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Abstract
We analyze the free energy and the overlaps in the 2-spin spherical Sherrington Kirkpatrick
spin glassmodelwith an external field for the purpose of understanding the transition between
this model and the one without an external field. We compute the limiting values and fluctu-
ations of the free energy as well as three types of overlaps in the setting where the strength of
the external field goes to zero as the dimension of the spin variable grows. In particular, we
consider overlaps with the external field, the ground state, and a replica. Our methods involve
a contour integral representation of the partition function along with random matrix tech-
niques. We also provide computations for the matching between different scaling regimes.
Finally, we discuss the implications of our results for susceptibility and for the geometry of
the Gibbs measure. Some of the findings of this paper are confirmed rigorously by Landon
and Sosoe in their recent paper which came out independently and simultaneously.
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1 Introduction

1.1 TheModel, Definitions, and Notation

Spin glasses are disordered magnetic alloys [8,45] that provide a physical context for the
development of various mathematical models with wide ranging applications, not only in
physics, but also in computer science and other areas [32]. One of the most studied spin glass
models is the Sherrington–Kirkpatrick (SK) model [21,35,37,40], in which the spin variable
σ is a random vector from the N -dimensional hypercube {−1,+1}N . In this paper, we focus
on the continuous analog of SK—the spherical Sherrington–Kirkpatrick (SSK) model. The
SSK model shares many properties with the SK model but is usually easier to analyze and
thus allows us to obtain results that remain out of reach for the SK model.

Particular quantities of interest in the study of the SSK model are the free energy and
overlaps in the presence of an external field. In the absence of a field, the model exhibits, at
large N , a transition to a spin glass phase at low temperature. In the presence of a field, this
phase transition disappears. However, there are interesting regimes when the field is scaled
as a power of the dimension N . Those transitional regimes (with respect to the external
field) will be the focus of this paper. We compute the free energy as well as three types of
overlaps, up to fluctuations, when h, the strength of the external field, converges to zero as
the dimension, N , of the system grows.

For the SSK model, the spin variable σ = (σ1, . . . , σN ) is in SN−1, the sphere of radius√
N in R

N :
SN−1 = {σ ∈ R

N : ‖σ‖ = √
N }.

The 2-spin spherical Sherrington–Kirkpatrick (SSK) model with external field is defined by
the Hamiltonian

H(σ ) = −1

2

N∑

i, j=1

Mi j œi œ j −h
N∑

i=1

gi œi = −1

2
σ · Mσ − h g · σ (1.1)

forσ ∈ SN−1, whereM and g are respectively a randommatrix and a randomvector, specified
below. The associated Gibbs measure is

p(σ ) = 1

ZN
e−βH(σ ) for σ ∈ SN−1 (1.2)

where
β = 1/T (1.3)

denotes the inverse temperature. The partition function and the free energy per spin compo-
nent are

ZN =
∫

SN−1

e−βH(σ )dωN (σ ) and FN = FN (T , h) = 1

Nβ
logZN , (1.4)

where ωN is the normalized uniform measure on SN−1. Since the disorder variables M and g
are random, the Gibbs measure is a random measure, which we also call a thermal measure,
and the free energy FN is a random variable. We are interested in the fluctuations of the free
energy when h → 0 as N → ∞.

We also consider the behavior of the spin variables taken from the Gibbs measure. We
focus on the following three particular overlaps.
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• (overlap with the external field) Define

M = g · σ

N
. (1.5)

• (overlap with the ground state) Let u1 be a unit eigenvector corresponding to the largest
eigenvalue of the disorder matrix M . The vectors±u1 are the ground state in the absence
of an external field, and we simply call them the ground states. Define

G = |u1 · σ |√
N

and O = G2 (1.6)

• (overlap with a replica) Let σ (1) and σ (2) be two independent spin variables from the
Gibbs measure for the same sample (i.e. disorder variables Mi j and gi ); σ (2) is a replica
of σ (1). Define

R = σ (1) · σ (2)

N
. (1.7)

The factors N and
√
N are included since ||u1|| = 1, ‖σ‖ = √

N , and the expected value
of ‖g‖2 = g21 + · · · + g2N is N (see below).

The overlaps depend on the spin variable and also the disorder sample. Hence, there are
two different expectations to consider. We consider the thermal (Gibbs) fluctuations of the
overlaps for a given disorder sample. For some quantities, we also consider the sample-to-
sample fluctuations of the thermal average. We denote the thermal (Gibbs) average for a
given disorder sample by the bracket 〈·〉. On the other hand, the sample-to-sample average
of an observable O is denoted by Ō or Es[O]. For example, the thermal averages

M = 〈M〉 and X = 1

h
〈M〉

are called magnetization and susceptibility, respectively. Many of the results of this paper
are about the thermal fluctuations of overlaps for a given disorder sample, i.e. for a given
quenched disorder.

1.2 Assumptions on Disorder Samples

The disorder parameters in the Hamiltonian (1.1) are chosen as follows. We define

M = (Mi j )1≤i, j≤N

to be a disorder matrix given by a random symmetric matrix from the Gaussian orthogonal
ensemble (GOE), which is a matrix ensemble whose probability is rotationally invariant. For
i ≤ j , the variables Mi j are independent centered Gaussian random variables with variance
1
N (1 + δi j ). By the symmetry matrix condition, Mi j = Mji for i > j . We denote by

λ1 ≥ · · · ≥ λN and u1, . . . ,uN (1.8)

the eigenvalues of the disorder matrix M and corresponding unit eigenvectors. The GOE
assumption implies that the eigenvalues and eigenvectors are independent of each other. The
external field is given by the vector

g = (g1, g2, . . . , gN )T , (1.9)
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which we assume to be a standard Gaussian vector. The strength of the external field is
denoted by a non-negative scalar h. We also define

ni = ui · g, (1.10)

the overlap of the eigenvector and the external field. The external field and eigenvectors
appear in the results and analysis of this paper only as this combination. The variables λi
and ni are collectively called disorder variables. We call the joint realization of λi and ni a
disorder sample throughout the paper.

Note that (n1, . . . , nN ) is a standard Gaussian vector, whose entries are independent of
the eigenvalues λ1, . . . , λN . The analysis of this paper also applies, after some changes of
formulas, to the case when g = (1, . . . , 1)T . However, we restrict to the Gaussian external
field since the Gaussian assumption makes calculations simpler.

1.3 Summary of Prior Research

The purpose of this paper is to study the case h → 0 systematically including up to the
fluctuation term for the free energy and the three overlaps. Here we provide a survey of some
of the existing research as it connects to our study.

The free energy for the Hamiltonian (1.1) above when h = 0 converges to a deterministic
value which was computed by Kosterlitz et al. [24]. The Hamiltonian (1.1) is the 2-spin
case of the more general p-spherical spin glass model which includes interactions between
multiple spin coordinates. The limit of the free energy for the general spherical spin glass
models which also includes the external field is given by the Crisanti-Sommers formula [13].
This formula is the spherical version of the Parisi formula [36] for the spins in hypercubes.
The Parisi formula and Crisanti-Sommers formula are proved rigorously by Talagrand in
[41,42]. The result of Kosterlitz, Thouless and Jones shows that when h = 0, there are two
phases: the spin glass phase when T < 1 and the paramagnetic phase when T > 1. On the
other hand, they argued that when h > 0, assuming that the external field is uniform, there
is no phase transition.

The subleading (in N ) term of the free energy depends on the disorder and hence it
describes the fluctuations of the free energy. For h = 0 and T > 1, the fluctuation term is
of order N−1 and has the Gaussian distribution. This is proved for both the hypercube case
[2,12,18] and the spherical case [4]. For h = 0 and T < 1, for the Hamiltonian above, the
fluctuation term is of order N−2/3 and has the GOE Tracy-Widom distribution [4]. Chen et
al. performed a similar calculation for the case with Ising spins where h > 0 is of order 1 and
g is the vector of all 1s. In this case, they find [9] that the fluctuation term is of order N−1/2

and has the Gaussian distribution for all temperature. They claim that similar results hold for
the spherical case and our results confirm this claim using a different method. We note that
their result also holds for mixed p-spin with even degree terms. Chen and Sen [10] computed
the ground state energy for spherical mixed p-spin models (of which SSK is a specific case)
and found that the fluctuations of the ground state energy are Gaussian in the presence of an
external field.

In [19], the large deviations of the free energy distribution was obtained at T = 0 from
a non-rigorous saddle point calculation of the moments of ZN in the large N limit (see also
[15] for a rigorous version). From this calculation a transitional regime h ∼ N−1/6 for the
fluctuations of the free energy was conjectured. A proof of the existence of this regime was
obtained in [23]. In the current paper, we obtain explicitly the fluctuations of the free energy
in the regime h ∼ N−1/6 for any T < 1 and in the regime h ∼ N−1/4 for T > 1. As we
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show, our results match in the tail of the distribution with those of [19]. Note also the recent
physics work [20] where a different spherical model of random optimization was considered,
which exhibits a similar phenomenology.

The overlap with the external field has been studied in the context of magnetism and
susceptibility. Kosterlitz et al. [24] computed the susceptibility as h tends to zero and observed
a transition at the temperature T = 1. Cugliandolo et al. [14] computed two different versions
of this limit of the susceptibility, in the first case taking limh→0 limN→∞ and in the second
case taking limN→∞ limh→0. In the first of these cases, they get the same result as [24] with
a transition at T = 1, but in the second case they do not observe a transition. Furthermore,
they find that the two types of limits agree for T > 1 but not for T < 1. They also extend that
results to a more general class of models (beyond Gaussian) and to non-linear susceptibility.
We focus on the linear susceptibility and differential susceptibility in the Gaussian case, and
obtain a more detailed picture. By considering the three regimes h = O(1), h ∼ N−1/6, and
h ∼ N−1/2, we see that the first limit considered by Cugliandolo et al agrees with our result
for the h → 0 limit of the h = O(1) case. The second limit that they consider is analogous
to our result for the H → 0 limit of the h ∼ N−1/2 case where we define H = hN 1/2.
However, we find in this case that the susceptibility depends on the sample and is a function
of g · u1, the inner product of the external field and the ground state. This dependence was
not apparent in [14], since their set-up fixes g · u1 = 1. When g · u1 = 1 we find, as they do,
that there is no transition in the susceptibility between high and low temperature. However,
a transition does exist for all other values of g · u1.

The overlap with the ground state is relevant to understanding the geometry of the Gibbs
measure. Subag [39] examines the geometry of theGibbsmeasure for general p-spin spherical
models and finds that the Gibbs measure concentrates in spherical bands around the critical
points of the Hamiltonian. These bands are of the form Band(σ 0, q, q ′) = {σ ∈ SN−1 : q ≤
R(σ , σ o) ≤ q ′} where σ 0 is a critical point of H and R(σ , σ 0) is the overlap of σ and σ 0.
We focus specifically on the overlap with the ground state (where σ 0 is the critical point
corresponding to the largest eigenvalue). In the h = 0 regime, as expected, we see the Gibbs
measure concentrates in a band and we examine how this geometry changes for the case of
positive constant h as well as the cases of h ∼ N−1/6 and h ∼ N−1/3.

The overlap with a replica has been studied extensively, both for the Ising spin models and
the spherical spin models with general p-spin interaction. For p = 2 the non-rigorous replica
method used in [13,19,24] obtains a replica symmetric saddle point leading to a prediction
for the overlap q as a function of h. In particular, at h = 0, the prediction is that q = 1 − T
for T < 1 and q = 0 for T > 1. These calculations were confirmed rigorously in [34].
Recently, Landon et al. extended the results further to examine the fluctuations of the overlap
at high temperature [33] and low temperature [25]. They find, in particular, that the overlap
has Gaussian fluctuations in the high temperature regime, whereas, in the low temperature
regime, the fluctuations are of order N−1/3 and converge to a random variable that has an
explicit formula in terms of the GOE Airy point process (see Sect. 4.4 for a description of
this). In this paper, we obtain similar results for h ∼ N−1/6 and h ∼ N−1/2.

1.4 Method of Analysis

Our computations are based on contour integral representations which we present in Sect. 3.
The free energy and the moment generating functions of two of the overlaps can be expressed
in terms of a single integral, whereas themoment generating function in the case of the overlap
with a replica can be written as a double integral. The integrand for each of these integral
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representations contains disorder variables and hence we have random integral formulas. The
single integral formula for the free energy was first observed by Kosterlitz et al. [24] and the
authors use themethod of the steepest descent to evaluate the limiting free energy. For the case
of h = 0, this calculation was extended in [4] to find the fluctuation terms using the recent
advancements in random matrix theory, in particular the rigidity results on the eigenvalues
[16] and the linear statistics [3,22,30]. Similar ideas were also used in [5–7], including the
case for the overlap with a replica in [25]. This paper extends the integral formula approach
to the case when h = O(1) and h → 0 in the transitional regimes. When there is an external
field, the analysis becomes more involved. In this case, the dot products of the eigenvectors
and the external field play an important role in the analysis.

The steepest descent analysis of this paper can be made mathematically rigorous after
some efforts using probability theory and random matrix theory. However, this paper will
focus on computations and interpretations assuming that various estimates in the steepest
descent analysis can be obtained. We use the label “Result” for findings in which we do not
provide rigorous proofs and the label “Theorem” for findings that we cite from prior papers
that include rigorous proof. We use the label “Lemma” for short findings that we prove in
full detail.

In a recent preprint [26] which was obtained independently and simultaneously with this
paper, Landon and Sosoe consider a similar SSK model in which the external field is a
fixed vector and the disorder matrix has zero diagonal entries. Their work is mathematically
rigorous and contains proofs of some of the results obtained in this paper, namely for the
free energy and some aspects of the overlaps with the external field and with a replica in
Sects. 5.2, 6.1, 7.1, 8.3, 8.5, 10.1, and 10.2. After the completion of this paper, one of us,
Collins-Woodfin, also proved the results in Sect. 8.6 on the overlap with the microscopic
external field rigorously in [11].

1.5 Organization of the Paper

The results of the calculations are scattered throughout the paper. In Sect. 2, we present some
of the highlights of the results of this paper. The single and double integral representation of
the free energy and the generating functions of the overlaps are given in Sect. 3. The next three
sections of the paper address the free energy. Section 5 summarizes known results for the
h = 0 case and explains our findings for the h > 0 case. Section 6 addresses the h → 0 case
for T > 1 and Sect. 7 addresses h → 0 for T < 1. Sections 8, 9, and 10 provide our results
for each of the three types of overlaps. Section 8 also provides our results for magnetization
and susceptibility. Section 11 describes the geometry of the spin vector configuration under
the Gibbs measure. We include as appendices the proof of the contour integral formulas and
also a perturbation lemma.

2 Highlights of the Results

2.1 Results for the Free Energy

We examine the behavior of the free energy, including its leading order and the sample-to
sample fluctuation term, as N → ∞ when h = O(1) and when h → 0. We find that, in each
case,

FN (T , h)
D
 F(T , h) + sample fluctuations (2.1)

123



Spherical Spin Glass Model with External Field Page 7 of 79 31

Table 1 This table summarizes our findings for the leading term and fluctuations of FN (T , h) in the various
cases we considered

Case Limiting free energy F(T , h) Sample fluctuations Result

h = 0, T > 1 1
4T N−1 Gaussian distribution 5.1

h = 0, T < 1 1 − 3T
4 + T log T

2 N− 2
3 TWGOE distribution 5.2

h = O(1) γ0
2 − T s0(γ0)

2 − T−T log T
2 + h2s1(γ0)

2 N− 1
2 Gaussian distribution 5.5

h ∼ N− 1
4 , T > 1 1

4T + h2
2T N−1 Gaussian distribution 6.2

h ∼ N− 1
6 , T < 1 1 − 3T

4 + T log T
2 + h2

2 N− 2
3 function of the GOE Airy 7.2

point process and Gaussian r.v.’s

The h = 0 cases were already known [4] but are included here for completeness. In the limiting free energy
for the h = O(1) case, the quantity γ0 is deterministic and depends only on T and h. The functions s0 and
s1 are defined in Sect. 4. For more details on the notation, derivation, and precise formulas for the fluctuation
terms, see the corresponding result

where
D
 denotes an asymptotic expansion in distribution with respect to the disorder vari-

ables. The limiting free energy F(T , h) includes all deterministic (depending only on h and
T ) terms whose order exceeds that of the sample fluctuations. The “sample fluctuations”
refers to the largest order term that depends on the disorder sample. Our findings in each
case are summarized in Table 1. Upon computing the leading term and sample fluctuations
for FN (T , h) with h = O(1), we made two key observations. Firstly, the free energy for
h = O(1) does not exhibit a transition as we see in the h = 0 case; this observation is
consistent with the result of [9] for Ising spins. Secondly, while the limiting free energy is
continuous in T and h, the sample fluctuations in the h = O(1) case do not agree with
those in the h = 0 case (neither for T > 1 nor for T < 1). This suggests the existence of
transitional regimes. We found that, for T > 1, the transition occurs at h ∼ N−1/4 while,
for T < 1, the transition occurs at h ∼ N−1/6. We computed the asymptotic expansion of
FN (T , h) in these transitional regimes.

When comparing the fluctuations in each regime, we observe that the order of the fluctua-
tions are largest in the h = O(1) case,where they have order N−1/2 andGaussian distribution.
This holds for all temperatures. When T > 1 but h = 0 or h → 0, the fluctuations remain
Gaussian, but their order shrinks to N−1. When T < 1 and h = 0 or h → 0, the fluctuations
have order N−2/3. In the case of h = 0 they have GOE Tracy-Widom distribution while, in
the case of h ∼ N−1/6, their distribution is a function of the GOE Airy point process and
of a sequence of i.i.d. standard Gaussian random variables. See Table 1 for the equations
corresponding to each of these results.

2.2 Results for the Overlaps

In the next three (Tables 2, 3, and 4) we state our findings for the overlap with the external
field, with the ground state and with a replica. In each case the thermal average and thermal
fluctuations are presented in interesting regimes of h and T . The thermal average and fluctu-
ations in most cases depend on the disorder sample. Our findings also have implications for
magnetization and susceptibility, which will be described in more detail in Sect. 8.
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Table 2 This table summarizes our finding forM, the overlap with the external field

Case Thermal average 〈M〉 Thermal fluctuations ofM Result

h = O(1) for all T hs1(γ0) + O(N− 1
2 ) N− 1

2 Gaussian 8.2

(and h = 0, T > 1) 8.3

h ∼ N− 1
6 , T < 1 h + O(N− 1

2 ) N− 1
2 Gaussian 8.5

h ∼ N− 1
2 , T < 1 h + |n1|

√
1−T√
N

tanh
( |n1|h

√
N (1−T )
T

)
N− 1

2 [Gaussian + Bernoulli ] 8.7

(and h = 0, T < 1) 8.3

Here, γ0 = γ0(h, T ) in the first row is deterministic. The variable n1 in the third row is n1 = u1 · g. For
the top two rows, the leading term in 〈M〉 and the thermal fluctuations of M do not depend on the disorder

sample. However, the O(N− 1
2 ) subleading terms in 〈M〉 for the top two cases and both the leading term in

〈M〉 and the thermal fluctuations ofM of the last row do depend on the disorder sample

Table 3 This table summarizes our finding for G2 = O, the squared overlap with the ground state

Case Thermal average 〈G2〉 Thermal fluctuations of G2 Result

h = O(1) for all T 1
N

(
h2n21

(γ0−2)2
+ T

γ0−2

)
N−1 χ -squared (non-centered) 9.2

(and h = 0, T > 1) 9.7

h ∼ N− 1
6 , T < 1 1 − T −∑N

i=2
n2i h

2N1/3

(t+a1−ai )2
N− 1

6 Gaussian 9.4

h ∼ N− 1
3 , T < 1 1 − T + O(N− 1

3 ) N− 1
3 r.v. that depends on disorder 9.6

(and h = 0, T < 1) 9.7

Here ni = ui · g and ai = N2/3(λi − 2). The quantity γ0 in the top row is the same term from Table 2. In the
second row, the variable t and the total sum, which is O(1), depends on the disorder sample. All leading and
subleadings terms of 〈G2〉, and the thermal fluctuations of G2, except the leading term, 1− T , of 〈G2〉 in the
last row, depend on the disorder sample

Table 4 This table summarizes our finding for R, the overlap between two independent spins

Case Thermal average 〈R〉 Thermal fluctuations of R Result

h = O(1) for all T h2s2(γ0) + O(N− 1
2 ) N− 1

2 Gaussian 10.3

(and h = 0, T > 1) 10.8

h ∼ N− 1
6 , T < 1 1 − T + O(N− 1

3 ) N− 1
3 r.v. that depends on disorder 10.5

h ∼ N− 1
2 , T < 1 (1 − T ) tanh2

( |n1|h
√
N (1−T )
T

)
O(1) Bernoulli 10.7

(and h = 0, T < 1) 10.8

The quantity γ0 is the same term from Table 2 and n1 = u1 · g. The subleading terms of 〈R〉 in the top two
rows and the leading term of 〈R〉 in the third row depend on the disorder sample. The thermal fluctuations of
R also depend on the disorder sample for the bottom two rows
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2.3 Geometry of the Gibbs Measure

The results for the overlaps give us information on the geometry of the spin configuration
under the Gibbs measure, some of which we summarize here. Recall that the spin configura-
tion is parameterized by the vector σ = (σ1, . . . , σN )which belongs to the N−1 dimensional
sphere of radius

√
N and we consider the limit of large N . At high temperature, T > 1, the

spin vector σ is nearly orthogonal to the ground state ±u1 when h = 0. For h = O(1),
the spin vector concentrates on the intersection of the sphere and the single cone around
the vector g. The leading term of the cosine of the angle between the spin and the external
field g depends on the temperature and the field but not on the disorder sample, and, as one
can expect, is an increasing function of the field. See Fig. 1a. This implies that as the field
becomes stronger, the cone becomes narrower. There are no transitions between h = 0 and
h = O(1).

Now consider the low temperature regime 0 < T < 1. When h = 0, the spins are con-
centrated on the intersection of the sphere with the double cone around the ground state ±u1
such that the leading term of the cosine of the angle is

√
1 − T . This angle was found in

[13,19,24] and in particular, [34] showed that spins are distributed uniformly on the inter-
section of this double cone with the sphere. Consider increasing the external field strength
h. When h = O(1), the spin vector concentrates on the intersection of the sphere and the
single cone around the vector g just like the high temperature case. See Fig. 1b, which is
qualitatively same as Figure (a). However now between h = 0 and h = O(1), there are
two interesting transitional regimes, h ∼ N−1/2, which we call the microscopic regime, and
h ∼ N−1/6, the mesoscopic regime.

In the microscopic regime, h ∼ N−1/2, at low temperature 0 < T < 1, the results of this
paper lead us to the Conjecture 11.1, which implies that the double cone becomes polarized
into a single cone. The spin vector prefers the cone which is closer to g to the other cone by
the

e
2h

√
N |n1 |√1−T

T to 1 probability ratio.

The spin vector is more or less uniformly distributed on the cones. In this regime, the response
of the spin to the field is the sum of (i) a linear response in the direction transverse to±u1 (i.e.
along the cones) and, (ii) the response of an effective 2-level system, which may be modeled

as a single one-component effective Ising spin σ√
N

= ±Su1 of size S = |n1|
√
1−T√
N

with energy

Fig. 1 These are plots of the leading term of the angle between the spin and g. The formula is given by M0

in Sect. 8.3.2. The function depends only on T and h. (a) T = 2, (b) T = 0.5
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Table 5 This table summarized the findings of the decomposition of the spin variable σ̂ 
 au1 + bĝ + v in
different regimes for 0 < T < 1

Case a = σ̂ · u1 b 
 σ̂ · ĝ ‖v‖ v̂(1) · v̂(2)

h → ∞ 0 1 0 0

h = O(1)
√
O0√
N

hs1(γ0)
√
1 − h2s1(γ0)2

h2s1(γ0)
4

(1−s1(γ0)2)(1−h2s1(γ0)2)

h → 0, hN
1
6 → ∞ 4(1−T )2|n1|

h3
√
N

h 1 1 − T

h ∼ N− 1
6 A(T , hN1/6) h

√
1 − A2 1−T−A2

1−A2

hN
1
6 → 0, hN

1
2 → ∞ √

1 − T h
√
T o(1)

h ∼ N− 1
2 (and h = 0)

√
1 − T B(α) h +

√
TN√
N

√
T o(1)

We indicate the leading order terms, except that we have o(1) at two places. The o(1) term in the fifth row is
complicated to state and the o(1) term in the last row is not determined from our analysis. The unit transversal
vector is v̂ = v

‖v‖

scale E = NhS = √
Nh|n1|

√
1 − T (leading to a mean magnetization S tanh(E/T )). Note

that both S and E are sample dependent, but depend only on |n1|, the overlap of the ground
state and the field.

For h ∼ N−1/6, progressively all eigenvectors and eigenvalues become important. In
this regime, the spins are concentrated on the intersection of the sphere and a single cone
around the ground state, but the cone depends on the disorder sample. The cosine of the angle
between the spin andu1 changes from

√
1 − T to a functionwhich depends on all eigenvalues

λi and the overlaps ni = ui · g of the eigenvectors and the external field. Furthermore, the
spins are no longer uniformly distributed on the cone. They are pulled into the direction of g.
This regime can be called “mesoscopic” as sample to sample fluctuations are strong and non
trivial. Note that in the present model the magnetic response to the field, although non-trivial
and sample dependent, does not exhibit jumps (so-called static avalanches or shocks) at very
low temperature, as were observed and studied in other mean-field models such as the SK
model; see [27–29,44,46].

For more details on the geometry of the Gibbs measure see Sect. 11, in particular, the
Table 5 and the summary in Sect. 11.3.

2.4 Magnetization and Susceptibility

We also evaluate the magnetization, susceptibility, and differential susceptibility. One of the
results is that at low temperature 0 < T < 1, for h ∼ N−1/2, the linear susceptibility defined
by X = 1

h 〈M〉 satisfies

X 
 1 + |n1|
√
1 − T

hN 1/2 tanh

(
hN 1/2|n1|

√
1 − T

T

)
(2.2)

for asymptotically almost every disorder sample. This formula is a consequence of the spin
geometry which has an interpretation as an effective 2 level system, as discussed above.
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Fig. 2 Graph of the zero external field limit of the susceptibility as a function of T

The above formula implies the zero external field limit of the susceptibility:

lim
H→0

lim
N→∞

h=HN−1/2

X = 1 + n21(1 − T )

T
and lim

H→0
lim

N→∞
h=HN−1/2

X̄ = 1

T
. (2.3)

The limit of X depends on the disorder variable n21. See Fig. 2b. This result shows that the
Curie law holds for the sample-to-sample average, but not for a given disorder sample. If we
take a different limit, namely if we let N → ∞ with h > 0 first and then let h → 0, then
the limit of the susceptibility is deterministic and given by min{T−1, 1}. See Fig. 2a. This
formula was previously obtained in [24], and also in [14]. See Sects. 8.7 and 8.8 for details.

3 Contour Integral Representations

The partition function is an N -fold integral over a sphere. Using the Laplace transform and
Gaussian integrations, Kosterlitz, Thouless and Jones showed in [24] that this integral can be
expressed as a single contour integral which involve the disorder sample. We state this result
and also include its derivation in Sect. 3.1. By the same method, the moment generating
functions of the overlaps can also be written as a ratio of single or double contour integrals.
These results are presented in Sect. 3.2.

3.1 Free Energy

The following result holds for any disorder sample.

Lemma 3.1 ([24]) Let M be an arbitrary N by N symmetric matrix and let g be an N
dimensional vector. Let λ1 ≥ · · · ≥ λN be the eigenvalues of the matrix M and let ui be
a corresponding unit eigenvector. Then, the partition function ZN defined in (1.4) can be
written as

ZN = CN

∫ γ+i∞

γ−i∞
e

N
2 G(z)dz where CN = 
(N/2)

2π i(Nβ/2)N/2−1 (3.1)
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31 Page 12 of 79 J. Baik et al.

and

G(z) = βz − 1

N

N∑

i=1

log(z − λi ) + h2β

N

N∑

i=1

n2i
z − λi

with ni = ui · g. (3.2)

Here, the integration is over the vertical line γ +iRwhere γ is an arbitrary constant satisfying
γ > λ1.

Proof Let � = diag(λ1, λ2, · · · , λN ). Let O = (u1, · · · ,uN ) be an orthogonal matrix so
that M = O�OT . Let SN−1 be the sphere of radius 1 in R

N and let d
N−1 be the surface
area element on SN−1. Then, using the changes of variables 1√

N
OT σ = x ,

ZN = 1

|SN−1| I
(

βN

2
, h
√
2β

)
where I (t, s)

=
∫

SN−1
et
∑N

i=1 λi x2i +s
√
t
∑N

i=1 ni xi d
N−1(x).

where ni = (OT g)i = ui ·g.We take the Laplace transform of J (t) = t N/2−1 I (t, s). Making
a simple change of variables t = r2 and using Gaussian integrals, the Laplace transform is
equal to

L(z) =
∫ ∞

0
e−zt J (t)dt = 2

∫

RN
e−∑N

i=1(z−λi )y2i +s
∑N

i=1 ni yi dN y = 2
N∏

i=1

e
s2n2i

4(z−λi )

√
π

z − λi

for z satisfying z > λ1. We obtain a single integral formula of the partition function by taking
the inverse Laplace transform. ��

Note that the sign ambiguity of ui does not affect the result since the formula depends
only on n2i .

3.2 Overlaps

In this section, we give the moment generating function of each of the overlaps, expressed
as a ratio of contour integrals. The proofs are similar to the computations for the free energy
case and we give the proof in Appendix A.

Definition 3.2 The following three functions are related to the function G and will be used
to compute the three overlaps respectively. We denote by η ∈ R the parameter that will be
used for the moment generating function of each overlap.

• For the overlap with the external field, we use the function

GM(z) := βz − 1

N

N∑

i=1

log(z − λi ) + (h + η
N )2β

N

N∑

i=1

n2i
z − λi

. (3.3)

Note that this is G(z) with h replaced by h + ηN−1.
• For the (square of the) overlap with the ground state, we use the function

GO(z) :=βz − 1

N
log

(
z −

(
λ1 + 2η

N

))
− 1

N

N∑

i=2

log(z − λi )

+ h2β

N

n21
z − (λ1 + 2η

N )
+ h2β

N

N∑

i=2

n2i
z − λi

.

(3.4)
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Note that this is G(z) with λ1 replaced by λ1 + η
βN .

• For the overlap with a replica, we use the function

GR(z, w; a) := β(z + w) − 1

N

N∑

i=1

log
(
(z − λi )(w − λi ) − a2

)

+ h2β

N

N∑

i=1

n2i (z + w − 2λi + 2a)

(z − λi )(w − λi ) − a2
. (3.5)

Lemma 3.3 For real parameter η, the moment generation functions of the three overlaps are
as follows:

〈eβηM〉 =
∫
e

N
2 GM(z)dz

∫
e

N
2 G(z)dz

, 〈eβηO〉 =
∫
e

N
2 GO(z)dz

∫
e

N
2 G(z)dz

,

〈eηR〉s =
∫∫

e
N
2 GR(z,w; η

βN )dzdw
∫∫

e
N
2 GR(z,w;0)dzdw

. (3.6)

The contours are vertical lines in the complex plane such that all singularities lie on the left
of the contour. See Appendix A for the derivation.

4 Results from RandomMatrices

Since the disorder matrix M is a GOE matrix, the eigenvectors are uniformly distributed on
the sphere. On the other hand, the eigenvalues statistics are well studied in random matrix
theory. We summarize several definitions and properties of the eigenvalues and other related
quantities that we use in this paper.

4.1 Probability Notations

There are two types of randomness, one from the disorder sample M and g, and the other
from the Gibbs (thermal) measure. We often need to distinguish them. We add the subscript
s to denote sample probability or sample expectation such as Ps and Es . In addition, we use
the following notations.

Definition 4.1 When describing the limiting distributions in our results, we consider two
classes of random variables, which we refer to as sample random variables and thermal
random variables. To distinguish between these two classes, we denote them with the cal-
ligraphic font and the gothic font respectively. For example a standard Gaussian sample
random variable and a standard Gaussian thermal variable will be denoted below by

N and N (4.1)

respectively.

Definition 4.2 Asymptotic notations:

• If {EN }∞N=1 is a sequence of events, we say that EN holds asymptotically almost surely
(or everywhere) if Ps(EN ) → 1 as N → ∞. This probability is with respect to the
choice of disorder sample.
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• For two N -dependent random variables A := AN and B := BN , the notation

A = O (B) (4.2)

means that, for any ε > 0, the inequality A ≤ BN ε holds asymptotically almost surely.
• The notation 
 means an asymptotic expansion up to the terms indicated on the right-

hand side and the notation � denotes two sides are of the same order. When we say
A � O(B) we mean that, for any ε > 0, the inequality BN−ε < A < BN ε holds
asymptotically almost surely.

Definition 4.3 Convergence notations:

• The convergence in distribution of a sequence of random variables XN to a random
variable X with respect to the disorder variables is denoted by XN ⇒ X .

• We use the notations
D= and

D
 to denote an equality and an asymptotic expansion in
distribution with respect to the disorder sample, respectively.

• We use similar notations with a different font,
D= and

D
, to denote an equality and
an asymptotic expansion in distribution with respect to the Gibbs (thermal) measure,
respectively.

It is worth noting that many of our results actually hold with high probability (i.e., there
exist some D > 0, N0 > 0 such that, for all N ≥ N0, P(EN ) > 1 − N−D). While high
probability is much stronger than asymptotically almost sure probability, it is much more
delicate to prove and we do not discuss those proofs in the current paper.

4.2 Semicircle Law

The empirical distribution of eigenvalues ofM converges to the semicircle law [31]: for every
continuous bounded function f (x),

1

N

N∑

i=1

f (λi ) →
∫

f (x)dσscl(x) where dσscl(x) =
√
4 − x2

2π
1x∈[−2,2]dx (4.3)

with probability 1 as N → ∞.

Definition 4.4 We define the following functions for later use:

s0(z) :=
∫

log(z − x)dσscl(x) and sk(z) :=
∫

dσscl(x)

(z − x)k
for k = 1, 2, · · · , (4.4)

Properties: These functions can be evaluated explicitly as

s0(z) =1

4
z(z −

√
z2 − 4) + log(z +

√
z2 − 4) − log 2 − 1

2
,

s1(z) = z − √
z2 − 4

2
, s2(z) = z − √

z2 − 4

2
√
z2 − 4

, s3(z) = 1

(z2 − 4)3/2
,

s4(z) = z

(z2 − 4)5/2

(4.5)

for z not in the real interval [−2, 2]. As z → 2, we have

s1(z) 
 1 − √
z − 2, s2(z) 
 1

2
√
z − 2

− 1

2
, s3(z) 
 1

8(z − 2)3/2
,

s4(z) 
 1

16(z − 2)5/2
.

(4.6)
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4.3 Rigidity

Definition 4.5 For i = 1, 2, · · · , N , let λ̂i be the classical location defined by the quantile
conditions ∫ 2

λ̂i

dσscl(x) = i

N
. (4.7)

We set λ̂0 = 2. We also set âi = (̂λi − 2)N 2/3.

Rigidity property: The rigidity result [16,17] states that

|λi − λ̂i | ≤ (min{i, N + 1 − i})−1/3O (N−2/3) (4.8)

uniformly for i = 1, 2, · · · , N .
The rigidity property allows us to apply the method of steepest descent to evaluate the

integrals involving the eigenvalues since the eigenvalues are close enough to the classical
location, and the fluctuations are small enough.

4.4 Edge Behavior

Definition 4.6

• Define the rescaled eigenvalues

ai := N 2/3(λi − 2). (4.9)

• Define {αi }∞i=1 to be theGOEAiry point process process towhich the rescaled eigenvalues
converge in distribution as N → ∞ [38,43]:

{ai } ⇒ {αi }. (4.10)

Properties: The rightmost point α1 of the GOE Airy point process has the GOE Tracy-
Widom distribution

a1 ⇒ α1
D= TWGOE . (4.11)

The GOE Airy point process satisfies the asymptotic property that

αi 
 −
(
3π i

2

)2/3

as i → ∞. (4.12)

This asymptotic is due to the fact that the semicircle law is asymptotic to
√
2−x
π

dx as x → 2.
The above formula and the rigidity imply that, with high probability,

ai � −i2/3 as i, N → ∞ satisfying i ≤ N (4.13)

4.5 Central Limit Theorem of Linear Statistics

For a function f which is analytic in an open neighborhood of [−2, 2] in the complex plane,
consider the sum of f (λi ). The semicircle law (4.3) gives its leading behavior. If we subtract
the leading term, the difference

N∑

i=1

f (λi ) − N
∫

f (x)dσscl(x) (4.14)
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converges to a Gaussian distribution with explicit mean and variance; see, for example,
[3,22,30]. Note that unlike the classical central limit theorem, we do not divide by

√
N .

Definition 4.7 Define

LN (z) :=
N∑

i=1

log(z − λi ) − Ns0(z). (4.15)

for z > 2 where s0(z) is given by (4.5).

Properties:
The above-mentioned central limit theorem implies in this case that

LN (z) ⇒ N (M(z), V (z)) (4.16)

where (see Lemma A.1 in [4])

M(z) = 1

2
log

(
2
√
z2 − 4

z + √
z2 − 4

)
, V (z) = 2 log

(
z + √

z2 − 4

2
√
z2 − 4

)
. (4.17)

For later uses, we record that for 0 < β < 1,

M(β + β−1) = 1

2
log(1 − β2), V (β + β−1) = −2 log(1 − β2). (4.18)

4.6 Special Sums

In this section we collect several important results about convergence of various types of
sums that we will use in this paper. Many of the results are motivated by the need to work
with sums of the form

1

N

N∑

i=2

1

(λ1 − λi )k
, k = 1, 2, · · · , (4.19)

or its variations. The above quantity looks superficially close to the linear statistics (4.14)
with f (x) = 1

(λ1−x)k
with one term removed but the function f (x) is singular at x = λ1.

We note that if we replace f (x) by 1
(2−x)k

and use the semicircle law, we obtain sk(2) which
diverges for k ≥ 2. Hence, the result of the previous subsection does not apply. On the hand,
for k = 1, s1(2) = 1. This fact indicates that the above sum still converges when k = 1.

We present several definitions, followed by their related convergence results and some
brief explanation of why these results hold. Recall the definition ai = (λi − 2)N 2/3 and
ni = ui · g.
Definition 4.8 We define the following random sums, which depend on the disorder sample:

• Define

�N := N 1/3

(
1

N

N∑

i=2

1

λ1 − λi
− 1

)
=

N∑

i=2

1

a1 − ai
− N 1/3. (4.20)

• Define, for w > 0,

EN (w) := N 1/3

[
1

N

N∑

i=1

n2i
wN−2/3 + λ1 − λi

− 1

]
=

N∑

i=1

n2i
w + a1 − ai

−N 1/3. (4.21)
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• Define, for z > 2,

SN (z; k) := 1√
N

N∑

i=1

n2i − 1

(z − λ̂i )k
for k ≥ 1. (4.22)

Definition 4.9 We define the following limits, which depend on the GOE Airy point process
{αi }:
• Define

� := lim
n→∞

⎛

⎝
n∑

i=2

1

α1 − αi
− 1

π

∫ (
3πn
2

)2/3

0

dx√
x

⎞

⎠ . (4.23)

Landon and Sosoe showed that the limit exists almost surely [25].
• Define E(s) as follows, where νi are i.i.d. Gaussian random variables with mean 0 and

variance 1 independent of the GOE Airy point process αi :

E(s) := lim
n→∞

⎛

⎝
n∑

i=1

ν2i

s + α1 − αi
− 1

π

∫ (
3πn
2

)2/3

0

dx√
x

⎞

⎠ . (4.24)

This limit exists almost surely by a similar argument as in [25] showing that � exists.

Result 4.10 Using the notations above, we have the following convergence results.

• Landon and Sosoe proved in [25] that

�N ⇒ �. (4.25)

They use this result to describe the fluctuations of the overlap with a replica when h = 0
and T < 1.

• We also need another version of the result (4.25) where the constant numerators are
replaced n2i :

N 1/3

(
1

N

N∑

i=2

n2i
λ1 − λi

− 1

)
⇒ lim

n→∞

⎛

⎝
n∑

i=2

ν2i

α1 − αi
− 1

π

∫ (
3πn
2

)2/3

0

dx√
x

⎞

⎠ (4.26)

where νi are i.i.d standard Gaussians, independent of the GOE Airy point process αi .
This follows from (4.25) and the fact that

1

N 2/3

N∑

i=2

n2i − 1

λ1 − λi
⇒

∞∑

i=2

ν2i − 1

α1 − αi
(4.27)

which is a convergent series due to Kolmogorov’s three series theorem and (4.12).
• By the same argument as for 4.26,

EN (w) ⇒ E(w) for w > 0. (4.28)

• By the Lyapunov central limit theorem and the definition of λ̂i , we have

SN (z; k) ⇒ N (0, 2s2k(z)) (4.29)

as N → ∞ for z > 2. (Note that the variance of n2i − 1 is 2.)
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Result 4.11 In addition to the convergence results listed above, we also need estimates that
hold for asymptotically almost every disorder sample.

• A consequence of (4.25) is that

1

N

N∑

i=2

1

λ1 − λi
= 1

N 1/3

N∑

i=2

1

a1 − ai
= 1 + O (N−1/3) . (4.30)

for asymptotically almost every disorder sample.
• We have

N∑

i=2

1

(a1 − ai )k
= O (1) and

N∑

i=2

n2i
(a1 − ai )k

= O (1) , k ≥ 2, (4.31)

for asymptotically almost every disorder sample. This follows from the fact that the
ai � −i2/3 and the difference (a1 − a2)−1 is of order 1 with vanishing probability.

• We also need the result

1

N

N∑

i=1

n2i
(z − λi )k

= sk(z) + SN (z; k)√
N

+ O (N−1) , z > 2, k > 1 (4.32)

for asymptotically almost every disorder sample.
To justify (4.32), we observe that

1

N

N∑

i=1

n2i
(z − λi )k

= 1

N

N∑

i=1

1

(z − λi )k
+ 1

N

N∑

i=1

n2i − 1

(z − λi )k
. (4.33)

We then use the central limit theorem (4.14) for linear statistics for the first sum and
replace λi by λ̂i in the second sum using the rigidity (4.8).

5 Fluctuations of the Free Energy

From the integral formula (3.1), using

CN =
√
Nβ

2i
√

π(βe)N/2
(1 + O(N−1)), (5.1)

the free energy can be written as

FN = 1

2β
(G(γ )−1−logβ)+ 1

Nβ
log

(√
Nβ

2i
√

π

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz

)
+O(N−2) (5.2)

where O(N−2) is a constant that does not depend on the disorder sample M and g. We
evaluate the integral asymptotically using the method of steepest descent. The formula for
G(z) is given in (3.2) and

G′(z) = β − 1

N

N∑

i=1

1

z − λi
− h2β

N

N∑

i=1

n2i
(z − λi )2

where ni = ui · g. (5.3)

For real z, G′(z) is an increasing function taking values from −∞ to β as z moves from λ1
to ∞. Hence, there is a unique real critical point γ satisfying

G′(γ ) = 0, γ > λ1.
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We set γ for the contour of (5.2) to be this critical point.
In this section, we use the formula (5.2) to evaluate the fluctuations of the free energy

when the external field strength h is fixed. For the case h = 0, this computation was done in
[24] for the leading deterministic term and in [4] for the subleading term. For fixed h > 0, the
fluctuations for the SK model were computed in [9] using a method different from the one of
this paper. We first review the computation of [4] for h = 0 and then give a new computation
for fixed h > 0 using the above integral formula.

The following formula will be used in one of the subsections: Since G(z) − G(γ ) =
G(z) − G(γ ) − G′(γ )(z − γ ), we can write

N (G(z) − G(γ )) = −
N∑

i=1

[
log(1 + z − γ

γ − λi
) − z − γ

γ − λi

]
+ h2β

N∑

i=1

n2i (z − γ )2

(z − λi )(γ − λi )2
.

(5.4)

5.1 No External Field: h = 0

5.1.1 High Temperature Regime: T > 1

When h = 0, we write, using the notation (4.15),

G(z) = βz − 1

N

N∑

i=1

log(z − λi ) = βz − s0(z)− LN (z)

N
, s0(z) =

∫
log(z − x)dσscl(x).

(5.5)
From (4.16), LN (z) = O (1) for fixed z > 2. Thus, G0(z) := βz− s0(z) is an approximation
of the function G(z) and we first find the critical point γ0 of G0(z) satisfying γ0 > 2, where
we recall that the largest eigenvalue λ2 → 2. Since G′′

0 (z) > 0, we find that minz≥2 G′
0(z) =

G′
0(2) = β − 1 from the formula (4.5) of s′

0(z) = s1(z). Thus, the critical point of G0(z)
exists only when 1

β
= T > 1. From the formula, we find that for T > 1, it is given by

γ0 := β + β−1 = T + T−1. (5.6)

In this case, a simple perturbation argument (seeAppendix B) implies that γ = γ0+O (N−1
)

and

G(γ ) = G(γ0) − LN (γ0)

N
+ O (N−2) = β2

2
+ 1 + logβ − LN (γ0)

N
+ O (N−2) . (5.7)

Even though the integral in (5.2) involves the disorder sample, the rigidity of the eigen-
values from Sect. 4.3 implies that, with high probability, the eigenvalues are close to the
non-random classical locations (i.e. the quantiles of the semicircle law). Thus, we can still
apply the method of steepest descent when the disorder sample is in an event of the high
probability. Using

G′′(γ ) 
 G′′
0 (γ0) = s2(γ0) = β2

1 − β2

and G(k)(γ ) = O (1) for all k ≥ 2, the Gaussian approximation of the integral is valid and
we find that ∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz 
 i

√
4π√

Ns2(γ0)
= i

√
4π(1 − β2)√

Nβ2
. (5.8)
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Inserting everything into (5.2) and using the fact that LN (γ0) converges to a Gaussian
distribution with mean and variance given by (4.18), we obtain the following result. This
result was proved rigorously in [4].

Theorem 5.1 ([4]) For h = 0 and T > 1,

FN (T , 0) = 1

4T
+ T

2N

[
log(1 − T−2) − LN (γ0)

]+ O (N−3/2) (5.9)

as N → ∞ with high probability, where γ0 = T + T−1 and LN (z) is defined in (4.15). As
a consequence,

FN (T , 0)
D
 1

4T
+ T

2N
N (−α, 4α) α := −1

2
log(1 − T−2), (5.10)

where N (a, b) is a (sample) Gaussian distribution of mean a and variance b.

5.1.2 Low Temperature Regime: T < 1

In contrast to the previous section, the function G0(z) = βz − s0(z) is no longer a good
approximation of G(z) for 0 < T < 1 when h = 0. Indeed, the function G0(z) does not
have a critical point satisfying z > 2. Hence, we need to find the critical point γ of G(z)
directly. Since the critical point of G0(z) when T = 1 is given by γ0 = 2, it is reasonable
to assume that when 0 < T < 1, γ is close to the large eigenvalue λ1. It turns out that
γ = λ1 +O (N−1

)
. We set γ = λ1 + sN−1 with s = O (1) and determine s. Separating out

the term with i = 1 in the equation (5.3) and using (4.30),

G′(γ ) = β − 1

N (γ − λ1)
− 1

N

N∑

i=2

1

γ − λi
= β − 1

s
− 1 + O (N−1/3) = 0. (5.11)

Thus s = 1
β−1 + O (N−1/3

)
, which is consistent with our assumption that s = O (1). To

evaluate

G(γ ) = βγ − 1

N

N∑

i=1

log(γ − λi ),

we use (4.15)–(4.17). We need to evaluate
∑N

i=1 log(z−λi ) for z = 2+O(N−2/3). Observe
that

M(z) = O(log(z − 2)) and V (z) = O(log(z − 2)) as z → 2.

Hence, a formal application of (4.16) to this case using s0(z) = 1
2 + (z− 2)+ O((z− 2)3/2)

implies that for z → 2 such that |z − 2| ≥ N−d for some d > 0,

1

N

N∑

i=1

log (z − λi ) = s0 (z)+O (N−1) = 1

2
+ (z−2)+O (N−1)+O((z−2)3/2). (5.12)

This heuristic computation indicates that

G(γ ) = βγ − 1

N

N∑

i=1

log(γ − λi ) = 2β − 1

2
+ (β − 1)(λ1 − 2) + O (N−1) . (5.13)
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We now consider the integral in (5.2). For k ≥ 2, we have, using the notation (4.9) for the
scaled eigenvalues ai = N 2/3(λi − 2) and the estimate (4.31),

G(k)(γ )

(−1)k(k − 1)! = 1

N

N∑

i=1

1

(γ − λi )k
= Nk−1

sk
+ N

2
3 k−1

N∑

i=2

1

(a1 + sN−1/3 − ai )k

= O
(
Nk−1

)
(5.14)

with high probability. The estimate G′′(γ ) = O (N ) indicates that the main contribution to
the integral comes from a neighborhood of radius N−1 of the critical point. However, all
terms of the Taylor series

N
(G(γ + uN−1) − G(γ )

) =
N∑

k=2

N 1−k G(k)(γ )

k! uk

are of the same orderO (1) for finite u. Hence, we cannot replace the integral with a Gaussian
integral. Instead, we proceed as follows. Using the formula (5.4), separating out the i = 1
term from the sum, using a Taylor approximation for the remaining sum, and using (4.31),

N
(G(γ + uN−1) − G(γ )

) = − log
(
1 + u

s

)
+ u

s
+ O

(
N∑

i=2

u2N−2/3

(a1 − sN−1/3 − ai )2

)

= − log
(
1 + u

s

)
+ u

s
+ O (N−2/3)

(5.15)
with high probability for finite u. From this,

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz 
 1

N

∫ i∞

−i∞
e
u
s

1 + u
s

du � O (N−1) . (5.16)

We do not need the exact value of the integral, but only the estimate that its log isO (log N ).
We thus obtain the following result, which was proved rigorously in [4].

Theorem 5.2 ([4]) For h = 0 and 0 ≤ T < 1,

FN (T , 0) = 1 − 3T

4
+ T log T

2
+ 1 − T

2N 2/3 a1 + O (N−1) (5.17)

as N → ∞ with high probability. As a consequence,

FN (T , 0)
D
 1 − 3T

4
+ T log T

2
+ 1 − T

2N 2/3 TWGOE . (5.18)

Remark 5.3 The zero temperature case T = 0 of the theorem is the standard random matrix
theory result that the largest eigenvalue of a GOE matrix converges to the Tracy-Widom
distribution. We see that a formal T → 0 limit of the result implies this statement. Similarly,
all results of this paper, other than those that have T > 1 restrictions, have a convergent
formal limit if we take T → 0. Hence, even though we need a separate argument since there
is no integral representation, we expect that all results are valid for the T = 0 case as well.
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5.2 Positive External Field: h = O(1)

Fix h > 0. We use (4.16) and (4.32) to write

G(z) = βz − s0(z) + h2β

[
s1(z) + 1√

N
SN (z; 1)

]
+ O (N−1)

for z > λ1. The random variable SN (z; k) is defined in (4.22) and it converges in distribution
to N (0, 2s2k(z)); see (4.29). This time, G(z) is approximated by the function G0(z) = βz −
s0(z) + h2βs1(z). Its derivative G′

0(z) = β − s1(z) − h2βs2(z) is an increasing function for
z > 2 and G′(z) → −∞ as z ↓ 2 while G′(z) → +∞ as z → +∞. Hence, unlike in the
case of h = 0, there is a point γ0 > 2 satisfying G′

0(γ0) = 0 for all T > 0. It satisfies the
equation

G′
0(γ0) = β − s1(γ0) − h2βs2(γ0) = 0. (5.19)

A perturbation argument (see Appendix B) implies that the critical point γ of G(z) has the
form

γ = γ0 + γ1N
−1/2 + O (N−1) . (5.20)

We do not need a formula for γ1 in this section, but we record it here since we use it in later
sections;

γ1 = h2βSN (γ0; 2)
s2(γ0) + 2h2βs3(γ0)

(5.21)

wherewe used the fact that d
dzSN (z; 1) = −SN (z; 2). The perturbation argument also implies

that

G(γ ) = βγ0 − s0(γ0) + h2βs1(γ0) + h2β√
N
SN (γ0; 1) + O (N−1) . (5.22)

The integral term in (5.2) can be evaluated using the steepest descent method as in the
case of h = 0 and T > 1 since G(k)(γ ) = O (1) for all k ≥ 2. From the Gaussian integral
approximation,

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz 
 i

√
4π√

NG′′(γ )
� O (N−1/2) . (5.23)

Remark 5.4 We do not focus in this paper on justifying the use of steepest descent in this
context, but instead provide the computations based on this method. One can rigorously
check that the steepest descent method works here, but it is also worth noting that all the
contour integral computations needed in this paper can be achievedwithout the use of steepest
descent. In fact, for the contour integrals in Sects. 5.2, 6.1, 7.1, 8.3, 8.5, 9.1, 9.2, 9.3, 10.1, and
10.2 require no contour deformation at all. Using the straight line contour and crude bounds
on the order of the integrand, one can compute, up to leading order, the value of the integral
in a neighborhood of γ and then show that the tails are of smaller order. These computations
are fairly lengthy and will be omitted from this paper. The integrals in Sects. 8.6 and 10.3
can be treated by a similar method, but require a slight deformation of the original contour.
For ease of computation, we instead employ the steepest descent method here, but without
providing rigorous justification.

Combining the preceding information in this section, we obtain the following result.
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Result 5.5 For fixed h > 0 and T > 0,

FN (T , h) = F(T , h) + h2SN (γ0; 1)
2
√
N

+ O (N−1) (5.24)

as N → ∞ with high probability where SN (z; k) is defined in (4.22) and

F(T , h) := γ0

2
− T s0(γ0)

2
− T − T log T

2
+ h2s1(γ0)

2
(5.25)

with γ0 being the solution of the equation

1 − T s1(γ0) − h2s2(γ0) = 0, γ0 > 2. (5.26)

Since SN (γ0; 1) converges in distribution to N (0, 2s2(γ0)) from (4.29), we conclude the
following result.

Result 5.6 For fixed h > 0 and T > 0, as N → ∞,

FN (T , h)
D
 F(T , h) + 1√

N
N
(
0,

h4s2(γ0)

2

)
. (5.27)

This result shows that the order of the fluctuations of the free energy is N−1/2 for all T > 0,
which is different from both N−1 for h = 0, T > 1 and N−2/3 for h = 0, 0 < T < 1.

5.3 Comparison with the Result of Chen, Dey, and Panchenko

Chen, Dey, and Penchenko computed the fluctuations of the free energy of the SK model
with h > 0 in [9] when g = 1. We compare our result with theirs. The adaptation of the
approach of [9] to the SSK model with g = 1 implies that

√
N (FN (T , h) − E[F(T , h)])

converges in distribution as N → ∞ to the centered Gaussian distribution with variance

h4(1 − q0)4

2T 2(T 2 − (1 − q0))
(5.28)

where

q0 + h2 = T 2q0
(1 − q0)2

. (5.29)

The quantity q0 has the interpretation as the overlap of two independent spins from the Gibbs
measure involving the same disorder sample, i.e. the overlap of a spin with a replica. The
formula (5.29) was predicted using the replica saddle point method in [13] (equation (4.5))
and [19] (equation (29) with n = 0).

Our result (5.27) above is for the SSKmodel when g is a Gaussian vector, but it extends to
the case g = 1. The only difference is that the variance of the limiting Gaussian distribution
(5.27) changes to

h4

2
(s2(γ0) − (s1(γ0))

2). (5.30)

Using the fact that s2(z) = s1(z)2

1−s1(z)2
for z > 2, it is easy to check that (5.28) and (5.30) are

same with q0 and γ0 related by the equation

q0 = 1 − T s1(γ0). (5.31)
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5.4 Matching Between h > 0 and h = 0

We have considered three different regimes: (a) h = 0 and T < 1, (b) h = 0 and T > 1,
and (c) h = O(1). The order of the fluctuations of the free energy in these regimes are
N−1, N−2/3, and N−1/2, respectively. In these cases, the fluctuations are governed by the
disorder variables given by (a) all eigenvalues λ1, · · · , λN , (b) the top eigenvalue λ1, and
(c) the combinations ni = ui · g of the eigenvectors and the external field. These differences
indicate that there should be transitional regimes as h → 0. We now study the limit h → 0 of
the result obtained for the case h > 0 and determine the transitional scaling of h heuristically
by matching the order of the fluctuations. We need to consider the high temperature case and
the low temperature case separately.

5.4.1 Asymptotic Property of �0

Throughout this paper, we will make use of following property of the leading term γ0 of the
critical point of G(z) when h = O(1).

Lemma 5.7 Let γ0 > 2 be the solution of the Eq. (5.26), 1− T s1(γ0) − h2s2(γ0) = 0. Then,
as h → 0,

γ0 =
{
T + T−1 + h2

T + O(h4) for T > 1,

2 + h4

4(1−T )2
− h6

4(1−T )4
+ O(h8) for 0 < T < 1.

(5.32)

On the other hand, as h → ∞,

γ0 = h + T

2
+ O(h−1) for all T > 0. (5.33)

Proof Consider the limit of γ0 as h → 0. For T > 1, the equation for γ0 becomes 1 −
T s1(γ0) = 0 when h = 0, and its solution is T + T−1. A simple perturbation argument
applied to the equation for small h implies the result. For 0 < T < 1, we use the asymptotics

s2(z) = 1

2
√
z − 2

+ O(1) and s1(z) = 1 + O(
√
z − 2) as z → 2,

which follow from the formulas in (4.5). Then, the equation for γ0 becomes

1 − T − h2

2
√

γ0 − 2
+ O(h2) + O(

√
γ0 − 2) = 0 (5.34)

as h → 0 and γ0 → 2. From this equation we find the result as h → 0. The limit as h → ∞
follows from sk(z) = z−k + O(z−k−1) as z → ∞. ��

5.4.2 High Temperature Case, T > 1

From (5.32), we find that for T > 1, as h → 0,

s0(γ0) = 1

2T 2 + log T + h2

T 2 + O (h4) , s1(γ0) = 1

T
− h2

T (T 2 − 1)
+ O (h4) ,

s2(γ0) = 1

T 2 − 1
− 2T 2h2

(T 2 − 1)3
+ O (h4) .
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Inserting the formulas into (5.25),

F(T , h) = 1

2T
+ h2

2T
− h4

4T (T 2 − 1)
+ O(h6). (5.35)

Therefore, we find that if we first take N → ∞ with fixed h > 0 and then let h → 0, then

FN (T , h)
D

[

1

2T
+ h2

2T
− h4

4T (T 2 − 1)

]
+ h2√

2N (T 2 − 1)
N (0, 1) (5.36)

where the terms of orders h6 and h4N−1/2 have been dropped. The fluctuations are of order
h2√
N
. On the other hand, when h = 0, the fluctuations are of order N−1 (see (5.10)). These

two terms are of same order when h ∼ N−1/4.

5.4.3 Low Temperature Case, T < 1

Using the T < 1 case of (5.32), the leading term (5.25) becomes

F(T , h) = 1 − 3T

4
+ T log T

2
+ h2

2
− h4

8(1 − T )
+ O(h6) (5.37)

and the variance of the Gaussian distribution in (5.27) becomes h4s2(γ0)
2 = h2(T−1)

2 +O(h4).
Thus, from (5.27), for T < 1, we find that if we take N → ∞ first and then take h → 0,
then

FN (T , h)
D

[
1 − 3T

4
+ T log T

2
+ h2

2
− h4

8(1 − T )

]
+ 1√

N
N
(
0,

h2(1 − T )

2

)
(5.38)

where the terms of orders h6 and h3N−1/2 have been dropped. This implies that the fluctu-
ations of the free energy are of order h√

N
. On the other hand, when h = 0, the fluctuations

are of order N−2/3 (see (5.18)). These two terms are of same order when h ∼ N−1/6.

5.4.4 Summary

In summary, a heuristic matching computation suggests that the transitional scaling is

h = O(N−1/4) for T > 1,

h = O(N−1/6) for T < 1.
(5.39)

In next two sections, we compute the fluctuations of the free energy in the above transitional
regimes.

6 Free Energy for T > 1 and h ∼ N−1/4

6.1 Analysis

Assume that T > 1 and set
h = HN−1/4 (6.1)
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for fixed H > 0. In this case, using the notations (4.15) and (4.22),

G(z) = βz − s0(z) − LN (z)

N
+ H2β√

N

[
s1(z) + SN (z; 1)√

N

]
+ O (N−3/2) (6.2)

where we recall that LN (z) and SN (z; 1) are O (1) for z > 2. We approximate the function
by G0(z) = βz− s0(z) and, as we discussed in Sect. 5.1.1, this function has the critical point
γ0 = β +β−1 for T > 1. Applying a perturbation argument (see Appendix B) and using the
formulas of s0(z) and s1(z), the critical point of G(z) is given by

γ = γ0 + O (N−1/2) with γ0 = β + β−1. (6.3)

Furthermore,

G(γ ) = β2

2
+ 1 + logβ + H2β2

√
N

+ 1

N

[
− H4β4

2(1 − β2)
+ H2βSN (γ0; 1) − LN (γ0)

]
+ O (N−3/2) .

(6.4)

Since

G′′(γ ) = 1

N

N∑

i=1

1

(γ − λi )2
+ 2H2β

N 3/2

N∑

i=1

n2i
(γ − λi )3


 s2(γ )+ 2H2β

N 1/2 s3(γ ) 
 s2(γ0) (6.5)

and G(k)(γ ) = O(1) for all k ≥ 2, the method of steepest descent implies that

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz 
 i

N 1/2

√
4π

s2(γ0)
� O (N−1/2) . (6.6)

Result 6.1 For h = HN−1/4 with fixed H > 0 and T > 1,

FN (T , h) = 1

4T
+ H2

2T
√
N

+ T

2N

×
[
log(1 − T−2) − H4

2T 2(T 2 − 1)
+ H2

T
SN (γ0; 1) − LN (γ0)

] (6.7)

plusO (N−3/2
)
, as N → ∞ with high probability where LN (z) and SN (z; 1) are defined in

(4.15) and (4.22), respectively, and γ0 = γ0(h = 0) = T + T−1.

The sample random variables SN (γ0; 1) and LN (γ0) both converge to Gaussian distri-
butions. Since SN (γ0; 1) depends only on ni ’s and LN (γ0) depends only on λi ’s, these two
random variables are independent. Therefore, we obtain the following result.

Result 6.2 For h = HN−1/4 and T > 1, as N → ∞,

FN (T , h)
D

[

1

4T
+ H2

2T
√
N

]
+ T

2N
N (−α, 4α), α := H4

2T 2(T 2 − 1)
− 1

2
log(1−T−2).

(6.8)
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6.2 Matching with h = 0 and h = O(1) Cases

If we set H = 0 in (6.7), we recover the result (5.10) for the case of h = 0. We now consider
the limit H → ∞. If we formally set H = hN 1/4 in (6.7) with h small but fixed and N large,
then we have

FN (T , h) 
 1

4T
+ h2

2T
− h4

4T (T 2 − 1)
+ h2

2
√
N
SN (γ0; 1) (6.9)

for asymptotically almost every disorder sample. This is the same as (5.24) when h → 0
since F(T , h) satisfies (5.35) as h → 0. Therefore, (6.7) matches well with both regimes.

7 Free Energy for T < 1 and h ∼ N−1/6

7.1 Analysis

Assume that 0 < T < 1 and we set

h = HN−1/6 (7.1)

for fixed H > 0. We find the critical point γ > λ1. Previously we had γ = λ1 + O (N−1
)

when h = 0 and γ = λ1 + O (1) when h > 0. For h ∼ N−1/6, we make the ansatz

γ = λ1 + sN−2/3 (7.2)

and find s > 0 assuming that s = O (1). From the equation G′(γ ) = 0, see (5.3), the equation
of s is

β − 1

N 1/3

N∑

i=1

1

s + a1 − ai
− h2βN 1/3

N∑

i=1

n2i
(s + a1 − ai )2

= 0 (7.3)

where we recall ai = N 2/3(λi − 2). Here, we did not change h to HN−1/6 since we will
cite this equation in several places in the paper. From (4.31), the second sum converges with
high probability. The first sum is 1 + O (N−1/3

)
from (4.30). Thus, with h = HN−1/6 the

equation becomes, under the assumption that s = O (1),

β − 1 − H2β

N∑

i=1

n2i
(a1 + s − ai )2

+ O (N−1/3) = 0. (7.4)

Let t be the solution of the equation

β − 1 − H2β

N∑

i=1

n2i
(t + a1 − ai )2

= 0, t > 0. (7.5)

Using the rigidity, we can show that t � O (1) with high probability. From this, comparing
the equations for s and t , we find that

s = t + O (N−1/3) . (7.6)

which is consistent with the ansatz. The last equation can also be verified by checking the
inequalities

G′(λ1 + t N−2/3(1 − N−ε)) < 0 < G′(λ1 + t N−2/3(1 + N−ε))
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for any 0 < ε < 1/3.
We now evaluate G(γ ) which is given by

G(γ ) = βγ − 1

N

N∑

i=1

log(γ − λi ) + H2β

N 4/3

N∑

i=1

n2i
γ − λi

. (7.7)

Insert γ = λ1 + sN−2/3 = 2+ (a1 + s)N 2/3. By (5.12), the sum involving the log function
becomes

1

N

N∑

i=1

log(γ − λi ) = 1

2
+ N−2/3(a1 + s) + O (N−1) .

The other sum is equal to

H2β

N 2/3

N∑

i=1

n2i
a1 + s − ai

= H2β

N 2/3

(
N 1/3 + EN (s)

)

using the random variable EN (w) defined by (4.21), which is O (1) outside of a set whose
probability shrinks to zero. Thus,

G(γ ) = 2β − 1

2
+ H2β

N 1/3 + 1

N 2/3

[
(β − 1)(a1 + s) + H2βEN (s)

]+ O (N−1) . (7.8)

To evaluate the integral in (5.2), we observe that for k ≥ 2,

G(k)(γ )

(−1)k(k − 1)! = N
2k
3 −1

N∑

i=1

1

(s + a1 − ai )k
+ kN

2
3 k− 2

3 H2β

N∑

i=1

n2i
(s + a1 − ai )k+1

= O
(
N

2
3 k− 2

3

)
.

For k = 2, the leading term is

G′′(γ ) = 2N 2/3H2β

N∑

i=1

n2i
(s + a1 − ai )3

+ O (N 1/3) . (7.9)

Since G′′(γ ) ∼ N 2/3, the main contribution to the integral comes from a neighborhood of
radius N−5/6 near the critical point. By the Taylor series, for u = O(1),

N
(
G(γ + uN−5/6) − G(γ )

)
=

∞∑

k=2

N 1− 5
6 k

k! G(k)(γ )uk

= H2β

(
N∑

i=1

n2i
(s + a1 − ai )3

)
u2 + O

(
N−5/6

)
(7.10)

where all terms but k = 2 are O (N−5/6
)
. Thus, from the Gaussian integral approximation,

∫ γ+i∞

γ−i∞
e

N
2 (G(z)−G(γ ))dz 
 1

N 5/6

∫ i∞

−i∞
e
H2β

(∑N
i=1

n2i
(s+a1−ai )

3

)
u2

du � O
(
N−5/6

)
. (7.11)

Combining all together in (5.2) and replacing s by t , we obtain the following
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Result 7.1 For h = HN−1/6 and 0 < T < 1,

FN = F0(T , h)+ F̃(T , H)

N 2/3 +O (N−1) , F0(T , h) := 1− 3T

4
+ T log T

2
+ h2

2
, (7.12)

as N → ∞ for asymptotically almost every disorder sample. Here,

F̃(T , H) = 1

2
(1 − T )(t + a1) + 1

2
H2EN (t) (7.13)

where EN (z) is defined in (4.21) and t is the solution of the Eq. (7.5),

1 − T = H2
N∑

i=1

n2i
(t + a1 − ai )2

, t > 0. (7.14)

The function F0(T , h) is equal to F(T , h) of (5.25) if we set γ0 = 2. The order of
fluctuations is N−2/3 as in the h = 0 case. But the fluctuations depend on all eigenvalues
and n1, · · · , nN . In contrast, when h = 0 they depend only on the largest eigenvalue. Using
(4.28) for EN (t), we obtain the next distributional result.

Result 7.2 For h = HN−1/6 and 0 < T < 1,

FN
D
 F0(T , h) + (1 − T )(ς + α1) + H2E(ς)

2N 2/3 (7.15)

as N → ∞, where

E(w) = lim
n→∞

⎛

⎝
n∑

i=1

ν2i

w + α1 − αi
− 1

π

∫ (
3πn
2

)2/3

0

dx√
x

⎞

⎠ (7.16)

and ς is the solution of the equation

1 − T = H2
∞∑

i=1

ν2i

(ς + α1 − αi )2
, ς > 0, (7.17)

where αi is the GOE Airy point process and νi are independent standard normal sample
random variables.

7.2 Asymptotic Behavior of the Scaled Limiting Critical Point t

The solution t of the Eq. (7.5),

1 − T − H2
N∑

i=1

n2i
(t + a1 − ai )2

= 0, t > 0, (7.18)

is the scaled limiting critical point that is used in the result (7.12) above. We now describe
the behavior of t as H → 0 and H → ∞. The following result is useful in the next two
subsections and in two later sections.

Result 7.3 The solution t of the Eq. (7.18) satisfies:

t = |n1|√
1 − T

H + O(H2) as H → 0 (7.19)
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and
√
t 
 H2

2(1 − T )

⎡

⎣1 +
H2SN

(
2 + H4N−2/3

4(1−T )2
; 2)

(1 − T )N 5/6

⎤

⎦ as H → ∞. (7.20)

The second term inside the bracket of the equation (7.20) is O (H−3
)
.

For the H → 0 limit, we see from the equation (7.18) that t → 0 as H → 0. If we

set t = yH , then separating the term i = 1, the equation becomes 1 − T = n21
y2

+ O(H2).
Solving it, we obtain (7.19).

We now consider the large H behavior of t . We write the Eq. (7.18) as

1 − T

H2 =
N∑

i=1

n2i
(t + a1 − ai )2

= 1

N 4/3

N∑

i=1

n2i
(z − λi )2

, z = 2 + (t + a1)N
−2/3. (7.21)

Note that t → ∞ as H → ∞. We evaluate the leading term of the right-hand of the above
equation when z → 2 such that z − 2 � N−2/3. The Eq. (4.32) when k = 2 is

1

N

N∑

i=1

n2i
(z − λi )2

= s2(z) + SN (z; 2)√
N

+ O (N−1)

for z − 2 = O(1). We expect that this formula is still applicable to z = 2 + (t + a1)N−2/3

since t → ∞. Since z → 2, we have s2(z) 
 1
2
√
z−2

from (4.6). The Eq. (7.21) becomes

1 − T

H2 
 1

2N 1/3
√
z − 2

+ SN (z; 2)
N 5/6

. (7.22)

The sample expectation of SN (z; 2) with respect to ni s is 0 and the variance is

Es[SN (z; 2)2] = 2

N

N∑

i=1

1

(z − λ̂i )4

 2s4(z) 
 1

8(z − 2)5/2

from (4.6). Thus, we expect that SN (z; 2) = O ((z − 2)−5/4
)
as z → 0 and (7.22) becomes

1 − T

H2 
 1

2
√
t

+ SN (2 + t N−2/3; 2)
N 5/6


 1

2
√
t

+ O
(
t−5/4

)
.

Solving it gives t 
 H4

4(1−T )2
, the leading term of (7.20), as H → ∞. Inserting it bask to the

same equation, we obtain the next term and obtain (7.20). The last computation also shows
that the second term in the bracket of (7.20) is O (H2t−5/4

) = O (H−3
)
.

7.3 Matching with h = 0

We show that a formal limit (7.12) as H → 0 agrees with (5.17) which is the result for h = 0.
The leading term satisfies

F0(T , h) = 1 − 3T

4
+ T log T

2
+ O(H2N−1/3). (7.23)

For the subleading term (7.13), we use (7.19) for t and find that

EN (t) = n21
t

+
N∑

i=2

n2i
t + a1 − ai

− N 1/3 = |n1|
√
1 − T

H
+ O (1) (7.24)
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where the O (1) term follows from (4.30). Therefore, if we set h = HN−1/6 and take the
limits N → ∞ first and H → 0 second, then

FN (T , h) = 1 − 3T

4
+ T log T

2
+ 1 − T

2N 2/3 a1 + O
(
H2N−1/3)+ O (HN 2/3) (7.25)

for asymptotically almost every disorder sample. This agrees with result (5.17) obtained
when h = 0.

We remark that the two subleading terms in (7.25) are comparable in size when H =
O(N−1/3), or equivalently when h = O(N−1/2). This regime is not important for the
computation of the free energy, but it will become important when we discuss the overlap of
the spin variable with the external field in Sect. 8.6.

7.4 Matching with h > 0

We show that the formal limit of (7.12) as H → ∞ is consistent with the result (5.25) for
h > 0.

7.4.1 Largew Limit of EN(w)

We first consider the behavior of EN (w), defined in (4.21), as w → ∞ and then we insert
w = t which tends to ∞ from (7.20). This result is also used in other sections later.

Result 7.4 As w → ∞,

EN (w) 
 −√
w + SN (W ; 1)

N 1/6 + O (w−1/2) , W := 2 + wN−2/3. (7.26)

where SN (z; k) is defined in (4.22).

Let âi := N 2/3(̂λi − 2) be the scaled classical location of the eigenvalues. Write

EN (w) =
N∑

i=1

n2i
w − âi

− N 1/3 +
N∑

i=1

n2i (ai − âi − a1)

(w + a1 − ai )(w − âi )
. (7.27)

Since ai � −i2/3, we find that for any ε > 0,

N∑

i=1

1

(w − ai )2
≤ 1

w1/2−ε

N∑

i=1

1

(w − ai )3/2+ε
= O (w−1/2)

as w → ∞. Thus, considering in a similar way, the last sum in (7.27) is O (w−1/2
)
since

a1 = O (1), ai − âi = O (1), and w → ∞. Setting W = 2+ wN−2/3, (7.27) can be written
as

EN (w) = N 1/3

[
1

N

N∑

i=1

1

W − λ̂i
− 1

]
+ SN (W ; 1)

N 1/6 + O (w−1/2) .

From a formal application of the semicircle law,

1

N

N∑

i=1

1

W − λ̂i

 s1(W ) = 1 − √

W − 2 + O(W − 2) = 1 −
√

w

N 1/3 + O(wN−2/3).

Thus, we obtain (7.26).
The Eqs. (7.20) and (7.26) imply the next result.
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Result 7.5 Let t be the solution of (7.14). Then, as H → ∞,

EN (t) 
 − H2

2(1 − T )
− H4SN (
0; 2)

2(1 − T )2N 5/6
+ SN (
0; 1)

N 1/6 , 
0 = 2 + H4N−2/3

4(1 − T )2
. (7.28)

7.4.2 Large H Limit

From (7.28), we see that the N−2/3 term in (7.12) satisfies

F̃(T , H)

N 2/3 
 (1 − T )a1
2N 2/3 − H4

8(1 − T )N 2/3 + H2SN (
0; 1)
2N 5/6


 − h4

8(1 − T )
+ h2SN (
0; 1)

2
√
N
(7.29)

writing in terms of h = HN−1/6. Thus, we find that if we take h = HN−1/6 and N → ∞
and then take H → ∞, then

FN 

[
1 − 3T

4
+ T log T

2
+ h2

2
− h4

8(1 − T )

]
+ h2SN (
0; 1)

2
√
N

, 
0 = 2 + H4N−2/3

4(1 − T )2

(7.30)
for asymptotically almost every disorder sample. The point 
0 is approximately equal to
γ0. The terms is the bracket are the same as the limit of F(T , h) as h → 0 in (5.37). The
O(N−1/2) term in (5.37) agrees with the last term of (7.30) since γ0 
 2 + h4

4(1−T )2
= 
0

from (5.32). Hence, we find that the above formula is the same as the formal h → 0 limit of
the result (5.25), which was obtained by taking N → ∞ first with h = O(1) fixed. Hence,
the result matches with the h = O(1) regime.

The last term of (7.30) depends on the disorder sample.We consider its sample distribution
and show that the sample distributions of the h = HN−1/6 regime and h > 0 regime match
for 0 < T < 1. Using (4.29), we replace SN (
0; 1) byN (0; 2s2(
0)). Using s2(z) 
 1

2
√
z−2

as z → 2, we find that
h2SN (
0; 1)

2
√
N

D
 h
√
1 − T√
2N

N (0, 1) . (7.31)

The right-hand side is same as the fluctuation term in (5.38), which shows the matching. This
computation shows the matching of h = HN−1/6 regime and h > 0 regime for 0 < T < 1
in terms of the sample distribution as well.

7.5 Comparison with the Large Deviation Result of [19]

We now compare our results with the large deviation result of [19]. To this aimwe first extend
their calculation from T = 0 to any 0 < T < 1, which is straightforward. Denoting by Es

the sample expectation, we find that

Es[Zn
N ] = Es[eβNnFN ] 
 eβNnF0

e
N26h6G(

βn
8h2

) (7.32)

where F0 is the same as the terms in the bracket in (7.30), the sample-independent terms,
and

G(x) = (1 − T )3

3
x3 + 1 − T

4
x2. (7.33)

This formula is valid for fixed T < 1, n, and h to the leading order as N → ∞ and in a second
stage as n, h → 0 so that n

h2
is fixed. The full result for fixed n and h is in (94) and (95) of [19]

and the above formula follows from it after changing T → 2T , σ → 2h, and J0 = 2. Note
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that the term e
N26h6G( n

8Th2
) is O(1) when h = O(N−1/6) and n = O(h2) = O(N−1/3). We

have

N26h6G
( n

8Th2

)
= N (1 − T )3n3

24T 3 + Nh2(1 − T )n2

4T 2 . (7.34)

We compare the above formula with the one obtained using the result (7.12). From (7.12),
we find that

Es[Zn
N ] = Es[e Nn

T FN ] 
 e
Nn
T F0(T ,h)

Es[e N1/3n
T F̃(T ,H)]. (7.35)

Now we let H → ∞. This term was computed in (7.29) in which we neglected the contri-
bution from a1. Including this term, using (7.31), and also noting that SN (z; 1) and a1 are
independent, we obtain

Es[e N1/3n
T F̃(T ,H)] 
 e− N1/3nH4

8T (1−T ) e
N2/3n2H4

8T 2
√
t Es

[
e

N1/3n(1−T )
2T a1

]
. (7.36)

We can replace
√
t 
 H2

2(1−T )
from (7.20) in the middle term. For the remaining expectation,

using the right tail of theGOETracyWidomdistribution F1(s) = P(α1 < s) ∼ exp(− 2
3 s

3/2),

E[e N1/3n(1−T )
2T a1 ] 


∫
e

N1/3n(1−T )
2T a1− 2

3α
3/2
1 dα1 
 exp

(
1

3

(N 1/3n(1 − T )

2T

)3)
. (7.37)

Combining the calculations together, we find that

E[Zn
N ] 
 e

Nn
T F0(T ,h)e− N1/3nH4

8T (1−T ) e
N2/3n2H2(1−T )

4T 2 e
Nn3(1−T )3

24T 3 . (7.38)

The exponents of the last two factors, upon writing H = hN 1/6 agree with (7.34). Since

F0 = F0(T , h) − h4
8(1−T )

, we find that (7.38) is the same as (7.32). This shows that the tail
of the typical fluctuations obtained here matches the large deviation tails at the exponential
order.

8 Overlap with the External Field

The overlap of a spin with the external field is

M = g · σ

N
.

We study the thermal fluctuation of the overlap for a given disorder sample in several regimes:
h = O(1), h ∼ N−1/6 and h ∼ N−1/2. We also consider the magnetization, susceptibility,
and differential susceptibility,

M = 〈M〉, X = M
h

, Xd = dM
dh

.

8.1 Thermal Average from Free Energy

Before we discuss the thermal fluctuations of M, we first derive the thermal average, the
magnetization, from the results for the free energy in two regimes, h = O(1) and h ∼ N−1/6,
using

M = 〈M〉 = dFN

dh
. (8.1)
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Case h = O(1):

For h > 0 and T > 0, the result (5.24) for the free energy implies that

〈M〉 = dFN

dh

 dF(T , h)

dh
+ 1

2
√
N

d

dh
(h2SN (γ0; 1)) (8.2)

for asymptotically almost every disorder sample. Using s′
0(z) = s1(z) and s′

1(z) = −s2(z),

dF(T , h)

dh
= hs1(γ0) + 1

2
(1 − T s1(γ0) − h2s2(γ0))

dγ0

dh
(8.3)

However, the equation for γ0 implies that the second term is zero. On the other hand, since
S ′
N (z; 1) = −SN (z; 2),

d

dh
(h2SN (γ0; 1)) = 2hSN (γ0; 1) − h2SN (γ0; 2)dγ0

dh
. (8.4)

Using the equation for γ0 and s′
2(z) = −2s3(z), we find that

dγ0

dh
= 2hs2(γ0)

T s2(γ0) + 2h2s3(γ0)
. (8.5)

Therefore, we conclude that, for fixed h > 0 and T > 0,

〈M〉 
 hs1(γ0) + 1√
N

[
hSN (γ0; 1) − h3s2(γ0)SN (γ0; 2)

T s2(γ0) + 2h2s3(γ0)

]
(8.6)

for asymptotically almost every disorder sample.

Case h ∼ N−1/6 and T < 1:

If we use the result (7.12) for the free energy when h = HN−1/6 and 0 < T < 1, we find
that

〈M〉 = N 1/6 dFN

dH

 h + HEN (t)√

N
+
(
1 − T + H2E ′

N (t)
)

2
√
N

dt

dH
(8.7)

for asymptotically almost every disorder sample. The formula for EN is given in (4.21) and

E ′
N (w) = −

N∑

i=1

n2i
(w + a1 − ai )2

. (8.8)

Since t satisfies the Eq. (7.14), we see that the term 1 − T + H2E ′
N (t) = 0. Hence, for

h = HN−1/6 and 0 < T < 1,

〈M〉 
 h + HEN (t)√
N

(8.9)

for asymptotically almost every disorder sample.
In both of these regimes, it turns out that the thermal average is indeed the leading term.

However, this calculation does not give us the thermal fluctuation term. To obtain that, we
use the integral representation of the overlap in the following subsections. For the overlap
and magnetization, it turns out that there is another interesting regime, h ∼ N−1/2, for
0 < T < 1. This is the regime that occurs when the two terms in (8.9) have the same order;
it was shown in (7.24) that HEN (t) 
 O (1) as H → 0. See the following subsections for
the details.
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8.2 Setup

We obtain the thermal probability of the overlap by considering the moment generating
function 〈eβηM〉 with respect to the Gibbs measure (1.2). Here, η is the variable for the
generating function and we added β for the convenience of subsequent formulas. It turns
out that the thermal fluctuations of M are of order N−1/2 in all regimes. Hence, we scale
η = ξ

√
N and use ξ as the scaled variable for the moment generating function. From Lemma

3.3, we have the following formula:

〈eβξ
√
NM〉 = e

N
2 (GM(γM)−G(γ ))

∫ γM+i∞
γM−i∞ e

N
2 (GM(z)−GM(γM))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz

(8.10)

where

GM(z) = βz − 1

N

N∑

i=1

log(z − λi ) +
(h + ξ√

N
)2β

N

N∑

i=1

n2i
z − λi

. (8.11)

Here, we take γM > λ1 to be the critical point of GM(z) satisfying

G′
M(γM) = 0 (8.12)

and we take γ > λ1 to be the critical point of G(z). The only difference between GM and G,
which we studied extensively in the previous sections, is that h is changed to h + ξN−1/2.

We record two formulas that we use below. From the explicit formulas for GM and G, the
equation G′

M(γM) − G′(γ ) = 0 implies that

(γM − γ )

[
1

N

N∑

i=1

1

(γM − λi )(γ − λi )
+ h2β

N

N∑

i=1

n2i (γ + γM − 2λi )

(γM − λi )2(γ − λi )2

]

=
(

2ξh

N 3/2 + ξ2

N 2

)
β

N∑

i=1

n2i
(γM − λi )2

.

(8.13)

The other formula that we will need is

N (GM(γM) − G(γ ))

= −
N∑

i=1

[
log

(
1 + γM − γ

γ − λi

)
− γM − γ

γ − λi

]
+ h2β

N∑

i=1

n2i (γM − γ )2

(γM − λi )(γ − λi )2

+
(
2ξh√
N

+ ξ2

N

)
β

N∑

i=1

n2i
γM − λi

=: A1 + A2 + A3,

(8.14)

which can be seen using GM(γM) − G(γ ) = GM(γM) − G(γ ) − G′(γ )(γM − γ ).

8.3 Positive External Field: h = O(1)

8.3.1 Analysis

Fix h > 0. The critical point γ of G(z) is evaluated in Sect. 5.2. It is shown in (5.20) that

γ = γ0 + γ1N
−1/2 + O (N−1)
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where γ0 and γ1 are deterministic functions of h and T . From the formulas for G and GM,
we see that G′

M(z) = G′(z) + O (N−1/2
)
for z > λ1 + O(1) (cf. (4.32)). This implies that

γM − γ = O (N−1/2
)
. We need to evaluate the difference precisely. From (8.13), we find,

using the semicircle law, that

(γM − γ )
(
s2(γ ) + 2h2βs3(γ ) + O (N−1/2)) = 2ξhβ√

N
s2(γ ) + O (N−1) .

Thus,

γM = γ + �N−1/2, � = 2hβξs2(γ0)

s2(γ0) + 2h2βs3(γ0)
+ O (N−1/2) . (8.15)

We now evaluate N (GM(γM) − G(γ )) for (8.10) via the Eq. (8.14). Using the Taylor
expansion of the logarithm function,

A1 = �2

2N

N∑

i=1

1

(γ − λi )2
+ O

(
1

N 3/2

N∑

i=1

1

(γ − λi )3

)
= �2s2(γ )

2
+ O (N−1/2) . (8.16)

Similarly,

A2 = h2β�2

N

N∑

i=1

n2i
(γ − λi )3

+ O (N−1/2) = h2β�2s3(γ ) + O (N−1/2) . (8.17)

In these two equations, we replaced γM by γ . For A3, using (8.15) and the notation (4.22),
we have

A3 = 2ξhβ(s1(γM)
√
N + SN (γM; 1)) + ξ2βs1(γM) + O (N−1/2)

= 2ξhβs1(γ )
√
N + [

2ξh(SN (γ ; 1) − s2(γ )�) + ξ2s1(γ )
]
β + O (N−1/2) .

(8.18)

Combining the three terms and inserting the formulas of γ and �,

N (GM(γM) − G(γ )) =2ξhβ
[√

Ns1(γ0) − s2(γ0)γ1 + SN (γ0; 1)
]

+ ξ2
[
βs1(γ0) − 2h2β2s2(γ0)2

s2(γ0) + 2h2βs3(γ0)

]
+ O (N−1/2) .

(8.19)

Now we consider the integrals in (8.10). Since G(k)(γ ) = O (1) for all k ≥ 2, the method
of steepest descent applies. It is also straightforward to check that

G′′
M(γM) = G′′(γM) + O (N−1/2) = G′′(γ ) + O (N−1/2) .

Hence, ∫ γM+i∞
γM−i∞ e

N
2 (GM(z)−GM(γM))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz



√

G′′(γ )

G′′
M(γM)


 1.

Inserting the above computations into (8.10), moving the term involving
√
N to the left,

replacing βξ by ξ , using β = 1/T , and inserting the formula (5.21) for γ1, we obtain the
following.

Result 8.1 For h = O(1) and T > 0,

〈eξ
√
N (M−hs1(γ0))〉 
 e

ξh

[
SN (γ0;1)− h3s2(γ0)SN (γ0;2)

T s2(γ0)+2h2s3(γ0)

]
+ ξ2

2

[
T s1(γ0)− 2Th2s2(γ0)2

2T s2(γ0)+h2s3(γ0)

]

(8.20)
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as N → ∞ for asymptotically almost every disorder sample, where γ0 > 2 is the solution
of the Eq. (5.19) and SN (z; k) is defined in (4.22).

Since the right-hand side is an exponential of a quadratic function of ξ , we obtain the
following distributional result.

Result 8.2 For h = O(1) and T > 0,

M
D
 hs1(γ0) + 1√

N

[
hSN (γ0; 1) − h3s2(γ0)SN (γ0; 2)

T s2(γ0) + 2h2s3(γ0)
+ σMN

]
(8.21)

as N → ∞ for asymptotically almost every disorder sample. The thermal random variable
N is a standard normal random variable and the term σM > 0 is given by the formula

σ 2
M = T s1(γ0) − 2Th2s2(γ0)2

T s2(γ0) + 2h2s3(γ0)
. (8.22)

The thermal average is given by the first three terms and they agree with the formula (8.6)
obtained from the free energy.

8.3.2 Discussion on the Leading Term

The leading term
M0(h, T ) := hs1(γ0(h)) (8.23)

in (8.21) is deterministic. See Fig. 3a for a graph as a functions of h. The functionM0 satisfies
the following properties:

• For every T > 0, M0(h, T ) is an increasing function of h.
• As h → ∞,

M0(h, T ) = 1 − T

2h
+ O(h−2) for all T > 0. (8.24)

• As h → 0,

M0(h, T ) 

{

h
T − h3

T (T 2−1)
for T > 1,

h − h3
2(1−T )

for 0 < T < 1.
(8.25)

The first property is consistent with the intuition that the overlap of the spin with the
external field becomes larger as the external field becomes stronger. The proof follows from

d

dh
M0=s1(γ0) − hs2(γ0)γ

′
0= T s1(γ0)s2(γ0)+2h2(s1(γ0)s3(γ0) − s2(γ0)2)

T s2(γ0)+2h2s3(γ0)
(8.26)

and from checking that s1(z)s3(z) − s2(z)2 > 0 for all z > 2 using (4.5). The large h and
small h limits follow from Lemma 5.7.

8.3.3 Discussion on the Variance

The variance of the overlap satisfies

〈M2〉 − 〈M〉2 
 σ 2
M

N
. (8.27)

The term σ 2
M(h, T ) = σ 2

M is given in (8.22) and does not depend on the disorder sample.
See Fig. 3 for the graph. Here are some properties of σ 2

M.
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Fig. 3 Graph ofM0 and σ 2
M as function of h for various values of T

• For every T , σ 2
M(h, T ) is a decreasing function.

• As h → ∞,

σ 2
M = T

h
+ O(h−2) for all T > 0. (8.28)

• As h → 0,

σ 2
M →

{
1 for T > 1,

T for 0 < T < 1.
(8.29)

The first property follows from

d

dh
σ 2
M=−T 2s2(γ0)

[(
T s2(γ0)2 − 12h4s3(γ0)2+12h4s2(γ0)s4(γ0)

)
γ ′
0(h)+4hT s2(γ0)2

]

(T s2(γ0)+2h2s3(γ0))2
(8.30)

by checking that s2(z)s4(z) − s3(z)2 > 0 for all z > 2. The large and small h limits follow
from Lemma 5.7.

8.3.4 Limit as h → ∞

Consider the formal limit of the result (8.21) as h → ∞. Using (5.33), we have

hkSN (γ0; k) = 1√
N

N∑

i=1

n2i − 1

(
γ0
h − λ̂i

h )k

 1√

N

N∑

i=1

(n2i − 1) (8.31)

and sk(γ0) 
 h−k as h → ∞. Therefore, using (8.24) and (8.28), we find that if we take
N → ∞ with h > 0 and then take h → ∞, we get

M
D
 1 − T

2h
+ 1√

N

[∑N
i=1(n

2
i − 1)

2
√
N

+
√
T√
h
N

]
. (8.32)

The leading term M 
 1 is trivial since the spin is likely to be pulled to the direction of the
external field if h is large.

8.3.5 Limit as h → 0When T > 1

Since γ0 → T + T−1 as h → 0 for T > 1 from (5.32), the terms SN (γ0; 1) and SN (γ0; 2)
remain O(1). Hence the deterministic terms in the square brackets in (8.21) converge to zero
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as h → 0. We thus find, using (8.25) and (8.29) that, if we take the limit N → ∞with h > 0
and then take h → 0, the result for T > 1 becomes

M
D
 h

T
− h3

T (T 2 − 1)
+ 1√

N

[
N + hSN (T + 1

T
; 1)
]

. (8.33)

8.3.6 Limit as h → 0When T < 1

The small h limit (5.32) of γ0 and the limit of sk(z) as z → 2 obtained in (4.6) imply that,
as h → 0,

s2(γ0) 
 (1 − T )

h2
+ T

2(1 − T )
, s3(γ0) 
 (1 − T )3

h6
, s4(γ0) 
 2(1 − T )5

h10
(8.34)

when 0 < T < 1. From these, we see that

hSN (γ0; 1) − h3s2(γ0)SN (γ0; 2)
T s2(γ0) + 2h2s3(γ0)


 hSN (γ0; 1) − h5SN (γ0; 2)
2(1 − T )2

. (8.35)

Thus, by (8.25) and (8.29), if take the limit N → ∞ with h > 0 and then take h → 0, then

M
D
 h− h3

2(1 − T )
+ 1√

N

[
hSN (γ0; 1) − h5SN (γ0; 2)

2(1 − T )2
+ √

TN

]
, γ0 
 2+ h4

4(1 − T )2
.

(8.36)
Finally, we consider the terms hSN (γ0; 1) and h5SN (γ0; 2). The sample-to-sample variance
of SN (γ0; k) is

2

N

N∑

i=1

1

(γ0 − λ̂i )2k

 2s2k(γ0), (8.37)

which is expected to hold for γ0 − 2 � N−2/3, i.e., h � N−1/6, Thus the sample-to-sample
variance is O (h−2

)
for k = 1 and O (h−10

)
for k = 2 from (8.34). Hence, we expect that

hSN (γ0; 1) and h5SN (γ0; 2) are O (1) for h � N−1/6.

8.4 No External Field: h = 0

When h = 0 and T > 1, it is well-known in spin glass theory [33,34] that the overlap of two
independently chosen spins are asymptotically orthogonal, indicating that the spin variable
becomes uniformly distributed on the sphere ‖σ‖ = √

N as N → ∞. For h = 0 the Gibbs
measure is independent of g. Hence, the overlap M = 1

N g · σ of the spin with the random
Gaussian vector σ is the cosine of the angle of two independent vectors which are chosen
more or less uniformly at random from the sphere. Thus, we expect thatM is approximately
1√
N
times a standard normal distribution. The formal limit of (8.33) as h → 0 coincides with

this result. Indeed when T > 1, the analysis for h > 0 with h = O(1) extends to h ≥ 0 and
(8.21) holds.

When h = 0 and T < 1, it was argued in [24] that 〈|u1·σ |〉√
N

converges to
√
1 − T . (In [24],

the authors claim that 〈u1·σ 〉√
N

→ √
1 − T , but this seems to be a typographical error since

〈u1 · σ 〉 = 0 due to the symmetry of the Gibbs measure under the transformation σ �→ −σ .)
It was also proven in [34] that the absolute value of the overlap of two independently chosen
spins converges to 1−T . Hence, a spin variablemay bewritten as σ√

N
= ±√

1 − Tu1+
√
T v,
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where the unit vector v is taken uniformly at random from the hyperplane perpendicular to
u1 and the signs ± are each taken with probability 1/2: See more discussions on such
decomposition of the spin variable in Sect. 11. Thus, using the notation n1 = u1 · g, we
expect that M 
 ±n1

√
1−T+√

TN√
N

. Recall that u1 has the sign ambiguity and hence n1 is
defined up to its sign. Thus, we find the following result for h = 0.

Result 8.3 For h = 0,

M 

⎧
⎨

⎩

1√
N
N for T >,

|n1|
√
1−TB+√

TN√
N

for 0 < T < 1
(8.38)

as N → ∞, for asymptotically almost every disorder sample, whereN is a standard normal
random variable, and B is independent of N and has the distribution P(B = 1) = P(B =
−1) = 1

2 .

The right-hand side of (8.36) involves the thermal random variableN but does not involve
the other thermal random variable B in (8.38). Hence, the formal limit of (8.36) as h → 0
is not equal to (8.38) when T < 1. This implies that there should be a transitional regime.
It turns out that there are two transitional regimes, h ∼ N−1/6 and h ∼ N−1/2. The first
regime can be expected, since γ0 = 2 + O(h4) as h → 0, and the subleading term O(h4) is
of same order as the fluctuations of the top eigenvalue λ1 when h ∼ N−1/6. This is the same
transitional regime that was observed for the free energy. The second regime h ∼ N−1/2

arises because the ratio of the integrals in (8.10), which was approximately equal to 1 when
h > 0 (and when h ∼ N−1/6 as well), is no longer close to 1 when h ∼ N−1/2. This will be
responsible for the appearance of B. We discuss these two transitional regimes in the next
subsections. We will see in Sect. 8.6 that the result for h = HN−1/2 actually holds even
when H = 0, implying that (8.38) indeed holds.

8.5 Mesoscopic External Field: h ∼ N−1/6 and T < 1

8.5.1 Analysis

We scale h as
h = HN−1/6

for fixed H > 0. This scale is the same as the one considered in Sect. 7.1. We showed in that
section that the critical point of G(z) is γ = λ1 + sN−2/3 where s > 0 satisfies the Eq. (7.4).
To find the critical point of GM(z), we make the ansatz that γM 
 γ , Then, the Eq. (8.13)
becomes

(γM − γ )

[
N 1/3

N∑

i=1

1

(s + a1 − ai )2
+ H2βN 2/3

N∑

i=1

2n2i
(s + a1 − ai )3

]



(
2ξH

N 5/3
+ ξ2

N 2

)
βN 4/3

N∑

i=1

n2i
(s + a1 − ai )2

,

implying that
γM − γ = O (N−1) , (8.39)

which is consistent with the ansatz. We do not need to determine the O (N−1
)
term in this

subsection.
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We now evaluate N (GM(γM) − G(γ )) using (8.14). From the Taylor series of the log
function,

A1 

N∑

i=1

(γM − γ )2

(γ − λi )2
=

N∑

i=1

(γM − γ )2N 4/3

(s + a1 − ai )2
= O (N−2/3) .

Inserting h = HN−1/6,

A2 
 H2β

N 1/3

[
N 2

N∑

i=1

n2i
(s + a1 − ai )2

]
(γM − γ )2 = O (N−1/3) .

The third term is

A3 =
(
2ξH + ξ2

N 1/3

)
β

[
N∑

i=1

n2i
s + a1 − ai

+ O (N−1/3)
]

.

Using the random variable EN (s) defined in (4.21), which is O (1), and combining all three
terms,

N (GM(γM) − G(γ )) = 2ξHβN 1/3 + 2βξHEN (s) + βξ2 + O (N−1/3) . (8.40)

Finally, consider the integrals in (8.10). The denominator is computed in Section 7.1.
The numerator can be computed in the same manner. Indeed, we can check, as with the

denominator, that G(k)
M (γM) = O

(
N

2
3 k− 2

3

)
for all k ≥ 2 and

G′′
M(γM) = 2N 2/3H2β

N∑

i=1

n2i
(s + a1 − ai )3

+ O (N 1/2) , (8.41)

which is the same as the denominator. Hence, the Gaussian integral approximations of the
integrals imply that

∫ γM+i∞
γM−i∞ e

N
2 (GM(z)−GM(γM))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz



√

G′′(γ )

G′′
M(γM)


 1. (8.42)

Combining the above computations into (8.10), replacing s by t (the solution to (7.5)),
replacing βξ by ξ , and using 1/β = T , we obtain the following result.

Result 8.4 For h = HN−1/6 and 0 < T < 1,

〈eξ
√
N (M−h)〉 
 eξHEN (t)+ T ξ2

2 , EN (t) :=
N∑

i=1

n2i
t + a1 − ai

− N 1/3, (8.43)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of
the equation (7.14).

Since the exponent of the right-hand side of (8.43) is a quadratic function of ξ , we obtain

Result 8.5 For h = HN−1/6 and 0 < T < 1,

M
D
 h + 1√

N

[
HEN (t) + √

TN
]

(8.44)

as N → ∞ for asymptotically almost every disorder sample, where the thermal random
variable N has the standard Gaussian distribution.
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The thermal average is obtained from the first two terms. The average is the same as (8.9)
that we obtained from the free energy.

8.5.2 Matching with h = O(1)

We take the formal limit H → ∞ of (8.44). The limit of EN (t) as H → ∞ is obtained in
(7.28). From this, we find that, if we take h = HN−1/6 and let N → ∞ first and then take
H → ∞, then

M
D
 h − h3

2(1 − T )
+ 1√

N

[
hSN (γ0; 1) − h5SN (γ0; 2)

2(1 − T )2
+ √

TN

]
(8.45)

as H → ∞ where γ0 
 2 + h4

4(1−T )2
. This result agrees with (8.36), which is obtained by

taking h > 0 fixed and letting N → ∞ first and then taking h → 0.

8.5.3 Formal Limit as H → 0

We take the formal limit H → 0 of (8.44). We obtained the limit of EN (t) as H → 0 in
(7.24). Hence, we find that, if we take N → ∞with h = HN−1/6 first and then take H → 0,
then

M
D
 h + 1√

N

[
|n1|

√
1 − T + √

TN
]
. (8.46)

This formula evaluated at H = 0 is different from (8.38). In particular, the Bernoulli random
variableB(1/2) is missing. In the next subsection, we consider a new regime h = O(N−1/2)

in which the two terms in (8.46) are of the same order. We will show that this new regime
interpolates between h = O(N−1/6) and h = 0.

8.6 Microscopic External Field: h ∼ N−1/2 and T < 1

8.6.1 Analysis

We set, for fixed H > 0,
h = HN−1/2. (8.47)

This is a new regimewhich did not appear in previous sections. The appearance of this scaling
regime was first noticed in [19] for the zero temperature case.

Critical Points

Wefirst compute the critical pointγ ofG(z). In previous sections,we hadγ = λ1+O (N−2/3
)

for h ∼ N−1/6 and γ = λ1 + O (N−1
)
for h = 0. For h ∼ N−1/2, it turns out that

γ = λ1 + O (N−1
)
. We make the ansatz that

γ = λ1 + pN−1 (8.48)

with p = O (1). Then, the critical point equation becomes

β − 1

N

N∑

i=1

1

λ1 + pN−1 − λi
− H2β

N 2

N∑

i=1

n2i
(λ1 + pN−1 − λi )2

= 0. (8.49)
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Separating out i = 1 in both sums and using (4.30) and (4.31) for the remaining sums, the
equation becomes

β − 1 − 1

p
− H2βn21

p2
+ O (N−1/3) = 0. (8.50)

The solution is

p =
1 +

√
1 + 4(β − 1)H2βn21

2(β − 1)
+ O (N−1/3) . (8.51)

Hence, p = O (1), which is consistent with the ansatz.
Now consider the critical point of GM(z). Due to the scale h = HN−1/2, the function

GM(z) is the same as G(z) with H replaced by H + ξ . Thus, we find that

γM = λ1 + pMN−1 (8.52)

where pM > 0 solves the equation

β − 1 − 1

pM
− (H + ξ)2βn21

p2M
+ O (N−1/3) = 0. (8.53)

Exponential Terms

We evaluate N (GM(γM) − G(γ )) using (8.14). For A1, the sum with i ≥ 2, using a Taylor
approximation, is O (N−2/3

)
. Hence,

A1 = − log

(
pM
p

)
+ pM

p
− 1 + O (N−2/3) .

The sum with i ≥ 2 for A2 is O
(
N−1

)
and we obtain

A2 = H2βn21(pM − p)2

pM p2
+ O (N−1) .

Finally, again separating the term with i = 1 and using (4.26) for the rest of the sum,

A3 = (2ξH + ξ2)β

(
n21
pM

+ 1

)
+ O (N−1/3) . (8.54)

Therefore,
N (GM(γM) − G(γ ))

= − log(
pM
p

) + pM
p

− 1 + H2βn21(pM − p)2

pM p2

+ (2ξH + ξ2)β

(
n21
pM

+ 1

)
+ O (N−1/3) .

(8.55)

Using the Eqs. (8.50) and (8.53) satisfied by p and pM, the equation (8.55) can be written as

N (GM(γM) − G(γ )) = − log(
pM
p

) + 2(β − 1)(pM − p) + (2Hξ + ξ2)β + O (N−1/3) .
(8.56)
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Integrals

We now consider the integrals in the formula (8.10). The ratio of the integrals in this regime
turns out to give a non-trivial contribution. We first show that we cannot use a Taylor series
approximation. Consider the numerator; the denominator is the same as the numerator with
ξ = 0. For k ≥ 2, we use the formula for GM(z) to get

G(k)
M (γM)

(−1)k(k − 1)! = 1

N

N∑

i=1

N
2
3 k

(a1 + pMN−1/3 − ai )k

+ k(H + ξ)2β

N 2

N∑

i=1

n2i N
2
3 (k+1)

(a1 + pMN−1/3 − ai )k+1

=N
2
3 k−1

(
N

1
3 k

pkM
+ O (1)

)

+ k(H + ξ)2βN
2
3 k− 4

3

(
N

1
3 (k+1)

pk+1
M

+ O (1)

)
= O

(
Nk−1

)
.

Since G(2)
M = O (N ), the main contribution to the integral comes from a neighborhood of

radius N−1 around the critical point. If we use the new variable z = γM + uN−1 and the
Taylor series

N
(GM(γM + uN−1) − GM(γM)

) =
∞∑

k=2

N−k+1

k! G(k)
M (γM)uk,

we find that all terms in the series are O (1) for finite u. Since all terms in the Taylor series
contribute to the integral, this method will not work and we instead proceed as follows. Using
G′
M(γM) = 0, we have

N (GM(γM + w) − GM(γM))

= N (GM(γM + w) − GM(γM) − G′
M(γM)w)

= −
N∑

i=1

[
log

(
1 + w

γM − λi

)
− w

γM − λi

]

+
(
h + ξ√

N

)2

β

N∑

i=1

n2i w
2

(γM + w − λi )(γM − λi )2
.

Separating out i = 1, using a Taylor approximation of the log function, and using (4.31),

N
(GM(γM + uN−1) − GM(γM)

)

= − log

(
1 + u

pM

)
+ u

pM
+ (H + ξ)2βn21u

2

(pM + u)p2M
+ O (u2N−2/3) .

We temporarily write the middle two terms with x := (H + ξ)2βn21 and get

u

pM
+ xu2

(pM + u)p2M
= u

(
1

pM
+ x

p2M

)
− x

pM
+ x

pM + x
.
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Using (8.53) twice, the above formula can be written as

N
(GM(γM + uN−1) − GM(γM)

)


 − log

(
1 + u

pM

)
+ (β − 1)(u − pM) + 1 + (H + ξ)2βn21

(pM + u)
.

(8.57)

Thus, ∫ γM+i∞

γM−i∞
e

N
2 (GM(z)−GM(γM))dz


 1

N

∫ i∞

−i∞

√
pM

pM + u
e

(β−1)(u−pM)

2 + 1
2+ (H+ξ)2βn21

2(pM+u) du

= p1/2M e−(β−1)pM+ 1
2

N

∫ i∞

−i∞
e

(β−1)(pM+u)

2 + (H+ξ)2βn21
2(pM+u)

√
pM + u

du.

(8.58)

The last integral is an integral formula of a modified Bessel function which can be evaluated
explicitly (see e.g. [1]):

∫

0++iR

eaw+ b
w√

w
dw = 2π i

(
b

a

)1/4

I− 1
2
(2

√
ab) = 2i

√
π√
a

cosh(2
√
ab). (8.59)

Hence, we obtain
∫ γM+i∞

γM−i∞
e

N
2 (GM(z)−GM(γM))dz


 2i
√
2π pMe−(β−1)pM+ 1

2

N
√

β − 1
cosh

(
(H + ξ)|n1|

√
β(β − 1)

)
. (8.60)

Note that the integral depends on ξ , unlike in the cases h > 0 and h ∼ N−1/6. The denomi-
nator is the case when ξ = 0. Thus,

∫
e

N
2 (GM(z)−GM(γM))dz
∫
e

N
2 (G(z)−G(γ ))dz



√

pM
p

e−(β−1)(pM−p) cosh
(
(H + ξ)|n1|√β(β − 1)

)

cosh
(
H |n1|√β(β − 1)

) .

(8.61)
Combining all terms together, replacing βξ by ξ and using T = 1/β, we obtain the

following.

Result 8.6 For h = HN−1/2 and 0 < T < 1,

〈eξ
√
NM〉 
 eHξ+ T ξ2

2

cosh
(
(H + T ξ)|n1|

√
1−T
T

)

cosh
(
H |n1|

√
1−T
T

) (8.62)

as N → ∞ for asymptotically almost every disorder sample.

The right-hand side is the product of two terms, implying that
√
NM is a sum two indepen-

dent random variables. The exponential term on right-hand side is the moment generating
function of a Gaussian distribution, while the ratio of the cosh functions is the moment
generating function of a shifted Bernoulli distribution. Indeed, if P(X = 1) = p and
P(X = −1) = 1 − p with p = ea

ea+e−a , then

E[eξ X ] = peξ + (1 − p)e−ξ = cosh(a + ξ)

cosh(a)
.
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Hence, we deduce the following result.

Result 8.7 For h = HN−1/2 and 0 < T < 1,

M
D
 h + |n1|

√
1 − TB(α) + √

TN√
N

(8.63)

as N → ∞ for asymptotically almost every disorder sample. Here, B(c) is a shifted
Bernoulli thermal random variable with the probability mass function P(B(c) = 1) = c
and P(B(c) = −1) = 1 − c and α in (8.63) is given by

α := e
H |n1 |√1−T

T

e
H |n1 |√1−T

T + e− H |n1 |√1−T
T

. (8.64)

The thermal random variableN has the standard Gaussian distribution and it is independent
ofB(α).

8.6.2 Matching with h ∼ N−1/6 and h = 0

As H → ∞, the random variableB(α) → 1. The formal limit of (8.63) as H → ∞ is

M
D
 h + 1√

N

[
|n1|

√
1 − T + √

TN
]
, (8.65)

which is the same as (8.46) from the h = HN−1/6 regime. On the other hand, if we take

H → 0, then B(α)
D−→ B(1/2). Hence, the formal limit of (8.63) as H → 0 is the same

as the h = 0 case (8.38). Therefore, the result (8.63) matches with both the h ∼ N−1/6 and
h = 0 results.

8.7 Susceptibility

In this subsection, we discuss properties of the susceptibility, defined as the magnetization
per external field strength. In the next subsection we discuss differential susceptibility

X = M
h

= 〈M〉
h

= 1

h

dFN

dh
. (8.66)

We denote by X̄ or Es[X ] the sample average of X . We denote by Vars the sample variance.

As described in Section 4, we use the font
D
 to denote an asymptotic expansion in distribution

with respect to the disorder sample.

8.7.1 Macroscopic Field h = O(1)

From Sect. 8.6, for fixed h > 0 and T > 0,

X 
 X 0 + X 1

√
N

(8.67)

for asymptotically almost every disorder sample, where

X 0 = s1(γ0) and X 1 = SN (γ0; 1) − h2s2(γ0)SN (γ0; 2)
T s2(γ0) + 2h2s3(γ0)

(8.68)
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Fig. 4 Graph of X 0(h) and σ 2
s (h) as function of h for various values of T

and γ0 is the solution of the Eq. (5.19) and SN (z; k) is defined in (4.29).
The leading term X 0 is deterministic and satisfies:

• X 0 is a decreasing function of h,
• As h → ∞,

X 0(h, T ) = 1

h
− T

2h2
+ O(h−3) for all T > 0 (8.69)

• As h → 0,

X 0(h, T ) 

{

1
T − h2

T (T 2−1)
for T > 1

1 − h2
2(1−T )

for 0 < T < 1.
(8.70)

See Fig. 4a for the graph of X 0 as a function of h.
The subleading term X 1 depends on the disorder sample. We consider its sample-to-

sample fluctuations. From (4.29), SN (γ0; 1) and SN (γ0; 2) converge to the centered bivariate
Gaussian distribution with

Vars[SN (γ0; 1)] → 2s2(γ0), Vars[SN (γ0; 2)] → 2s4(γ0), (8.71)

and

Covs(SN (γ0; 1),SN (γ0; 2)) = Es

[
1

N

N∑

i=1

(n2i − 1)2

(γ0 − λ̂i )3

]
→ 2s3(γ0). (8.72)

as N → ∞. Hence, as N → ∞,

X 1 D
 N (0, σ 2
s ) (8.73)

where the sample variance is

σ 2
s = 2s2(γ0)2

(
T 2s2(γ0) + 2Th2s3(γ0) + h4s4(γ0)

)
(
T s2(γ0) + 2h2s3(γ0)

)2 . (8.74)

See Fig. 4b for the graph of σ 2
s . The graph shows that σ 2

s is a monotonically decreasing
function of h. It is easy to check that:

• As h → ∞,

σ 2
s 
 1

2h2
for all T > 0. (8.75)
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• As h → 0,

σ 2
s 


{
2

T 2−1
for T > 1,

1−T
h2

for T < 1.
(8.76)

The above formula suggests that there is an interesting transition as T approaches the
critical temperature T = 1 in the case where h → 0. The behavior near the (T , h) = (1, 0)
is worth studying, but we leave this subject for the future.

8.7.2 Mesoscopic External Field: h ∼ N−1/6 and T < 1

From Sect. 8.6, for h = HN−1/6 with fixed H > 0 and 0 < T < 1,

X 
 1 + EN (t)

N 1/3 (8.77)

for asymptotically almost every disorder sample, where EN (t) is given in (8.43).
The behavior of EN (t) as H → ∞ and H → 0 is discussed in Sects. 8.5.2 and 8.5.3. The

sample-to-sample fluctuation of EN (t) is shown in Sect. 7.1 and we see that EN (t)
D
 E(ς)

where

E(ς) = lim
n→∞

⎛

⎝
n∑

i=1

ν2i

ς + α1 − αi
− 1

π

∫ (
3πn
2

)2/3

0

dx√
x

⎞

⎠ (8.78)

and ς > 0 solves 1−T = H2∑∞
i=1

ν2i
(ς+α1−αi )

2 . Here, αi is the GOE Airy point process and
νi are i.i.d standard normal random variables independent of αi .

8.7.3 Microscopic External Field: h ∼ N−1/2 and T < 1

The thermal average of (8.63) implies that forh = HN−1/2 withfixed H > 0 and0 < T < 1,

X 
 1 + |n1|
√
1 − T

H
tanh

(
H |n1|

√
1 − T

T

)
=: Xmicro (8.79)

for asymptotically almost every disorder sample. The functionXmicro is a decreasing function
in both H and T (see Figs. 5 and 6). From the formula for Xmicro, we conclude that

Xmicro 
 1 + |n1|
√
1 − T

H
as H → ∞ (8.80)

and

Xmicro 
 1 + n21(1 − T )

T
− H2n41(1 − T )2

3T 3 as H → 0. (8.81)

8.7.4 The Zero External Field Limit of the Susceptibility

We consider two different limits of the susceptibility depending on how h → 0 and N → ∞
are taken. The first limit is obtained from (8.70):

lim
h→0

lim
N→∞
h>0

X =
{

1
T for T > 1

1 for T < 1.
(8.82)
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Fig. 5 Graph of Xmicro(H , T ) as a functions of H for various values of 0 < T < 1

Fig. 6 Graph of Xmicro(H , T ) as a functions of T for various values of H

See Fig. 2a. This result (8.82) was previously obtained in [24], and also in [14]. The limit
does not depend on the disorder sample.

The second limit is obtained from (8.81) for 0 < T < 1:

lim
H→0

lim
N→∞

h=HN−1/2

X = 1 + n21(1 − T )

T
for 0 < T < 1. (8.83)

See Fig. 2b. This limit depends on the disorder sample, but only on one variable, n21. Observe
that this limit blows up at T = 0 while the limit (8.82) is finite at T = 0. The sample-to-
sample average of (8.83) satisfies

lim
H→0

lim
N→∞

h=HN−1/2

X̄ = 1

T
for 0 < T < 1. (8.84)

8.8 Differential Susceptibility

We also consider the differential susceptibility given by

Xd = d

dh
〈M〉 = d2FN

dh2
= N

T

(〈M2〉 − 〈M〉2) . (8.85)

The results (8.21), (8.44), and (8.63) imply the following formulas. All formulas hold for
asymptotically almost every disorder sample.
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(a) For fixed h > 0 and T > 0,

Xd 
 s1(γ0) − 2h2s2(γ0)2

T s2(γ0) + 2h2s3(γ0)
=: X 0

d . (8.86)

(b) For h = HN−1/6 with fixed H > 0 and 0 < T < 1,

Xd 
 1. (8.87)

(c) For h = HN−1/2 with fixed H > 0 and 0 < T < 1,

Xd 
 1 + n21(1 − T )

T cosh2
(
H |n1|

√
1−T

T

) =: Xd,micro. (8.88)

The limits for the macroscopic and mescopic regimes do not depend on the disorder
samples, but the limit for the microscopic regime depends on the disorder variable n21. The
macroscopic limit satisfies the following property as h → 0:

X 0
d 


{
1
T − 3h2

T (T 2−1)
+ O(h4) T > 1,

1 − 3h2

2(1−T )2
+ O(h4) 0 < T < 1.

(8.89)

On the other hand the microscopic limit satisfies, for 0 < T < 1,

Xd,micro 

⎧
⎨

⎩
1 + O(e− 2H |n1 |√1−T

T ) as H → ∞.

1 + n21(1−T )

T − H2n41(1−T )2

T 3 as H → 0.
(8.90)

The zero external field limit is the same as the susceptibility of the last section even though
the subleading terms differ by a factor of 3. In both cases the limit is

lim
H→0

Xd,micro = lim
H→0

Xmicro = 1 + n21(1 − T )

T
(8.91)

and this value depends on the disorder variable n21. Note that the sample-to-sample average of
n21 is 1. This result shows that both susceptibilities satisfy Curie’s law in the sample-to-sample
average sense, but not in the quenched disorder sense.

We note that if we take T → 0 with H > 0 fixed in (8.79) and (8.88), then

Xmicro 
 1 + |n1|
H

and Xd,micro 
 1 at T = 0. (8.92)

This shows that Xd,micro(T = 0) does not diverge as H → 0 but Xmicro(T = 0) does.

9 Overlap with the ground state

Recall that ±u1 denote the unit eigenvectors corresponding to the largest eigenvalue of M .
The overlap of the spin with the ground state and the squared overlap are defined as

G = |u1 · σ |√
N

, O = G2 = 1

N
(u1 · σ )2, (9.1)

respectively. The overlapG = 1 when T = h = 0 since the Hamiltonian is maximized when
σ is parallel to ±u1. The overlap measures how close the spin is to the ground state. Since it
is more convenient to analyze, we consider O in this section.
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As with the overlap with the external field, there are no transitions when T > 1 as h → 0.
However, when T < 1, there are two interesting transitional regimes given by h ∼ N−1/6

and h ∼ N−1/3. The second regime did not appear for the overlap with the external field.
On the other hand, the regime h ∼ N−1/2, which we studied for the free energy and the
overlap with the external field, does not reveal any new features of O. Instead, O has the
same properties for h ∼ N−1/2 as it does for h = 0.

The moment generating function of O has the integral formula given in Lemma 3.3,

〈eβηO〉 = e
N
2 (GO(γO)−G(γ ))

∫ γO+i∞
γO−i∞ e

N
2 (GO(z)−GO(γO))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz

(9.2)

where

GO(z) = βz − 1

N
log (z − λ1 − b) − 1

N

N∑

i=2

log(z − λi ) + h2βn21
N (z − λ1 − b)

+ h2β

N

N∑

i=2

n2i
z − λi

.

(9.3)

We take take γO and γ to be the critical points of GO and G respectively, and we use the
notation

b := 2η

N
. (9.4)

The difference between GO and G is that, in the case of GO, λ1 is changed to λ1 + b.
The following two formulas will be used in the analysis below. First, we have

N (GO(γO)−G(γ )) = N (GO(γO)−G(γ )−G′(γ )(γO−γ )) = D1+D2+D3+D4 (9.5)

where

D1 = − log

(
1 + γO − γ − b

γ − λ1

)
+ γO − γ

γ − λ1
,

D2 = −
N∑

i=2

[
log

(
1 + γO − γ

γ − λi

)
− γO − γ

γ − λi

]
,

D3 = h2βn21

[
1

γO − λ1 − b
− 1

γ − λ1
+ γO − γ

(γ − λ1)2

]
,

D4 = h2β(γO − γ )2
N∑

i=2

n2i
(γO − λi )(γ − λi )2

.

(9.6)

Second, we can show from the equation G′
O(γO) − G′(γ ) = 0 that

(γO − γ )

[
1

N (γO − λ1 − b)(γ − λ1)
+ 1

N

N∑

i=2

1

(γO − λi )(γ − λi )

+ h2βn21
N

γ + γO − 2λ1 − b

(γO − λ1 − b)2(γ − λ1)2
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+ h2β

N

N∑

i=2

n2i (γ + γO − 2λi )

(γO − λi )2(γ − λi )2

]
= b

[
1

N (γO − λ1 − b)(γ − λ1)

+ h2βn21
N

γ + γO − 2λ1 − b

(γO − λ1 − b)2(γ − λ1)2

]
. (9.7)

9.1 Macroscopic External Field: h = O(1)

9.1.1 Analysis

Fix h > 0. The fluctuations of O turn out to be of order N−1. Thus we set

η = ξN so that b = 2ξ. (9.8)

The critical point of G(z) is obtained in Sect. 5.2 and is given by γ = γ0 +O (N−1/2
)
where

γ0 solves the Eq. (5.19). We do not need an explicit formula for the term O (N−1/2
)
in this

section. Since G′
O(z) = G′(z) + O (N−1

)
for z > 2, a perturbation argument implies that

the critical point of GO(z) is given by

γO = γ + O (N−1) . (9.9)

We use (9.5) to compute N (GO(γO) − G(γ )). From the semi-circle law, we have D2 =
O ((γO − γ )2N

) = O (N−2
)
and D4 = O (N−1

)
. On the other hand, D1 and D3 are easy

to compute and we find that

N (GO(γO)−G(γ )) = − log

(
1 − 2ξ

γ0 − 2

)
+ 2h2βn21ξ

(γ0 − 2)2(1 − 2ξ
γ0−2 )

+O (N−1/2) . (9.10)

Since G(k)
O (γO) = O (1) for all k ≥ 2, the ratio of the integrals (9.2) can be evaluated

using the method of steepest descent. For k = 2,

G′′
O(γO) 
 s2(γ0) + h2βs3(γ0),

which does not depend on ξ . Since G(γ ) is the special case of GO(γ ) when ξ = 0, we
conclude that ∫ γO+i∞

γO−i∞ e
N
2 (GO(z)−GO(γO))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz



√

G′′(γ )

G′′
O(γO)


 1.

Inserting these results into (9.2), replacing ξ with (γ0 − 2)ξ , and using β = 1/T , we
obtain the following.

Result 9.1 For h = O(1) and T > 0,

〈e γ0−2
T ξNO〉 
 (1 − 2ξ)−1/2 e

h2n21ξ

T (γ0−2)(1−2ξ) (9.11)

as N → ∞ for asymptotically almost every disorder, where γ0 > 2 is the solution of the Eq.
(5.19).

Note that if X is a non-central Gaussian random variableμ+N, i.e. if X2 is a non-centered
chi-squared distribution with 1 degree of freedom, then

E[eξ X2 ] = (1 − 2ξ)−1/2e
μ2ξ
1−2ξ . (9.12)
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Therefore, we obtain the next result from the one above.

Result 9.2 For h = O(1) and T > 0,

O
D
 O0

N
where O0 = T

γ0 − 2

∣∣∣∣
h|n1|√

T (γ0 − 2)
+ N

∣∣∣∣
2

(9.13)

as N → ∞ for asymptotically almost every disorder, where the thermal random variableN
has the standard Gaussian distribution.

9.1.2 Limits as h → ∞ and h → 0

Consider the formal limit of (9.13) as h → ∞. From (5.33), we find that if we take h > 0
and let N → ∞ first and then h → ∞, we get

O
D
 1

N

[
n21 + 2|n1|

√
T√

h
N

]
(9.14)

for all T > 0. On the other hand, the Eq. (5.32) implies that if we take h > 0 and let N → ∞
first and then h → 0, we obtain

O
D
 T 2

N (T − 1)2

[
N2 + 2h|n1|

T − 1
N

]
for T > 1 (9.15)

and

O
D
 16

N

[
(1 − T )4n21

h6
+

√
T (1 − T )3|n1|

h5
N

]
for 0 < T < 1. (9.16)

For 0 < T < 1, the above result indicates that the overlap is of order 1 when h ∼ N−1/6.
We study this regime in the next subsection.

9.2 Mesoscopic External Field: h ∼ N−1/6 and T < 1

9.2.1 Analysis

We set
h = HN−1/6 (9.17)

for fixed H > 0. If we insert h = HN−1/6 in to the formula, the Eq. (9.16) indicates that
the fluctuations are of order N−1/6. Thus, we set

η = ξN 1/6 so that b = 2ξN−5/6 (9.18)

in (9.2) and (9.4).
The critical point γ of G(z) is obtained in Sect. 7.1 and it is given by γ = λ1 + sN−2/3

where s > 0 is the solution of the Eq. (7.4). We now consider the critical point of GO(z).
From the formula, we see that G′

O(z) is an increasing function of z for z > λ1 + b. Using
b > 0 and the explicit formula of the functions, we can easily check that G′

O(γ ) < G′(γ ) = 0
and G′

O(γ + b) > G′(γ ) = 0. Hence, we find that γ < γO < γ + b, and thus, γO − γ =
O(N−5/6). We now set

γO = γ + �N−5/6 (9.19)
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and determine � using (9.7). The right-hand side of the Eq. (9.7) is equal to

2ξ

N 5/6

[
N 1/3

s2
+ 2H2βn21N

2/3

s3

]
= 4ξH2βn21

N 1/6s3
(
1 + O (N−1/3)) .

For the left-hand side of the equation, the first two terms are of smaller order than the last
two terms. Using γO = γ + O (N−5/6

)
and b = O (N−5/6

)
for the other two sums, the

left-hand side is equal to

�

N 5/6

[
2H2βn21N

2/3

s3
+ 2H2βN 2/3

N∑

i=2

n2i
(s + a1 − ai )3

+ O (N 1/3)
]

.

Therefore,

� = 2ξn21s
−3

∑N
i=1 n

2
i (s + a1 − ai )−3

+ O (N−1/6) . (9.20)

We now evaluate N (GO(γO)−G(γ )) using (9.5). It is easy to check that D1 = O (N−1/6
)

and D2 = O (N−1/3
)
. Evaluating the first two leading terms,

D3 = H2βn21

[
2ξ

s2
N 1/6 + (� − 2ξ)2

s3
+ O (N−1/6)

]
.

Finally,

D4 = H2β�2
N∑

i=2

n2i
(s + a1 − ai )3

+ O (N−1/6) .

Putting these together and also using the explicit formula of �, we obtain

N (GO(γO) − G(γ ))

= 2H2βn21
s2

ξN 1/6 +
4H2βn21

[∑N
i=2 n

2
i (s + a1 − ai )−3

]

s3
[∑N

i=1 n
2
i (s + a1 − ai )−3

] ξ2 + O (N−1/6) . (9.21)

It remains to consider the integrals in (9.2). The scale h = HN−1/6 is the same as the
one in Sect. 7.1. Since γO = λ1 + sN−2/3 + �N−5/6 = λ1 + sN−2/3 + O (N−5/6

)
and

b = O(N−5/6), the calculation from Sect. 7.1 applies with only small changes. We find from

the explicit formulas that G(k)
O (γO) = O

(
N

2
3 k− 2

3

)
for all k ≥ 2 and

G′′
O(γO) = H2βt2

N∑

i=1

n2i
(s + a1 − ai )3

+ O (N−1/6) .

Thus, as in Sect. 7.1, the main contribution to the integral comes from a neighborhood of
radius N−5/6 around the critical point, and the numerator can be evaluated using a Gaussian
integral. Since the leading term of G′′

O(γO) does not depend on ξ and the denominator is the
case of the numerator with ξ = 0, we find that

∫ γO+i∞
γO−i∞ e

N
2 (GO(z)−GO(γO))dz

∫ γ+i∞
γ−i∞ e

N
2 (G(z)−G(γ ))dz


 1. (9.22)
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From the above computations, we obtain an asymptotic formula for 〈eβξN1/6O〉. Moving
a term of order N 1/6 to the left, changing βξ to ξ , replacing β by 1/T , and replacing s by t ,
which solves the Eq. (7.14), we arrive at the following result.

Result 9.3 For h = HN−1/6 and 0 < T < 1,

〈eξN1/6(O− H2n21
t2

)〉 
 e

2H2Tn21

[∑N
i=2 n2i (t+a1−ai )

−3
]

t3
[∑N

i=1 n2i (t+a1−ai )
−3
] ξ2

(9.23)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of
the Eq. (7.14).

The right-hand side depends on the disorder sample heavily, as the formula involves all
of the ai and ni . The above result implies the following.

Result 9.4 For h = HN−1/6 and 0 < T < 1,

O
D
 H2n21

t2
+ σON

N 1/6 =
[
1 − T − H2

N∑

i=2

n2i
(t + a1 − ai )2

]
+ σON

N 1/6 (9.24)

as N → ∞ for asymptotically almost every disorder sample, where the thermal random
variable N has the standard normal distribution and σO > 0 satisfies

σ 2
O =

4H2Tn21

[∑N
i=2 n

2
i (t + a1 − ai )−3

]

t3
[∑N

i=1 n
2
i (t + a1 − ai )−3

] . (9.25)

The equality of the leading terms in the two formulas of (9.24) follows from the Eq. (7.14)
that t satisfies.

9.2.2 Matching with h = O(1)

We consider the H → ∞ limit. From (7.20), we have t 
 H4

4(1−T )2
. Hence, the term (9.24)

satisfies

σ 2
O 
 4H2Tn21

t3

 44Tn21(1 − T )6

H10 .

Therefore, the first formula of (9.24) implies that if we take h = HN−1/6 and let N → ∞
first and then H → ∞, we get

O
D
 16

N

[
(1 − T )4n21

h6
+

√
T (1 − T )3|n1|

h5
N

]
. (9.26)

This formula matches the formal limit given in (9.16). Thus this regime matches with the
h = O(1) regime.

9.2.3 Formal Limit as H → 0

Using (7.19) for t , the denominator of (9.25) becomes n21 + O (H3
)
as H → 0. Thus, if we

take h = HN−1/6 and let N → ∞ first and then take H → 0, we get

O
D
 1 − T − H2

N∑

i=2

n2i
(a1 − ai )2

+ 2H
√
T

N 1/6

[
N∑

i=2

n2i
(a1 − ai )3

]1/2
N. (9.27)
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The last two terms of (9.27) are of orders H2 = h2N 1/3 and HN−1/6 = h, respectively.
These two terms have the same order if h ∼ N−1/3. We study this regime in the next
subsection. Note that, in this regime, the two terms are of order N−1/3.

9.3 Microscopic External Field: h ∼ N−1/3 and T < 1

9.3.1 Analysis

Set
h = HN−1/3 (9.28)

for fixed H > 0. In the last part of the previous sub-subsection, a formal calculation indicated
that the order of fluctuation in this regime is N−1/3. We set

η = ξN 1/3 so that b = 2ξN−2/3. (9.29)

The regime h ∼ N−1/3 did not appear in previous sections. Hence, we first find the
critical point γ of G(z). Previously we saw that γ = λ1 + O (N−2/3

)
when h ∼ N−1/6 and

γ = λ1 +O (N−1
)
when h ∼ N−1/2. We expect that, in this regime, γ is between the above

two cases, so we set γ = λ1 + w for some w and we assume N−1 � w � N−2/3. The
equation for the critical point is, using (4.30),

G′(γ ) = β − 1

N

N∑

i=1

1

γ − λi
− H2β

N 5/3

N∑

i=1

n2i
(γ − λi )2

= β − 1

Nw
− 1 + O (N−1/3)− H2βn21

N 5/3w2
= 0. (9.30)

Under the assumption for w, we see that 1
NW � 1

N5/3w2 , and hence w = O (N−5/6
)
.

Explicitly solving the equation β − 1 − H2βn21
N5/3w2 = 0, we find that

γ = λ1 + r N−5/6 where r =
√

H2βn21
β − 1

+ O (N−1/6) . (9.31)

For later use, we record that, upon inserting γ = λ1 + r N−5/6 into the Eq. (9.30), r satisfies
the following more detailed equation, using the notation �N defined in (4.25):

β − 1

r N 1/6 − 1 − �N

N 1/3 + O (N−1/2)− H2βn21
r2

− H2β

N 1/3

N∑

i=2

n2i
(a1 − ai )2

= 0. (9.32)

The critical point γO of GO(z) is easy to obtain since b = 2ξ
N2/3 has the same order as the

fluctuations of the eigenvalues λi . The critical point equation is the same as in the case of
G(z) except that λ1 is changed to λ1 + b. Thus we have

γO = λ1 + b + rON−5/6 where rO = r + O (N−1/6) . (9.33)

For our computation, it turns out that we need an improved estimate for rO−r . The equation
G′
O(γO) = 0 is, in terms of rO,

β − 1

rON 1/6 − 1 − H2βn21
r2O

+ O (N−1/3) = 0.
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This equation is the same as the Eq. (9.32) up to order N−1/6. Therefore, we obtain an
improved estimate rO = r + O (N−1/3

)
. As a consequence,

γO − γ = b + O (N−7/6) = 2ξN−2/3 + O (N−7/6) . (9.34)

We now evaluate N (GO(γO) − G(γ )) using (9.5). We have

D1 = 2ξN 1/6

r
+ O (N−1/3) , D2 = −

N∑

i=2

[
log

(
1 + 2ξ

a1 − ai

)
− 2ξ

a1 − ai

]

+O (N−1/6) ,

D3 = 2ξH2βn21
r2

N 1/3 + O (N−1/6) , D4 = 4ξ2H2β

N∑

i=2

n2i
(a1 + 2ξ − ai )(a1 − ai )2

+O (N−1/6) .

Note that r appears only in D1 and D3. Using the Eq. (9.32), the sum D1 + D3 can be
expressed without using r :

D1 + D3 = 2ξN 1/3

[
β − 1 − �N

N 1/3 − H2β

N 1/3

N∑

i=2

n2i
(a1 − ai )2

]
+ O (N−1/6) . (9.35)

On the other hand, using the notation �N in (4.25) again, we can write

D2 = −
[

N∑

i=2

log

(
1 + 2ξ

a1 − ai

)
− 2ξN 1/3

]
+ 2ξ�N + O (N−1/6) . (9.36)

Adding D1, D2, D3, and D4, and combining two sums that are multiplied by H2β, we find
that

N (GO(γO) − G(γ )) = 2ξ(β − 1)N 1/3 +
[
2ξN 1/3 −

N∑

i=2

log

(
1 + 2ξ

a1 − ai

)]

− 2ξH2β

N∑

i=2

n2i
(a1 + 2ξ − ai )(a1 − ai )

+ O (N−1/6)
(9.37)

We note that the term in brackets is O (1) due to (4.25).
Finally, we consider the integrals in (9.2), beginning with the numerator. Using γO =

λ1 + b + r N−5/6 + O (N 7/6
)
and the explicit formula for GO(z), we find that

G(k)
O (γO) = O

(
N

5
6 k− 5

6

)

for k ≥ 2. Since G′′
O(γO) = O

(
N

5
6

)
, the main contribution to the integral comes from a

neighborhood of radius N− 11
12 about the critical point. For k = 2, we find explicitly that

G′′
O(γO) = 2H2βn21

r3
N−5/6 + O (N−1) .
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Hence,

N (GO(γO + wN− 11
12 ) − GO(γO)) =

∞∑

k=2

N 1− 11
12 kG(k)

O (γO)wk

k! = H2βn21
r3

w2 + O
(
N− 1

12

)

(9.38)
for finite w, and the integral can be evaluated as a Gaussian integral. Since the leading term
of (9.38) does not depend on ξ , we find that the ratio of the integrals in (9.2) is asymptotically
equal to 1.

Combining the computations above, we obtain an asymptotic formula for
〈
eβξN1/3O

〉
.

Moving a term and using β = 1/T , we arrive at the following result.

Result 9.5 For h = HN−1/3 and 0 < T < 1,

〈
e

ξ
T N1/3(O−(1−T ))

〉

 eξN1/3

N∏

i=2

e
− ξH2n2i

T (a1+2ξ−ai )(a1−ai )

√
1 + 2ξ

a1−ai

(9.39)

as N → ∞ for asymptotically almost every disorder sample.

We remark that the right-hand side is O (1) since

ξN 1/3 − 1

2

N∑

i=2

log

(
1 + 2ξ

a1 − ai

)
= O (1) .

The formula (9.39) is a product of the moment generating functions of non-centered
chi-squared distributions (see (9.12)). Hence, we obtain the following.

Result 9.6 For h = HN−1/3 and 0 < T < 1,

O
D
 1 − T + T

N 1/3WN , WN = N 1/3 −
N∑

i=2

∣∣ H |ni |√
T (a1−ai )

+ ni
∣∣2

a1 − ai
(9.40)

as N → ∞ for asymptotically almost every disorder sample, where the thermal random
variables ni are independent standard normal random variables.

Here, we emphasize that ni are sample random variables (given by the dot product of each
eigenvector of M with the external field) while ni are thermal random variables. Note that

WN = O (1) since N 1/3 −∑N
i=2

n2
i

a1−ai
= O (1).

9.3.2 Matching with the Mesocopic Field, h ∼ N−1/6

We take the formal limit H → ∞ of (9.40) and compare with (9.27). Then, using N 1/3 −∑N
i=2

1
a1−ai

= O (1) from (4.30),

WN = −H2

T

n∑

i=2

n2i
(a1 − ai )2

− 2H√
T

N∑

i=2

|ni |ni
(a1 − ai )3/2

+ O (1) . (9.41)

The second sum is a sum of independent (thermal) Gaussian random variables,and hence it
has a Gaussian distribution. Therefore, if take h = HN−1/3 and let N → ∞ first and then
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take H → ∞, we get

O
D
 1 − T − H2

N 1/3

N∑

i=2

n2i
(a1 − ai )2

+ 2H
√
T

N 1/3

[
N∑

i=2

n2i
(a1 − ai )3

]1/2
N. (9.42)

In order to compare this with the result (9.27), we use the notation h = HmicroN−1/3 =
HmesoN−1/6. The Eqs. (9.42) and (9.27) are same once we set H = Hmicro and H = Hmeso,
respectively.

9.4 No External Field: h = 0

For 0 < T < 1, the calculations of the previous subsection for h = HN−1/3 go through; we
obtain the result by setting H = 0 in (9.40). For T > 1, the computations in Sect. 9.1 for
h = O(1) also apply to h = 0; see (9.15).

Result 9.7 For h = 0,

O
D


⎧
⎪⎨

⎪⎩

T 2

N (T−1)2
N2 for T > 1,

1 − T + T
N1/3

(
N 1/3 −∑N

i=2
n2
i

a1−ai

)
for 0 < T < 1.

(9.43)

where the thermal random variable N has the standard normal distribution, and ni are
independent standard normal thermal random variables.

9.5 The Thermal Average

We use the notation

 = 〈O〉 = 〈G2〉 (9.44)

to denote the thermal average of the squared overlap of a spin with the ground state. Previous
subsections imply the following results.

(i) For h ≥ 0 and T > 1, or for h = O(1) with h > 0 and 0 < T < 1,


 
 
0

N
, 
0 = T

γ0 − 2

[
h2n21

T (γ0 − 2)
+ 1

]
. (9.45)

From the asymptotic formulas (5.33) and (5.32) of γ0,


0 
 n21 + T − (T − 4)n21
h

as h → ∞ for all T > 0 (9.46)

and


0 

⎧
⎨

⎩

T 2

(T−1)2
+ h2(n21−1)T 2

(T−1)4
as h → 0 for T > 1

16n21(1−T )4

h6
+ 4T (1−T )2+32n21(1−T )4

h4
as h → 0 for 0 < T < 1.

(9.47)

See Fig. 7 for graphs of 
0.
(ii) For h = HN−1/6 with 0 < T < 1,


 
 H2n21
t2

= 1 − T − H2
N∑

i=2

n2i
(t + a1 − ai )2

. (9.48)
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Fig. 7 Graphs of 
0 for h = O(1) as function of h for different combinations of T and n1

(iii) For h = HN−1/3 with T < 1 (including the case when H = 0),


 
 1 − T + 1

N 1/3

[
T

(
N 1/3 −

N∑

i=2

1

a1 − ai

)
− H2

N∑

i=2

n2i
(a1 − ai )2

]
. (9.49)

If we collect only the order 1 terms, then as N → ∞ with T < 1,


 →

⎧
⎪⎪⎨

⎪⎪⎩

0 for h > 0

1 − T − H2∑N
i=2

n2i
(t+a1−ai )2

for h = HN−1/6

1 − T for h = HN−1/3 (including H = 0).

(9.50)

The sample-to-sample standard deviation of the thermal average of squared overlap satisfies
for 0 < T < 1,

√

2 − (
)2 =

⎧
⎪⎨

⎪⎩

O(N−1) for h = O(1)

O(1) for h ∼ N−1/6

O(N−1/3) for h ∼ N−1/3 (including h = 0).

(9.51)

The order is largest when h ∼ N−1/6.

9.6 Order of Thermal Fluctuations

For 0 < T < 1, the standard deviation of the thermal fluctuations satisfies

√
〈O2〉 − 〈O〉2 =

⎧
⎪⎨

⎪⎩

O (N−1
)

for h = O(1)

O (N−1/6
)

for h ∼ N−1/6

O (N−1/3
)

for h ∼ N−1/3 (including h = 0).

(9.52)

for asymptotically almost every disorder sample. The thermal fluctuations are largest when
h ∼ N−1/6.
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10 Overlap with a Replica

Let

R = R1,2 = σ (1) · σ (2)

N
(10.1)

be the overlap of a spin σ (1) and its replica σ (2), chosen independently from SN−1 using the
Gibbs measure with the same disorder sample. From Lemma 3.3, we have

〈eηR〉 = e
N
2 (GR(γR,γR;a)−2G(γ ))

∫∫
e

N
2 (GR(z,w;a)−GR(γR,γR;a))dzdw
(∫

e
N
2 (G(z)−G(γ ))dz

)2 (10.2)

where

GR(z, w; a) = β(z + w) − 1

N

N∑

i=1

log
(
(z − λi )(w − λi ) − a2

)

+ h2β

N

N∑

i=1

n2i (z + w − 2λi + 2a)

(z − λi )(w − λi ) − a2
(10.3)

and we set
a = η

βN
. (10.4)

We take γ to be the critical point of G(z) and we chose γR > λ1 + |a| such that (γR, γR)

is a critical point of GR(z, w; a). We calculate γR below.
The partial derivative of GR with respect to z is

∂GR
∂z

= β − 1

N

N∑

i=1

w − λi

(z − λi )(w − λi ) − a2
− h2β

N

N∑

i=1

n2i (w − λi + a)2

((z − λi )(w − λi ) − a2)2
(10.5)

and ∂GR
∂w

is similar. Since ∂GR
∂z is an increasing function for real z (and similarly with ∂GR

∂w
),

there exists a critical point of the form (z, w) = (γR, γR) where γR solves the equation

β− 1

N

N∑

i=1

γR − λi

(γR − λi − a)(γR − λi + a)
− h2β

N

N∑

i=1

n2i
(γR − λi − a)2

= 0, γR > λ1+|a|.
(10.6)

Theremay be other critical points, but (γR, γR) is the one that we use for our steepest descent
analysis. For simplicity, we refer to this critical point as γR rather than (γR, γR). For a = 0,
GR(z, w; 0) = G(z) + G(w), and in this case, the critical point is (z, w) = (γ, γ ).

We use the following two formulas in this section. The first formula is

N (GR(γR, γR; a) − 2G(γ ))

= N (GR(γR, γR; a) − 2G(γ ) − 2G′(γ )(γR − γ )) = B1 + B2
(10.7)

where

B1 = −
N∑

i=1

[
log

(
1 + 2(γR − γ )

γ − λi
+ (γR − γ )2 − a2

(γ − λi )2

)
− 2(γR − γ )

γ − λi

]
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and

B2 = 2h2β
N∑

i=1

n2i

[
1

γR − λi − a
− 1

γ − λi
+ γR − γ

(γ − λi )2

]
.

The second formula is

(γR − γ − a)

[
N∑

i=1

γR − λi

(γR − λi − a)(γR − λi + a)(γ − λi )

+h2β
N∑

i=1

n2i (γ + γR − 2λi − a)

(γR − λi − a)2(γ − λi )2

]

= −a
N∑

i=1

1

(γR − λi + a)(γ − λi )
,

(10.8)

which follows from subtracting the critical point equations for γR and γ .
We also make use of the following lemma.

Lemma 10.1 The point γR satisfies γ < γR < γ + a.

Proof Let

g(z) = β − 1

N

N∑

i=1

z − λi

(z − λi − a)(z − λi + a)
− h2β

N

N∑

i=1

n2i
(z − λi − a)2

.

Since g(γR) = 0, it is enough to show that g(γ ) < 0 and g(γ + a) > 0. Using a > 0, we
see that

g(γ ) < β − 1

N

N∑

i=1

1

γ − λi
− h2β

N

N∑

i=1

n2i
(γ − λi )2

= G′(γ ) = 0.

On the other hand,

g(γ + a) =β − 1

N

N∑

i=1

γ − λi + a

(γ − λi )(γ − λi + 2a)
− h2β

N

N∑

i=1

n2i
(γ − λi )2

>β − 1

N

N∑

i=1

1

γ − λi
− h2β

N

N∑

i=1

n2i
(γ − λi )2

= G′(γ ) = 0.

��

10.1 Macroscopic External Field: h = O(1)

10.1.1 Analysis

Fix h > 0. It turns out that the fluctuations are of order N−1/2. Hence, we set

η = βξ
√
N so that a = ξN−1/2. (10.9)

The critical point of G(z) is given in (5.20) by γ = γ0 + γ1N−1/2 + O (N−1
)
. Consider

the critical point γR. By Lemma 10.1, γR = γ + O(N−1/2). We now use the Eq. (10.8).
Using the semi-circle law approximation, we find that
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γR − γ − a = −
a
(
s2(γ0) + O(N− 1

2 )
)

s2(γ0) + 2h2βs3(γ0) + O(N− 1
2 )

. (10.10)

Thus,

γR = γ + ξ A√
N

+ O(N−1) where A = 2h2βs3(γ0)

s2(γ0) + 2h2βs3(γ0)
. (10.11)

We evaluate N (GR(γR, γR; a) − 2G(γ )) using (10.7). From a Taylor approximation,

B1 =
N∑

i=1

(γR − γ )2 + a2

(γ − λi )2
+ O (N−1/2) = (

(γR − γ )2 + a2
)
Ns2(γ ) + O (N−1/2) .

(10.12)
On the other hand, using the geometric series for 1

γR−λi−a = 1
(γ−λi )+(γR−γ−a)

and using
(4.32),

B2 =
N∑

i=1

n2i

[
a

(γ − λi )2
+ (γR − γ − a)2

(γ − λi )3
+ O

(
(γR − γ − a)3

(γ − λi )4

)]

= a
(
s2(γ ) + N−1/2SN (γ ; 2))+ (γR − γ − a)2s3(γ ) + O (N−1/2)

(10.13)

where SN (z; k) is defined in (4.22). The leading term is as2(γ ) which is O(N 1/2) and the
rest is O (1). Inserting γ = γ0 + γ1N−1/2 + O (N−1

)
and using s′

2(z) = −2s3(z), we find
that

N (GR(γR, γR; a) − 2G(γ )) = ξ2(1 + A2)s2(γ0)

+ 2h2β
(
ξ2(A − 1)2s3(γ0) + ξSN (γ0; 2) + ξ

√
Ns2(γ0) − 2ξs3(γ0)γ1

)
+ O

(
N− 1

2

)
.

(10.14)
We now consider the integrals in (10.2). Since all partial derivatives of GR(z, w) evaluated

at the critical point (z, w) = (γR, γR) are O (1), the two dimensional method of steepest
descent applies. Since the second derivatives evaluated at the critical point do not depend on
ξ , we find that the ratio of the integrals in (10.2) is asymptotically equal to 1.

Combining the computations above, we find that

log〈eβξ
√
NR〉 
 1

2
ξ2(1 + A2)s2(γ0)

+ h2β
(
ξ2(A − 1)2s3(γ0) + ξSN (γ0; 2) + ξ

√
Ns2(γ0) − 2ξs3(γ0)γ1

)

(10.15)
where A is given by (10.11). Using the formula (5.21) of γ1, we obtain

SN (γ0; 2) − 2s3(γ0)γ1 = T s2(γ0)

T s2(γ0) + 2h2s3(γ0)
SN (γ0; 2). (10.16)

Hence, we conclude the following.

Result 10.2 For h > 0 and T > 0,

log〈eξ
√
N (R−h2s2(γ0))〉 
 h2T s2(γ0)SN (γ0; 2)

T s2(γ0) + 2h2s3(γ0)
ξ + T 2s2(γ0)(T s2(γ0) + 4h2s3(γ0))

2(T s2(γ0) + 2h2s3(γ0))
ξ2

(10.17)
as N → ∞ for asymptotically almost every disorder sample, where γ0 > 2 is the solution
of the equation 1 − T s1(γ0) − h2s2(γ0) = 0, and SN (z; k) is defined in (4.22).
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Fig. 8 Graphs of R0 and σ 2
R

As a consequence, we obtain the following.

Result 10.3 For h > 0 and T > 0,

R
D
 h2s2(γ0) + 1√

N

[
h2T s2(γ0)SN (γ0; 2)
T s2(γ0) + 2h2s3(γ0)

+ σRN

]
(10.18)

as N → ∞ for asymptotically almost every disorder sample, where the thermal random
variable N has the standard normal distribution and σR > 0 satisfies

σ 2
R = T 2s2(γ0)(T s2(γ0) + 4h2s3(γ0))

T s2(γ0) + 2h2s3(γ0)
. (10.19)

10.1.2 Discussion of the Leading Term

The leading term
R0 = R0(T , h) = h2s2(γ0) = 1 − T s1(γ0) (10.20)

in (10.18) depends on neither the choice of spin configuration nor the disorder sample. See
Fig. 8a for the graph of R0 as a function of h.

The value (10.20) for R0 reproduces the prediction q0 for the overlap obtained in [13,
19] from the replica saddle methods which predicts that q0 is determined by (5.29), The
equivalence is checked using that s2(z) = s1(z)2/(1 − s1(z)2) and q0 = 1 − T s1(γ0).

It is easy to check the following properties using a computation similar to the one in Sect.
8.3:

• For every T > 0, R0 is an increasing function of h > 0.
• As h → ∞,

R0 = 1 − T

h
+ O(h−2) for all T > 0. (10.21)

• As h → 0,

R0 =
{

h2

T 2−1
− 2T 2h4

(T 2−1)2
+ O(h6) for T > 1,

1 − T + Th2
2(1−T )

+ O(h4) for 0 < T < 1.
(10.22)
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10.1.3 Discussion of the Thermal Variance

The thermal variance of R satisfies

〈R2〉 − 〈R〉2 
 σ 2
R

N
(10.23)

for σ 2
R given in (10.19) and it does not depend on the disorder sample. See Fig. 8b for the

graph. It is a decreasing function of h, and satisfies

σ 2
R = 2T 2

h2
− 5T 3

2h3
+ O(h−4) as h → ∞ for all T > 0 (10.24)

and

σ 2
R(h, T ) =

{
T 2

T 2−1
+ O(h4) as h → 0 for T > 1,

2T 2(1−T )

h2
+ O(1) as h → 0 for 0 < T < 1.

(10.25)

10.1.4 Limit as h → ∞

As h → ∞, using (5.33) and sk(z) = z−k + O(z−k−2) as z → ∞, we find that

h2T s2(γ0)SN (γ0; 2)
T s2(γ0) + 2h2s3(γ0)


 T
∑N

i=1(n
2
i − 1)

2h
√
N

. (10.26)

Thus, we see that, for every T > 0, if we take N → ∞ with h > 0 and then take h → ∞,

R
D
 1 − T

h
+ T

h
√
N

[∑N
i=1(n

2
i − 1)

2
√
N

+ √
2N

]
. (10.27)

10.1.5 Limit as h → 0When T > 1

Using (5.32), if we take N → ∞ with h > 0 and then take h → 0, we see that, for T > 1,

R
D
 h2

T 2 − 1
− 2T 2h4

(T 2 − 1)2
+ 1√

N

[
T√

T 2 − 1
N + h2SN (T + 1

T
; 2)
]

. (10.28)

10.1.6 Limit as h → 0When T < 1

Similarly, from (5.32), if we take N → ∞ with h > 0 and then take h → 0, we see that, for
0 < T < 1,

R
D
 (1 − T ) + Th2

2(1 − T )
+ T

h
√
N

[
h5SN (γ0; 2)
2(1 − T )2

+√
2(1 − T )N

]
. (10.29)

From the discussions around the Eq. (8.37), we expect that h5SN (γ0; 2) = O (1) as h → 0
if h � N−1/6. This indicates that there may be a transition when h ∼ N−1/6. We study this
regime in the next subsection. On the other hand, the thermal fluctuation term becomes of
order 1 if h−1N−1/2 = O(1). This indicates a new regime h ∼ N−1/2, which we study in a
later section.
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10.2 Mescoscopic External Field: h ∼ N−1/6 and T < 1

10.2.1 Analysis

Set
h = HN−1/6 (10.30)

for fixed H > 0. It turns out that the order of the fluctuations of R is N−1/3. Hence, we set

η = βξN 1/3 so that a = ξN−2/3. (10.31)

The critical point of G(z) is given by γ = λ1 + sN−2/3 where s > 0 solves the Eq. (7.3).
Inserting h = HN−1/6, the equation takes the form

β − 1

N 1/3

N∑

i=1

1

s + a1 − ai
− H2β

N∑

i=1

n2i
(s + a1 − ai )2

= 0. (10.32)

The solution satisfies s = t + O (N−1/3
)
where t solves the Eq. (7.14).

For the critical point of GR, Lemma 10.1) shows that γ < γR < γ + a. Hence, γR −
γ −a = O(N−2/3). However, we can get a sharper bound on this difference. The right-hand
side of (10.8) is O (aN 4/3

)
and the bracket term of the left-hand side of the same equation

isO (N 5/3
)
, with the leading contribution coming from the second sum. Hence, we find that

γR = γ + a − ε, ε = O (N−1) . (10.33)

We now evaluate (10.7). The first sum B1 is

−
N∑

i=1

[
log

(
1 + 2(a − ε)

γ − λi
− (2a − ε)ε

(γ − λi )2

)
− 2(a − ε)

γ − λi

]


 −
N∑

i=1

[
log

(
1 + 2ξ

s + a1 − ai

)
− 2ξ

s + a1 − ai

]

and this sum is O (1). For the second sum, we get

B2 = 2ξN 1/3H2β

N∑

i=1

n2i
(s + a1 − ai )2

+ O (N−1/3) .

Therefore, N (GR(γR, γR; a) − 2G(γ )) is equal to

−
N∑

i=1

[
log

(
1 + 2ξ

s + a1 − ai

)
− 2ξ

s + a1 − ai

]

+ 2ξN 1/3H2β

N∑

i=1

n2i
(s + a1 − ai )2

+ O(N−1/3).

(10.34)

Using the Eq. (10.32) for s, we can write

N (GR(γR, γR; a) − 2G(γ )) = 2ξβN 1/3 −
N∑

i=1

log

(
1 + 2ξ

s + a1 − ai

)
+ O(N−1/3).

(10.35)
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Finally, we compute the integrals in (10.2). A calculation similar to the one from Sect. 7.1

shows that the kth partial derivatives of GR evaluated at (z, w) = (γR, γR) areO
(
N

2
3 k− 2

3

)
.

Since the second derivatives are O
(
N

2
3

)
, the main contribution to the integral comes from

a neighborhood of radius N−5/6 around the critical point. Moreover, from explicit computa-
tions, we find that

∂2GR
∂z2

(γR, γR) = ∂2GR
∂w2 (γR, γR) 
 xN 2/3,

∂2GR
∂z∂w

(γR, γR) 
 yN 2/3

where

x = 2H2β

N∑

i=1

n2i (s + a1 − ai + ξ)

(s + a1 − ai )3(s + a1 − ai + 2ξ)
,

y = 2H2β

N∑

i=1

n2i ξ

(s + a1 − ai )3(s + a1 − ai + 2ξ)
.

Using the method of steepest descent with the change of variables z = γR + uN−5/6 and
w = γR + vN−5/6, the integral becomes
∫

γR+iR

∫

γR+iR
e

N
2 (GR(z,w;a)−GR(γR,γR;a))dzdw 
 1

N 5/3

∫

iR

∫

iR
e
1
4 (xu2+xv2+2yuv)dudv.

(10.36)
Evaluating the Gaussian integral, inserting the formulas of x and y, and noting that the
denominator is the same as the numerator when ξ = 0, the ratio of the integrals becomes

∫ ∫
e

N
2 (GR(z,w;a)−GR(γR,γR;a))dzdw
(∫

e
N
2 (GR(z)−G(γ ))dz

)2 


√√√√√√

∑N
i=1

n2i
(s+a1−ai )3

∑N
i=1

n2i
(s+a1−ai )2(s+a1−ai+2ξ)

. (10.37)

Combining the above calculations and replacing s by t , we obtain the following result
after moving a term of order N 1/3.

Result 10.4 For h = HN−1/6 and 0 < T < 1,

〈e 1
T ξN1/3(R−(1−T ))〉 
 e

ξN1/3− 1
2

∑N
i=1 log

(
1+ 2ξ

t+a1−ai

)
√√√√√√

∑N
i=1

n2i
(t+a1−ai )3

∑N
i=1

n2i
(t+a1−ai )2(t+a1−ai+2ξ)

(10.38)
as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of
the Eq. (7.14).

The term in the exponent on the right-hand side is O (1).

Result 10.5 For h = HN−1/6 and 0 < T < 1,

R
D
 1 − T + T

N 1/3ϒN (t) (10.39)

as N → ∞ for asymptotically almost every disorder sample, where t > 0 is the solution of
the Eq. (7.14) and ϒN (t) is a random variable defined by the generating function given by
the right-hand side of (10.38).

123



31 Page 68 of 79 J. Baik et al.

10.2.2 Matching with h = O(1)

We take the formal limit of the result (10.39) as H → ∞. From (7.20), t → ∞. The big
square root term of the generating function on the right-hand side of (10.38) is approximately
is approximately 1. On the other hand,

ξN 1/3 − 1

2

N∑

i=1

log

(
1 + 2ξ

t + a1 − ai

)

 ξ

(
N 1/3 −

N∑

i=1

1

t + a1 − ai

)

+ ξ2
N∑

i=1

1

(t + a1 − ai )2

Setting x = λ1 + t N−2/3, we have, using a formal application of the semi-circle law,

N 1/3 −
N∑

i=1

1

t + a1 − ai
= N 1/3

(
1 − 1

N

N∑

i=1

1

x − λi

)

 N 1/3 (1 − s1(x)) .

Using (4.6), the above equation becomes

N 1/3 −
N∑

i=1

1

t + a1 − ai

 N 1/3

√
x − 2 
 √

t .

For the other term,

N∑

i=1

1

(t + a1 − ai )2
= 1

N 4/3

N∑

i=1

1

(x − λi )2

 1

N 1/3 s2(x) 
 1

N 1/32
√
x − 2


 1

2
√
t
.

Hence, the generating function on the right-hand side of (10.38) is approximately e
√
tξ+ ξ2

2
√
t .

Therefore,

ϒN (t)
D
 √

t + t−1/4N

for a thermal standard normal random variable N. Inserting the large H formula (7.20) for
t and replacing H = hN 1/6, we find that if we take h = HN−1/6 and let N → ∞ first and
then take H → ∞, we get

R
D
 1 − T + Th2

2(1 − T )
+ T

hN 1/2

[
h5SN (γ0; 2)
2(1 − T )2

+√
2(1 − T )N

]
. (10.40)

This is the same as (10.29) which is obtained by first taking N → ∞ with h > 0 fixed and
then taking h → 0. Therefore, the result matches with the h = O(1) case.

10.2.3 Limit as H → 0

From (7.19), t = O(H) → 0 as H → 0. The generating function on the right-hand side of
(10.38) converges to

e
ξN1/3− 1

2

∑N
i=2 log

(
1+ 2ξ

t+a1−ai

)

where the term i = 1 cancels out with the limit of the big square root term. Using the
moment generating function (9.12) for the chi-squared distribution, we find that if we take
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h = HN−1/6 and N → ∞ and then take H → 0, then

R
D
 1 − T + T

N 1/3

(
N 1/3 −

N∑

i=2

n2i
a1 − ai

)
. (10.41)

for independent thermal standard Gaussian random variables ni .

10.3 Microscopic External Field: h ∼ HN−1/2 and T < 1

10.3.1 Analysis

Set
h = HN−1/2 (10.42)

for fixed H > 0. It turns out that the fluctuations are of order O (1). In other words, the
leading term of R converges to a random variable. We set

η = βξ so that a = ξN−1. (10.43)

The critical point of G(z) is γ = λ1 + pN−1 from (8.48). Consider the critical point of
GR. Lemma 10.1 implies that γR = λ1 + O (N−1

)
. We set

γR = λ1 + qRN−1, qR > |ξ |, (10.44)

for some qR. Separating i = 1 in the equation (10.6), we find that qR is the solution of the
equation

β − 1 − qR
q2R − ξ2

− H2βn21
(qR − ξ)2

+ O (N−1/3) = 0. (10.45)

When β = T−1 > 1, the equation β − 1 − x
x2−ξ2

− H2βn21
(x−ξ)2

= 0 has a unique solution and

qR is approximated by this solution with error O (N−1/3
)
.

Using (10.7) and separating out the i = 1 term, we find that N (GR(γR, γR; a) − 2G(γ ))

is equal to

− log

(
q2R − ξ2

p2

)
+ 2(qR − p)

p
+ 2H2βn21

[
1

qR − ξ
− 1

p
+ qR − p

p2

]
+ O (N−1/3) .

(10.46)
Using the equation for p, this can be written as

N (GR(γR, γR; a) − 2G(γ ))

= − log

(
q2R − ξ2

p2

)
+ 2(β − 1)(qR − p) + 2H2βn21

[
1

qR − ξ
− 1

p

]
+ O (N−1/3) .

(10.47)
We now consider the integrals in (10.2). As in Sect. 8.6 of the overlap with the external

field when h ∼ N−1/2, the main contribution to the integral comes from a neighborhood of
radius N−1 around the critical point in both variables. Changing variables to z = γR+uN−1

and w = γR + vN−1, we find that all terms of the Taylor series are of the same order, so we
see, as in Sect. 8.6, that the integral is not approximated by a Gaussian integral. Therefore,
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we proceed by writing

N (GR(z, w; a) − GR(γR, γR; a))

= N (GR(z, w; a) − GR(γR, γR; a) − (GR)z(γR, γR; a)(z − γR)

− (GR)w(γR, γR; a)(w − γR))

= −
N∑

i=1

[
log

(
(z − λi )(w − λi ) − a2

(γR − λi )2 − a2

)
− (γR − λi )(z + w − 2γR)

(γR − λi )2 − a2

]

+ h2β
N∑

i=1

n2i

[
z + w − 2λi + 2a

(z − λi )(w − λi ) − a2
− 2

γR − λi − a
+ z + w − 2γR

(γR − λi − a)2

]
.

Inserting the change of variables and separating i = 1 out,

N (GR(z, w; a) − GR(γR, γR; a))


 − log

(
(u + qR)(v + qR) − ξ2

q2R − ξ2

)
+ qR(u + v)

q2R − ξ2

+ H2βn21

[
u + v + 2qR + 2ξ

(u + qR)(v + qR) − ξ2
− 2

qR − ξ
+ u + v

(qR − ξ)2

]

for finite u and v. Using the Eq. (10.45), this can be written as

N (GR(z, w; a) − GR(γR, γR; a))


 − log

(
(u + qR)(v + qR) − ξ2

q2R − ξ2

)
+ (β − 1)(u + v)

+ H2βn21

[
u + v + 2qR + 2ξ

(u + qR)(v + qR) − ξ2
− 2

qR − ξ

]
.

Thus, the numerator integral in (10.2) is asymptotically equal to

√
q2R − ξ2

N 2

∫ ∫
e
1
2 (β−1)(u+v)+ H2βn21

2

[
u+v+2qR+2ξ

(u+qR)(v+qR)−ξ2
− 2

qR−ξ

]

√
(u + qR)(v + qR) − ξ2

dudv

where the contours are from −i∞ to i∞ such that all singularities lie on the left of the
contours. The denominator integral is the same with ξ = 0.

Combining the above calculations into (10.2) and making simple translations for the
integral, we find that

〈eβξR〉 

∫ ∫ 1√

uv−ξ2
e
1
2 (β−1)(u+v)+ H2βn21(u+v+2ξ)

2(uv−ξ2) dudv

(∫ 1√
u
e
1
2 (β−1)u+ H2βn21

2u du

)2 (10.48)

where the contours are vertical lines such that the points ξ or 0 lie on the left of the contours.
We now evaluate the integrals using (recall (8.59))

∫
eau+ b

u√
u

du = 2i
√

π√
a

cosh(2
√
ab). (10.49)
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Consider the double integral in the numerator. For each v, we change the variable u to z by
setting uv − ξ2 = z. We can define the branch cut appropriately such that the contour for z
does not cross the branch cut. The numerator becomes

∫∫
1

v
√
z
e

β−1
2 (

z+ξ2

v
+v)+ H2βn21

2z (
z+ξ2

v
+v+2ξ)dzdv.

The z-integral can be evaluated using (10.49). Writing the resulting cosh term as the sum
of two exponentials, we can evaluate the w-integral again using (10.49). The above double
integral becomes

− 2π

β − 1

[
e
√

(β−1)βH |n1| cosh
(√

(β − 1)βH |n1| + (β − 1)ξ
)

+ e−√
(β−1)βH |n1| cosh

(√
(β − 1)βH |n1| − (β − 1)ξ

) ]
.

Writing cosh as the sum of two exponentials again, the expression above becomes a linear
combination of e(β−1)ξ and e−(β−1)ξ . The denominator in (10.48) is the same as the numerator
when ξ = 0. Thus, using β = 1/T and re-scaling ξ , we obtain the following

Result 10.6 For h = HN−1/2 and 0 < T < 1,

〈eξ R
1−T 〉 


cosh
(
2
√
1−T H |n1|

T

)
eξ + e−ξ

cosh
(
2
√
1−T H |n1|

T

)
+ 1

(10.50)

as N → ∞ for asymptotically almost every disorder sample.

Recognizing that the right-hand side is the moment generating function of a shifted
Bernoulli random variable, we obtain the following result.

Result 10.7 For h = HN−1/2 and 0 < T < 1,

R

1 − T

D
 B(θ), θ :=
cosh

(
2
√
1−T H |n1|

T

)

cosh
(
2
√
1−T H |n1|

T

)
+ 1

(10.51)

as N → ∞ for asymptotically almost every disorder sample, where the thermal random
variableB(c) is the (shifted) Bernoulli distribution taking values 1 and −1 with probability
c and 1 − c, respectively.

10.3.2 Limits as H → ∞

If we formally take the limit as H → ∞ of the result (10.51), then

R
D
 1 − T . (10.52)

This is the same as the leading term of (10.41) which is obtained by taking h = HN−1/6

and letting N → ∞ first and then taking H → 0.
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10.4 No External Field: h = 0

For 0 < T < 1, the analysis in Sect. 10.3 for h = HN−1/2 extends to H = 0 case as well.
For T > 1, the analysis in Sect. 10.1 applies to all h ≥ 0. We note that, for h = 0 and T > 1,
γ0 = T + T−1 and s2(γ0) = 1

T 2−1
. We have the following result.

Result 10.8 For h = 0,

R
D

⎧
⎨

⎩

T√
N (T 2−1)

N for T > 1,

(1 − T )B(1/2) for 0 < T < 1.
(10.53)

11 Geometry of the Spin Configuration

The results on three types of overlaps tell us how the spin variables are distributed on the
sphere. We discuss the geometry of the spin configuration vector σ = (σ1, · · · , σN ) from
the Gibbs measure in this section. Recall that u1 is a unit vector which is parallel to the
eigenvector corresponding to the largest eigenvalue of the disorder matrix. In this section,
we choose u1, among two opposite directions, as the one satisfying u1 · g ≥ 0. Recall the
notation n1 = g · u1 and that the external field g is a standard Gaussian vector. Note that
n1 = |n1| because of the choice of u1. The normalized spin vector can be decomposed as

σ̂ := σ√
N

= au1 + b
g − n1u1

‖g − n1u1‖ + v, v · u1 = v · g = 0, (11.1)

where a and b are components of the normalized spin vector in theu1 and g1−n1u1 directions,
respectively. The vector v is perpendicular to both u1 and g, and it satisfies

‖v‖2 = 1 − a2 − b2. (11.2)

Note that ‖g − n1u1‖2 = ‖g‖2 − n21 
 N + O (N 1/2
)
and n1 = O (1). Thus, if we ignore

subleading terms from each component, the above decomposition becomes

σ̂ 
 au1 + b
g√
N

+ v = au1 + bĝ + v, ĝ := g√
N

. (11.3)

The components a and b are related to the overlaps by the formulas

O = (σ̂ · u1)2 = a2, M = σ̂ · ĝ = an1√
N

+ b
‖g − n1u1‖√

N

 an1√

N
+ b (11.4)

up to O (N−1
)
terms. Furthermore, v satisfies the equation

R = σ̂
(1) · σ̂

(2) = a1a2 + b1b2 + v(1) · v(2). (11.5)

11.1 The Signed Overlap with a Replica for Microscopic Field, h ∼ N−1/2 and T < 1

Consider the decomposition for h = HN−1/2 and 0 < T < 1. The overlap with the ground
state is given in Result 9.6 for h ∼ N−1/3 and Result 9.7 for h = 0. Since the leading terms
of the both results are same, given by 1 − T , the leading term holds also for h ∼ N−1/2.
Thus, we find that a2 
 1 − T in this regime, and hence |a| 
 √

1 − T . On the other hand,
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Result 8.7 on M implies that

an1√
N

+ b
D
 h + |n1|

√
1 − TB(α)√

N
+

√
TN√
N

. (11.6)

Noting h ∼ N−1/2, we find that b = O (N−1/2
)
. From the formulas of a and b, we also find

that ‖v‖2 = 1 − a2 − b2 
 T . Finally, Result 10.7 implies that

a1a2 + b1b2 + v(1) · v(2) D
 (1 − T )B(θ). (11.7)

Here, θ is given in (10.51) and α in (11.6) is given by (8.64). They satisfy the relation
θ = α2 + (1− α)2. Now, we make the following ansatz on a. For h = 0 and 0 < T < 1, the
spin configurations are equally likely to be on either of the double cones around u1 with the

cosine of the angle given by
√
1 − T . This means that a

D
 √
1 − T B(1/2) for h = 0 and

0 < T < 1. For h ∼ N−1/2, we make the ansatz that

a = σ̂ · u1 D
 √
1 − T B(ϕ) (11.8)

for someϕwhichwedetermine now.Note that if X1 and X2 are independent (thermal) random
variables distributed asB(ϕ), then their product X1X2 isB(ϕ2+(1−ϕ)2)-distributed. Thus,
the Eqs. (11.6) and (11.7) become

|n1|
√
1 − T B(ϕ)√

N
+ b

D
 h + |n1|
√
1 − TB(α)√

N
+

√
TN√
N

and

(1 − T )B(ϕ2 + (1 − ϕ)2) + O (N−1)+ v(1) · v(2) D
 (1 − T )B(θ).

Since θ = α2 + (1 − α)2, it is reasonable to assume that the solutions are ϕ = α, and

a
D
 √

1 − T B(α), b
D
 h +

√
TN√
N

.

This calculation leads us to the following conjecture on the signed overlap of the spin variable
with a replica.

Conjecture 11.1 For a given disorder sample, let u1 be the unit vector corresponding to the
ground state such that u1 ·g ≥ 0. Then, for h = HN−1/2 and 0 < T < 1, the signed overlap
with the ground state satisfies

σ · u1√
N

D
 √
1 − T B(α), α = e

H |n1 |√1−T
T

e
H |n1 |√1−T

T + e− H |n1 |√1−T
T

, (11.9)

as N → ∞ for asymptotically almost every disorder sample.

The above conjecture implies that for h = HN−1/2 the spin configuration vector con-
centrates on the intersection of the sphere and the double cone around u1 where the cosine
of the angle is

√
1 − T , just like the h = 0 case. However, while for H = 0 the spin vector

is equally likely to be on either of the cones, for H > 0 the spin prefers the cone that is
closer to g than the other cone. As H → ∞, the polarization parameter α → 1 and hence
for h � N−1/2, the spin vector is concentrated on one of the cones.
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11.2 Spin Decompositions in Various Regimes

The results of the overlaps give us information about the decomposition of the spin for
other regimes of h as well. From the first equation of (11.4), we find a2, and hence |a|. The
discussion of the previous subsection implies that forh � N−1/2, the spin vector concentrates
on one of the cones. Thus, we expect that a = |a| for such h. Using this formula of a, we then
obtain b from the second equation of (11.4), from which we also find ‖v‖2 = 1 − a2 − b2.
Finally, the equation (11.5) implies v(1) · v(2), and hence, the overlap v̂(1) · v̂(2) of the unit
transversal vector v̂ = v

‖v‖ with its replica. We summarize the findings in Table 5. The result
for the last row follows from the last subsection.

The result for the regime h ∼ N−1/6 (fourth row) follows from Results 9.4, 8.5, and 10.5.
The term A = A(T , hN 1/6) is given by the leading term in Result 9.4,

A =
√√√√1 − T − h2N 1/3

N∑

i=2

n2i
(t + a1 − ai )2

= hN 1/6|n1|
t

, (11.10)

where t > 0 is the number that makes the two formulas of A equal. For every disorder
sample, A is a decreasing function of H = hN 1/6, changing from

√
1 − T for H = 0 to 0

as H → ∞.
The result for the regime h = O(1) (second row) follows from Result 9.2, 8.2, and 10.3.

The variable γ0 = γ0(T , h) > 2 is the solution of the equation (5.26). It satisfies γ0 
 h+ T
2

as h → ∞ and γ0 
 2 + h4

4(1−T )2
as h → 0: See Lemma 5.7. The function s1(z) is the

Stieltjes transform of the semicircle law. It satisfies s1(z) = z−1 + O(z−3) as z → ∞ and
s1(z) 
 1 − √

z − 2 as z → 2: see (4.6). See Sect. 8.3.2 for properties of M0 = hs1(γ0).

The term
√
O0√
N

is from Result 9.2 and is given by

√
O0

√
N

= 1√
N

∣∣∣∣∣
h|n1|
γ0 − 2

+
√
TN√

γ0 − 2

∣∣∣∣∣ . (11.11)

For the last column, Result 10.3 and the formula b 
 hs1(γ0) imply that v(1) · v(2) 

h2s2(γ0) − h2s1(γ0)2. We use the identity s2(z) = s1(z)2/(1− s1(z)2) for z > 0 to simplify
the formula.

The third row follows either from the fourth row or from the second row. Starting from
the fourth row, we use (9.26), which shows that

A2 
 16(1 − T )4n21
h6N

(11.12)

as hN 1/6 → ∞. We can also see this formula from (11.10) because t 
 h4N2/3

4(1−T )2
(see (7.20)).

Note thatA = o(1) in this regime. On the other hand, if we start from the second row, we use

(9.16) to find the same formula for a. Other columns can be found from s1(γ0) 
 1− h2
2(1−T )

as h → 0. Note that the two components a and b are comparable in size for h ∼ N−1/8.
The quantity a in the fifth row follows either from the fourth row or from the last row.

The formula (9.27) shows that A2 
 1 − T as hN 1/6 → 0. We also see this formula from
(11.10) by dropping the o(1) term. If we start from the last row, the polarization parameter
α satisfies α → 1 as hN 1/2 → ∞, and hence a 
 √

1 − T , giving the same formula for a.
The other columns follow from this result. One can show using Result 9.6 and (9.41) that the
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subleading term in a (not shown in Table 5) is comparable to the leading term of b, which is
h, when h ∼ N−1/3.

11.3 Summary

Three quantities contain thermal random variables: a for the regimes h = O(1) and h ∼
N−1/2, and b for the regime h ∼ N−1/2. Among those, a for the regime h ∼ N−1/2 isO (1)
but the other two quantities are of smaller order O (N−1/2

)
.

The table shows that a = O(1) for h ≤ O(N−1/6) and b = O(1) for h ≥ O(1).
As h increases, the u1 component of a typical spin vector decreases while the ĝ component
increases. The above result shows that the crossover occurs in the regime N−1/6 � h � O(1)
in which both components are o(1).

The last column of the table is the overlap of the unit transversal vector v̂ with its replica.
This overlap is o(1) for h � N−1/6. If the error were O(N−1/2), it would give a strong
indication that the thermal distribution of v̂ is uniform on the transverse space (i.e. the set of
unit vectors that are perpendicular to u1 and g). The above result does not show the error, but
we expect that the distribution on the transverse space is close to being uniform. On the other
hand, for h ≥ O(N−1/6), the overlap of the unit transversal vector is non-zero and O (1).
This implies that v̂ is not uniformly distributed on the transverse space.

Overall, for 0 < T < 1, as we increase the external field, we expect the following
geometry of the spin vector that is randomly chosen using the Gibbs (thermal) measure for
a quenched disorder, i.e. for asymptotically almost every disorder sample.

• For h � N−1/6, the spin vector is on a double cone around u1 (possibly preferring one
cone to the other), and the thermal distribution on the transverse space is close to being
uniform.

• For h ∼ N−1/6, the spin vector is polarized to a single cone around u1, but the cone itself
depends non-trivially on the disorder sample. The thermal distribution on the transverse
space is not uniform and depends on the disorder sample.

• For N−1/6 � h � O(1), the spin vector entirely lies on the transverse space with only
o(1) components on the ground state and external field directions. Although the thermal
distribution is not uniform, it does not depend on the disorder sample.

• For h = O(1), the spin vector is on a cone around g and the thermal distribution on the
transverse space is not uniform. The cone and the distribution on the transverse space do
not depend on the disorder sample.

• For h → ∞, the spin vector is parallel to g.

The result of this paper does not describe the distribution of v̂ on the transverse space in
detail. This can be achieved by studying the overlaps σ · ui with other eigenvectors. This
analysis can be done using themethod of this paper and we leave this work as a future project.

The items in the table can be written in an uniform formula across all regimes as the
following decomposition formula of the spin configuration vector:

σ̂
D
 AB(α)u1 + hs1(γ0)ĝ +

√
1 − A2 − h2s1(γ0)2v̂ + O (N−1/2) (11.13)

where v̂ is a unit vector in the transverse space, i.e. v̂ · u1 = v̂ · ĝ = 0 and ‖v̂‖ = 1. All items
in the middle three columns of the table other than two items, a for the regime h = O(1) and
b for the regime h ∼ N−1/2, are of order greater than O (N−1/2

)
. Hence, the above formula

is meaningful for all items except those two.
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Appendix A Proof of Lemma 3.3

We prove Lemma 3.3. First,

〈eβηM〉 = 1

ZN (h)

∫

SN−1

eβ
η
N g·σ eβ

(
1
2 σ ·Mσ+hg·σ

)

dωN (σ ) = ZN (h + ηN−1)

ZN (h)
.

Secondly, by definition,

〈eβηO〉 = 1

ZN

∫

SN−1

eβ
η
N (u1·σ)2eβ(σ ·Mσ+hg·σ )dωN (σ ). (A.1)

Since
1

2
σ · Mσ + η

N
(u1 · σ)2 = 1

2

N∑

i=1

λi (ui · σ)2 + η

N
(u1 · σ)2,

the integral in (A.1) is the same as that of ZN with λ1 �→ λ1 + 2η
N . Finally, using the

eigenvalue-eigenvector decomposition M = O�OT and changing variables 1√
N
OT σ = x

and 1√
N
OT τ = y, we find that

〈eηR〉 =
J (

βN
2 ,

βN
2 ; η

Nβ
,

√
βh√
2

,
√

βh√
2

)

J (
βN
2 ,

βN
2 ; 0,

√
βh√
2

,
√

βh√
2

)
. (A.2)

where we use the notation

J (u, v; a, b, c)

= (uv)
N
2 −1

∫ ∫
e
2a

√
uv

N∑
i=1

xi yi+u
N∑
i=1

λi x2i +2b
√
u

N∑
i=1

ni xi+v
N∑
i=1

λi y2i +2c
√

v
N∑
i=1

ni yi
d
⊗2

N−1(x, y).

Weevaluate the Laplace transform of J (u, v, a, b, c). Changing of variable as u = r2, v = s2

and r x �→ x , sy �→ y, the Laplace transform

Q(z, w) =
∫ ∞

0

∫ ∞

0
e−zu−wv J (u, v)dudv

becomes a 2-dimensional Gaussian integral which evaluates to

Q(z, w) = 4
N∏

i=1

π√
(z − λi )(w − λi ) − a2

e
n2i ((w−λi )b

2+2abc+(z−λi )c
2

(z−λi )(w−λi )−a2 .

The inverse Laplace transform gives a double integral formula for J (u, v).
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Appendix B A perturbation argument

The following perturbation lemma is used to obtain (5.7), (5.22) and (6.4).

Lemma B.1 Let I be a closed interval of R. Let G(z; N ) be a sequence of random C4-
functions for z ∈ I . Let ε = ε(N ) := N−δ for some δ > 0 and assume that

G(z; N ) = G0(z; N ) + G1(z; N )ε + G2(z; N )ε2 + O (ε3) (B.1)

and
G ′(z; N ) = G ′

0(z; N ) + G ′
1(z; N )ε + G ′

2(z; N )ε2 + O (ε3) (B.2)

for random C4-functions Gk(z; N ). Suppose that

G(�)
k (z; N ) = O (1) (B.3)

uniformly for z ∈ I for all k = 0, 1, 2, 0 ≤ � ≤ 4 and also assume that there is a γ0 ∈ I
satisfying

G ′
0(γ0; N ) = 0, |G ′′

0(γ0; N )| ≥ C > 0 (B.4)

for a positive constant C. Then there is a critical point γ = γ (N ) of G(z; N ) admitting the
asymptotic expansion

γ = γ0 + γ1ε + γ2ε
2 + O (ε3) (B.5)

where

γ1 = −G ′
1(γ0; N )

G ′′
0(γ0; N )

, γ2 = −G ′
2(γ0; N ) + G ′′

1(γ0; N )γ1 + 1
2G

′′′
0 (γ0; N )γ 2

1

G ′′
0(γ0; N )

. (B.6)

Furthermore,

G(γ ; N ) = G0(γ0; N ) + G1(γ0; N )ε +
(
1

2
G ′

1(γ0; N )γ1 + G2(γ0; N )

)
ε2 + O (ε3) .

(B.7)

Proof This lemma is standard when G(z; N ) is deterministic. The proof for the random
G(z; N ) does not change. For simplicity, we suppress the dependence on N in the notations;
for example we write G0(z) instead of G0(z; N ). In order to prove (B.5), it is enough to
show that for any 0 < t < δ, G ′(γ+)G ′(γ−) < 0 with γ± = γ0 + γ1ε + γ2ε

2 ± ε3Nt . From
the Taylor expansion,

G ′(γ±) = G ′
0(γ0) + (G ′′

0(γ )γ1 + G ′
1(γ0))ε

+
(
G ′′

0(γ0)γ2 + G ′
2(γ0) + G ′′

1(γ0)γ1 + 1

2
G ′′′

0 (γ0)γ
2
1

)
ε2

± G ′′
0(γ0)ε

3Nt + O (ε3) .

(B.8)

The definitions of γ0, γ1, and γ2 imply that

G ′(γ±) = ±G ′′
0(γ0)ε

3Nt + O (ε3) (B.9)

Thus, G ′(γ+)G ′(γ−) < 0 for all large enough N and we obtain (B.5). The Eq. (B.7) follows
from

G(γ ) = G0(γ ) + G1(γ )ε + G2(γ )ε2 + O (ε3) = G0(γ0) + (G ′
0(γ0)γ1 + G1(γ0))ε

+
(
G ′

0(γ0)γ2 + 1

2
G ′′

0(γ0)γ
2
1 + G ′

1(γ0)γ1 + G2(γ0)

)
ε2 + O (ε3) ,

(B.10)
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together with G ′
0(γ0) = 0 and (B.6). ��

Remark B.2 Here, we consider the asymptotic expansion of G(z) up to the third order term.
One can also consider the case where the expansion is up to the second order, then (B.7) is
still valid up to the second order.
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16. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Spectral statistics of Erdös-Rényi graphs I: local semicircle
law. Ann. Probab. 41(3B), 2279–2375 (2013)
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