Scaling Theory of Swelling and Deswelling of

Polymer Networks

Tetsuya Yamamoto,’* Jonathan A. Campbell, ¥ Sergey Panyukov,? and Michael

Rubinstein* 'l

TInstitute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido
University, Sapporo 001-0021, Japan.
IPRESTO, Japan Science and Technology Agency (JST) - 4-1-8 Honcho, Kawaguchi,
Saitama, 332-0012, Japan.
Y Department of Mathematics, Duke University, 120 Science Drive, Durham, NC 27708,
United States.
§P. N. Lebedev Physics Institute, Russian Academy of Science, Moscow, Russia, 117924.
|| Departments of Mechanical Engineering and Materials Science, Biomedical Engineering,

Physics, and Chemistry, Duke University, Durham, NC 27708, United States.

E-mail: mr351@duke.edu

Abstract

We have developed a scaling theory of the elasticity of swollen and deswollen polymer
networks. The elasticity of unentangled networks is primarily due to crosslinks, and
the elasticity of entangled networks is due to trapped entanglements. In preparation
conditions, the number of monomers Ny in strands of the unentangled network is less
than the number of monomers N in an entanglement strand while Ny > Ny for the
entangled network. A network weakly entangled at preparation conditions is predicted

to behave as unentangled network upon swelling. This “disentanglement” occurs due



to the separation of neighboring strands upon swelling, which reduces the restrictions
on the fluctuations of strands due to their topological interactions with neighboring
strands. A network unentangled at preparation conditions is predicted to behave as
an entangled network upon deswelling if the number of overlapping network strands
exceeds the Kavassalis-Noolandi number. The entanglements produced by network
deswelling are transient and their number increases with deswelling, while the number
of trapped entanglements is fixed by crosslinking. The “entanglement” upon deswelling
and “disentanglement” upon swelling can be identified by measuring the concentration

dependences of the elastic modulus.

1 Introduction

In this paper, we consider polymer networks obtained by random crosslinking or end-linking
of an equilibrated semidilute polymer solution or melt.! 3 In semidilute solutions in a good
solvent, the sections of polymer chains with the number of monomers n < go (go is the number
of monomers in the correlation volume) swell due to the excluded volume interactions between
monomers of the same chain and are Gaussian for n > gy, because these excluded volume
interactions are screened by neighboring chains.*® We consider cases where polymer chains
are weakly crosslinked or end-linked, so that the average number N, of Kuhn monomers
of the network strands between crosslinks is greater than gy,. Under this assumption, the
conformations of polymer chains are only slightly perturbed upon network formation. In the
case of random crosslinking, the numbers of Kuhn monomers in network strands between
neighboring crosslinks are distributed exponentially.©

The elasticity of polymer networks results from the suppression of fluctuations of polymer
chains by crosslinks and entanglements. %™ The end-to-end vector R(n) of a chain section
consisting of n monomers

R(n) = (R(n)) + 0R(n) (1)



is the sum of its time average (R(n)) and the fluctuation size dR(n), defined as the instan-
taneous deviation of the vector R(n) from this average, see fig. la. Since the time average
of the fluctuation size is zero, (¢R(n)) = 0, the time-average of the square of the end-to-end

distance of the segment can be written as the sum
(R*(n)) = (R(n))* + (0R*(n)). (2)
Below, we use the simplified notation for the root-mean-square fluctuation size

5R(n) = /(5R2(n)). (3)

The time-averaged square fluctuation size dR?*(n) of sections of dangling chains in a
network, as well as of chains in polymer liquids, monotonically increases with the number n
of monomers up to the chain size, see the blue dotted line in fig. 1b. The time average of the
end-to-end vectors of dangling chains is zero, (R(n)) = 0. These chains do not contribute to
the elasticity of the network and are therefore called elastically ineffective. Chains are called
elastically effective if their time-averaged end-to-end vectors (R(n)) are non-zero. Short
sections of elastically effective strands are only weakly affected by their connection to the
network, and their mean square fluctuation size at preparation conditions §R2(n) is almost
the same as in polymer liquids, see the green dashed line at n < N.g¢ in fig. 1. The subscript
0 indicates preparation conditions. In contrast, the fluctuation size d R3(n) of longer sections
is suppressed by crosslinks and entanglements®, compared to fluctuations of free or dangling
chains, see the green dashed line at n > N,g in fig. 1b. The crossover between these two
regimes occurs at the affine strand n = N.go. The number of monomers N, in the affine
strand is determined by specific assumptions of molecular models of polymer networks and is

different in different models. It can be measured experimentally or by computer simulation

1For entangled networks, there is an intermediate regime, SR(n) ~ n'/%, due to the longitudinal Rouse
motion of strand sections along the tube, see fig. 1b.



by determining the number of monomers in the smallest linear section of a network that
deforms affinely with (proportional to) the macroscopic deformation of the network. Upon
network swelling, the number of monomers in the correlation volume and the number of
monomers of the affine strand change from gg and N,go to g and N,g, respectively (compare
the green and magenta dashed lines in fig. 1b). Time-averaged end-to-end vectors of the
elastically effective chain sections with n > N, monomers in the swollen network deform
affinely with (proportionally to) the macroscopic deformation of the network (compare the
green and magenta solid lines at n > N, in fig. 1b).

The shear modulus of a network can be written as the sum over all sections ¢ containing

N,¢ Kuhn monomers in the network with volume V4
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Eq. (4) is valid for networks that have a single length scale R(N,g), above which they
deform affinely, such as networks prepared by crosslinking or endlinking precursor chains
with the same molecular weight. Hereinafter, we use =~ to denote the scaling equality up to
a numerical constant of the order of unity. The average of a quantity A over all elastically
effective strands in a network is denoted by A. ¢ is the polymer volume fraction, v, is the
volume of a Kuhn monomer and, at the scaling level, it is on the order of b, the cube of the
Kuhn length b.

For a weakly polydisperse network?, the mean square fluctuation §R?(n) of section size
does not significantly depend on the choice of the subsection. In such cases, the denominator
in the square bracket in the last form of eq. (4) can be taken out of the average over elastically

effective network sections. Then eq. (4) can be rewritten as

¢ RQ(NaH)
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2This refers to a network in which the distribution of the number of monomers of network strands is not
multimodal.
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Figure 1: (a) Schematic representation of a polymer network at preparation conditions (left)
and in the swollen state (right). The network was prepared and swollen in an athermal
solvent. Dangling chains are shown by the blue dotted lines. (b) The root-mean-square

fluctuation size JR(n) = /(dR?(n)) of the end-to-end vector of a section of the dangling
chain (blue dotted line) and of the elastically effective strand (dashed lines), as well as the

RNST vector R(n) = 1/ (R(n))? of the elastically effective strand (solid lines) as functions of
the number of their monomers n. The quantities at the preparation conditions are indicated
by the subscript 0 and shown by the green lines. The quantities in the swollen state are
shown by the magenta lines. At preparation conditions, the correlation length is &, and the
number of monomers in the correlation volume is go. In the swollen state, the correlation
length is & and the number of monomers in the correlation volume is g. The number of
monomers in the affine strand at the crossover between the constrained and unconstrained

fluctuation regimes is N,g at the preparation conditions and N,g in the swollen state. Both
axes are logarithmic.



by using the simplified notation
R(n) =1/ (R(n))*. (6)

We are introducing the acronym RNST end-to-end vector for R(n), the root of the network
average of the square of the time-averaged end-to-end vector.

In the case of instantaneous crosslinking, the end-to-end vectors of chain sections com-
posed of N.¢ monomers are fixed by crosslinking at the magnitude of fluctuations in polymer
solution (compare the blue dotted line and the green lines fig. 1c). The affine strand deforms
affinely with the network deformation, R(Ng) &~ ARo(Nag), where A is the linear extension
ratio. In the cases of isotropic swelling or deswelling from preparation conditions with the

polymer volume fraction ¢g to the final volume fraction ¢, the linear extension ratio \ is

A= (go/0)"*. (7)

The shear modulus of a homogeneous polymer network can thus be rewritten in the modified

Panyukov form'°

0 A2 RZ (Nagr)
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The fluctuations of strands in the network are restricted both because of their connectivity
to the rest of the network through crosslinks, and because of the topological interactions
between neighboring strands due to the fact that these cannot pass through each other (the
so-called entanglements). Networks are said to be unentangled if restrictions of fluctuations
by the crosslinks are more important than the topological interactions. Otherwise, they
are called entangled. There can be a wide crossover between these regimes, in which both
crosslinks and entanglements make a significant contribution to network elasticity. Below we
consider models for the limiting cases of unentangled (N, < N) and entangled (Ny > Ne)

networks. We then study cases in which N, and N,y are not very far from each other and,



by swelling or deswelling, one can crossover between unentangled and entangled network

behaviors.

1.1 Models of unentangled polymer network

In the affine network model, the ends of network strands are fixed in space. It is instructive to
consider that these ends are attached to a non-fluctuating background that deforms affinely
with the network deformation, such as swelling. '"*»* Due to the randomness of the network
connectivity, the positions of the attachment points of the ends of network strands to the non-
fluctuating background are random variables, over which the network averaging is performed
in eq. (4). The fluctuations of the ends of network strands are taken into account in the
phantom network model.? The ends of the network strands in the phantom network model are
constrained by crosslink potentials, which represent the confinement of the ends of network
strands due to the elasticity of the rest of the network (blue strands in fig. 2a). The crosslink
potentials can be represented by Gaussian effective chains. One end of the effective chain
is connected to the end of the network strand, and the other end is attached to the non-
fluctuating background. The effective chains do not contribute to the network stress. The
number of monomers in the effective chain (light blue dashed lines in Fig. 2b) is proportional
to the average number of monomers NV, in the network strand, with a coefficient depending on
the functionality of crosslinks, and does not change upon network deformation. The number
of monomers N,g of affine strands thus scales proportionally to the number of monomers N,

of network strands.

1.2 Models of swollen entangled polymer networks

Topological interactions between network strands due to their non-crossability are taken into

4711 which represent these interactions by topological potentials

account in the tube models,
that restrict the fluctuations of monomers of a network strand to a confining tube (fig. 2c).

Topological potentials can be represented by Gaussian wvirtual chains, one end of which is



Figure 2: (a) In an unentangled network, the fluctuations of ends of network strands are
suppressed due to their connection to neighboring strands. (b) In the phantom network
model, the suppression of the fluctuations of network strands due to their connectivity to
the rest of the network is represented by effective chains (light blue dashed lines). These
effective chains connect crosslinks to the nonfluctuating background that deforms affinely
with network deformation. (c¢) In an entangled network, the fluctuations of a network strand
are confined by the tube (green dash-dotted lines) of diameter a due to the topological
interactions between this strand and the surrounding strands. (d) The effective topological
potentials acting on the network strand are represented by virtual chains (green dashed lines),
which connect monomers of the strand to the non-fluctuating background. The attachment
points (black “X”-s) of virtual chains to the non-fluctuating background are displaced affinely
with the network deformation.



connected to the monomer of the network strand and the other end is attached to a point of
the non-fluctuating elastic background (see green dashed lines in fig. 2d). Unlike ordinary
potentials that are smoothly-varying functions of the monomer index, the topological poten-
tials have minima at attachment points of virtual chains, which are randomly distributed in
space. 12

The simplest model of entangled polymer networks is the affine tube model.*™!! It as-
sumes that the stiffness of topological potential does not depend on the network deformation;
therefore, the effect of the topological potential can be described by introducing additional
crosslinks. In this model, the number of monomers N.g in the affine strands scales propor-
tionally to the number of monomers N, of strands between adjacent entanglements, called
entanglement strands, and it does not change with network deformation.’

More realistic models of entangled networks take into account the dependence of the topo-
logical interactions between entangled strands on their mutual overlap. With the network
swelling, its strands move away from each other, which leads to a decrease in the stiffness
of the topological potentials (and a corresponding increase in the number of monomers in
virtual chains and in affine strands). In the non-affine tube model,'>** the dependence of
the number of monomers of virtual chains on network deformation is determined by the self-
consistency condition: since virtual chains were introduced only to represent the effect of
topological interactions on conformations of network strands, they do not directly contribute
to the elastic stress of the network.'? The dependence of the number N, of monomers in
affine strands on network deformation for various solvent conditions is discussed in Section

2 and Appendix A.

1.3 Models of deswollen entangled networks

Upon deswelling, the polymer volume fraction increases and network strands approach each
other. Therefore, the stiffness of topological potentials increases with the network deswelling.

The non-affine tube model assumes that strands remain Gaussian at all length scales from the



correlation length to the tube diameter.'? With this assumption, the number of monomers in
the entanglement strand decreases with an increase in the polymer volume fraction. There-
fore, the non-affine tube model predicts that the number of effective entanglements increases
upon network deswelling. However, the number of entanglements depends on network topol-
ogy, which is fixed by crosslinking at network preparation conditions. In this paper, we
propose an alternative model for deswelling of entangled networks that takes into account
this constraint.

Fluctuations of network strands in a deswollen network are restricted by neighboring
chains due to the non-crossability of polymer chains. Non-concatenated rings in a concen-
trated polymer solution experience analogous topological restriction if the concentration of
the solution increases above the onset of entanglement while their non-concatenated ring
topology remains fixed.!! Such topological restrictions are called transient entanglements
and are qualitatively different from entanglements in polymer solution of overlapping linear
chains with Gaussian statistics conventionally described by tube models. In contrast to linear
polymers, the equilibrium conformations of overlapping ring polymers are not ideal Gaus-
sian. Originally, the lattice animal model was used to treat the transient entanglements

1516 55 well as of

in solutions and melts of entangled non-concatenated overlapping rings
deswollen networks. !t More recently, it has been suggested that entangled non-concatenated
rings form fractal loopy globules, in which the number of overlapping strand sections remains
constant on all length scales exceeding the tube diameter of the solution of linear polymers
at the same concentration ¢.!%!®

In this paper, we extend this description of transient entanglements between non-concatenated
rings to the case of polymer networks and propose a new non-affine loopy tube model that
takes into account the effects of crosslinks, trapped entanglements, and transient entangle-

ments on the elasticity of swollen and deswollen polymer networks. The main predictions of

our theory are

e Upon swelling, polymer networks that were entangled at preparation conditions expe-

10



rience weaker topological potential and, in some cases, could undergo a crossover to

the unentangled regime (see 1 < N,/Ng < N&9/Ng and the lower part of the magenta

¢e/Po line in fig. 3).

e Upon swelling, the shear modulus of entangled gels decreases with decreasing the poly-

mer volume fraction ¢ stronger than expected by the affine tube model.

e Upon deswelling, the overlap of network strands increases, and transient entanglements
are formed, even if network strands were unentangled at preparation conditions (see

the upper part of the magenta ¢./¢o line in Fig. 3).

e Upon deswelling, the shear modulus of polymer gels in the regime of fractal loopy
globule due to transient entanglements depends more strongly on polymer volume
fraction ¢ than predicted by the phantom or affine tube model regardless of whether

the network was entangled at preparation conditions or not.

In section 2, we discuss swelling and in section 3 deswelling of polymer networks prepared
in athermal solvents. The results for other solvent conditions are summarized in Appendix
A. We only consider cases where the solvent added to swell polymer networks is the same
as in the conditions of network preparation. In section 4, we compare the predictions of our
model with other models, experiments, and simulations. The physics of deswollen networks

in a #-solvent is described in Appendix B.

2 Swelling of polymer networks

2.1 Unentangled regime

Consider a polymer network prepared in an athermal solvent with a polymer volume fraction
¢o higher than the overlap polymer volume fraction ¢*. If the number of (Kuhn) monomers

N, in a network strand is less than the number of monomers in the entanglement strand at

11
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Figure 3: The diagram of regimes of polymer gels in an athermal solvent (double logarith-
mic plot). The vertical axis is the polymer volume fraction ¢ (rescaled by the polymer
volume fraction ¢, at preparation conditions) and the horizontal axis is the average num-
ber of monomers Ny in network strands (rescaled by the number Ny of monomers in the
entanglement strand at preparation conditions). Preparation conditions with ¢/¢y = 1 are
shown with a dashed horizontal line. The dotted vertical lines correspond to N, /Ng = 1 and
Ny/Neo = NE9/Ney. Polymer gels are swollen by adding athermal solvent (¢/¢y < 1) and
are deswollen by removing this solvent (¢/¢y > 1). The polymer volume fraction ¢, at the
swelling equilibrium is shown by the cyan line. The crossover ¢./¢y between entangled and
unentangled regimes is shown by the magenta line. The shear modulus is determined by the
contribution of crosslinks at ¢ < ¢, (in the unentangled regime - green), and entanglements
at ¢ > ¢ (in the entangled regime). In the entangled regime, on length scales larger than
the correlation length, the conformations of entanglement strands are Gaussian at ¢ < ¢q
(yellow) and fractal loopy globules at ¢ > ¢y (brown). The crossover between the Gaussian
regime and the fractal loopy globule regime is shown by the black horizontal line.

12



preparation conditions Neg = Nep @y 5/ 4, the elasticity of the polymer network at preparation
conditions is mainly due to the restrictions imposed by crosslinks. Here and below, we use
the Flory exponent v = 3/5 to describe fluctuations of strand sections in an athermal solvent
at small length scales®.*5 At length scales smaller than the correlation length at preparation
conditions &, ~ bg, 3/ 4, strand sections swell due to the excluded volume interactions between
monomers of the same strand,*® see the left section of the green dashed line in fig. 4. There
are go ~ @, 5% monomers in the correlation volume &. At length scales larger than &,
the excluded volume interactions between monomers of the same strand are screened by the
overlapping network strands, and these strands can be described as ideal chains of correlation
blobs of size &,*° see the right section of the green dashed line in fig. 4. The RNST end-to-

end vector at preparation conditions is Ro(Ny) =~ b, Y8 N2,

A

Figure 4: Dependence of the RNST end-to-end vector R(n), defined in eq. (6), (solid)
and the root-mean-square fluctuation size dR(n), defined in eq. (3), (dashed) of sections of
network strands on their number of monomers n at preparation conditions (green) and in
swollen unentangled gels (magenta). Axes are logarithmic.

With a decrease in the polymer volume fraction ¢ upon swelling, the correlation length

increases, £ ~ bg—3/*. The correlation volume & contains ¢ ~ ¢~*/* monomers. Therefore,

3In Appendix A, we extend the calculation to other solvents and to a more accurate value of this exponent.
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the fluctuation size of network strands increases to § R(Ny) ~ bo~ "/ 8N4/2, which exceeds the
size of network strands at preparation conditions by the factor of A*® (= (¢¢/#)'/®). The
unentangled network strands deform affinely with the network deformation and, therefore,
stretch upon swelling. The RNST end-to-end vector R(n) of the strand section is a linear
function of its number of monomers n, (see the solid magenta line in fig. 4), while its
fluctuation size increases as the square root of this number n at n > g (see the right section
of the magenta dashed line in fig. 4). The intersection of these two lines determines the
size of the so-called tension blobs & ~ bNy/?¢!/ 2¢g 524 containing g; &~ N A~/ monomers
each. The shear modulus of the unentangled gel in athermal solvent has been derived by

Panyukov*!" as

¢ ()\RU(NX))2

( ) B bSNx éRZ(‘]\[)()
kBT
Nxbg 3/12 %7/12 (9)

see the green and light green lines at ¢ < ¢ in fig. 5b. The shear modulus can also be
represented as kgT per tension blob, kgT'¢/(b%g;).

The number of monomers in the affine strand of unentangled networks is proportional to
the number N, of monomers of network strands. As the polymer volume fraction decreases
upon swelling, the correlation length £ increases, whereas the size of the tension blob &
decreases. The two characteristic lengths eventually become comparable & ~ ¢ at the

equilibrium swelling '
eq ~ by "N, (10)

The equality of these length scales implies that the osmotic stress is balanced by the elastic

stress in the network at the swelling equilibrium with the modulus Geq ~ kgT'/&}.

14
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Figure 5: a. Diagram of regimes of polymer networks in an athermal solvent. The vertical
axis is the polymer volume fraction ¢ and the horizontal axis is the number N, of monomers
in a network strand (double logarithm plot). The crossover line between the unentangled,
‘U’, and entangled swollen/deswollen regimes, ‘ES’ and ‘ED’, is shown by the magenta line.
The crossover line between the entangled swollen, ‘ES’; and entangled deswollen ‘ED’ regimes
is shown by the black solid line. The polymer volume fraction ¢, at equilibrium swelling is
shown by the cyan line. b. The elastic modulus G(¢) of a polymer network crosslinked at
the polymer volume fraction ¢q (indicated by black vertical dotted line) as a function of the
polymer volume fraction ¢ for several values of N, shown by the vertical lines of the same
color as in a, (double logarithmic plot). The elastic modulus at the unentangled-entangled
crossover is indicated by the magenta line. The elastic modulus at the swelling equilibrium
is indicated by the cyan line. The k-exponents, defined by G(¢) ~ ¢*, are 7/12, 19/24, and
1 in the unentangled (solid), entangled swollen (dashed), and entangled deswollen regimes
(dotted), respectively. These lines are obtained by using the Flory exponent v = 3/5, see
egs. (9), (15), (21), and (23).
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2.2 Entangled regime

The elasticity of the network at preparation conditions is dominated by the entanglements if
the number N, of monomers of network strands is greater than the number of monomers Ny
in entanglement strands at the preparation conditions. The conformations of the network
strands at this volume fraction ¢ are almost Gaussian on length scales larger than the
correlation length &. The fluctuations of the network strands at preparation conditions are
suppressed by the tube with diameter aq (see the green line for n > N in fig. 6). The RNST
end-to-end vectors of the network strand sections are proportional to n'/? on length scales
exceeding the tube diameter, because, on these scales, the chain sections can be described
as a random walk with the primitive steps of size ag (see the second section of solid green

line in fig. 6).

el

Figure 6: Dependence of the RNST end-to-end vector R(n) (solid lines) and root-mean-
square fluctuation size R(n) (dashed lines) of the strand sections on the number n of their
monomers in the entangled network at preparation conditions (green) and in the swollen
state (magenta). Axes are logarithmic.

We will then extend the non-affine tube model!? to describe the swelling of an entangled
polymer network to the polymer volume fraction ¢ (< ¢p). With a decrease in the polymer
volume fraction, the correlation length ¢ increases, and the entanglement strands swell. On

length scales larger than the correlation length &, the root-mean-square fluctuation size d R(n)

16



of the strand section is proportional to the square root of the number of its monomers n, see
the middle section of the dashed magenta line in fig. 6. At n < N,g, the RNST end-to-end
vector R(n) of strand sections increases linearly with the number of monomers n in these
sections, see the left part of the solid magenta line in fig. 6. The smallest sections of strand,

the fluctuations of which are restricted to a tube of size
a ~ 6R(Nug) ~ € (Nug/9)"/?, (11)

are affine strands, see the right end of the middle section of the dashed magenta line in fig.
6. The RNST end-to-end vector of longer sections, n > N,g, follows a primitive random
walk path and deforms affinely, see the right section of the solid magenta line in fig. 6. The

tube diameter is determined by the RNST end-to-end vector of the entanglement strand,

NeO

a ~ R(Ny) ~ )\Ro(Naff)N -

(12)

see the solid magenta line in fig. 6 at n = Ny. Here, Ro(Nag) = &(Nag/g0)/? is the RNST
end-to-end vector of a strand subsection containing N, Kuhn monomers at the preparation
conditions. By using the two expressions for the tube diameter, eqs. (11) and (12), the

number of monomers N,g of the affine strands is derived as

Nag & X8 Neg (13)

and the tube diameter is

a ~= A1, (14)

This implies that the tube diameter a does not change affinely with the linear extension ratio

A, but has a weaker dependence. The modified Panyukov expression, eq. (8), predicts that

17



the shear modulus of swollen entangled gels is

G(o) ~ o—kyr ORolDu)

b3 N, aff a?

kT
Nt e (15)

see the orange dashed line at ¢ < ¢ in fig. 5b, where N, is the number of monomers of
entanglement strands in the melt.

The intersection of the RNST end-to-end vector and the mean square fluctuation size
gives the tension blob size & ~ A\/q,, see the intersection of solid and dashed magenta
lines in fig. 6. The number of monomers in the tension blob ¢, ~ A ~%®N., decreases
upon network swelling. In contrast to unentangled networks (as well as entangled networks
in #-solvents), the size of tension blobs increases, albeit weakly, as the polymer volume
fraction decreases upon swelling. This apparent anomaly results from an increase in g; due
to swelling (~ ¢~'/®), which is stronger than a decrease in g, due to (swelling-induced)
stretching (~ ¢*/%%). The shear modulus can be also represented as kg7’ per tension blob,
ksTo/(b3g:), see eq. (15), as in the case of swollen unentangled networks, see also discussion
below eq. (9).

The correlation length &€ ~ b¢~—3/* increases upon swelling with a larger negative exponent
of the polymer volume fraction (~ ¢~3/%) than the tension blob size &. The two length scales
become comparable, £(¢) ~ &, at swelling equilibrium

gbeq ~ ¢ON_24/35- (16)

em

At swelling equilibrium, the osmotic pressure due to the excluded volume interactions be-

tween strands in the network is balanced by the elastic stress of the network®*. In this case,

4Note that since the number of Kuhn monomers in the entanglement strand Ng,, ~ 30, the maximum
swelling is limited by entanglements to ¢o/¢eq ~ Nﬁ,‘;/ 3 10 with the highest equilibrium linear expansion
factor Aeq ~ N(%SE) ~ 2. Polyelectrolyte gels swell much more because counterions exert a much higher

osmotic pressure.

18



the shear modulus is written as

kgT
Gea = Now /261" (7

2.3 Disentanglement crossover upon swelling

There is an interval of the number of monomers of network strands, Nyg < Ny < N9,
in which the networks that were entangled at preparation conditions change their elastic
response upon swelling to that of unentangled gels (see the lower section of the magenta line
in fig. 3). The crossover to unentangled regime occurs because upon swelling, the stiffness
of the topological potentials, kgT'/a? ~ ¢''/?*  decrease more steeply than the stiffness
of the potentials due to crosslinks, kgT/(6R?(Ny)) ~ ¢*. With the degree of swelling
corresponding to this crossover, the number of monomers N,g in the affine strand becomes
as large as the number of monomers Ny in the network strand, A\ =~ (Ny/Ne)®/®, see eq.

(13). The polymer volume fraction at the entangled-unentangled crossover upon swelling is

Ge ~ P (NeO/Nx)24/5 ; (18)

as shown by the lower part of the magenta line in fig. 5a. Our present model thus predicts
a change in the scaling exponent of the dependence of the shear modulus on the polymer
volume fraction ¢ upon swelling from 19/24 ~ 0.79 in the entangled regime, ¢. < ¢ < ¢y,
down to 7/12 ~ 0.58 in the unentangled regime, ¢ < ¢, at the disentanglement crossover,
see the change in the slope of the brown line at ¢, in fig. 5b and egs. (9) and (15).
There is a larger change of the dependence of the shear modulus on the volume fraction ¢q
at the preparation conditions at the disentanglement crossover from the scaling exponent

35/24 ~ 1.46 to 5/12 ~ 0.42, see the light green line in fig. 7b as well as egs. (9) and (15).
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Figure 7: Diagram of regimes (a) and dependence of the elastic modulus G on the polymer
volume fraction ¢y at the preparation conditions (b) in an athermal solvent. The black
dashed curve represents preparation conditions ¢ = ¢y. The crossover line between the
unentangled (‘U’) regime and the entangled swollen/deswollen (‘ES’ and ‘ED’) regime is
shown by the magenta line. The polymer volume fraction on the unentangled-entangled
crossover at preparation conditions is ¢g = (Newm/Ny)*°. The polymer volume fraction ¢e,
and the elastic modulus G(¢eq) in the swelling equilibrium are shown by the cyan lines in a
and b, respectively.

3 Deswelling of polymer gels

3.1 Unentangled regime (N, < Ney)

If the number N, of monomers in network strands is less than the number N, of monomers
of entanglement strands in the melt, the constraining effect of the crosslink potential on
fluctuations of network strands prevails over the effect of the topological potential, see the
region at Ny, < Ny in fig. 5a. In this case, the network is unentangled for all volume
fraction ¢, including the dry state, ¢ = 1, regardless of the preparation concentration ¢y. The
fluctuations of strands decrease with increasing polymer volume fraction due to a decrease
in the correlation length &. The fluctuations of network strands are suppressed primarily by
the crosslink potentials, see fig. 8a. The shear modulus of these networks with unentangled
strands is thus given by eq. (9) for both swelling and deswelling, see the dark green curve

in fig. 5b.
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Figure 8: Dependence of the RNST end-to-end vector R(n) (solid lines) and the root-mean-
square fluctuation size dR(n) (dashed lines) of strand sections on the number n of their
monomers in the deswollen network that was unentangled at preparation conditions and is
in (a) the unentangled regime and (b) the entangled deswollen regime at final conditions.
The green and magenta lines show the corresponding values at the preparation conditions
and in the deswollen network. Axes are logarithmic.

3.2 Entangled regime (N, > Ny)

The networks were entangled at preparation conditions if the number of monomers N, in
the network strand is larger than the number of monomers Ny in the entanglement strand
at the preparation volume fraction ¢o. With increasing the polymer volume fraction upon
network deswelling, neighboring strands approach to each other. The fluctuations of strand
sections are suppressed due to the topological interactions with their neighboring strands, see
fig. 9a. The topology of the network was fixed by crosslinking and thus the number Ny of
monomers per entanglement strands, which represents entanglements trapped at preparation
conditions, remains constant. The situation, in which the concentration of overlapping chains
increases at a fixed polymer topology is similar to the case of concentrated solutions of non-
concatenated ring polymers. Unlike trapped entanglements of networks, the “entanglements”
between rings are only transient and cannot transmit elastic stress. The fluctuations of rings
in melts differ significantly from Gaussian fluctuations of linear polymer chains due to the
presence of the transient entanglements.171%

The Kavassalis-Noolandi criterion suggests that network sections composed of n monomers
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Figure 9: A chain section of a network is ideal in prepration conditions (a) and forms fractal
loopy globules upon network deswelling (b). This is an example of a network that was
entangled in preparation conditions and the fractuation of the chain section is confined by
the tube of diameter ay. Upon deswelling, the tube diameter changes to a. The chain section
is still ideal for the length scales smaller than the tube diameter ag, of a solution of the same
concentration. The chain section form a fractal loopy globule in the length scales between
aso and a.

are entangled if the overlap parameter of these sections®

_ G6R*(n)
_#B)

O(n) (19)

1/2 : o .
Naf2.2021 According to this criterion, transient entanglements are

is larger than the number
not significant for strand sections composed of n monomers at n < No(¢) (= Nem¢ ™). On
length scales smaller than the smallest length scale ag, (@) of transient entanglements, strand
sections consisting of n monomers thus swell at n < g and are Gaussian at g < n < Ny(¢)
(see the two left sections of dashed magenta line in fig. 10), as in the case of unentangled

networks, see sec. 3.1. Transient entanglements are only significant at n > N.(¢) (at the

volume fraction ¢ > ¢y). The fractal loopy globule model predicts that the fluctuation size

5For network strands composed of non-spherical Kuhn monomers, the overlap parameter is generalized
to

_ ¢IR*(n)
T o

O(n)
The Kavassalis-Noolandi number is 3 NA.2 /p.
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of transiently entangled strand sections is determined from the condition of the saturation
of the overlap parameter O(n) at n > N,(¢).'"® The last condition describes fluctuations

of fractal loopy globules on length scales as, < IR(n) < a
SR(n) ~ age (n/N)'? (20)

where ago (= aem¢_3/ 1) is the tube diameter of polymer solution of the same volume fraction

¢ (with the tube diameter in melts, ae, = bNelr{f).

soll "~ °

Figure 10: Dependence of RNST end-to-end vector (solid lines) and root-mean-square fluc-
tuation size (dashed lines) of strand sections in deswollen networks that were entangled at
preparation conditions on the number n of their monomers. The quantities at preparation
conditions and for the deswollen networks are shown by the green and magenta lines, respec-
tively. Axes are logarithmic.

Sections of network strands composed of n monomers form fractal loopy globules at
N, < n < N, see the third section of the magenta dashed line with slope 1/3 in fig. 10.
Fluctuations of strand sections with n > Ny occurs along the confining tube (breathing
modes) with §R(n) ~ n'/*, see the fourth section of the magenta dashed line at n > N in
fig. 10. The number of monomers N,g¢ in the affine strand of deswollen entangled networks

Ngg does not depend on the degree of deswelling. The tube diameter is thus a ~ Aag and it
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changes affinely with the network deswelling, ¢ compare the right parts of green and magenta
dashed lines in fig. 10.

The RNST end-to-end vector of chain sections increases linearly with the number n of
monomers of this section, if it is shorter than the length of the trapped entanglement strand,
n < N, and increases proportionally to the square root of n for n > N (see the solid green
and red lines in fig. 10). For n > Ny, the RNST end-to-end vector of the sections changes
affinely with the network deswelling. Thus, the shear modulus of the deswollen entangled

network increases linearly with the polymer volume fraction

¢ (ARo(Neo))?
]\/Yeob3 a?

kEgT 54
b3Nem 0/ ¢7 (21>

G(9)

Q

kgT

see the right dotted section of the brown line at ¢ > ¢q in fig. 5b. The RNST end-to-end
vector of the entanglement strand at the preparation conditions is equal to its fluctuation
size, Ro(Neo) = by Y SNelo/ ? (see intersection of green solid and dashed lines in fig. 9). The
overlap parameter of network strands is equal to the Kavassalis-Noolandi number, Nelr{f,
already at preparation conditions. Therefore, at ¢ > ¢, the entanglement strands form
fractal loopy globules, see figs. 3 and 9. The window of length scales from ag, to a, for
which strand sections form fractal loopy globules, enlarges with increasing polymer volume

fraction ¢.

3.3 Entanglement crossover upon deswelling

Consider the case when the number of monomers N, in the network strand is smaller than the
number of monomers N in the entanglement strand under preparation conditions, but larger
than the number of monomers N, in an entanglement strand in the melt, No, < N, < Ng.

The width of this interval scales as Neo/Nem = ¢ /4 and is larger than the width of the

6Tt is not the case for networks deswollen in §-solvents (see Appendix A).
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disentanglement interval N$4/Nyy ~ Nelrf for ¢g < Ne}f/ ¥ At preparation conditions,
the overlap parameter of network strands is smaller than the Kavassalis-Noolandi number
N2 and the network is thus unentangled. The overlap parameter increases with increasing
polymer volume fraction ¢ upon deswelling as O(Ny) ~ ¢dR*(Ny)/(b°Ny) ~ ¢*/ SN2 where
the fluctuations of the network strand are dR(Ny) =~ quS*l/SNiﬂ. As long as the number
of overlapping network strands is lower than the Kavassalis-Noolandi number Nelrf, the
fluctuations of network strands with the number n of monomers, g < n < N, are Gaussian,
see the right section of the magenta dashed line in fig. 8a. The network is thus unentangled
in this regime and its shear modulus is given by eq. (9).

If the number of overlapping network strands reaches the Kavassalis-Noolandi number
Ngn/?, these strands form fractal loopy globules on length scales larger than the tube diameter
aso1 Of a polymer solution with the same volume fraction ¢. The polymer volume fraction at

the crossover between the unentangled and entangled regimes, determined by the condition,

O(Ny) =~ 2/8N>1/2 ~ Nelf, is
Ge = (Nem/NX)4/5 (22)

as shown by the upper part of the magenta line in fig. 5a. The sections of network strands

are unentangled at n < N, (the second part of the magenta dashed line in fig. 8b) and form

fractal loopy globules at N, < n < Ny (the third part of the magenta dashed line in fig. 8b).
Because, in the latter regime, the fluctuations of network strands are § R(Ny) ~ ago1(Ny/Ne)'/?,

see eq. (20), the shear modulus of deswollen networks varies linearly with the volume fraction

of the gel

kgT 5/12

G(¢) =~ _N3/3Nelr{l3b3 0

¢, (23)

see the light dotted green line of fig. 5b. Note that whether networks were entangled

or unentangled in preparation conditions results in the significant difference in the scaling
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exponents 5/4 = 1.25 and 5/12 ~ 0.42 that describe the dependence of the shear modulus
on the polymer volume fraction in the preparation conditions ¢, in the entangled deswollen
regime, see the orange and brown dotted lines in fig. 7b and also egs. (21) and (23).
This difference reflects the strong dependence of the tube diameter on ¢y under entangled
preparation conditions.

The fluctuations d R(Ny) of network sections are suppressed by transient entanglements
in the entangled deswollen regime, and network strands are Gaussian on length scales larger
than correlation length in the unentangled regime. The fluctuations dR(Ny) of network
strands do not depend on the polymer volume fraction ¢, at preparation conditions because
they are determined only by the number of overlapping strands at the final condition, see
eq. (19). The dependence of the elastic modulus on ¢, in the entangled deswollen regime,

eq. (23), is therefore the same as that in the unentangled regime, see eq. (9) and fig. 7b.

4 Discussion

There are three regimes of polymer network elasticity: the unentangled (U), entangled
swollen (ES), and entangled deswollen (ED) regimes, see figs. 5 and 7, with different scaling
exponents ko and x that represent the dependence of network shear modulus, G' ~ ¢;° 9",
on the volume fractions ¢g at preparation conditions and ¢ at final conditions. The non-
affine loopy tube model predicts the disentanglement crossover, in which networks that were
entangled at preparation conditions (Ney < Ny) become unentangled upon network swelling
if Ny < Ng4. It also predicts the entanglement crossover, in which networks that were un-
entangled at preparation conditions (N, < Ng) become entangled upon network deswelling
if Ny > Ngn. There are four scenarios of crossovers between different regimes by changing
the polymer volume fraction ¢ of the polymer network, see dark green, light green, brown,
and orange lines in fig. 5a. There are three crossover scenarios by changing the polymer

volume fraction ¢g at the preparation conditions of polymer networks; see dark green, light
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green, and brown lines in fig. 7a. The predictions of this model can be tested experimentally
(or via simulations) by detecting the disentanglement and entanglement crossovers and by

measuring the scaling exponents in each of the corresponding regimes.

4.1 Entanglement crossover

The entanglement crossover upon deswelling was detected by experiments and simulations
on end-linked networks of tetra-PEG.?22* The simulation results by Asai et al.?* are in good

agreements with the function
1/k

g&)) B <¢£) ” (f)] 7 (24)

describing the crossover between the unentangled gel regime (U - eq. (9)) and the entangled

deswollen regime (ED - eq. (23)), see fig. 11b. The polymer volume fraction at the entan-
glement crossover is estimated to be ¢, = 0.46 by fitting eq. (24) to the simulation data.?*
This estimate is close to the value ¢, ~ 0.4 obtained by using eq. (S22’) in the Supporting
Information with N, = 100 and N, = 30. The fitting parameter k is estimated to be 5.0,
implying that the crossover is rather sharp. The entanglement crossover can be detected
experimentally upon deswelling polymer networks from the preparation conditions between
polymer overlap and entanglement folume fractions ¢* < ¢g < ¢¢o up to the dry state, ¢ = 1,
as long as one uses polymers that do not crystallize or become glassy in the dry state.
Katashima and coworkers measured the dependence of the elastic modulus G(¢) of tetra-
PEG in an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, on the polymer vol-
ume fraction ¢. This experiment revealed that the exponent x that represents the dependence
of G(¢) on ¢ increases from =~ 0.56 upon small deswelling to approximately unity for stronger
deswelling, which is consistent with our prediction of the entanglement crossover, see sec.

S4.1 and Figure S4 in the Supporting Information.
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Figure 11: Dependence of the elastic modulus G(¢) of a deswollen network on polymer
volume fractions ¢. The network was prepared at the polymer volume fraction ¢y = 0.91¢*
(the overlap polymer volume fraction is estimated as ¢* = 0.07 by using the Daoud-Cotton
theory?® for the 4-arm star polymers composed of 200 beads in an athermal solvent). The
points represent simulation data by Asai et al.,>* which are fitted by eq. (24) with the
crossover exponent k£ = 5.0. Solid lines show the limiting scaling dependences G(¢) in
different regimes. The polymer volume fraction at the entanglement crossover is estimated
to be ¢ = 0.46 by fitting the simulation data with eq. (24).
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4.2 Disentanglement crossover

The maximum extent of network swelling is limited by the volume fraction ¢, at equilib-
rium swelling. Thus, the equilibrium volume fraction of well-entangled networks is only
on the order of one decade lower than preparation volume fraction ¢o/deq =~ NEY3 L 10.
The non-affine tube model (which is equivalent to the non-affine loopy tube model in the
description of network swelling) predicts that the disentanglement crossover is rather broad
and truncated by the equilibrium swelling.?” A much wider region of the disentanglement
crossover can be explored by chemically attaching dangling polyelectrolytes to crosslinks in
polymer networks. Dangling polyelectrolytes are elastically ineffective and do not contribute
to the elastic energy of the network, while the osmotic pressure is increased by counterions
entrapped by electrostatic interaction with dangling polyelectrolytes, as in the case of the

molecular stent technique. 32
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Figure 12: a. The uni-axial stretching of a polymer network by the stretching ratio A,
in the z-axis. Because of the incompressibility of the system, the network is stretched by
the stretching ratios A, and A, in the z- and y-axes, respectively. b. An example of the
Mooney plot of the force-extension relationship of the polymer network (the data is extracted
from ref.?8). 0., is the normal stress in the z-axis and o,, is the normal stress in the a-
axis. ¢. Dependence of the dimensionless ratio of Mooney-Rivlin constants Cy(¢)/C1(¢) on
the polymer volume fraction ¢. Solid lines were obtained using the non-affine tube model
to describe a network prepared in melt (¢9 = 1).%” Symbols show experimental data for
rubbers?® swollen in benzene (red squares), carbon tetrachloride (blue circles), petroleum
ether 60/80 (purple x), nitrobenzene (black +), decane (green diamonds). The inset shows
the dependence of the dimensionless ratio Cy(¢)/C3(1) on the polymer volume fraction ¢.
Experimental data are shown by the symbols: circles,?* filled squares,3’ and filled diamond. 3!
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The contribution of the trapped entanglements to the network elasticity can also be
derived from the analysis of the force-extension relationships of polymer networks under the
uni-axial deformation. Consider a network that was entangled at the preparation conditions,
swollen in a #-solvent to the polymer volume fraction ¢ and then uni-axially stretched in the
z-direction by the extension ratio A,, see fig. 12a. On time scales shorter than the hydrostatic
pressure relaxation time, the gel can be considered incompressible, A\, = A\, = \: 2. Both
the phantom and affine network models predict that the normal stress difference 0., — 0.,
(where 0., and o0,, are the normal stresses in z- and z-directions, respectively) is proportional
to A2— A1, In the Mooney-Rivlin plot, the ratio of the normal stress difference to the factor
A2 — X1 plotted as a function of the inverse extension ratio A;!, highlights the deviation
of the experimental results from predictions of the phantom and affine network models.
The Mooney-Rivlin coefficients C1(¢) and Cy(¢) are derived by fitting the data by the

phenomenological equation®

2C5(¢)
A

Ozz — Ogg
~2C1(¢) +

A2 — A\t (25)

see fig. 12b. The coefficient Cy(¢) is zero for phantom and affine network models and thus
reflects the degree of the non-affine deformation of entangled networks. 426 The disentangle-
ment of the network upon its swelling can be characterized by two dimensionless ratios of
the Mooney-Rivlin coefficients Cy(¢)/C1(¢) and Co(¢)/Ci(1). As seen from fig. 12c, these
ratios decrease with decreasing polymer volume fraction ¢ and may vanish before gel reaches
its equilibrium swelling. This means that even if the network has been entangled under
the preparation conditions, the effect of crosslinks can dominate the effect of the trapped
entanglements upon network swelling. Note that Cy(¢) vanishes upon swelling only for a
rather narrow range of the parameter Ny/Ngy in the diagram in Fig. 3, while in the case of

Ny > N&4, C9(¢) remains finite for any polymer volume fraction ¢ > ¢e.
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4.3 Scaling exponents of the dependence of the elastic modulus on

initial and final polymer volume fractions

The Flory-Rehner model' assumes that network strands are Gaussian and thus it describes
well the unentangled networks in a 6-solvent. Although the Flory-Rehner model is also
often used to describe the elasticity of networks in a good solvent, network strands in such
networks are substantially non-Gaussian due to the excluded volume interactions between
their monomers. Panyukov has developed an extended model (here we call it the scaling
model) that takes into account the swelling of network strands in a good solvent, using the
scaling theory.!? Neither trapped nor transient entanglements are taken into account in this
model. All the models of unentangled networks discussed in this paper are equivalent to the
Flory-Rehner model for networks in a #-solvent and the scaling model for networks in a good

solvent, see the green filled circles in fig. 13 and also sec. 2.1 and 3.1.

Table 1: Scaling exponents k and x of the dependence of the shear modulus, G(¢) ~ ¢;°¢",
on the initial concentration ¢y and the final concentration ¢ for polymer networks in good
solvent for unentangled (U), entangled swollen (ES), and entangled deswollen (ED) regimes.
The kg-exponent in the ED regime is given for networks unentangled at the preparation
conditions (ED/U), and networks entangled at the preparation conditions (ED/E). ‘Affine
tube (S)” and ‘Non-affine tube (S)’ are extensions of the affine and non-affine tube models,
taking into account intra-strand excluded volume interactions.

Ko K
Model U ED/U ED/E ES | U ES ED
Non-affine loopy tube 0.44 1.3 1531056 0.78 1
Lattice animal'! 0.44 12 198 056 |11
Non-affine tube (S)* | 0.4 | 1.1 | 153 [0.56 0.78 1.2
Affine tube (S)! 044 - | 198 0.56 |
Scaling 1 0.44 - - - 1056 - -

There are several approaches to describe the trapped and transient entanglements:

e The affine tube model takes into account the trapped entanglements by using the topo-
logical potential with the stiffness independent of network deformation, and assumes
that neither additional trapped nor transient entanglements are produced upon net-

work deswelling.*” The predictions of the affine tube model for the dependence of the
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Figure 13: The scaling exponents kg (a) and x (b) of the dependence of the shear modulus,
G(p) ~ ¢3°¢", on initial polymer volume fraction ¢y and final polymer volume fraction ¢
for polymer networks in an athermal solvent (upper) and 6-solvent (lower), see tables 1 and
2. Exponents for the unentangled (‘U’), the entangled swollen (‘ES’), and the entangled
deswollen (‘ED’) regimes are shown by green, yellow, and orange filled circles, see also fig. 5
as well as tables 1 and 2. The ko exponents depend on whether the networks were unentangled
(‘/U’) or entangled (‘/E’) at the preparation conditions for the entangled deswollen regime,
and are shown in red and orange filled circles, respectively.

KO LK

Table 2: Scaling exponents, k¢ and &, of the dependence of the shear modulus, G(¢) ~ ¢3°¢",
on the initial polymer volume fraction ¢, and the final polymer volume fraction ¢ for polymer
networks in a 6-solvent predicted by the non-affine loopy tube model and other models
for unentangled (U), entangled swollen (ES), and entangled deswollen (ED) regimes. The
ko-exponent at the ED regime is given for networks that were unentangled (ED/U) and
entangled (ED/E) at the preparation conditions.

) K
Model U ED/U ED/E ES| U ES ED
Non-affine loopy tube 2/3 14/9 5/311/3 2/3 7/9
Lattice animal!! 2/3 10/7 2 1/3 | 19/21
Non-affine tube 2 2/3 | 1 15/3[1/3 2/3 4/3
Affine tube™!! 2/3 - | 2 1/3 |
Flory-Rehner! 2/3 - - - 1 1/3 - -
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elastic modulus on the polymer volume fraction ¢ in the entangled regimes are the

same as in the unentangled regime, see fig. 13 and tables 1 and 2.

e The lattice animal model is equivalent to the affine tube model in describing the trapped
entanglements in swollen entangled networks and suggests that network strands of
deswollen networks fold into the lattice animal conformations due to transient entan-
glements, 1! which corresponds to the conformations of entangled rings in the array of

fixed obstacles'®16

e The non-affine tube model takes into account the dependence of the stiffness of the
topological potential on the network deformation and is equivalent to the non-affine
loopy tube model in the treatment of the trapped entanglements in swollen entan-
gled networks.!? In this model, it is assumed that the conformations of entanglement
strands are Gaussian on the length scales between the correlation length ¢ and the

tube diameter a for both swollen and deswollen networks.

The elastic modulus predicted by the non-affine tube and non-affine loopy tube model
decreases stronger upon the network swelling than the elastic modulus predicted by the affine
tube model and the lattice animal model. This stronger decrease is due to the softening of
the topological potential predicted by the non-affine tube and non-affine loopy tube models
and is caused by the increasing distance between network strands upon gel swelling. The
difference in the x exponent between the two classes of models is more noticeable in the
f-solvent than in the good solvent conditions, see yellow circles in fig. 13 and tables 1
and 2. This difference can be experimentally measured and can serve as a criterion for the
applicability of different models, because the exponent k predicted by the non-affine loopy
tube and non-affine tube models is twice as large as that predicted by the affine tube and
lattice animal models. The exponent x( predicted by the non-affine loopy tube and non-
affine tube models also differs from the case of the affine tube and lattice animal models due

to the dependence of the topological potential on the swelling ratio A (= (¢o/¢)/?), but the
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difference is smaller, see yellow circles in fig. 13b and tables 1 and 2.

The non-affine loopy tube, non-affine tube, and lattice animal models predict that net-
works that were unentangled at preparation conditions become entangled upon network
deswelling, while the affine tube model does not predict such a crossover. The non-affine
loopy tube and lattice animal models assume that entanglements produced upon network
deswelling are transient, whereas the non-affine tube model assumes that additional trapped
entanglements are produced by network deswelling. Due to the creation of trapped entan-
glements, the exponent kg predicted by the non-affine tube model is 2.5 times larger in the
entangled deswollen regime than in the unentangled regime under the good solvent condi-
tion, see fig. 13b and table 1. In contrast to trapped entanglements, transient entanglements
are not fixed by crosslinking during the preparation of the network, and the fluctuations of
network strands, constrained by the transient entanglements, are determined solely by the
number of overlapping strands at the final conditions. Thus, the exponent x predicted by
these models is the same in the unentangled and entangled deswollen regimes if the networks
were unentangled at preparation conditions, see also the discussion in the last paragraph of
sec. 3.3.

In the entangled deswollen regime, the exponent kg predicted by the non-affine tube
model is independent of whether the networks were unentangled or entangled at preparation
conditions, because the effect of these additional trapped entanglements produced by network
deswelling dominates over the effects of the entanglements formed at preparation conditions
and crosslinks. In contrast to the effect of trapped entanglements accounted for in the
non-affine tube model, the transient entanglements predicted for a good solvent by the non-
affine loopy tube model (and the lattice animal model) result in a scaling exponent kg,
which is 3.0 times (and 2.7 times) larger for networks that were entangled at preparation
conditions, compared to networks that were unentangled at these conditions, see red and
orange circles in fig. 13b and table 1. The difference in the scaling exponent k¢ between

networks that were unentangled and entangled at preparation conditions reflects the fact
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that the entanglements produced by network deswelling are transient in the non-affine loopy
tube and lattice animal models: potential due to crosslinks (for the networks that were
unentangled at the preparation condition) or topological potential (for the networks that
were entangled at the preparation condition) still restricts fluctuations of strands in networks
in entangled deswollen regime, see figs. 8 and 10. These features of transient entanglements
versus trapped entanglements can be observed by measuring the dependence of the elastic
modulus on the polymer volume fraction ¢q at preparation conditions.

The non-affine loopy tube model predicts that the exponent k to be unity in entangled
deswollen regime under good solvent condition, see the top orange circle in fig. 13a and table
1. This prediction is consistent with simulations and experiments on tetra-PEG gels. 2?24
In entangled deswollen regime in a good solvent, the exponent k predicted by the non-
affine loopy tube model is 1.8 times greater than that predicted by the affine tube model,
while the difference in the exponent s between the non-affine loopy tube, non-affine tube,
and lattice animal models is only 10 - 20 %, see orange circles in fig. 13a and table 1.
The 60 % difference in the exponent k between the non-affine tube and non-affine loopy
tube models in the deswollen entangled regime in a 6 solvent makes it possible to check
which model is closer to simulations and experiments, see the corresponding orange circles
in fig. 13 and table 2. It will be more difficult to separate the two transient entanglement
models and to experimentally test whether the strands in deswollen networks adopt the
fractal loopy globlue or lattice animal conformations, since the predictions of these models
for the exponent & in the entangled deswollen regime are within 16 % in a #-solvent. It may
be necessary to investigate the strand conformations directly, either by simulations or by

scattering experiments.

4.4 Uniaxial extension of entangled deswollen networks

The network and entanglement strands form fractal loopy globule in the entangled deswollen

regime. In secs. 3.2 and 3.3, we derived the elastic modulus of networks in this regime. At the
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next step, it is of interest to theoretically predict the stress-strain relationship of deswollen
entangled networks under uniaxial (and biaxial) extension. The number of monomers N, in
the affine strands of the network that was unentangled in the preparation condition does not
change upon deformation, see sec. 3.3. Network strands are extended like entangled rings
in non-linear flows of solutions or melts:333¢ tension blobs are developed in network strands
under uniaxial extension. Network sections composed of n monomers form fractal loopy
globules on scales larger than tension blobs for g; < n < Ny due to transient entanglements.

The maximal extension of strands in the network deswollen to the polymer volume frac-

tion ¢, is estimated as®!

¢ 1/ bNaff
AInax ~ - PN
&) 20)

where N,g is the number of monomers in the affine strand oriented in the stretching direction.
N.g = Ny for a network that was unentangled in the preparation condition. Urayama and
Kojiya determined the maximal extensibility of an end-linked PDMS network prepared from
the precursor chains of the molecular weight 9.9 x 10% g/mol in a good solvent with polymer

1.38 By using eq. (26), the maximal extensibility Ay.x of the network is

volume fraction 0.
estimated to be 27, which is consistent with the experimentally determined value of 25.1!
The number of monomers N, in the affine strands of a network that was entangled in
the preparation condition depends on the network deformation, because trapped entangle-
ments can slide along the chains. The distribution of trapped entanglements, and thus the
number of monomers N, in affine strands, is determined by the competition between the
elasticity of the entanglement strands and the entropy of the trapped entanglements.3” In
ref.,!! the maximal extensibility of networks deswollen to the dry state was estimated as
Amax = Nelqu 087 by assuming Nag =~ Ne(¢), see eq. (26). However, in the general case,
N,g is a function of A\« due to the redistribution of the trapped entanglements, and there-

fore, it is necessary to extend the non-affine loopy tube model in order to take into account
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the sliding of trapped entanglements.

5 Conclusion

We have proposed and developed the non-affine loopy tube model that predicts the elasticity
of swollen and deswollen networks. This theory takes into account three main mechanisms
of elasticity of polymer networks: the crosslinks, trapped entanglements, and transient en-
tanglements. Entanglements trapped at preparation conditions do not disappear with the
subsequent deformation of the network but their effect decreases upon network swelling.
Transient entanglements fold network strands into fractal loopy globules'” and do not trans-
mit elastic stress in the network over long time scales. The non-affine loopy tube model
takes into account the fact that additional entanglements created upon network deswelling
are not trapped, but are transient.

There are three regimes of the network elasticity: (i) Elasticity is mainly due to the
crosslinks in the unentangled regime (‘U’ in figs. 5a), (ii) Elasticity dominated by the
trapped entanglements in the entangled swollen regime (‘ES’ in figs. 5a), and (iii) Net-
work strands are folded into fractal loopy globules due to the transient entanglements in
the entangled deswollen regime (‘DS’ in figs. 5a). Under preparation conditions, networks
are either unentangled at Ny < N, or are entangled at Ny > N.. Networks that were
entangled at preparation conditions at Ney < Ny < N$4 become unentangled upon network
swelling. This disentanglement crossover occurs because the effect of trapped entanglements
becomes weaker upon network swelling, as the neighboring chains move away from each
other, while the effect of crosslinks is independent of the network deformation. Networks
that were unentangled at preparation conditions at Ng, < Ny < N become entangled
upon network deswelling. This entanglement crossover upon network deswelling occurs due
to the transient entanglements produced as the neighboring chains approach each other upon

network deswelling. The disentanglement crossover upon network swelling and the entangle-
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ment crossover upon network deswelling can be observed experimentally by measuring the
dependences of the network modulus on final concentration ¢ (see figs. 5b) as well as on the
prepartion concentration ¢q (see Fig. 7b). Transient entanglements also appear in networks
that were entangled at preparation conditions upon network deswelling, and in this case the

dependence of the elastic modulus on the polymer volume fraction ¢ changes at ¢ = ¢y.

Supporting Information Available

The Supporting Information (“T'YMRsinglenetworkswellingver56revSI.pdf”) are available free
of charge: S1 Solvent conditions, S2 Networks deswollen in a #-solvent, S3 Dry modulus, S4

Comparison with experiments.
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