without considering

the contribution of the B-AMM interaction of the contributing particles versus

baryonic charge density ρb normalized against the baryonic saturation density ρ0 for

BHP = 1016 G (solid line) and for BHP = 1018 G (dotted line). Then, the pressures

are plotted with a dashed line for the case when the B-AMM interaction for neutrons

is included at BHP = 1018 G. There, while the baryon density is discontinuous

around the phase-transition point, the pressures are continuous, which is typical

for these two magnitudes in a first-order phase transition.

While in Ref. 42, it was shown that the B-AMM contribution of charged particles

to the pressures is insignificant up to field of the order of 1018 G, in Ref. 43, it was

found that the B-AMM interaction significantly affects the pressure contribution

of neutrons at field strengths around 1018 G when the pure Maxwell contribution

is set aside. Thus, it remains to determine if the neutron B-AMM interaction is
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Fig. 1. (Color online) Baryonic chemical potential, µ in the HP (red-solid) and the QP (blue-
dashed), versus baryonic charge density, ρb normalized against the baryonic saturation density

ρ0 = 0.153 fm−3, at a magnetic field BHP = 1016 G. The jump in the baryon number density is

signaling the hadron-quark phase transition at µc = 1.367 GeV.

Fig. 2. (Color online) Parallel (a) and perpendicular (b) pressures in the Maxwell construction
versus baryonic charge density ρb, normalized against the baryonic saturation density ρ0 = 0.153
fm−3, including (blue-dashed) the neutron AMM at BHP = 1018 G and excluding the neutron

AMM at BHP = 1018 G (red-dotted) and at BHP = 1016 G (black-solid).
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Fig. 3. (Color online) Parallel (a) and perpendicular (b) EOS in the Maxwell construction includ-
ing (blue-dashed) the neutron AMM at BHP = 1018 G and excluding the neutron AMM at

BHP = 1018 G (red-dotted) and at BHP = 1016 G (black-solid).

influential on the system’s behavior when the pure Maxwell term is also included.

In order to determine the effect of the neutron B-AMM interaction on the phase

transition in the Maxwell construction the parallel and perpendicular pressures

are plotted in Fig. 2 while including and excluding the B-AMM interaction. The

neutron component of the free energy with the B-AMM included was taken from

Ref. 9. As displayed in Fig. 2, the B-AMM provides a relatively small influence on

the pressures when compared with the effects arising from increasing the magnetic

field.

In Fig. 3, the parallel and perpendicular EOS are plotted while again considering

the affects of the AMM at 1018 G. As was the case with the normalized baryon

density in Fig. 2, the energy density experiences a jump across the phase-transition

point, while the pressures remain continuous. This is indicative of the first-order

nature of the phase transition because the energy density harbors a first derivative

of the free energy via the number density term found in (6). Even at a field strength

of 1018 G the AMM seems to play an insignificant role in the structure of the EOS

in the Maxwell construction. This is due to the fact that at those field values the

pure magnetic-field effect of the Maxwell pressure sweeps away the contribution to

the pressure of the neutron AMM.

The system magnetization versus baryonic charge density is plotted in Fig. 4 for

BHP = 1016 G. The solid line corresponds to the hadronic phase and the dashed line

to the quark phase. It can be noticed that both parameters are discontinuous at the

transition point as is expected for a first derivative of the thermodynamic poten-

tial in a first-order phase transition. It can be seen that the system magnetization

increases when transitioning from the hadronic to the quark phase, which indicates
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Fig. 4. (Color online) Magnetization, M , in the HP (red-solid) and QP (blue-dashed) versus
baryonic charge density, ρb normalized against the baryonic saturation density ρ0 = 0.153 fm−3,

at BHP = 1016 G.

that quark matter is more paramagnetic. The discontinuity observed for the mag-

netization around the phase transition in Fig. 4 confirms what we indicated in Sub-

sec. 3.3 regarding its implication for a jump in the magnetic field in transitioning

from one phase to the other.

Hence, as was shown in Subsec. 3.3, the magnetic field after the phase transition

to the quark phase should vary in strength with respect to the hadron phase. In

our calculation, we found that even for fields up to 1018 G the field variation is

relatively small (i.e. ∆Bmax = BQP − BHP ' 4.11 × 1015 G) and consequently

the magnetic monopole charge density that can accumulate at the phase transition

boundary will also be relatively small for the systems under consideration. At first

glance, it looks to be in contradiction with the fact that there is a significant jump

in the magnetization (see Fig. 3). But, as we will see in the following section, the

jump in M is mainly due to the variation of the magnetic susceptibility during the

transition (both of them, M and χ, double in value); while the strong-magnetic-

field’s main contribution to the phase transition equilibrium equations is driven by

the Maxwell terms (i.e. B2 �MB) that do not differentiate the phase peculiarities

(see Eqs. (7), (35) and (36)).

The electric chemical potential versus the baryonic chemical potential is rep-

resented by the solid line for the hadronic phase and by the dashed line for the

quark phase in Fig. 5. The electric chemical potential jumps down when passing

from the hadronic phase to the quark phase. The higher chemical potential in the

hadronic phase indicates that a larger number of electrons is needed to compensate
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Fig. 5. (Color online) Electric chemical potential, µe, in the HP (red-solid) and QP (blue-dashed)
versus baryonic chemical potential, µ, at BHP = 1016 G.

for the protons’ electric charge than is needed to compensate for the quarks’ electric

charge. This discontinuous behavior for µe is typical of the Maxwell construction

where the local neutrality conditions imply the existence of two independent chem-

ical potentials for each phase.

5. Magnetic Susceptibility of the Hadronic and Quark Phases

As follows from (32), the jump in the magnetic field, in going from one phase to the

other, partially depends on the difference between the magnetizations of the two

phases, or in other words, on which phase is more paramagnetic. With the objective

of understanding the situation between the HP and the QP, we investigate in this

section, the magnetic susceptibility of the two phases.

The magnetic susceptibility (χM ) of a system is defined as the coefficient of the

linear expansion of the magnetization in powers of the magnetic field,

M = χMB. (73)

The magnetization in the HP can be computed by differentiating the field dependent

thermodynamic potentials Ωµ
p and Ωµe in (61) with respect to B,

MµHP
f = −

∂Ωµf
HP

∂B
=
e2B

6π2
ln

 (µ∗p +
√
µ∗p

2 −m∗p2)(µHP
e +

√
(µHP
e )2 −me

2)

m∗pme


(74)
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and the magnetic susceptibility is therefore,

χµHP
M =

e2

6π2
ln

 (µ∗p +
√
µ∗p

2 −m∗p2)(µHP
e +

√
(µHP
e )2 −me

2)

m∗pme

. (75)

Similarly, the QP magnetization is given by

MµQP
f =

e2B

18π2

× ln

 (µu +
√
µu2 −mu

2)4(µd +
√
µd2 −md

2)(µQP
e +

√
(µQP
e )2 −me

2)3

mu
4mdme

3


(76)

and the corresponding magnetic susceptibility is

χµQP
M =

e2

18π2

× ln

 (µu +
√
µu2 −mu

2)4(µd +
√
µd2 −md

2)(µQP
e +

√
(µQP
e )2 −me

2)3

mu
4mdme

3

.
(77)

In Fig. 5, the magnetic susceptibility χM is plotted across the phase tran-

sition against baryon chemical potential at a hadronic magnetic field value of

Fig. 6. (Color online) Magnetic susceptibility, χ, in the HP (red-solid) and QP (blue-dashed)
as a function of baryonic charge density, ρb normalized against the baryonic saturation density

ρ0 = 0.153 fm−3, at BHP = 1016 G.
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BHP = 1016 G. The positivity of χ in both sectors suggests that both media are

paramagnetic with stronger paramagnetism occurring in the QP. This supports the

finding that the QP withstands moderately stronger magnetic fields.

6. Concluding Remarks

In this paper, we investigated the hadron-quark first-order phase transition, which

may take place in the dense core of NS in the presence of a magnetic field. Consider-

ing that a uniform magnetic field produces anisotropic EOS, we proposed a new set

of anisotropic equilibrium conditions, which will drive the phase transition at finite

densities of the magnetized phases. To put forward this approach we extended the

study of the anisotropic EOS in the presence of a uniform magnetic field that was

initially investigated in Refs. 6 and 9 for fermions, by including different species of

mesons.

We found that the thermodynamic pressures in the presence of a magnetic field

coincide with those found from the components of the quantum-statistical average

of the energy–momentum tensor, having a component along the magnetic field,

p‖, which is given by the Pauli pressure, while the component transverse to the

magnetic field, p⊥ = p‖ −MB, has an extra term related to the energy generated

by the interaction of the system magnetic moment (i.e. the system magnetization)

and the magnetic field.

Our results show that the magnetic field is boosted to achieve a moderately

larger value in the quark phase. For example, in the simple model we are considering

for free quarks, for a magnetic field of 1018 G in the hadronic phase, the field in

the quark phase is increased by 4.11 × 1015 G. This increase is due to an increase

in the magnetic susceptibility after deconfinement, as is shown in Fig. 6.

We also notice that in transitioning from the hadronic to the quark phase, by

increasing the magnetic field in the hadronic phase the critical value of the chemical

potential for the phase transition increases by a small amount. The increase is not

significant because if the corresponding thermodynamic potentials of the systems

under consideration are expanded in the Lorentz scalars depending on the magnetic

field and the chemical potentials entering in the formulation, Ω∼c1µ
4 +c2µ

4
e+c3B

2,

there are no products of µ with B. Then, if the difference between BHP and BQP

is very small the Maxwell contributions cancel out in the mechanical equilibrium

equations (35) and (36) and hence the solution for µc does not depend strongly on

the magnetic field. Nevertheless, we expect that other more realistic quark phases

that can be realized at moderate densities, such as the magnetic dual chiral density

wave (MDCDW) phase,17–20 where the magnetization has an anomalous component

that is linearly dependent on the baryonic chemical potential, can produce a more

significant jump in the magnetic field as can be seen from (32). We add that in this

case, the term mixing µ with B comes from a chiral anomaly that allows for a term

in the thermodynamic potential proportional to a Lorentz scalar depending on the
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totally antisymmetric Levi-Civita tensor εµνρλ, which can be contracted with the

medium four-velocity uµ, the magnetic field given through Fµν and the modulation

vector bµ.

Another important result we are reporting is that as a consequence of the mag-

netic field discontinuity around the phase-transition boundary a density of magnetic

monopoles with a net magnetic charge is created. The mechanism producing this

effect is based on the dual Schwinger pair production and the magnetic charge gra-

dient produced by the difference between the magnetic field strengths of the two

magnetic fields positioned on both sides of the phase-transition border.

We should mention that the approach we are introducing here to deal with the

change of phase from hadronic to quark matter can be useful when studying the

mass-radius relationship of hybrid stars. There already exists a discussion about

this issue (see Ref. 18, for example), but the calculations that have been done up to

now, assumed that the magnetic field is much smaller than the baryonic chemical

potential, which implies that the anisotropy in the EOS is not relevant. Nevertheless,

for B & µ2, the anisotropy becomes significant and should be considered in the

formalism together with a modification of the TOV equations that would reflect

the anisotropy in the space–time metric. That is, the TOV equations need to be

derived for a metric that is in agreement with the axial symmetry of the problem

instead of the spherical symmetry, which is assumed in the present form. This new

required formulation of the TOV equations is an open nontrivial question that has

to be solved.

Finally, we want to point out that the general results we are reporting here

for the anisotropic hadron-quark first-order phase transition in the presence of a

magnetic field will gain more interest when other dense quark matter phases, such

as the MDCDW phase,17,20 for instance, is taken into account. In another direction,

it will also be of interest to investigate the effects of gluons in this scenario. It has

recently been found that the inclusion of gluons in the color superconducting quark

phase modifies the EOS so that it becomes softer, thus opening the possibility

of decreasing the maximum stellar mass that can be reached by strange stars.44

Moreover, it has been known for some time, that gluon condensates generated by

the nonlinear nature of the gluon interactions, as in particular the A4 = constant

condensate, can play a role in QCD.45 It will be then of interest to investigate

what role, if any, they will have in the EOS and hence in the hadron-quark phase

transition of dense QCD in the presence of a magnetic field.

Appendix A. Meson Contribution to the Stress Energy Tensor

In Ref. 6, the EOS for a magnetized system of charged fermions was derived by

using quantum-statistical methods. In this appendix, we extend those results to the

case where mesons are also present as is the case in the hadron phase described by

the NLW model.
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Following the approach used in Ref. 6, the components of the quantum-statistical

average of the energy–momentum tensor are given by

Tµν =
1

βV
〈ˆ̃τµν〉 =

1

βV

Tr[ˆ̃τµνe−β(Ĥ−
∑
i µiN̂i)]

Z
, (A.1)

where

ˆ̃τµν =

∫ β

0

dτ

∫
d3xτ̂µν(τ, x), (A.2)

Ĥ is the Hamiltontian, N̂ is the particle number, µ is the chemical potential, τ̂µν

are components of the field-theoretic energy–momentum tensor operator, and Z is

the partition function of the grand canonical ensemble

Z = Tr e−β(Ĥ−
∑
i µiN̂i). (A.3)

Given a theory incorporating fermion, meson and Maxwell fields with corre-

sponding Lagrangian density

L = Lf + Lm + LM . (A.4)

Equation (A.1) may be expressed as a path integral with

βV Tµν = 〈ˆ̃τµνf 〉+ 〈ˆ̃τµνM 〉+ 〈ˆ̃τµνφm〉

=

∫
DAµDφmDψDψ̄(τ̃µνf + τ̃µνM + τ̃µνm )e−

∫ β
0
dτ

∫
d3xLE(τ,x)

Z
, (A.5)

where Aµ, φm and ψ denote any number of Maxwell, meson and fermion fields,

respectively. LE is the Euclidean effective Lagrangian with imaginary time given by

LE = −L(t→ −iτ)−
∑
i

µiρi, (A.6)

with ρi being the conserved particles’ number densities. The components τµν are

determined by calculating the general relativistic matter stress energy tensor

τµν =
−2√
−g

δ

δgµν
(
√
−gL) (A.7)

and afterwards reverting back to a local Minkowskian reference frame gµν → ηµν .

We note here that Lψ in general contains the fermion fields ψ as well as the meson

φm and Maxwell fields Aµ. In Ref. 6, the first two terms of the right-hand side

of (A.5) were determined without any meson interaction, so it remains to calculate

the contribution of the mesons entering in Lm and Lψ.

In the path integral formalism the partition function is given by

Z =

∫
DAµDφmDψDψ̄e−

∫ β
0
dτ

∫
d3x(LfE+LmE+LME). (A.8)
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In the MFA the Aµ and φm fields are replaced by their average values and the

corresponding functional integrals are removed. The partition function in the MFA

then becomes

Z =

∫
DψDψ̄e−

∫ β
0
dτ

∫
d3x[LfE(ψ,φ̄m,Āµ)+LmE(φ̄m)+LME(Āµ)] (A.9)

= e−βV LmE(φ̄m)e−βV LME(Āµ)

∫
DψDψ̄e−

∫ β
0
dτ

∫
d3x[LfE(ψ,φ̄m,Āµ)], (A.10)

where φ̄m denotes the meson expectation values to be determined by the minimum

equations and Āµ the external electromagnetic field.

The thermodynamic potential of the grand canonical ensemble is given by Ω =

− 1
βV lnZ. Then in the MFA the thermodynamic potential can be decomposed as

follows:

Ω = −Lm(φ̄m)− LM (Āµ)− 1

βV
ln

∫
DψDψ̄e−

∫ β
0
dτ

∫
d3x[LψE(ψ,φ̄m,Āµ)] (A.11)

= Ωm + ΩM + Ωf , (A.12)

where Ωm = −Lm(φ̄m) and ΩM = −LM (Āµ). Note that in Ref. 6, it was found

that ΩM = B2/2 for a uniform background magnetic field directed along the z

direction. The explicit form of Ωm for the meson fields considered in this paper is

given in the next section. As can be seen from (A.11), the meson fields enter in

the baryon Lagrangian Lb and the pure meson Lagrangian Lm. We must show how

each contributes to the stress energy tensor (A.7).

A.1. Pure Meson contribution

Using the meson Lagrangian from (48), acknowledging that we will eventually make

the mean field approximation where derivatives of the fields vanish, and making

the dependence on the metric explicit we get

L̃m = −1

2
m2
σσ

2 − U(σ) +
1

2
m2
ωωλωτg

τλ +
1

2
m2
ρρλρτg

τλ. (A.13)

Further using

δ
√
−g

δgµν
=

1

2

√
−ggµν , δgτλ

δgµν
= −gµτgνλ (A.14)

we find that

τµνm =
−2√
−g

δ

δgµν
(
√
−gL̃), (A.15)

τµνm =

(
1

2
m2
σσ

2 + U(σ)− 1

2
m2
ωωλω

λ − 1

2
m2
ρρλρ

λ

)
ηµν +m2

ωω
µων +m2

ρρ
µρν .

(A.16)
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Keeping in mind that the only nonvanishing expectation values of the vector

mesons are their zeroth components we have that

T 00
m =

1

2
m2
σσ̄

2 + U(σ̄) +
1

2
m2
ωω̄

2
0 +

1

2
m2
ρρ̄

2
0,

T iim = −1

2
m2
σσ̄

2 − U(σ̄) +
1

2
m2
ωω̄

2
0 +

1

2
m2
ρρ̄

2
0.

(A.17)

This can be expressed in a fully covariant form as

Tµνm = Ωmη
µν + (ω̄0ρω + ρ̄0ρρ)u

µuν , (A.18)

where for the σ, ωµ and ρµ meson fields in the MFA,

Ωm =
1

2
m2
σσ̄

2 + U(σ̄)− 1

2
m2
ωω̄

2
0 −

1

2
m2
ρρ̄

2
0 (A.19)

and ρω = −(∂Ωm/∂ω̄0) and ρρ = −(∂Ωm/∂ρ̄0).

A.2. Baryon–Meson contribution

In the case of the fermion fields, spinors are introduced into curved space–time by

considering an orthonormal tetrad basis εm in the tangent space Tp of each point

p of the space–time manifoldM. The tetrad basis is related to the coordinate basis

eµ through the Vierbein V m µ matrix by

eµ = V m µεm, gµν = ηmnV
m
µV

n
ν . (A.20)

Here greek indices are lowered and raised by acting with gµν , while Latin indices

are lowered and raised by acting with the flat space–time metric ηmn and its inverse.

Lb is expressed in curved space–time as

Lc.s.
b =

i

2
(ψ̄bγ

µ∇µψb −∇µψ̄bγµψb + 2im∗b ψ̄bψb + 2iψ̄bγ
µXbµψb) (A.21)

where ∇µ is the covariant derivative in curved space–time, γµ = em
µγm are gen-

eralizations of the Dirac matrices γm in curved space–time, and Xbµ is given by

Xbµ = qbĀµ + gωbω̄µ + gρbτ3bρ̄µ. (A.22)

Equation (A.7) can be equivalently expressed by taking the variation with respect

to the Vierbein fields

τµνb = −V
mµ

V

δ(V Lc.s.
b )

δV m ν
, (A.23)

where V = det(V n α). Carrying out the variation of (A.21) with respect to V m ν

we arrive at

τbµν = −igµν [ψ̄bγ
λ∇λψb −∇λψ̄bγλψb] +

i

2
[ψ̄bγ(µ∇ν)ψb −∇(µψ̄bγν)ψb]

+ gµνψ̄b[m
∗
b + γλXbλ]ψb − ψ̄bγνXbµψb. (A.24)

2250048-32

In
t. 

J. 
M

od
. P

hy
s. 

A
 2

02
2.

37
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

ifi
c.

co
m

by
 T

H
E 

U
N

IV
 O

F 
TE

X
A

S-
PA

N
 A

M
ER

IC
A

N
 o

n 
05

/2
6/

22
. R

e-
us

e 
an

d 
di

st
rib

ut
io

n 
is

 st
ric

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s a

rti
cl

es
.



May 11, 2022 21:12 IJMPA S0217751X22500488 page 33
FA

Hadron-quark phase transition at finite density in the presence of a magnetic field

Then, to get the Euclidean expression for τµνb in the grand canonical ensemble

we take gµν → ηµν , t = −iτ and Xb
0 → Xb

0 − µb, which yields

τµνb (τ, x) = −iηµνψ̄b(iγ0∂τ + γi∂i)ψb +
i

2
ψ̄b(γ

µdν + γνdµ)ψb

+ ηµνψ̄b[m
∗
b + γλXbλ]ψb − ψ̄bγνXb

µψb. (A.25)

Here, integration by parts was used to transfer the derivatives from ψ̄b to ψb
and dµ = (i∂τ , ∂i). Working in the Landau gauge Aµ = Bx1δµ2 and taking into

account that in the MFA the only nonvanishing components of the vector mesons

are the zero components, and the only nonvanishing components of Xµ
b are X0

b and

X2
b , (A.25) becomes

τ00
b = LbE − ψ̄bγ0∂τψb + ψ̄bµ

∗
bγ

0ψb,

τ11
b = −LbE + iψ̄bγ

1∂1ψb,

τ22
b = −LbE + iψ̄bγ

2∂2ψb − ψ̄bγ2qbBx
1ψb,

τ33
b = −LbE + iψ̄bγ

3∂3ψb,

(A.26)

where LbE is the baryon contribution to LE . τ iib have the same form as was found

in Ref. 6, but τ00
b has a new structure entering as a shift in the chemical potential

µb → µ∗b . So, we focus on τ00 only. Making the variable change s = τ/β we have

that

β
∂Zb
∂β

=

∫
DψbDψ̄b

[
−β
∫ 1

0

ds

∫
d3xLbE + β

∫ 1

0

ds

∫
d3xψ̄b

1

β
γ0∂sψb

]
× e−β

∫ 1
0
ds

∫
d3xLbE (A.27)

=

∫
DψbDψ̄b

[∫ β

0

dτ

∫
d3x(−LbE + ψ̄bγ

0∂τψb)

]
e−

∫ β
0
dτ

∫
d3xLbE (A.28)

=

∫
DψbDψ̄b

[
−τ̃00

b +

∫ β

0

dτ

∫
d3xψ̄b(µ− gωbω̄0 − gρbτ3bρ̄0)γ0ψb

]

× e−
∫ β
0
dτ

∫
d3xLbE . (A.29)

Hence,

〈ˆ̃τ00
b 〉 = − β

Zb
∂Zb
∂β

+ βµ∗b〈N̂b〉, (A.30)

where Nb =
∫
d3xψ̄bγ

0ψb. Using the grand canonical potential Φb = − 1
β lnZb and

the fact that 〈N̂b〉 = −(∂Φb/∂µb)T,V , (A.30) can be expressed as

〈ˆ̃τ00
b 〉 = −∂Φb

∂T
+ βΦb − βµ∗b

∂Φb
∂µb

. (A.31)
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Then using the fact that the thermodynamic potential is given by Ωb = Φb/V ,

we arrive at the baryon contribution to the energy density.

εb =
1

βV
〈ˆ̃τ00〉 = Ωb + TSb + µ∗bρb, (A.32)

where Sb = −(∂Ωb/∂T )V,µ and ρb = −(∂Ωb/∂µ)V,T are baryon entropy and baryon

number density corresponding to species b, respectively. Following from Ref. 6, we

can write the baryon quantum statistical average of the stress energy tensor in the

following covariant form:

Tµνb =
1

βV
〈ˆ̃τµνb 〉 = Ωbη

µν + (µ∗bρb + TSb)u
µuν +BMbη

µν
⊥ . (A.33)

Appendix B. Charged Fermion Thermodynamic Potential

in the Weak-Field Approximation

The finite density thermodynamic potential for charged fermions without B-AMM

interaction takes the form

Ωµ = − eB

(2π)2

∫ ∞
−∞

dp3

{
(µ− E0)Θ(µ− E0) + 2

∞∑
l=1

(µ− E)Θ(µ− E)

}
, (B.1)

where the notation E0 = E(l = 0) has been used. This can be rewritten as

Ωµ = − 2eB

(2π)2

∫ ∞
−∞

dp3

∞∑
l=0

(µ− E)Θ(µ− E) +
eB

(2π)2

∫ ∞
−∞

dp3(µ− E0)Θ(µ− E0).

(B.2)

If we consider E to be a function of u = 2eBl, then for small B the separation

between consecutive values of u is also small. This allows us to use the Euler–

Maclaurin formula46 without remainder

∞∑
l=0

f(eBl) ≈ 1

eB

∫ ∞
0

f(x)dx+
f(∞) + f(0)

2
+

∞∑
k=1

B2k

(2k)!
(eB)2k−1

× [f (2k−1)(∞)− f (2k−1)(0)], (B.3)

where x is a continuous variable and B2k are the Bernoulli numbers to approximate

the sum over Landau levels. Using (B.3) to approximate the sum in (B.2) and

keeping terms up to O((eB)2) we get

Ωµ ≈ −2

∫ ∞
∞

d3p

(2π)3
(µ− EN )Θ(µ− EN )− (eB)2

3(2π)2
ln

[
µ+

√
µ2 −m2

m

]
. (B.4)

The first term comes from the continuous integral in (B.3) after making the

sequence of substitutions: u = 2x, v2 = u and p1 = v cos θ, p2 = v sin θ. Here EN =√
p2

1 + p2
2 + p2

3 +m2 is the energy spectrum for neutral free relativistic fermions
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and so the first term in (B.4) is equivalent to the neutron contribution in (61) with

µ∗n → µ and m∗n → m. Putting this all together (B.4) becomes

Ωµ ≈ −1

24π2

(2µ4 − 5m2µ2)

√
1−

(
m

µ

)2

+ (3m4 + 2(eB)2) ln

[
µ+

√
µ2 −m2

m

].
(B.5)
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