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Abstract

We have developed a scaling theory of the elasticity of swollen and deswollen polymer

networks. The elasticity of unentangled networks is primarily due to crosslinks, and

the elasticity of entangled networks is due to trapped entanglements. In preparation

conditions, the number of monomers Nx in strands of the unentangled network is less

than the number of monomers Ne0 in an entanglement strand while Nx > Ne0 for the

entangled network. A network weakly entangled at preparation conditions is predicted

to behave as unentangled network upon swelling. This “disentanglement” occurs due
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to the separation of neighboring strands upon swelling, which reduces the restrictions

on the fluctuations of strands due to their topological interactions with neighboring

strands. A network unentangled at preparation conditions is predicted to behave as

an entangled network upon deswelling if the number of overlapping network strands

exceeds the Kavassalis-Noolandi number. The entanglements produced by network

deswelling are transient and their number increases with deswelling, while the number

of trapped entanglements is fixed by crosslinking. The “entanglement” upon deswelling

and “disentanglement” upon swelling can be identified by measuring the concentration

dependences of the elastic modulus.

1 Introduction

In this paper, we consider polymer networks obtained by random crosslinking or end-linking

of an equilibrated semidilute polymer solution or melt. 1–3 In semidilute solutions in a good

solvent, the sections of polymer chains with the number of monomers n < g0 (g0 is the number

of monomers in the correlation volume) swell due to the excluded volume interactions between

monomers of the same chain and are Gaussian for n > g0, because these excluded volume

interactions are screened by neighboring chains. 4,5 We consider cases where polymer chains

are weakly crosslinked or end-linked, so that the average number Nx of Kuhn monomers

of the network strands between crosslinks is greater than g0. Under this assumption, the

conformations of polymer chains are only slightly perturbed upon network formation. In the

case of random crosslinking, the numbers of Kuhn monomers in network strands between

neighboring crosslinks are distributed exponentially. 6

The elasticity of polymer networks results from the suppression of fluctuations of polymer

chains by crosslinks and entanglements.3,4,7–9 The end-to-end vector R(n) of a chain section

consisting of n monomers

R(n) = ⟨R(n)⟩+ δR(n) (1)
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is the sum of its time average ⟨R(n)⟩ and the fluctuation size δR(n), defined as the instan-

taneous deviation of the vector R(n) from this average, see fig. 1a. Since the time average

of the fluctuation size is zero, ⟨δR(n)⟩ = 0, the time-average of the square of the end-to-end

distance of the segment can be written as the sum

⟨R2(n)⟩ = ⟨R(n)⟩2 + ⟨δR2(n)⟩. (2)

Below, we use the simplified notation for the root-mean-square fluctuation size

δR(n) =
√
⟨δR2(n)⟩. (3)

The time-averaged square fluctuation size δR2(n) of sections of dangling chains in a

network, as well as of chains in polymer liquids, monotonically increases with the number n

of monomers up to the chain size, see the blue dotted line in fig. 1b. The time average of the

end-to-end vectors of dangling chains is zero, ⟨R(n)⟩ = 0. These chains do not contribute to

the elasticity of the network and are therefore called elastically ineffective. Chains are called

elastically effective if their time-averaged end-to-end vectors ⟨R(n)⟩ are non-zero. Short

sections of elastically effective strands are only weakly affected by their connection to the

network, and their mean square fluctuation size at preparation conditions δR2
0(n) is almost

the same as in polymer liquids, see the green dashed line at n < Naff0 in fig. 1. The subscript

0 indicates preparation conditions. In contrast, the fluctuation size δR2
0(n) of longer sections

is suppressed by crosslinks and entanglements1, compared to fluctuations of free or dangling

chains, see the green dashed line at n > Naff0 in fig. 1b. The crossover between these two

regimes occurs at the affine strand n = Naff0. The number of monomers Naff in the affine

strand is determined by specific assumptions of molecular models of polymer networks and is

different in different models. It can be measured experimentally or by computer simulation

1For entangled networks, there is an intermediate regime, δR(n) ∼ n1/4, due to the longitudinal Rouse
motion of strand sections along the tube, see fig. 1b.
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by determining the number of monomers in the smallest linear section of a network that

deforms affinely with (proportional to) the macroscopic deformation of the network. Upon

network swelling, the number of monomers in the correlation volume and the number of

monomers of the affine strand change from g0 and Naff0 to g and Naff , respectively (compare

the green and magenta dashed lines in fig. 1b). Time-averaged end-to-end vectors of the

elastically effective chain sections with n > Naff monomers in the swollen network deform

affinely with (proportionally to) the macroscopic deformation of the network (compare the

green and magenta solid lines at n > Naff in fig. 1b).

The shear modulus of a network can be written as the sum over all sections i containing

Naff Kuhn monomers in the network with volume V 4

G(ϕ) ≈ kBT

V

∑
i

⟨Ri(Naff)⟩2

⟨δR2
i (Naff)⟩

≈ ϕ

vbNaff

kBT

[
⟨R(Naff)⟩2
⟨δR2(Naff)⟩

]
, (4)

Eq. (4) is valid for networks that have a single length scale R(Naff), above which they

deform affinely, such as networks prepared by crosslinking or endlinking precursor chains

with the same molecular weight. Hereinafter, we use ≈ to denote the scaling equality up to

a numerical constant of the order of unity. The average of a quantity A over all elastically

effective strands in a network is denoted by A. ϕ is the polymer volume fraction, vb is the

volume of a Kuhn monomer and, at the scaling level, it is on the order of b3, the cube of the

Kuhn length b.

For a weakly polydisperse network2, the mean square fluctuation δR2(n) of section size

does not significantly depend on the choice of the subsection. In such cases, the denominator

in the square bracket in the last form of eq. (4) can be taken out of the average over elastically

effective network sections. Then eq. (4) can be rewritten as

G(ϕ) ≈ kBT
ϕ

Naffb3
R2(Naff)

δR2(Naff)
, (5)

2This refers to a network in which the distribution of the number of monomers of network strands is not
multimodal.
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Figure 1: (a) Schematic representation of a polymer network at preparation conditions (left)
and in the swollen state (right). The network was prepared and swollen in an athermal
solvent. Dangling chains are shown by the blue dotted lines. (b) The root-mean-square
fluctuation size δR(n) ≡

√
⟨δR2(n)⟩ of the end-to-end vector of a section of the dangling

chain (blue dotted line) and of the elastically effective strand (dashed lines), as well as the

RNST vector R(n) ≡
√

⟨R(n)⟩2 of the elastically effective strand (solid lines) as functions of
the number of their monomers n. The quantities at the preparation conditions are indicated
by the subscript 0 and shown by the green lines. The quantities in the swollen state are
shown by the magenta lines. At preparation conditions, the correlation length is ξ0 and the
number of monomers in the correlation volume is g0. In the swollen state, the correlation
length is ξ and the number of monomers in the correlation volume is g. The number of
monomers in the affine strand at the crossover between the constrained and unconstrained
fluctuation regimes is Naff0 at the preparation conditions and Naff in the swollen state. Both
axes are logarithmic.
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by using the simplified notation

R(n) =

√
⟨R(n)⟩2. (6)

We are introducing the acronym RNST end-to-end vector for R(n), the root of the network

average of the square of the time-averaged end-to-end vector.

In the case of instantaneous crosslinking, the end-to-end vectors of chain sections com-

posed of Naff monomers are fixed by crosslinking at the magnitude of fluctuations in polymer

solution (compare the blue dotted line and the green lines fig. 1c). The affine strand deforms

affinely with the network deformation, R(Naff) ≈ λR0(Naff), where λ is the linear extension

ratio. In the cases of isotropic swelling or deswelling from preparation conditions with the

polymer volume fraction ϕ0 to the final volume fraction ϕ, the linear extension ratio λ is

λ = (ϕ0/ϕ)
1/3 . (7)

The shear modulus of a homogeneous polymer network can thus be rewritten in the modified

Panyukov form10

G(ϕ) ≈ ϕ

b3Naff

kBT
λ2R2

0 (Naff)

δR2(Naff)
. (8)

The fluctuations of strands in the network are restricted both because of their connectivity

to the rest of the network through crosslinks, and because of the topological interactions

between neighboring strands due to the fact that these cannot pass through each other (the

so-called entanglements). Networks are said to be unentangled if restrictions of fluctuations

by the crosslinks are more important than the topological interactions. Otherwise, they

are called entangled. There can be a wide crossover between these regimes, in which both

crosslinks and entanglements make a significant contribution to network elasticity. Below we

consider models for the limiting cases of unentangled (Nx ≪ Ne0) and entangled (Nx ≫ Ne0)

networks. We then study cases in which Nx and Ne0 are not very far from each other and,
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by swelling or deswelling, one can crossover between unentangled and entangled network

behaviors.

1.1 Models of unentangled polymer network

In the affine network model, the ends of network strands are fixed in space. It is instructive to

consider that these ends are attached to a non-fluctuating background that deforms affinely

with the network deformation, such as swelling.1,3,4 Due to the randomness of the network

connectivity, the positions of the attachment points of the ends of network strands to the non-

fluctuating background are random variables, over which the network averaging is performed

in eq. (4). The fluctuations of the ends of network strands are taken into account in the

phantom network model .2 The ends of the network strands in the phantom network model are

constrained by crosslink potentials, which represent the confinement of the ends of network

strands due to the elasticity of the rest of the network (blue strands in fig. 2a). The crosslink

potentials can be represented by Gaussian effective chains. One end of the effective chain

is connected to the end of the network strand, and the other end is attached to the non-

fluctuating background. The effective chains do not contribute to the network stress. The

number of monomers in the effective chain (light blue dashed lines in Fig. 2b) is proportional

to the average number of monomers Nx in the network strand, with a coefficient depending on

the functionality of crosslinks, and does not change upon network deformation. The number

of monomers Naff of affine strands thus scales proportionally to the number of monomers Nx

of network strands.

1.2 Models of swollen entangled polymer networks

Topological interactions between network strands due to their non-crossability are taken into

account in the tube models,4,7,11 which represent these interactions by topological potentials

that restrict the fluctuations of monomers of a network strand to a confining tube (fig. 2c).

Topological potentials can be represented by Gaussian virtual chains, one end of which is
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Figure 2: (a) In an unentangled network, the fluctuations of ends of network strands are
suppressed due to their connection to neighboring strands. (b) In the phantom network
model, the suppression of the fluctuations of network strands due to their connectivity to
the rest of the network is represented by effective chains (light blue dashed lines). These
effective chains connect crosslinks to the nonfluctuating background that deforms affinely
with network deformation. (c) In an entangled network, the fluctuations of a network strand
are confined by the tube (green dash-dotted lines) of diameter a due to the topological
interactions between this strand and the surrounding strands. (d) The effective topological
potentials acting on the network strand are represented by virtual chains (green dashed lines),
which connect monomers of the strand to the non-fluctuating background. The attachment
points (black “X”-s) of virtual chains to the non-fluctuating background are displaced affinely
with the network deformation.
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connected to the monomer of the network strand and the other end is attached to a point of

the non-fluctuating elastic background (see green dashed lines in fig. 2d). Unlike ordinary

potentials that are smoothly-varying functions of the monomer index, the topological poten-

tials have minima at attachment points of virtual chains, which are randomly distributed in

space.12

The simplest model of entangled polymer networks is the affine tube model .4,7,11 It as-

sumes that the stiffness of topological potential does not depend on the network deformation;

therefore, the effect of the topological potential can be described by introducing additional

crosslinks. In this model, the number of monomers Naff in the affine strands scales propor-

tionally to the number of monomers Ne of strands between adjacent entanglements, called

entanglement strands, and it does not change with network deformation. 7

More realistic models of entangled networks take into account the dependence of the topo-

logical interactions between entangled strands on their mutual overlap. With the network

swelling, its strands move away from each other, which leads to a decrease in the stiffness

of the topological potentials (and a corresponding increase in the number of monomers in

virtual chains and in affine strands). In the non-affine tube model, 12–14 the dependence of

the number of monomers of virtual chains on network deformation is determined by the self-

consistency condition: since virtual chains were introduced only to represent the effect of

topological interactions on conformations of network strands, they do not directly contribute

to the elastic stress of the network.12 The dependence of the number Naff of monomers in

affine strands on network deformation for various solvent conditions is discussed in Section

2 and Appendix A.

1.3 Models of deswollen entangled networks

Upon deswelling, the polymer volume fraction increases and network strands approach each

other. Therefore, the stiffness of topological potentials increases with the network deswelling.

The non-affine tube model assumes that strands remain Gaussian at all length scales from the
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correlation length to the tube diameter.12 With this assumption, the number of monomers in

the entanglement strand decreases with an increase in the polymer volume fraction. There-

fore, the non-affine tube model predicts that the number of effective entanglements increases

upon network deswelling. However, the number of entanglements depends on network topol-

ogy, which is fixed by crosslinking at network preparation conditions. In this paper, we

propose an alternative model for deswelling of entangled networks that takes into account

this constraint.

Fluctuations of network strands in a deswollen network are restricted by neighboring

chains due to the non-crossability of polymer chains. Non-concatenated rings in a concen-

trated polymer solution experience analogous topological restriction if the concentration of

the solution increases above the onset of entanglement while their non-concatenated ring

topology remains fixed.11 Such topological restrictions are called transient entanglements

and are qualitatively different from entanglements in polymer solution of overlapping linear

chains with Gaussian statistics conventionally described by tube models. In contrast to linear

polymers, the equilibrium conformations of overlapping ring polymers are not ideal Gaus-

sian. Originally, the lattice animal model was used to treat the transient entanglements

in solutions and melts of entangled non-concatenated overlapping rings 15,16 as well as of

deswollen networks.11 More recently, it has been suggested that entangled non-concatenated

rings form fractal loopy globules, in which the number of overlapping strand sections remains

constant on all length scales exceeding the tube diameter of the solution of linear polymers

at the same concentration ϕ.17,18

In this paper, we extend this description of transient entanglements between non-concatenated

rings to the case of polymer networks and propose a new non-affine loopy tube model that

takes into account the effects of crosslinks, trapped entanglements, and transient entangle-

ments on the elasticity of swollen and deswollen polymer networks. The main predictions of

our theory are

• Upon swelling, polymer networks that were entangled at preparation conditions expe-
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rience weaker topological potential and, in some cases, could undergo a crossover to

the unentangled regime (see 1 < Nx/Ne0 < N eq
e /Ne0 and the lower part of the magenta

ϕe/ϕ0 line in fig. 3).

• Upon swelling, the shear modulus of entangled gels decreases with decreasing the poly-

mer volume fraction ϕ stronger than expected by the affine tube model.

• Upon deswelling, the overlap of network strands increases, and transient entanglements

are formed, even if network strands were unentangled at preparation conditions (see

the upper part of the magenta ϕe/ϕ0 line in Fig. 3).

• Upon deswelling, the shear modulus of polymer gels in the regime of fractal loopy

globule due to transient entanglements depends more strongly on polymer volume

fraction ϕ than predicted by the phantom or affine tube model regardless of whether

the network was entangled at preparation conditions or not.

In section 2, we discuss swelling and in section 3 deswelling of polymer networks prepared

in athermal solvents. The results for other solvent conditions are summarized in Appendix

A. We only consider cases where the solvent added to swell polymer networks is the same

as in the conditions of network preparation. In section 4, we compare the predictions of our

model with other models, experiments, and simulations. The physics of deswollen networks

in a θ-solvent is described in Appendix B.

2 Swelling of polymer networks

2.1 Unentangled regime

Consider a polymer network prepared in an athermal solvent with a polymer volume fraction

ϕ0 higher than the overlap polymer volume fraction ϕ∗. If the number of (Kuhn) monomers

Nx in a network strand is less than the number of monomers in the entanglement strand at
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Entangled (deswollen)

Entangled (swollen)

Figure 3: The diagram of regimes of polymer gels in an athermal solvent (double logarith-
mic plot). The vertical axis is the polymer volume fraction ϕ (rescaled by the polymer
volume fraction ϕ0 at preparation conditions) and the horizontal axis is the average num-
ber of monomers Nx in network strands (rescaled by the number Ne0 of monomers in the
entanglement strand at preparation conditions). Preparation conditions with ϕ/ϕ0 = 1 are
shown with a dashed horizontal line. The dotted vertical lines correspond to Nx/Ne0 = 1 and
Nx/Ne0 = N eq

e /Ne0. Polymer gels are swollen by adding athermal solvent (ϕ/ϕ0 < 1) and
are deswollen by removing this solvent (ϕ/ϕ0 > 1). The polymer volume fraction ϕeq at the
swelling equilibrium is shown by the cyan line. The crossover ϕe/ϕ0 between entangled and
unentangled regimes is shown by the magenta line. The shear modulus is determined by the
contribution of crosslinks at ϕ < ϕe (in the unentangled regime - green), and entanglements
at ϕ > ϕe (in the entangled regime). In the entangled regime, on length scales larger than
the correlation length, the conformations of entanglement strands are Gaussian at ϕ < ϕ0

(yellow) and fractal loopy globules at ϕ > ϕ0 (brown). The crossover between the Gaussian
regime and the fractal loopy globule regime is shown by the black horizontal line.

12



preparation conditions Ne0 ≈ Nemϕ
−5/4
0 , the elasticity of the polymer network at preparation

conditions is mainly due to the restrictions imposed by crosslinks. Here and below, we use

the Flory exponent ν = 3/5 to describe fluctuations of strand sections in an athermal solvent

at small length scales3.4,5 At length scales smaller than the correlation length at preparation

conditions ξ0 ≈ bϕ
−3/4
0 , strand sections swell due to the excluded volume interactions between

monomers of the same strand,4,5 see the left section of the green dashed line in fig. 4. There

are g0 ≈ ϕ
−5/4
0 monomers in the correlation volume ξ30 . At length scales larger than ξ0,

the excluded volume interactions between monomers of the same strand are screened by the

overlapping network strands, and these strands can be described as ideal chains of correlation

blobs of size ξ0,4,5 see the right section of the green dashed line in fig. 4. The RNST end-to-

end vector at preparation conditions is R0(Nx) ≈ bϕ
−1/8
0 N

1/2
x .
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Figure 4: Dependence of the RNST end-to-end vector R(n), defined in eq. (6), (solid)
and the root-mean-square fluctuation size δR(n), defined in eq. (3), (dashed) of sections of
network strands on their number of monomers n at preparation conditions (green) and in
swollen unentangled gels (magenta). Axes are logarithmic.

With a decrease in the polymer volume fraction ϕ upon swelling, the correlation length

increases, ξ ≈ bϕ−3/4. The correlation volume ξ3 contains g ≈ ϕ−5/4 monomers. Therefore,

3In Appendix A, we extend the calculation to other solvents and to a more accurate value of this exponent.
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the fluctuation size of network strands increases to δR(Nx) ≈ bϕ−1/8N
1/2
x , which exceeds the

size of network strands at preparation conditions by the factor of λ3/8 (= (ϕ0/ϕ)
1/8). The

unentangled network strands deform affinely with the network deformation and, therefore,

stretch upon swelling. The RNST end-to-end vector R(n) of the strand section is a linear

function of its number of monomers n, (see the solid magenta line in fig. 4), while its

fluctuation size increases as the square root of this number n at n > g (see the right section

of the magenta dashed line in fig. 4). The intersection of these two lines determines the

size of the so-called tension blobs ξt ≈ bN
1/2
x ϕ1/12ϕ

−5/24
0 , containing gt ≈ Nxλ

−5/4 monomers

each. The shear modulus of the unentangled gel in athermal solvent has been derived by

Panyukov4,10 as

G(ϕ) ≈ kBT
ϕ

b3Nx

(λR0(Nx))
2

δR2(Nx)

≈ kBT

Nxb3
ϕ
5/12
0 ϕ7/12 (9)

see the green and light green lines at ϕ < ϕ0 in fig. 5b. The shear modulus can also be

represented as kBT per tension blob, kBTϕ/(b3gt).

The number of monomers in the affine strand of unentangled networks is proportional to

the number Nx of monomers of network strands. As the polymer volume fraction decreases

upon swelling, the correlation length ξ increases, whereas the size of the tension blob ξt

decreases. The two characteristic lengths eventually become comparable ξt ≈ ξ at the

equilibrium swelling19

ϕeq ≈ ϕ
1/4
0 N−3/5

x . (10)

The equality of these length scales implies that the osmotic stress is balanced by the elastic

stress in the network at the swelling equilibrium with the modulus Geq ≈ kBT/ξ
3
t .
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Figure 5: a. Diagram of regimes of polymer networks in an athermal solvent. The vertical
axis is the polymer volume fraction ϕ and the horizontal axis is the number Nx of monomers
in a network strand (double logarithm plot). The crossover line between the unentangled,
‘U’, and entangled swollen/deswollen regimes, ‘ES’ and ‘ED’, is shown by the magenta line.
The crossover line between the entangled swollen, ‘ES’, and entangled deswollen ‘ED’ regimes
is shown by the black solid line. The polymer volume fraction ϕeq at equilibrium swelling is
shown by the cyan line. b. The elastic modulus G(ϕ) of a polymer network crosslinked at
the polymer volume fraction ϕ0 (indicated by black vertical dotted line) as a function of the
polymer volume fraction ϕ for several values of Nx, shown by the vertical lines of the same
color as in a, (double logarithmic plot). The elastic modulus at the unentangled-entangled
crossover is indicated by the magenta line. The elastic modulus at the swelling equilibrium
is indicated by the cyan line. The κ-exponents, defined by G(ϕ) ∼ ϕκ, are 7/12, 19/24, and
1 in the unentangled (solid), entangled swollen (dashed), and entangled deswollen regimes
(dotted), respectively. These lines are obtained by using the Flory exponent ν = 3/5, see
eqs. (9), (15), (21), and (23).
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2.2 Entangled regime

The elasticity of the network at preparation conditions is dominated by the entanglements if

the number Nx of monomers of network strands is greater than the number of monomers Ne0

in entanglement strands at the preparation conditions. The conformations of the network

strands at this volume fraction ϕ0 are almost Gaussian on length scales larger than the

correlation length ξ0. The fluctuations of the network strands at preparation conditions are

suppressed by the tube with diameter a0 (see the green line for n > Ne0 in fig. 6). The RNST

end-to-end vectors of the network strand sections are proportional to n1/2 on length scales

exceeding the tube diameter, because, on these scales, the chain sections can be described

as a random walk with the primitive steps of size a0 (see the second section of solid green

line in fig. 6).
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0
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Figure 6: Dependence of the RNST end-to-end vector R(n) (solid lines) and root-mean-
square fluctuation size δR(n) (dashed lines) of the strand sections on the number n of their
monomers in the entangled network at preparation conditions (green) and in the swollen
state (magenta). Axes are logarithmic.

We will then extend the non-affine tube model12 to describe the swelling of an entangled

polymer network to the polymer volume fraction ϕ (< ϕ0). With a decrease in the polymer

volume fraction, the correlation length ξ increases, and the entanglement strands swell. On

length scales larger than the correlation length ξ, the root-mean-square fluctuation size δR(n)
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of the strand section is proportional to the square root of the number of its monomers n, see

the middle section of the dashed magenta line in fig. 6. At n < Naff , the RNST end-to-end

vector R(n) of strand sections increases linearly with the number of monomers n in these

sections, see the left part of the solid magenta line in fig. 6. The smallest sections of strand,

the fluctuations of which are restricted to a tube of size

a ≈ δR(Naff) ≈ ξ (Naff/g)
1/2 , (11)

are affine strands, see the right end of the middle section of the dashed magenta line in fig.

6. The RNST end-to-end vector of longer sections, n > Naff , follows a primitive random

walk path and deforms affinely, see the right section of the solid magenta line in fig. 6. The

tube diameter is determined by the RNST end-to-end vector of the entanglement strand,

a ≈ R(Ne0) ≈ λR0(Naff)
Ne0

Naff

, (12)

see the solid magenta line in fig. 6 at n = Ne0. Here, R0(Naff) ≈ ξ0(Naff/g0)
1/2 is the RNST

end-to-end vector of a strand subsection containing Naff Kuhn monomers at the preparation

conditions. By using the two expressions for the tube diameter, eqs. (11) and (12), the

number of monomers Naff of the affine strands is derived as

Naff ≈ λ5/8Ne0 (13)

and the tube diameter is

a ≈ λ11/16a0. (14)

This implies that the tube diameter a does not change affinely with the linear extension ratio

λ, but has a weaker dependence. The modified Panyukov expression, eq. (8), predicts that
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the shear modulus of swollen entangled gels is

G(ϕ) ≈ ϕ

b3Naff

kBT
(λR0(Naff))

2

a2

≈ kBT

Nemb3
ϕ
35/24
0 ϕ19/24, (15)

see the orange dashed line at ϕ < ϕ0 in fig. 5b, where Nem is the number of monomers of

entanglement strands in the melt.

The intersection of the RNST end-to-end vector and the mean square fluctuation size

gives the tension blob size ξt ≈ λ1/16a0, see the intersection of solid and dashed magenta

lines in fig. 6. The number of monomers in the tension blob gt ≈ λ−5/8Ne0 decreases

upon network swelling. In contrast to unentangled networks (as well as entangled networks

in θ-solvents), the size of tension blobs increases, albeit weakly, as the polymer volume

fraction decreases upon swelling. This apparent anomaly results from an increase in gt due

to swelling (∼ ϕ−1/8), which is stronger than a decrease in gt due to (swelling-induced)

stretching (∼ ϕ5/48). The shear modulus can be also represented as kBT per tension blob,

kBTϕ/(b
3gt), see eq. (15), as in the case of swollen unentangled networks, see also discussion

below eq. (9).

The correlation length ξ ≈ bϕ−3/4 increases upon swelling with a larger negative exponent

of the polymer volume fraction (∼ ϕ−3/4) than the tension blob size ξt. The two length scales

become comparable, ξ(ϕ) ≈ ξt, at swelling equilibrium

ϕeq ≈ ϕ0N
−24/35
em . (16)

At swelling equilibrium, the osmotic pressure due to the excluded volume interactions be-

tween strands in the network is balanced by the elastic stress of the network4. In this case,

4Note that since the number of Kuhn monomers in the entanglement strand Nem ∼ 30, the maximum
swelling is limited by entanglements to ϕ0/ϕeq ∼ N

24/35
em ∼ 10 with the highest equilibrium linear expansion

factor λeq ∼ N
8/35
em ∼ 2. Polyelectrolyte gels swell much more because counterions exert a much higher

osmotic pressure.

18



the shear modulus is written as

Geq ≈
kBT

b3
N−54/35

em ϕ
9/4
0 . (17)

2.3 Disentanglement crossover upon swelling

There is an interval of the number of monomers of network strands, Ne0 < Nx < N eq
e ,

in which the networks that were entangled at preparation conditions change their elastic

response upon swelling to that of unentangled gels (see the lower section of the magenta line

in fig. 3). The crossover to unentangled regime occurs because upon swelling, the stiffness

of the topological potentials, kBT/a
2 ∼ ϕ11/24, decrease more steeply than the stiffness

of the potentials due to crosslinks, kBT/(δR
2(Nx)) ∼ ϕ1/4. With the degree of swelling

corresponding to this crossover, the number of monomers Naff in the affine strand becomes

as large as the number of monomers Nx in the network strand, λe ≈ (Nx/Ne0)
8/5, see eq.

(13). The polymer volume fraction at the entangled-unentangled crossover upon swelling is

ϕe ≈ ϕ0 (Ne0/Nx)
24/5 , (18)

as shown by the lower part of the magenta line in fig. 5a. Our present model thus predicts

a change in the scaling exponent of the dependence of the shear modulus on the polymer

volume fraction ϕ upon swelling from 19/24 ≃ 0.79 in the entangled regime, ϕe < ϕ < ϕ0,

down to 7/12 ≃ 0.58 in the unentangled regime, ϕ < ϕe at the disentanglement crossover,

see the change in the slope of the brown line at ϕe in fig. 5b and eqs. (9) and (15).

There is a larger change of the dependence of the shear modulus on the volume fraction ϕ0

at the preparation conditions at the disentanglement crossover from the scaling exponent

35/24 ≃ 1.46 to 5/12 ≃ 0.42, see the light green line in fig. 7b as well as eqs. (9) and (15).

19



5/12

5/4

35/24

9/4

9/16

G


0

G
e G

0

G
eq

ES

ED/E

U5/12

G
dry

ED/U


0



1/4

1

-5U

ED/U

ED/E

ES


eq


e


0
*

 *

(N
em
/N

x
)4/5

(N
em
/N

x
)4/5

N
x
N
em

-4/5 32/35

a. b.

N
x
N
em

-4/5 8/35

N
x
N
em

-4/5 32/35

(N
em
/N

x
)4/5

Figure 7: Diagram of regimes (a) and dependence of the elastic modulus G on the polymer
volume fraction ϕ0 at the preparation conditions (b) in an athermal solvent. The black
dashed curve represents preparation conditions ϕ = ϕ0. The crossover line between the
unentangled (‘U’) regime and the entangled swollen/deswollen (‘ES’ and ‘ED’) regime is
shown by the magenta line. The polymer volume fraction on the unentangled-entangled
crossover at preparation conditions is ϕ0 = (Nem/Nx)

4/5. The polymer volume fraction ϕeq

and the elastic modulus G(ϕeq) in the swelling equilibrium are shown by the cyan lines in a
and b, respectively.

3 Deswelling of polymer gels

3.1 Unentangled regime (Nx < Nem)

If the number Nx of monomers in network strands is less than the number Nem of monomers

of entanglement strands in the melt, the constraining effect of the crosslink potential on

fluctuations of network strands prevails over the effect of the topological potential, see the

region at Nx < Nem in fig. 5a. In this case, the network is unentangled for all volume

fraction ϕ, including the dry state, ϕ = 1, regardless of the preparation concentration ϕ0. The

fluctuations of strands decrease with increasing polymer volume fraction due to a decrease

in the correlation length ξ. The fluctuations of network strands are suppressed primarily by

the crosslink potentials, see fig. 8a. The shear modulus of these networks with unentangled

strands is thus given by eq. (9) for both swelling and deswelling, see the dark green curve

in fig. 5b.
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Figure 8: Dependence of the RNST end-to-end vector R(n) (solid lines) and the root-mean-
square fluctuation size δR(n) (dashed lines) of strand sections on the number n of their
monomers in the deswollen network that was unentangled at preparation conditions and is
in (a) the unentangled regime and (b) the entangled deswollen regime at final conditions.
The green and magenta lines show the corresponding values at the preparation conditions
and in the deswollen network. Axes are logarithmic.

3.2 Entangled regime (Nx > Ne0)

The networks were entangled at preparation conditions if the number of monomers Nx in

the network strand is larger than the number of monomers Ne0 in the entanglement strand

at the preparation volume fraction ϕ0. With increasing the polymer volume fraction upon

network deswelling, neighboring strands approach to each other. The fluctuations of strand

sections are suppressed due to the topological interactions with their neighboring strands, see

fig. 9a. The topology of the network was fixed by crosslinking and thus the number Ne0 of

monomers per entanglement strands, which represents entanglements trapped at preparation

conditions, remains constant. The situation, in which the concentration of overlapping chains

increases at a fixed polymer topology is similar to the case of concentrated solutions of non-

concatenated ring polymers. Unlike trapped entanglements of networks, the “entanglements”

between rings are only transient and cannot transmit elastic stress. The fluctuations of rings

in melts differ significantly from Gaussian fluctuations of linear polymer chains due to the

presence of the transient entanglements.17,18

The Kavassalis-Noolandi criterion suggests that network sections composed of nmonomers
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Figure 9: A chain section of a network is ideal in prepration conditions (a) and forms fractal
loopy globules upon network deswelling (b). This is an example of a network that was
entangled in preparation conditions and the fractuation of the chain section is confined by
the tube of diameter a0. Upon deswelling, the tube diameter changes to a. The chain section
is still ideal for the length scales smaller than the tube diameter asol of a solution of the same
concentration. The chain section form a fractal loopy globule in the length scales between
asol and a.

are entangled if the overlap parameter of these sections5

O(n) =
ϕδR3(n)

b3n
. (19)

is larger than the number N1/2
em .20,21 According to this criterion, transient entanglements are

not significant for strand sections composed of n monomers at n < Ne(ϕ) (≈ Nemϕ
−5/4). On

length scales smaller than the smallest length scale asol(ϕ) of transient entanglements, strand

sections consisting of n monomers thus swell at n < g and are Gaussian at g < n < Ne(ϕ)

(see the two left sections of dashed magenta line in fig. 10), as in the case of unentangled

networks, see sec. 3.1. Transient entanglements are only significant at n > Ne(ϕ) (at the

volume fraction ϕ > ϕ0). The fractal loopy globule model predicts that the fluctuation size

5For network strands composed of non-spherical Kuhn monomers, the overlap parameter is generalized
to

O(n) =
ϕδR3(n)

vbn
.

The Kavassalis-Noolandi number is b3N1/2
em /vb.
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of transiently entangled strand sections is determined from the condition of the saturation

of the overlap parameter O(n) at n > Ne(ϕ).17,18 The last condition describes fluctuations

of fractal loopy globules on length scales asol < δR(n) < a

δR(n) ≈ asol (n/Ne)
1/3 , (20)

where asol (= aemϕ
−3/4) is the tube diameter of polymer solution of the same volume fraction

ϕ (with the tube diameter in melts, aem = bN
1/2
em ).

n
N
x

g

�

a
sol

N
e

1/2

1/3

N
e0

a

a
0

1/2

1

R(n)�R
0
(n)

R
0
(n)

λ

δR(n)
1/4

Figure 10: Dependence of RNST end-to-end vector (solid lines) and root-mean-square fluc-
tuation size (dashed lines) of strand sections in deswollen networks that were entangled at
preparation conditions on the number n of their monomers. The quantities at preparation
conditions and for the deswollen networks are shown by the green and magenta lines, respec-
tively. Axes are logarithmic.

Sections of network strands composed of n monomers form fractal loopy globules at

Ne < n < Ne0, see the third section of the magenta dashed line with slope 1/3 in fig. 10.

Fluctuations of strand sections with n > Ne0 occurs along the confining tube (breathing

modes) with δR(n) ∼ n1/4, see the fourth section of the magenta dashed line at n > Ne0 in

fig. 10. The number of monomers Naff in the affine strand of deswollen entangled networks

Ne0 does not depend on the degree of deswelling. The tube diameter is thus a ≈ λa0 and it
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changes affinely with the network deswelling, 6 compare the right parts of green and magenta

dashed lines in fig. 10.

The RNST end-to-end vector of chain sections increases linearly with the number n of

monomers of this section, if it is shorter than the length of the trapped entanglement strand,

n < Ne0, and increases proportionally to the square root of n for n > Ne0 (see the solid green

and red lines in fig. 10). For n > Ne0, the RNST end-to-end vector of the sections changes

affinely with the network deswelling. Thus, the shear modulus of the deswollen entangled

network increases linearly with the polymer volume fraction

G(ϕ) ≈ kBT
ϕ

Ne0b3
(λR0(Ne0))

2

a2

≈ kBT

b3Nem

ϕ
5/4
0 ϕ, (21)

see the right dotted section of the brown line at ϕ > ϕ0 in fig. 5b. The RNST end-to-end

vector of the entanglement strand at the preparation conditions is equal to its fluctuation

size, R0(Ne0) = bϕ
−1/8
0 N

1/2
e0 (see intersection of green solid and dashed lines in fig. 9). The

overlap parameter of network strands is equal to the Kavassalis-Noolandi number, N
1/2
em ,

already at preparation conditions. Therefore, at ϕ > ϕ0, the entanglement strands form

fractal loopy globules, see figs. 3 and 9. The window of length scales from asol to a, for

which strand sections form fractal loopy globules, enlarges with increasing polymer volume

fraction ϕ.

3.3 Entanglement crossover upon deswelling

Consider the case when the number of monomers Nx in the network strand is smaller than the

number of monomersNe0 in the entanglement strand under preparation conditions, but larger

than the number of monomers Nem in an entanglement strand in the melt, Nem < Nx < Ne0.

The width of this interval scales as Ne0/Nem ≈ ϕ
−5/4
0 and is larger than the width of the

6It is not the case for networks deswollen in θ-solvents (see Appendix A).
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disentanglement interval N eq
e /Ne0 ≈ N

1/7
em for ϕ0 < N

−4/35
em . At preparation conditions,

the overlap parameter of network strands is smaller than the Kavassalis-Noolandi number

N
1/2
em and the network is thus unentangled. The overlap parameter increases with increasing

polymer volume fraction ϕ upon deswelling as O(Nx) ≈ ϕδR3(Nx)/(b
3Nx) ≈ ϕ5/8N

1/2
x , where

the fluctuations of the network strand are δR(Nx) ≈ bϕ−1/8N
1/2
x . As long as the number

of overlapping network strands is lower than the Kavassalis-Noolandi number N
1/2
em , the

fluctuations of network strands with the number n of monomers, g < n < Nx, are Gaussian,

see the right section of the magenta dashed line in fig. 8a. The network is thus unentangled

in this regime and its shear modulus is given by eq. (9).

If the number of overlapping network strands reaches the Kavassalis-Noolandi number

N
1/2
em , these strands form fractal loopy globules on length scales larger than the tube diameter

asol of a polymer solution with the same volume fraction ϕ. The polymer volume fraction at

the crossover between the unentangled and entangled regimes, determined by the condition,

O(Nx) ≈ ϕ
5/8
e N

1/2
x ≈ N

1/2
em , is

ϕe = (Nem/Nx)
4/5 (22)

as shown by the upper part of the magenta line in fig. 5a. The sections of network strands

are unentangled at n < Ne (the second part of the magenta dashed line in fig. 8b) and form

fractal loopy globules at Ne < n < Nx (the third part of the magenta dashed line in fig. 8b).

Because, in the latter regime, the fluctuations of network strands are δR(Nx) ≈ asol(Nx/Ne)
1/3,

see eq. (20), the shear modulus of deswollen networks varies linearly with the volume fraction

of the gel

G(ϕ) ≈ kBT

N
2/3
x N

1/3
em b3

ϕ
5/12
0 ϕ, (23)

see the light dotted green line of fig. 5b. Note that whether networks were entangled

or unentangled in preparation conditions results in the significant difference in the scaling
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exponents 5/4 = 1.25 and 5/12 ≃ 0.42 that describe the dependence of the shear modulus

on the polymer volume fraction in the preparation conditions ϕ0 in the entangled deswollen

regime, see the orange and brown dotted lines in fig. 7b and also eqs. (21) and (23).

This difference reflects the strong dependence of the tube diameter on ϕ0 under entangled

preparation conditions.

The fluctuations δR(Nx) of network sections are suppressed by transient entanglements

in the entangled deswollen regime, and network strands are Gaussian on length scales larger

than correlation length in the unentangled regime. The fluctuations δR(Nx) of network

strands do not depend on the polymer volume fraction ϕ0 at preparation conditions because

they are determined only by the number of overlapping strands at the final condition, see

eq. (19). The dependence of the elastic modulus on ϕ0 in the entangled deswollen regime,

eq. (23), is therefore the same as that in the unentangled regime, see eq. (9) and fig. 7b.

4 Discussion

There are three regimes of polymer network elasticity: the unentangled (U), entangled

swollen (ES), and entangled deswollen (ED) regimes, see figs. 5 and 7, with different scaling

exponents κ0 and κ that represent the dependence of network shear modulus, G ∼ ϕκ0
0 ϕκ,

on the volume fractions ϕ0 at preparation conditions and ϕ at final conditions. The non-

affine loopy tube model predicts the disentanglement crossover, in which networks that were

entangled at preparation conditions (Ne0 < Nx) become unentangled upon network swelling

if Nx < N eq
e . It also predicts the entanglement crossover, in which networks that were un-

entangled at preparation conditions (Nx < Ne0) become entangled upon network deswelling

if Nx > Nem. There are four scenarios of crossovers between different regimes by changing

the polymer volume fraction ϕ of the polymer network, see dark green, light green, brown,

and orange lines in fig. 5a. There are three crossover scenarios by changing the polymer

volume fraction ϕ0 at the preparation conditions of polymer networks; see dark green, light
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green, and brown lines in fig. 7a. The predictions of this model can be tested experimentally

(or via simulations) by detecting the disentanglement and entanglement crossovers and by

measuring the scaling exponents in each of the corresponding regimes.

4.1 Entanglement crossover

The entanglement crossover upon deswelling was detected by experiments and simulations

on end-linked networks of tetra-PEG.22–24 The simulation results by Asai et al.24 are in good

agreements with the function

G(ϕ)

G(ϕ0)
=

(
ϕ

ϕ0

)0.56
[
1 +

(
ϕ

ϕe

)0.44k
]1/k

, (24)

describing the crossover between the unentangled gel regime (U - eq. (9)) and the entangled

deswollen regime (ED - eq. (23)), see fig. 11b. The polymer volume fraction at the entan-

glement crossover is estimated to be ϕe = 0.46 by fitting eq. (24) to the simulation data. 24

This estimate is close to the value ϕe ≈ 0.4 obtained by using eq. (S22’) in the Supporting

Information with Nx = 100 and Nem = 30. The fitting parameter k is estimated to be 5.0,

implying that the crossover is rather sharp. The entanglement crossover can be detected

experimentally upon deswelling polymer networks from the preparation conditions between

polymer overlap and entanglement folume fractions ϕ∗ < ϕ0 < ϕe0 up to the dry state, ϕ = 1,

as long as one uses polymers that do not crystallize or become glassy in the dry state.

Katashima and coworkers measured the dependence of the elastic modulus G(ϕ) of tetra-

PEG in an ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, on the polymer vol-

ume fraction ϕ. This experiment revealed that the exponent κ that represents the dependence

of G(ϕ) on ϕ increases from ≈ 0.56 upon small deswelling to approximately unity for stronger

deswelling, which is consistent with our prediction of the entanglement crossover, see sec.

S4.1 and Figure S4 in the Supporting Information.
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Figure 11: Dependence of the elastic modulus G(ϕ) of a deswollen network on polymer
volume fractions ϕ. The network was prepared at the polymer volume fraction ϕ0 = 0.91ϕ∗

(the overlap polymer volume fraction is estimated as ϕ∗ = 0.07 by using the Daoud-Cotton
theory25 for the 4-arm star polymers composed of 200 beads in an athermal solvent). The
points represent simulation data by Asai et al.,24 which are fitted by eq. (24) with the
crossover exponent k = 5.0. Solid lines show the limiting scaling dependences G(ϕ) in
different regimes. The polymer volume fraction at the entanglement crossover is estimated
to be ϕe = 0.46 by fitting the simulation data with eq. (24).
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4.2 Disentanglement crossover

The maximum extent of network swelling is limited by the volume fraction ϕeq at equilib-

rium swelling. Thus, the equilibrium volume fraction of well-entangled networks is only

on the order of one decade lower than preparation volume fraction ϕ0/ϕeq ≈ N
24/35
em ∼ 10.

The non-affine tube model (which is equivalent to the non-affine loopy tube model in the

description of network swelling) predicts that the disentanglement crossover is rather broad

and truncated by the equilibrium swelling. 27 A much wider region of the disentanglement

crossover can be explored by chemically attaching dangling polyelectrolytes to crosslinks in

polymer networks. Dangling polyelectrolytes are elastically ineffective and do not contribute

to the elastic energy of the network, while the osmotic pressure is increased by counterions

entrapped by electrostatic interaction with dangling polyelectrolytes, as in the case of the

molecular stent technique.32
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Figure 12: a. The uni-axial stretching of a polymer network by the stretching ratio λz

in the z-axis. Because of the incompressibility of the system, the network is stretched by
the stretching ratios λx and λy in the x- and y-axes, respectively. b. An example of the
Mooney plot of the force-extension relationship of the polymer network (the data is extracted
from ref.28). σzz is the normal stress in the z-axis and σxx is the normal stress in the x-
axis. c. Dependence of the dimensionless ratio of Mooney-Rivlin constants C2(ϕ)/C1(ϕ) on
the polymer volume fraction ϕ. Solid lines were obtained using the non-affine tube model
to describe a network prepared in melt (ϕ0 = 1).27 Symbols show experimental data for
rubbers28 swollen in benzene (red squares), carbon tetrachloride (blue circles), petroleum
ether 60/80 (purple ×), nitrobenzene (black +), decane (green diamonds). The inset shows
the dependence of the dimensionless ratio C2(ϕ)/C2(1) on the polymer volume fraction ϕ.
Experimental data are shown by the symbols: circles, 29 filled squares,30 and filled diamond.31
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The contribution of the trapped entanglements to the network elasticity can also be

derived from the analysis of the force-extension relationships of polymer networks under the

uni-axial deformation. Consider a network that was entangled at the preparation conditions,

swollen in a θ-solvent to the polymer volume fraction ϕ and then uni-axially stretched in the

z-direction by the extension ratio λz, see fig. 12a. On time scales shorter than the hydrostatic

pressure relaxation time, the gel can be considered incompressible, λx = λy = λ
−1/2
z . Both

the phantom and affine network models predict that the normal stress difference σzz − σxx

(where σzz and σxx are the normal stresses in z- and x-directions, respectively) is proportional

to λ2
z−λ−1

z . In the Mooney-Rivlin plot, the ratio of the normal stress difference to the factor

λ2
z − λ−1

z , plotted as a function of the inverse extension ratio λ−1
z , highlights the deviation

of the experimental results from predictions of the phantom and affine network models.

The Mooney-Rivlin coefficients C1(ϕ) and C2(ϕ) are derived by fitting the data by the

phenomenological equation4

σzz − σxx

λ2
z − λ−1

z

≃ 2C1(ϕ) +
2C2(ϕ)

λz

, (25)

see fig. 12b. The coefficient C2(ϕ) is zero for phantom and affine network models and thus

reflects the degree of the non-affine deformation of entangled networks. 4,26 The disentangle-

ment of the network upon its swelling can be characterized by two dimensionless ratios of

the Mooney-Rivlin coefficients C2(ϕ)/C1(ϕ) and C2(ϕ)/C1(1). As seen from fig. 12c, these

ratios decrease with decreasing polymer volume fraction ϕ and may vanish before gel reaches

its equilibrium swelling. This means that even if the network has been entangled under

the preparation conditions, the effect of crosslinks can dominate the effect of the trapped

entanglements upon network swelling. Note that C2(ϕ) vanishes upon swelling only for a

rather narrow range of the parameter Nx/Ne0 in the diagram in Fig. 3, while in the case of

Nx > N eq
e , C2(ϕ) remains finite for any polymer volume fraction ϕ ≥ ϕeq.
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4.3 Scaling exponents of the dependence of the elastic modulus on

initial and final polymer volume fractions

The Flory-Rehner model 1 assumes that network strands are Gaussian and thus it describes

well the unentangled networks in a θ-solvent. Although the Flory-Rehner model is also

often used to describe the elasticity of networks in a good solvent, network strands in such

networks are substantially non-Gaussian due to the excluded volume interactions between

their monomers. Panyukov has developed an extended model (here we call it the scaling

model) that takes into account the swelling of network strands in a good solvent, using the

scaling theory.10 Neither trapped nor transient entanglements are taken into account in this

model. All the models of unentangled networks discussed in this paper are equivalent to the

Flory-Rehner model for networks in a θ-solvent and the scaling model for networks in a good

solvent, see the green filled circles in fig. 13 and also sec. 2.1 and 3.1.

Table 1: Scaling exponents κ0 and κ of the dependence of the shear modulus, G(ϕ) ∼ ϕκ0
0 ϕκ,

on the initial concentration ϕ0 and the final concentration ϕ for polymer networks in good
solvent for unentangled (U), entangled swollen (ES), and entangled deswollen (ED) regimes.
The κ0-exponent in the ED regime is given for networks unentangled at the preparation
conditions (ED/U), and networks entangled at the preparation conditions (ED/E). ‘Affine
tube (S)’ and ‘Non-affine tube (S)’ are extensions of the affine and non-affine tube models,
taking into account intra-strand excluded volume interactions.

κ0 κ
Model U ED/U ED/E ES U ES ED
Non-affine loopy tube 0.44 1.3 1.53 0.56 0.78 1
Lattice animal11 0.44 1.2 1.98 0.56 1.1
Non-affine tube (S)12 0.44 1.1 1.53 0.56 0.78 1.2
Affine tube (S)11 0.44 - 1.98 0.56
Scaling10 0.44 - - - 0.56 - -

There are several approaches to describe the trapped and transient entanglements:

• The affine tube model takes into account the trapped entanglements by using the topo-

logical potential with the stiffness independent of network deformation, and assumes

that neither additional trapped nor transient entanglements are produced upon net-

work deswelling.4,7 The predictions of the affine tube model for the dependence of the
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Figure 13: The scaling exponents κ0 (a) and κ (b) of the dependence of the shear modulus,
G(ϕ) ∼ ϕκ0

0 ϕκ, on initial polymer volume fraction ϕ0 and final polymer volume fraction ϕ
for polymer networks in an athermal solvent (upper) and θ-solvent (lower), see tables 1 and
2. Exponents for the unentangled (‘U’), the entangled swollen (‘ES’), and the entangled
deswollen (‘ED’) regimes are shown by green, yellow, and orange filled circles, see also fig. 5
as well as tables 1 and 2. The κ0 exponents depend on whether the networks were unentangled
(‘/U’) or entangled (‘/E’) at the preparation conditions for the entangled deswollen regime,
and are shown in red and orange filled circles, respectively.

Table 2: Scaling exponents, κ0 and κ, of the dependence of the shear modulus, G(ϕ) ∼ ϕκ0
0 ϕκ,

on the initial polymer volume fraction ϕ0 and the final polymer volume fraction ϕ for polymer
networks in a θ-solvent predicted by the non-affine loopy tube model and other models
for unentangled (U), entangled swollen (ES), and entangled deswollen (ED) regimes. The
κ0-exponent at the ED regime is given for networks that were unentangled (ED/U) and
entangled (ED/E) at the preparation conditions.

κ0 κ
Model U ED/U ED/E ES U ES ED
Non-affine loopy tube 2/3 14/9 5/3 1/3 2/3 7/9
Lattice animal11 2/3 10/7 2 1/3 19/21
Non-affine tube12 2/3 1 5/3 1/3 2/3 4/3
Affine tube7,11 2/3 - 2 1/3
Flory-Rehner1 2/3 - - - 1/3 - -
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elastic modulus on the polymer volume fraction ϕ in the entangled regimes are the

same as in the unentangled regime, see fig. 13 and tables 1 and 2.

• The lattice animal model is equivalent to the affine tube model in describing the trapped

entanglements in swollen entangled networks and suggests that network strands of

deswollen networks fold into the lattice animal conformations due to transient entan-

glements,11 which corresponds to the conformations of entangled rings in the array of

fixed obstacles15,16

• The non-affine tube model takes into account the dependence of the stiffness of the

topological potential on the network deformation and is equivalent to the non-affine

loopy tube model in the treatment of the trapped entanglements in swollen entan-

gled networks.12 In this model, it is assumed that the conformations of entanglement

strands are Gaussian on the length scales between the correlation length ξ and the

tube diameter a for both swollen and deswollen networks.

The elastic modulus predicted by the non-affine tube and non-affine loopy tube model

decreases stronger upon the network swelling than the elastic modulus predicted by the affine

tube model and the lattice animal model. This stronger decrease is due to the softening of

the topological potential predicted by the non-affine tube and non-affine loopy tube models

and is caused by the increasing distance between network strands upon gel swelling. The

difference in the κ exponent between the two classes of models is more noticeable in the

θ-solvent than in the good solvent conditions, see yellow circles in fig. 13 and tables 1

and 2. This difference can be experimentally measured and can serve as a criterion for the

applicability of different models, because the exponent κ predicted by the non-affine loopy

tube and non-affine tube models is twice as large as that predicted by the affine tube and

lattice animal models. The exponent κ0 predicted by the non-affine loopy tube and non-

affine tube models also differs from the case of the affine tube and lattice animal models due

to the dependence of the topological potential on the swelling ratio λ (= (ϕ0/ϕ)
1/3), but the
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difference is smaller, see yellow circles in fig. 13b and tables 1 and 2.

The non-affine loopy tube, non-affine tube, and lattice animal models predict that net-

works that were unentangled at preparation conditions become entangled upon network

deswelling, while the affine tube model does not predict such a crossover. The non-affine

loopy tube and lattice animal models assume that entanglements produced upon network

deswelling are transient, whereas the non-affine tube model assumes that additional trapped

entanglements are produced by network deswelling. Due to the creation of trapped entan-

glements, the exponent κ0 predicted by the non-affine tube model is 2.5 times larger in the

entangled deswollen regime than in the unentangled regime under the good solvent condi-

tion, see fig. 13b and table 1. In contrast to trapped entanglements, transient entanglements

are not fixed by crosslinking during the preparation of the network, and the fluctuations of

network strands, constrained by the transient entanglements, are determined solely by the

number of overlapping strands at the final conditions. Thus, the exponent κ0 predicted by

these models is the same in the unentangled and entangled deswollen regimes if the networks

were unentangled at preparation conditions, see also the discussion in the last paragraph of

sec. 3.3.

In the entangled deswollen regime, the exponent κ0 predicted by the non-affine tube

model is independent of whether the networks were unentangled or entangled at preparation

conditions, because the effect of these additional trapped entanglements produced by network

deswelling dominates over the effects of the entanglements formed at preparation conditions

and crosslinks. In contrast to the effect of trapped entanglements accounted for in the

non-affine tube model, the transient entanglements predicted for a good solvent by the non-

affine loopy tube model (and the lattice animal model) result in a scaling exponent κ0,

which is 3.0 times (and 2.7 times) larger for networks that were entangled at preparation

conditions, compared to networks that were unentangled at these conditions, see red and

orange circles in fig. 13b and table 1. The difference in the scaling exponent κ0 between

networks that were unentangled and entangled at preparation conditions reflects the fact
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that the entanglements produced by network deswelling are transient in the non-affine loopy

tube and lattice animal models: potential due to crosslinks (for the networks that were

unentangled at the preparation condition) or topological potential (for the networks that

were entangled at the preparation condition) still restricts fluctuations of strands in networks

in entangled deswollen regime, see figs. 8 and 10. These features of transient entanglements

versus trapped entanglements can be observed by measuring the dependence of the elastic

modulus on the polymer volume fraction ϕ0 at preparation conditions.

The non-affine loopy tube model predicts that the exponent κ to be unity in entangled

deswollen regime under good solvent condition, see the top orange circle in fig. 13a and table

1. This prediction is consistent with simulations and experiments on tetra-PEG gels. 22–24

In entangled deswollen regime in a good solvent, the exponent κ predicted by the non-

affine loopy tube model is 1.8 times greater than that predicted by the affine tube model,

while the difference in the exponent κ between the non-affine loopy tube, non-affine tube,

and lattice animal models is only 10 - 20 %, see orange circles in fig. 13a and table 1.

The 60 % difference in the exponent κ between the non-affine tube and non-affine loopy

tube models in the deswollen entangled regime in a θ solvent makes it possible to check

which model is closer to simulations and experiments, see the corresponding orange circles

in fig. 13 and table 2. It will be more difficult to separate the two transient entanglement

models and to experimentally test whether the strands in deswollen networks adopt the

fractal loopy globlue or lattice animal conformations, since the predictions of these models

for the exponent κ in the entangled deswollen regime are within 16 % in a θ-solvent. It may

be necessary to investigate the strand conformations directly, either by simulations or by

scattering experiments.

4.4 Uniaxial extension of entangled deswollen networks

The network and entanglement strands form fractal loopy globule in the entangled deswollen

regime. In secs. 3.2 and 3.3, we derived the elastic modulus of networks in this regime. At the
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next step, it is of interest to theoretically predict the stress-strain relationship of deswollen

entangled networks under uniaxial (and biaxial) extension. The number of monomers Naff in

the affine strands of the network that was unentangled in the preparation condition does not

change upon deformation, see sec. 3.3. Network strands are extended like entangled rings

in non-linear flows of solutions or melts:35,36 tension blobs are developed in network strands

under uniaxial extension. Network sections composed of n monomers form fractal loopy

globules on scales larger than tension blobs for gt < n < Nx due to transient entanglements.

The maximal extension of strands in the network deswollen to the polymer volume frac-

tion ϕ, is estimated as11

λmax ≈
(

ϕ

ϕ0

)1/3
bNaff

R0(Naff)
, (26)

where Naff is the number of monomers in the affine strand oriented in the stretching direction.

Naff = Nx for a network that was unentangled in the preparation condition. Urayama and

Kojiya determined the maximal extensibility of an end-linked PDMS network prepared from

the precursor chains of the molecular weight 9.9× 104 g/mol in a good solvent with polymer

volume fraction 0.1.38 By using eq. (26), the maximal extensibility λmax of the network is

estimated to be 27, which is consistent with the experimentally determined value of 25.11

The number of monomers Naff in the affine strands of a network that was entangled in

the preparation condition depends on the network deformation, because trapped entangle-

ments can slide along the chains. The distribution of trapped entanglements, and thus the

number of monomers Naff in affine strands, is determined by the competition between the

elasticity of the entanglement strands and the entropy of the trapped entanglements. 37 In

ref.,11 the maximal extensibility of networks deswollen to the dry state was estimated as

λmax ≈ N
1/2
em ϕ−0.87

0 by assuming Naff ≈ Ne(ϕ0), see eq. (26). However, in the general case,

Naff is a function of λmax due to the redistribution of the trapped entanglements, and there-

fore, it is necessary to extend the non-affine loopy tube model in order to take into account
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the sliding of trapped entanglements.

5 Conclusion

We have proposed and developed the non-affine loopy tube model that predicts the elasticity

of swollen and deswollen networks. This theory takes into account three main mechanisms

of elasticity of polymer networks: the crosslinks, trapped entanglements, and transient en-

tanglements. Entanglements trapped at preparation conditions do not disappear with the

subsequent deformation of the network but their effect decreases upon network swelling.

Transient entanglements fold network strands into fractal loopy globules 17 and do not trans-

mit elastic stress in the network over long time scales. The non-affine loopy tube model

takes into account the fact that additional entanglements created upon network deswelling

are not trapped, but are transient.

There are three regimes of the network elasticity: (i) Elasticity is mainly due to the

crosslinks in the unentangled regime (‘U’ in figs. 5a), (ii) Elasticity dominated by the

trapped entanglements in the entangled swollen regime (‘ES’ in figs. 5a), and (iii) Net-

work strands are folded into fractal loopy globules due to the transient entanglements in

the entangled deswollen regime (‘DS’ in figs. 5a). Under preparation conditions, networks

are either unentangled at Nx < Ne0, or are entangled at Nx > Ne0. Networks that were

entangled at preparation conditions at Ne0 < Nx < N eq
e become unentangled upon network

swelling. This disentanglement crossover occurs because the effect of trapped entanglements

becomes weaker upon network swelling, as the neighboring chains move away from each

other, while the effect of crosslinks is independent of the network deformation. Networks

that were unentangled at preparation conditions at Nem < Nx < Ne0 become entangled

upon network deswelling. This entanglement crossover upon network deswelling occurs due

to the transient entanglements produced as the neighboring chains approach each other upon

network deswelling. The disentanglement crossover upon network swelling and the entangle-
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ment crossover upon network deswelling can be observed experimentally by measuring the

dependences of the network modulus on final concentration ϕ (see figs. 5b) as well as on the

prepartion concentration ϕ0 (see Fig. 7b). Transient entanglements also appear in networks

that were entangled at preparation conditions upon network deswelling, and in this case the

dependence of the elastic modulus on the polymer volume fraction ϕ changes at ϕ = ϕ0.
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