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Abstract
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The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates
high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is
often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit,
high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider
urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-meter spatial resolution and
hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a
range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation
cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of
extreme heat events.

Contribution to the field

As the frequency and severity of heat waves are predicted to increase with a changing climate, cities are eager to implement
policies to mitigate extreme urban temperatures. An abundance of literature has previously established the potential of
vegetation to cool its surroundings via evapotranspiration; however, spatially explicit estimation of vegetation cooling benefits in
cities has been limited to simple remote sensing greenness indices characterizing vegetation extent and sparse field
measurements of transpiration rates. This paper introduces a simple, high resolution, satellite-based model that utilizes readily
accessible public datasets to estimate the cooling potential of urban vegetation across space and time. To our knowledge, our work
is the first to integrate climatological, structural, and physiological intricacies of the urban environment into estimates of urban
evaporative cooling. We use previously published relationships between photosynthesis, stomatal conductance, and meteorological
conditions to estimate cooling benefits from vegetation activity. Model equations include terms to capture the influence of
urbanization intensity on climate and the unique growth dynamics of urban vegetation. Outputs are at a spatial resolution of 30
meters, providing a unique opportunity for cities to identify vulnerable populations and neighborhoods at a sufficient resolution to
implement targeted heat resilience policies toward sustainable urban systems.
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Abstract

The impacts of extreme heat events are amplified in cities due to unique urban thermal properties.

'CDeleted: the urban heat island effect

Urban greenspace mitigates high temperatures through evapotranspiration and shading; however,
quantification of vegetative cooling potential in cities is often limited to simple remote sensing
greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-
resolution model of urban latent heat flux from vegetation. The model iterates through three core
equations that consider urban climatological and physiological characteristics, producing estimates
of latent heat flux at 30-meter spatial resolution and hourly temporal resolution. We find strong
agreement between field observations and model estimates of latent heat flux across a range of
ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial
heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate
resolution to inform policies addressing the effects of extreme heat events.
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Introduction

Urban areas make up only a small fraction of global land area (<3%; Liu et al., 2014), but
have a disproportionately large influence on human quality of life and well-being. Cities are home
to the majority of the world’s population (Grimm et al., 2008) and continue to grow in both spatial
extent (Seto et al., 2012) and population (United Nations, 2018). Urbanization often leads to
environmental degradation, prompting cities to implement policies to ameliorate the
environmental impacts. Such policies, however, are currently limited by a dearth of actionable
urban ecological data and theory to implement demonstrated best practices (Zhou et al., 2019).

Urbanization disrupts the background surface energy balance yia higher amounts of

impervious surface area (ISA), increased thermal admittance of surface materials, lower albedo ‘

due to the presence of buildings and urban canyons, and fluxes of anthropogenic heat from

buildings and automobiles (Oke et al., 2017). In many regions. the modified thermal characteristics

of the urban landscape result in excessive heat, thermal discomfort of residents, and an urban heat

island (UHI) effect, where temperatures within the city tend to exceed those of local rural

environments (Taha, 997). Historically, the primary driver of extreme urban daytime temperatures

has been thought to result from decreases in daytime latent heat flux (AE) due to higher fractions
of ISA, less vegetation, less moisture availability, and therefore less evapotranspiration (Taha,
1997; Carlson and Boland, 1978). Novel attribution methods evaluating the component
contributions of net radiation, aerodynamic resistance, the Bowen ratio (or ratio of sensible heat
flux to AE), and heat storage provide evidence supporting the theory that the daytime UHI intensity
is mostly controlled by variations in the capacity of urban and rural environments to evaporate

water (Li et al., 2019). The UHI is often cited as grounds for improving urban heat resilience but

is not necessarily a phenomenon that requires mitigation due to the dependence of UHI magnitude

on the background rural conditions (Martilli et al., 2020). For example, some cities that do not

experience a large daytime UHI (e.g., Phoenix, AZ. USA; Chow et al. 2012) still experience

extreme summer temperatures. Instead, urban heat mitigation should focus on absolute

temperature reduction. Nonetheless, the role of evapotranspiration inm

cities points to municipal greening initiatives as promising pathways for urban heat mitigation.
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Cities are warming at a faster rate than their rural counterparts (Fitzpatrick and Dunn, 2019)

with increases in the magnitude and frequency of extreme weather events. Excessively high
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temperatures can increase electricity demand (McPherson et al., 1994; Ruijven et al., 2019), induce
vegetation stress (Wahid et al., 2007; Reinmann and Hutyra, 2017), and represent a critical risk
factor for human mortality (Gasparrini et al., 2015; Basu, 2009). Many city governments have
undertaken efforts to increase canopy cover (Roman, 2014) to offset local climate changes driven
by urbanization. Common surface materials found in the urban environment are impervious and
do not retain much moisture for evaporation. Vegetation, however, can be used as a tool to cool
the urban environment via evapotranspiration. When plants open their stomata to take up carbon
dioxide (COz), they simultaneously release water vapor in a process that utilizes energy for the
conversion of liquid water to a vapor state, cooling the plant and the air around it. Remote sensing
observations reveal an inverse relationship between surface temperature and the Normalized
Difference Vegetation Index (Tiangco et al., 2008) and field experiments have shown that rooftop
gardens can reduce the surface temperature of buildings and the air around them (Wong et al.,
2003). Ziter et al. (2019) found the proportions of canopy cover and ISA to be interactive drivers
of urban temperature variation. While previous research has established the potential for vegetative
cooling in urban environments, less attention has been given to quantifying evapotranspiration
rates and the corresponding AE variations across entire cities.

Direct measurements of AE at discrete locations are commonly made using eddy covariance
flux towers. However, this technique assumes uniform vegetation canopies on flat terrain (Munger
and Loescher, 2004). The heterogenous landscape associated with cities often violates some
assumptions embedded in eddy covariance methodologies, making urban measurements difficult.
Consequently, direct measurements of AE in urban areas are often made using tree-level
measurements of evapotranspiration. While this can be done by taking leaf-level measurements of
transpiration rates that are then scaled to the entire canopy, studies more commonly use
measurements of sap flux rates in trees (Pataki et al., 2011; Winbourne et al., 2020). Sap flux
measurements provide an integrative measure of water use and transpiration yielding important
information about the energy balance of individual trees. Modeling approaches are necessary,
however, to capture the spatial variability in AE across larger areas of interest.

The Penman-Monteith model (Monteith, 1965) is a commonly used approach to estimate
AE based primarily on meteorological conditions and the capacity of the land surface to transfer
water into the lower atmosphere. Recent Penman-Monteith applications have started to focus on

urban areas (Liu et al., 2017; Zipper et al., 2017; Zhang et al., 2018; Wang et al., 2020),
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incorporating the unique climatological properties of cities by including the UHI (Zipper et al.,
2017) and spectral mixture analysis to consider the unique physical structure of urban areas (Wang
et al., 2020). Results show higher atmospheric demand for water in areas with higher amounts of
ISA and alleviation of the UHI in regions with high evapotranspiration intensity (Zipper et al.,
2018; Wang et al., 2020). Other models exist to partition surface energy fluxes in cities, however,
the International Urban Energy Balance Comparison Project (Grimmond et al. 2010) found that
the most commonly used models had the poorest performance in modeling the AE component of
the surface energy balance and highlighted the importance of accurate representation of vegetation
in correctly modeling the partitioning of turbulent fluxes. The focus on quantifying
evapotranspiration in urban areas is advancing our knowledge of the surface energy balance within
cities; however, urban vegetation exhibits unique physiological dynamics that to our knowledge
have not yet been captured in previous studies (Winbourne et al., 2020).

Urban vegetation tends to grow at accelerated rates compared to rural vegetation (Briber
et al., 2015; Smith et al., 2019), likely due to a combination of increased light availability due to
open grown conditions, higher nitrogen (Rao et al., 2014; Decina et al., 2017) and phosphorus
(Hobbie et al., 2017; Decina et al., 2018) deposition rates, higher surface CO, concentrations
(Brondfield et al., 2012), lengthened growing seasons (Melaas et al., 2016) and in some cases,
higher water availability (Bijoor et al., 2011; McCarthy and Pataki, 2010). Faster plant growth has
important effects on stomatal conductance, the process governing the exchange of water vapor
between the biosphere and the atmosphere, due to the strong coupling between the processes of
photosynthesis and transpiration. Studies of the relationship between stomatal conductance and
temperature in controlled experiments come to inconsistent conclusions (Weston and Baurle,
2007; von Caemmerer and Evans, 2015; Urban et al., 2017; Teskey et al., 2014). While similar
urban studies are rare, Winbourne et al. (2020) found a stronger positive relationship between
stomatal conductance and temperature in urban versus rural settings with observations of persistent
stomatal conductance in an urban maple tree at temperatures in excess of 30°C and vapor pressure
deficits (VPD) greater than 2.5 kPa. Furthermore, Esperon-Rodriguez et al. (2020) found evidence
of urban tree adaptation to climate via plasticity in drought tolerance traits, with urban trees of the
same species exhibiting more drought tolerance than rural trees. This suggests that urban trees

may have the ability to acclimate to the extreme growing conditions found in the urban



144  environment, underscoring the role of urban vegetation in providing temperature relief during
145  extreme heat events.

146 Here, we introduce the Vegetation Photosynthesis and Respiration Model Latent Heat
147  module (VPRM-LH) - a spatially explicit, remote sensing-driven model to produce hourly
148  estimates of urban AE at 30m spatial resolution. In contrast to frequently used vegetation indices
149  characterizing the extent of urban greenspace, VPRM-LH explicitly includes information about
150  the function of urban greenspace and its variation across space and time. VPRM-LH outputs are
151  particularly relevant to the implementation of nature-based climate solutions in cities due to a
152 specific focus on vegetation contributions to AE. We find strong agreement between field
153  observations and model estimates of AE across a range of ecosystems and urbanization intensities,
154 highlighting VPRM-LH as an effective tool in quantifying the spatial heterogeneity of vegetation
155  cooling benefits within cities.

156  Methods

157  As an overview, VPRM-LH iterates through three core equations that consider urban structural,« (Formatted: Indent: First line: 0"

158  climatological, and physiological characteristics. Surface conductance of water vapor is estimated
159 as a function of photosynthesis and VPD using the Urban Vegetation Photosynthesis and
160  Respiration Model (VPRM) (Mahadevan et al., 2008; Hardiman et al., 2017) and Medlyn stomatal
161  conductance model (Medlyn et al., 2011). The Penman-Monteith model is used to produce
162  estimates of AE, with meteorological inputs downscaled to 30m resolution based on empirical
163  relationships between ISA and temperature/VPD (Wang et al., 2017). We present the necessary
164  model equations and data specifications to apply the VPRM-LH framework (summarized in SI

165  Table 1). Model equations were executed in R version 3.6 (R Core Team, 2020). (Formatted: Font: Not Bold

166  Model Description

167  Vegetation Photosynthesis and Respiration Model

168 We use the VPRM hourly carbon exchange as a means to estimate net photosynthesis and
169  eventually stomatal conductance. Photosynthesis is defined as the gross biosphere-atmosphere
170 ecosystem exchange (GEE; umol CO> m s!) of CO; and is estimated as a function of incoming
171  photosynthetically active radiation (PAR) using a modified version of the Urban VPRM,

172 introduced in Hardiman et al. (2017). The first of three core equations in VPRM-LH is:

1
173 GEE = A - Tscae * Pscate * Wscate - EVI - m - PAR (D
o
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where Tscate, Pscate, and Wicale are dimensionless scaling terms ranging from zero to one describing
the influence of air temperature, phenology, and moisture on photosynthesis. A and PARy are
ecosystem-specific parameters describing the light-use efficiency of vegetation and half-saturation
value of GEE as a function of PAR. EVI is the enhanced vegetation index.

For rural applications, Tz is calculated following the equations within the original VPRM

parameterization (Mahadevan et al., 2008) as:

(T=Tmin) (T ~Tmax)
T = 2
scale (T_Tmin)(T_Tmax)_(T_Topt)z ( )

where T is the air temperature, Tyin is the minimum temperature for photosynthesis, Tiuax is the
maximum temperature for photosynthesis, and 7y is the ecosystem-specific optimal temperature
for photosynthesis. For urban applications, however, the Ti... equation is used for temperatures
less than 20°C, but is set to one for all temperatures greater than 20°C to account for acclimation
of urban vegetation to warmer temperatures. Our field observations of sap flux indicate that
stomatal activity does not shut down in urban trees at temperatures up to 35.5°C, the highest
observed temperature in the measurement period (SI Figure 1). In this model, we set the maximum
temperature for photosynthesis in both urban and rural pixels to 40°C. Pjcare captures the impact of

leaf age on vegetation activity and is calculated as:

EVI- EVIpin

Pscare = ——— 3)

EVimax—EVImin
where EVipinand EVIpax are the minimum and maximum EVI observed during the growing season.
Wieate is a function of the Land Surface Water Index (LSWI), which has been shown to be effective

in monitoring vegetation water content (Gu et al. 2008; Maki et al. 2004), and is calculated as:
“)

where LSWlax is the maximum LSWI observed during the growing season.

1+LSWI
1+ LSWhnax

Wscate =
Ecosystem respiration, required to estimate net photosynthesis (An; umol CO> m™ s™!) at

the leaf level, is calculated as:

Reco =T a+p )
where T is the air temperature (°C), a is the sensitivity of Reco to 7, and £ is the minimum value
that Reco can take on (umol CO; m s™!). Leaf respiration typically accounts for 8-12% of
ecosystem respiration (Tang et al., 2008) and is approximated to be 10% of R.c.. Therefore, net
photosynthesis of the canopy is estimated as:

A, = GEE — 0.1 Ry, (©6)
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VPRM driver data come from publicly available remote sensing and modeling products.
EVI and LSWI are calculated at 30m resolution using Landsat 7 and Landsat 8 Tier 1 Surface

Reflectance products retrieved from Google Earth Engine (Dwyer et al. 2018; Gorelick et al.,

2017). Using data from two Landsat sensors allows for £V to be obtained every eight days. Daily
EVI values are interpolated between collection dates using a spline function (SI Figure 2). PAR
data come from the Geostationary Operational Environmental Satellite (GOES; EUMETSAT OSI
SAF, 2021) 16 which provides high spatial (0.05° x 0.05°) and temporal (hourly) resolution
datasets of incoming shortwave radiation (SW; W m) to North America. In our study, PAR (umol
m s7!) is approximated to be SW/0.505 (Mahadevan et al., 2008). Hourly temperature data come
from the Rapid Refresh analysis product (RAP; Benjamin et al., 2016) at a native resolution of
13km x 13km. Temperature data are adjusted as a linear function of ISA (MassGIS, 2019) and
hour of year using the coefficients derived in Wang et al. (2017) and methods described in
Hardiman et al. (2017).

Medlyn Stomatal Conductance Model

Given estimates of photosynthesis, surface conductance at 30m resolution is estimated

using the Medlyn stomatal conductance model (2011) as:

An

9= 0o+ 16-(1+%) ™

/ Patm
where g; is the surface conductance (umol HO m™ s™!), go is the minimum surface conductance
(100 pmol H,O m™ "), g is a unitless plant functional type dependent parameter that captures the

sensitivity of surface conductance to photosynthesis rate, ¢ is the VPD (kPa), 4, is net

photosynthesis (umol CO; m? s), ¢ is the partial pressure of CO2 (40.53 Pa), and P is the
atmospheric pressure (101325 Pa). Pum and ¢y are held constant due to little sensitivity of model
outputs to variations in the values. ¢ is calculated from RAP temperature and relative humidity,
where values are adjusted to account for urban heat and dry islands as a linear function of ISA and
hour of year using the coefficients derived in Wang et al. (2017).
Penman-Monteith Model

Given estimates of surface conductance, AE (W m?) is calculated using the Penman-
Monteith model as:

AE = A(Rn=G)+pacp(6)ga
T a9y

®)
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where A is the latent heat of vaporization of H20 (2260 J g!), E is the mass H20 evaporation rate
(g s' m2), A describes the rate of change of saturation specific humidity with air temperature (Pa
K™, R, is the net radiation balance of the surface (W m2), G is the ground heat flux (W m?), p, is
the dry air density (1.275 kg m™), ¢, is the specific heat capacity of air (1005 J kg! K1), 6 is the
VPD (Pa), g, is the atmospheric conductance (m s™!), g is the surface conductance (m s), and y
is the psychrometric constant (66 Pa K').

A is calculated following the methods outlined in Allen et al. (1998) as:

17.27T
__ 4098[0.6108exp (75— ©)

(T+237.3)2

where T is the ISA-adjusted air temperature. R, is calculated as:
R,=(1—a)KL+L! —(eoT¢+ (1 —¢)L L) (10)

where a is the albedo (Trlica et al., 2017), K | is incoming shortwave radiation (W m%; GOES-
16), L | is incoming longwave radiation (W m2; GOES-16), ¢ is the surface emissivity (Estimated
to be 0.95 in urban areas; Oke et al., 2017), o is the Stefan-Boltzman constant (5.67 x 10 W m
K*), and Ty is the surface temperature (K; RAP). G is approximated as 10% of R,. p. and ¢, are
held constant as the model outputs show little sensitivity to variations in their values (SI Figure 3).
Previous work found AE estimates to be relatively insensitive to variation in g, within the range of
0.010-0.033 m s! (Zhang and Dawes, 1995), consistent with values measured in city canopies
(Ballinas et al., 2016; Chen et al., 2011). We use the constant values of 0.033 and 0.010 m s! for
forests/cities and croplands, respectively, as applied in Zhang et al. (2008).
Model Validation
Rural Validation

VPRM-LH was validated across a range of rural ecosystem types. Three dominant North
American land covers - deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), and
croplands (CRP) — were chosen as validation sites. Eddy covariance flux tower AE measurements
were compared to model estimates in a 90m x 90m grid (10 pixels) centered on the flux tower for
the most recent full year of available data (2017 for ENF, 2018 for DBF and CRP).

The Harvard Forest (Ameriflux ID: US-Hal) in Massachusetts, USA was the validation
site for DBF and is dominated by red oak (Quercus rubra) and red maple (Acer rubrum; Munger,
1991). The Howland Forest in Maine, USA (Ameriflux ID: US-Hol) was the validation site for

ENF and is dominated by red spruce (Picea rubens) and eastern hemlock (7Tsuga canadensis;
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Richardson, 1996). The Nebraska Agricultural Research and Development Center (Ameriflux ID:
US-Nel) in Nebraska, USA was the validation site for CRP and is an irrigated maize field (Suyker,
2001).
Urban Heatwave Modeling and Validation

AE was modeled across Boston, MA during mean and heatwave conditions during the
summer of 2018. Mean conditions were modeled during a 6-day period from July 10-July 15,
2018 where the mean air temperature across the modeling domain was 23.1°C, approximately
equal to the mean 2018 6-day rolling average temperature during June, July, and August (JJA;
23.0°C). Heatwave conditions were modeled during a 6-day heat event from August 2—August 7,
2018 where the mean air temperature across the modeling domain was 28.7°C (SI Figure 4).

Validation of urban ecosystem models can be difficult due to limited field observations.
Here, outputs were validated by modeling AE in five pixels ranging from 47%-99% ISA containing
trees outfitted with sap flux sensors between July 18 and September 26, 2019. Details on sap flux
sensor methodology are described in Jones et al. 2020. Validation trees were in healthy condition
and included two sugar maples (Acer saccharum), two Norway maples (Acer platanoides), and
one red maple (4cer rubrum). \E (W m2) was estimated from sap flux measurements by estimating
the rate of transpiration (g H2O s”' m?) via multiplying sap flux density (g H20O cm™ s!) by the
active sapwood area (the fraction of the basal area cross-section that is active xylem; cm?) and
dividing by the crown area of the tree (m?). AE (W m2) was then computed as the transpiration
rate multiplied by the latent heat of vaporization of H>O (2260 J g"). The active sapwood area of
the tree was estimated from species-specific allometric equations (Wullschleger et al., 2001;
Gebauer et al., 2008). Statistical analyses were conducted in R version 3.6 (R Core Team, 2020).
Results
Rural JE

We ran VPRM-LH for a full year in three rural ecosystems and compared outputs with
eddy covariance flux measurements of AE. We find strong agreement between modeled and
measured AE across a range of time scales, especially during the summer months (defined as JJA;
Figure 1). Disagreement during the dormant season is likely due to a higher proportion of AE from
evaporation not related to stomatal activity (e.g. evaporation from soils), rather than direct fluxes
via transpiration. Modeled and measured AE show typical seasonal patterns with high rates during

the warmer growing season and low rates during the cooler dormant season (Figure 1a-c). Modeled
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versus measured AE are of the same order of magnitude at hourly and daily time scales. Mean
diurnal patterns in AE, including afternoon peaks and nighttime lows, are successfully captured by
VPRM-LH (Figure 1d-f). JJA comparisons of hourly AE show a high correlation (R? values 0.83,
0.75, and 0.89 for DBF, ENF, and CRP respectively; Figure 1g-i). The accuracy of VPRM-LH is
comparable to the accuracy of VPRM estimates of net ecosystem exchange of CO2 (NEE) as the
R? values associated with hourly estimates of NEE for the same ecosystem types as reported in
Mahadevan et al. (2008) are 0.83, 0.65, and 0.83 for DBF, ENF, and CRP, respectively.

Urban AE

AE across Boston varied substantially, with higher AE in the more vegetated portions of the
city and lower AE in the more impervious portions of the city (Figure 2a). AE generally increased
with temperature, except for cloudy days where AE was limited by available incoming solar
radiation (SI Figure 4). During the six-day heatwave event, AE averaged 85.6 W m™ and was
approximately 17% higher than during the six days representing mean summer conditions (73.1
W m2). Daily maximum AE ranged from 135.4 W m™? on a cloudy day to 334.5 W m™ during the
warmest day in the study period. For reference, the maximum estimated AE during JJA at the DBF
site, located approximately 100 km west of Boston, was 486.4 W m™.

The model modifications intended to capture urban AE dynamics were evaluated by
comparing model estimates of AE in a subset of five pixels in Boston, MA to coincident AE
estimates derived from sap flux measurements within the pixels. Hourly field and model estimates
of daytime AE show a similarly strong agreement with the rural model application (R?=0.80) across
a range of urbanization intensities and tree species (Figure 2b)

In general, AE was lower in pixels with higher ISA (figures 2b and 3a), however, for a
given EVI greenness the AE increased with ISA due to urban heat and dry island impacts on local
meteorological conditions (Figure 3a). For example, for all pixels where EVI=0.70 (n=912), the
average 14:00 EDT AE ranged from 219.1 to 249.7 W m? (Figure 3a). Furthermore, EVI remains
relatively stable on the scale of weeks during the growing season, but AE has a diurnal cycle with
peak fluxes occurring during the afternoon, is close to zero at night, and responds rapidly to
changes in meteorological conditions. The temporal resolution of VPRM-LH captures this diurnal
pattern and shows that enhancements of AE due to urbanization during the daytime, when exposure

to high temperatures is greatest, is higher than nighttime (Figure 3b). The average range of AE for
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all pixels with an EVI=0.70 was less than 1 W m during the night and was greater than 30 W m"
2 between 12:00 and 15:00 EDT.

The spatial patterns of AE and EVI are similar (Figures 2a and 3c), however, using AE as a
metric of vegetation cooling benefits captures interactive impacts of greenspace distributions,
radiation, and temperature drivers (ISA; Figure 3d).

Discussion

Cities are highly vulnerable to projected increases in mean air temperatures and the
frequency of extreme heat events (Habeeb et al., 2015) and as a result are eager to obtain actionable
ecological data informing their climate mitigation strategies (Zhou et al., 2019). Extreme
temperatures already represent an important threat to public health, with vulnerable populations
(in terms of age, race, and income) particularly susceptible to heat-related illness and death
(Wellenius et al., 2017). Here, we introduce a simple tool to quantify vegetation cooling activity
in cities with the potential to identify areas that will benefit most from tree planting or urban
greening.

Model Implementation and Limitations

VPRM-LH uses several readily accessible data sources such as the Landsat, GOES, and

RAP archives. Urban applications require the use of an additional spatially explicit ISA product

and information about the region-specific relationship between air temperature and ISA, however,

CDeleted: UHI intensity

this could be determined using local weather station archives or low-cost sensor networks, such as
those used in Wang et al. (2017). VPRM-LH estimates AE with good accuracy across ecosystems
and time scales; the model driver data is independent of the field observations used for validation.
The assumptions embedded in estimation of ground heat flux, dry air density, specific heat
capacity, and leaf respiration rates do not appear to introduce critical errors into AE estimates. A
sensitivity analysis of the incremental change in AE resultant from incremental changes in model
parameters points to the atmospheric conductance term (treated as a constant) as a main source of
unaccounted for variance/uncertainty in the model (SI Figure 3). Implementation of additional data
sources capturing the variability in atmospheric conductance could further improve model
accuracy.

The model validation and application presented here was conducted in either mesic or
irrigated ecosystems where water availability does not typically constrain transpiration. Model

application would benefit from further validation in more water-limited regions. VPRM-LH
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currently considers moisture limitations on transpiration in the Wi term (equation 3), which
leverages LSWI to restrict vegetation activity during dry periods. The availability of water for
vegetation, whether from irrigation or precipitation, is a critical consideration in determining the
location for urban vegetation expansion. Additionally, VPRM-LH only distinguishes vegetation at
the plant functional type level and does not consider species-specific differences in transpiration
strategies (e.g., isohydric vs. anisohydric). While the omission of species-specific parameters may
limit model accuracy under certain climate conditions, VPRM-LH does not require high-resolution
tree species maps, which are likely not available for many cities.

The interpretation of model outputs in mesic climates, particularly on hot, humid days

should consider more than just the magnitude of AE. Regions with a relatively high AE will have

more turbulent energy fluxes partitioned into latent rather than sensible heat, which results in a

cooling effect on temperature. This interpretation, however, neglects to consider the impact of the

increase in atmospheric moisture (resultant from increased transpiration) on perceived

temperature. Higher atmospheric humidity reduces the ability of the human body to shed excess
heat via the evaporation of sweat, lowering the rate that the body can cool and increasing the

perceived temperature, where the perceived temperature is commonly quantified by the heat index.

In New York City, NY, USA (approximately 300 km southwest of Boston), a significant increase

in mortality risk was observed on days where the maximum heat index exceeded 35° C (Metzger

et al., 2010). Heat indices in excess of 35°C were not observed when modeling mean summer

conditions in Boston. However, during the six-day heatwave event, the average daily maximum
temperature ranged from 27.7 — 35.7°C, with 5.7% of pixels exceeding 35°C. The average daily

maximum heat index during the same time period ranged from 29.0 — 43.9°C with 78.4% of pixels

exceeding the 35°C threshold, highlighting the impact of atmospheric moisture concentration on

perceived temperature.

The provision of shade, which represents another important determinant of perceived

temperature, counteracts humidity effects. For example, Rahman et al. (2018) found that the

daytime air temperature under urban tree canopies in a temperate climate was always lower than

the air temperature in open areas. Furthermore, while AE was the predominant cooling mechanism

of the air on days up to 30°C, shading effects were more prominent on extremely hot days in excess

of 30°C (Rahman et al. 2018). Model output interpretation should consider the implications of
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atmospheric moisture inputs and the type of vegetation present, where trees will provide shade

benefits that are not provided by shrubs and grasses.

Implications for Cities

Urban greening, widely espoused as a climate mitigation strategy, has been implemented
around the world (Pincetl et al., 2013; Tan et al., 2013; Mell et al., 2013) despite debates around
the exact services and tradeoffs with disservices provided by urban canopies. Urban vegetation
does store (Raciti et al., 2014) and take up more atmospheric carbon (Sargent et al., 2018) than
most ecosystem models currently account for (Churkina, 2008), but due to accelerated turnover
(Smith et al., 2019) and respiration (Decina et al., 2016) rates, tree planting is likely not a viable
avenue for meaningful carbon sequestration. Additionally, urban trees are capable of removing
atmospheric pollutants and particulates (Weber et al., 2014) but are also sources of volatile organic
compounds (Churkina et al., 2015) and allergens (Beck et al., 2013). The urban canopy, however,
undoubtedly contributes to local cooling via shading and transpiration (Bowler et al., 2010), with
temperature reductions from vegetation observed to be up to 8°C (Rahman et al., 2017). The
potential for vegetative cooling in cities is well established, but implementation of greening plans
for effective urban cooling has been heretofore limited due to the inability to quantify variation in
cooling potential across the complex landscape of cities.

VPRM-LH offers a simple, satellite-based methodology for estimating urban AE
contributions from vegetation at fine spatial and temporal resolution. The model incorporates a
novel combination of urban-specific parameters capturing climatological, physical, and
physiological intricacies of the urban environment and its components. Model outputs are
consistent with ground measurements of AE and can be scaled to explore the cooling potential of
vegetation across cities at hourly, diurnal, seasonal, and annual scales. In contrast to vegetation
indices that are commonly used to quantify the benefits of urban greenspace, AE captures
vegetation activity in addition to abundance and offers nuanced information about the ecosystem
services provided by urban vegetation. VPRM-LH will be a valuable tool in the implementation
of policies combatting heat related consequences of urbanization, especially as cities take the
forefront in addressing climate-related matters. VPRM-LH offers an easy implementation and the
ability to combine outputs with sociodemographic datasets at sufficient resolution for political

action. The result is a unique opportunity to identify vulnerable neighborhoods and optimize



municipal decisions that repartition the surface energy balance to address historic inequities in
canopy distribution and UHI (Hoffman et al., 2020).
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Figure 1. Comparison of modeled vs. measured AE at DBF, ENF, and CRP flux tower sites. (a-c)
Annual trends in hourly, daily, and weekly AE. (d-f) Average diurnal AE patterns during JJA. Error
bars represent standard error for each hour during JJA. (g-i) Scatterplots of modeled vs. measure
AE for each hour during JJA. (j-1) Scatterplots of modeled vs measured daytime average AE over

the entire year.

Figure 2. (a) Average 14:00 EDT AE at 30m resolution across Boston, MA under heatwave
conditions. (b) Daytime (9:30-14:30) hourly estimated AE vs AE derived from sap flux

measurements between July-September 2019.

Figure 3. (a) EVI vs. average 14:00 AE color coded by ISA. (b) Diurnal hysteresis comparison of
AE as a function of air temperature in two pixels with EVI=0.70 and ISA=10% and 90%. Numbers
represent the hour of day (EDT). (¢) Map and distribution of EVI in Boston on Aug 2, 2018. (d)
Map and distribution of ISA in Boston.
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