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The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. Urban greenspace mitigates
high temperatures through evapotranspiration and shading; however, quantification of vegetative cooling potential in cities is
often limited to simple remote sensing greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit,
high-resolution model of urban latent heat flux from vegetation. The model iterates through three core equations that consider
urban climatological and physiological characteristics, producing estimates of latent heat flux at 30-meter spatial resolution and
hourly temporal resolution. We find strong agreement between field observations and model estimates of latent heat flux across a
range of ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial heterogeneity of vegetation
cooling benefits across the complex landscape of cities at an adequate resolution to inform policies addressing the effects of
extreme heat events.
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cities has been limited to simple remote sensing greenness indices characterizing vegetation extent and sparse field
measurements of transpiration rates. This paper introduces a simple, high resolution, satellite-based model that utilizes readily
accessible public datasets to estimate the cooling potential of urban vegetation across space and time. To our knowledge, our work
is the first to integrate climatological, structural, and physiological intricacies of the urban environment into estimates of urban
evaporative cooling. We use previously published relationships between photosynthesis, stomatal conductance, and meteorological
conditions to estimate cooling benefits from vegetation activity. Model equations include terms to capture the influence of
urbanization intensity on climate and the unique growth dynamics of urban vegetation. Outputs are at a spatial resolution of 30
meters, providing a unique opportunity for cities to identify vulnerable populations and neighborhoods at a sufficient resolution to
implement targeted heat resilience policies toward sustainable urban systems.
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Abstract 13 

The impacts of extreme heat events are amplified in cities due to unique urban thermal properties. 14 
Urban greenspace mitigates high temperatures through evapotranspiration and shading; however, 15 
quantification of vegetative cooling potential in cities is often limited to simple remote sensing 16 
greenness indices or sparse, in situ measurements. Here, we develop a spatially explicit, high-17 
resolution model of urban latent heat flux from vegetation. The model iterates through three core 18 
equations that consider urban climatological and physiological characteristics, producing estimates 19 
of latent heat flux at 30-meter spatial resolution and hourly temporal resolution. We find strong 20 
agreement between field observations and model estimates of latent heat flux across a range of 21 
ecosystem types, including cities. This model introduces a valuable tool to quantify the spatial 22 
heterogeneity of vegetation cooling benefits across the complex landscape of cities at an adequate 23 
resolution to inform policies addressing the effects of extreme heat events. 24 
 25 
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 41 

Introduction 42 

Urban areas make up only a small fraction of global land area (<3%; Liu et al., 2014), but 43 

have a disproportionately large influence on human quality of life and well-being. Cities are home 44 

to the majority of the world’s population (Grimm et al., 2008) and continue to grow in both spatial 45 

extent (Seto et al., 2012) and population (United Nations, 2018). Urbanization often leads to 46 

environmental degradation, prompting cities to implement policies to ameliorate the 47 

environmental impacts. Such policies, however, are currently limited by a dearth of actionable 48 

urban ecological data and theory to implement demonstrated best practices (Zhou et al., 2019). 49 

Urbanization disrupts the background surface energy balance via higher amounts of 50 

impervious surface area (ISA), increased thermal admittance of surface materials, lower albedo 51 

due to the presence of buildings and urban canyons, and fluxes of anthropogenic heat from 52 

buildings and automobiles (Oke et al., 2017). In many regions, the modified thermal characteristics 53 

of the urban landscape result in excessive heat, thermal discomfort of residents, and an urban heat 54 

island (UHI) effect, where temperatures within the city tend to exceed those of local rural 55 

environments (Taha, 997). Historically, the primary driver of extreme urban daytime temperatures 56 

has been thought to result from decreases in daytime latent heat flux (λE) due to higher fractions 57 

of ISA, less vegetation, less moisture availability, and therefore less evapotranspiration (Taha, 58 

1997; Carlson and Boland, 1978). Novel attribution methods evaluating the component 59 

contributions of net radiation, aerodynamic resistance, the Bowen ratio (or ratio of sensible heat 60 

flux to λE), and heat storage provide evidence supporting the theory that the daytime UHI intensity 61 

is mostly controlled by variations in the capacity of urban and rural environments to evaporate 62 

water (Li et al., 2019). The UHI is often cited as grounds for improving urban heat resilience but 63 

is not necessarily a phenomenon that requires mitigation due to the dependence of UHI magnitude 64 

on the background rural conditions (Martilli et al., 2020). For example, some cities that do not 65 

experience a large daytime UHI (e.g., Phoenix, AZ, USA; Chow et al. 2012) still experience 66 

extreme summer temperatures. Instead, urban heat mitigation should focus on absolute 67 

temperature reduction. Nonetheless, the role of evapotranspiration in moderating extreme heat in 68 

cities points to municipal greening initiatives as promising pathways for urban heat mitigation.  69 

Cities are warming at a faster rate than their rural counterparts (Fitzpatrick and Dunn, 2019) 70 

with increases in the magnitude and frequency of extreme weather events. Excessively high 71 
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temperatures can increase electricity demand (McPherson et al., 1994; Ruijven et al., 2019), induce 83 

vegetation stress (Wahid et al., 2007; Reinmann and Hutyra, 2017), and represent a critical risk 84 

factor for human mortality (Gasparrini et al., 2015; Basu, 2009). Many city governments have 85 

undertaken efforts to increase canopy cover (Roman, 2014) to offset local climate changes driven 86 

by urbanization. Common surface materials found in the urban environment are impervious and 87 

do not retain much moisture for evaporation. Vegetation, however, can be used as a tool to cool 88 

the urban environment via evapotranspiration. When plants open their stomata to take up carbon 89 

dioxide (CO2), they simultaneously release water vapor in a process that utilizes energy for the 90 

conversion of liquid water to a vapor state, cooling the plant and the air around it. Remote sensing 91 

observations reveal an inverse relationship between surface temperature and the Normalized 92 

Difference Vegetation Index (Tiangco et al., 2008) and field experiments have shown that rooftop 93 

gardens can reduce the surface temperature of buildings and the air around them (Wong et al., 94 

2003). Ziter et al. (2019) found the proportions of canopy cover and ISA to be interactive drivers 95 

of urban temperature variation. While previous research has established the potential for vegetative 96 

cooling in urban environments, less attention has been given to quantifying evapotranspiration 97 

rates and the corresponding λE variations across entire cities.  98 

Direct measurements of λE at discrete locations are commonly made using eddy covariance 99 

flux towers. However, this technique assumes uniform vegetation canopies on flat terrain (Munger 100 

and Loescher, 2004). The heterogenous landscape associated with cities often violates some 101 

assumptions embedded in eddy covariance methodologies, making urban measurements difficult. 102 

Consequently, direct measurements of λE in urban areas are often made using tree-level 103 

measurements of evapotranspiration. While this can be done by taking leaf-level measurements of 104 

transpiration rates that are then scaled to the entire canopy, studies more commonly use 105 

measurements of sap flux rates in trees (Pataki et al., 2011; Winbourne et al., 2020). Sap flux 106 

measurements provide an integrative measure of water use and transpiration yielding important 107 

information about the energy balance of individual trees. Modeling approaches are necessary, 108 

however, to capture the spatial variability in λE across larger areas of interest. 109 

The Penman-Monteith model (Monteith, 1965) is a commonly used approach to estimate 110 

λE based primarily on meteorological conditions and the capacity of the land surface to transfer 111 

water into the lower atmosphere. Recent Penman-Monteith applications have started to focus on 112 

urban areas (Liu et al., 2017; Zipper et al., 2017; Zhang et al., 2018; Wang et al., 2020), 113 
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incorporating the unique climatological properties of cities by including the UHI (Zipper et al., 114 

2017) and spectral mixture analysis to consider the unique physical structure of urban areas (Wang 115 

et al., 2020). Results show higher atmospheric demand for water in areas with higher amounts of 116 

ISA and alleviation of the UHI in regions with high evapotranspiration intensity (Zipper et al., 117 

2018; Wang et al., 2020). Other models exist to partition surface energy fluxes in cities, however, 118 

the International Urban Energy Balance Comparison Project (Grimmond et al. 2010) found that 119 

the most commonly used models had the poorest performance in modeling the λE component of 120 

the surface energy balance and highlighted the importance of accurate representation of vegetation 121 

in correctly modeling the partitioning of turbulent fluxes. The focus on quantifying 122 

evapotranspiration in urban areas is advancing our knowledge of the surface energy balance within 123 

cities; however, urban vegetation exhibits unique physiological dynamics that to our knowledge 124 

have not yet been captured in previous studies (Winbourne et al., 2020). 125 

Urban vegetation tends to grow at accelerated rates compared to rural vegetation (Briber 126 

et al., 2015; Smith et al., 2019), likely due to a combination of increased light availability due to 127 

open grown conditions, higher nitrogen (Rao et al., 2014; Decina et al., 2017) and phosphorus 128 

(Hobbie et al., 2017; Decina et al., 2018) deposition rates, higher surface CO2 concentrations 129 

(Brondfield et al., 2012), lengthened growing seasons (Melaas et al., 2016) and in some cases, 130 

higher water availability (Bijoor et al., 2011; McCarthy and Pataki, 2010). Faster plant growth has 131 

important effects on stomatal conductance, the process governing the exchange of water vapor 132 

between the biosphere and the atmosphere, due to the strong coupling between the processes of 133 

photosynthesis and transpiration. Studies of the relationship between stomatal conductance and 134 

temperature in controlled experiments come to inconsistent conclusions (Weston and Baurle, 135 

2007; von Caemmerer and Evans, 2015; Urban et al., 2017; Teskey et al., 2014). While similar 136 

urban studies are rare, Winbourne et al. (2020) found a stronger positive relationship between 137 

stomatal conductance and temperature in urban versus rural settings with observations of persistent 138 

stomatal conductance in an urban maple tree at temperatures in excess of 30°C and vapor pressure 139 

deficits (VPD) greater than 2.5 kPa. Furthermore, Esperon-Rodriguez et al. (2020) found evidence 140 

of urban tree adaptation to climate via plasticity in drought tolerance traits, with urban trees of the 141 

same species exhibiting more drought tolerance than rural trees.  This suggests that urban trees 142 

may have the ability to acclimate to the extreme growing conditions found in the urban 143 
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environment, underscoring the role of urban vegetation in providing temperature relief during 144 

extreme heat events.  145 

Here, we introduce the Vegetation Photosynthesis and Respiration Model Latent Heat 146 

module (VPRM-LH) - a spatially explicit, remote sensing-driven model to produce hourly 147 

estimates of urban λE at 30m spatial resolution. In contrast to frequently used vegetation indices 148 

characterizing the extent of urban greenspace, VPRM-LH explicitly includes information about 149 

the function of urban greenspace and its variation across space and time. VPRM-LH outputs are 150 

particularly relevant to the implementation of nature-based climate solutions in cities due to a 151 

specific focus on vegetation contributions to λE. We find strong agreement between field 152 

observations and model estimates of λE across a range of ecosystems and urbanization intensities, 153 

highlighting VPRM-LH as an effective tool in quantifying the spatial heterogeneity of vegetation 154 

cooling benefits within cities. 155 

Methods 156 

As an overview, VPRM-LH iterates through three core equations that consider urban structural, 157 

climatological, and physiological characteristics. Surface conductance of water vapor is estimated 158 

as a function of photosynthesis and VPD using the Urban Vegetation Photosynthesis and 159 

Respiration Model (VPRM) (Mahadevan et al., 2008; Hardiman et al., 2017) and Medlyn stomatal 160 

conductance model (Medlyn et al., 2011). The Penman-Monteith model is used to produce 161 

estimates of λE, with meteorological inputs downscaled to 30m resolution based on empirical 162 

relationships between ISA and temperature/VPD (Wang et al., 2017). We present the necessary 163 

model equations and data specifications to apply the VPRM-LH framework (summarized in SI 164 

Table 1). Model equations were executed in R version 3.6 (R Core Team, 2020). 165 

Model Description 166 

Vegetation Photosynthesis and Respiration Model 167 

We use the VPRM hourly carbon exchange as a means to estimate net photosynthesis and 168 

eventually stomatal conductance. Photosynthesis is defined as the gross biosphere-atmosphere 169 

ecosystem exchange (GEE; µmol CO2 m-2 s-1) of CO2 and is estimated as a function of incoming 170 

photosynthetically active radiation (PAR) using a modified version of the Urban VPRM, 171 

introduced in Hardiman et al. (2017). The first of three core equations in VPRM-LH is: 172 

𝐺𝐸𝐸 = Λ ⋅ 𝑇'()*+ ⋅ 𝑃'()*+ ⋅ 𝑊'()*+ ⋅ 𝐸𝑉𝐼 ⋅
0

01	345 34567
⋅ 𝑃𝐴𝑅   (1) 173 
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where Tscale, Pscale, and Wscale are dimensionless scaling terms ranging from zero to one describing 174 

the influence of air temperature, phenology, and moisture on photosynthesis. Λ and PAR0 are 175 

ecosystem-specific parameters describing the light-use efficiency of vegetation and half-saturation 176 

value of GEE as a function of PAR. EVI is the enhanced vegetation index. 177 

For rural applications, Tscale is calculated following the equations within the original VPRM 178 

parameterization (Mahadevan et al., 2008) as: 179 

𝑇'()*+ =
(;<;=>?)(;<;=AB)

(;<;=>?)(;<;=AB)<(;<;CDE)F
      (2) 180 

where T is the air temperature, Tmin is the minimum temperature for photosynthesis, Tmax is the 181 

maximum temperature for photosynthesis, and Topt is the ecosystem-specific optimal temperature 182 

for photosynthesis. For urban applications, however, the Tscale equation is used for temperatures 183 

less than 20°C, but is set to one for all temperatures greater than 20°C to account for acclimation 184 

of urban vegetation to warmer temperatures. Our field observations of sap flux indicate that 185 

stomatal activity does not shut down in urban trees at temperatures up to 35.5°C, the highest 186 

observed temperature in the measurement period (SI Figure 1). In this model, we set the maximum 187 

temperature for photosynthesis in both urban and rural pixels to 40°C. Pscale captures the impact of 188 

leaf age on vegetation activity and is calculated as: 189 

𝑃'()*+ =
GHI<	GHI=>?

GHI=AB<GHI=>?
 (3) 190 

where EVImin and EVImax are the minimum and maximum EVI observed during the growing season. 191 

Wscale is a function of the Land Surface Water Index (LSWI), which has been shown to be effective 192 

in monitoring vegetation water content (Gu et al. 2008; Maki et al. 2004), and is calculated as: 193 

𝑊'()*+ =
01JKLI

01	JKLI=AB
  (4) 194 

where LSWImax is the maximum LSWI observed during the growing season. 195 

Ecosystem respiration, required to estimate net photosynthesis (An; µmol CO2 m-2 s-1) at 196 

the leaf level, is calculated as: 197 

𝑅+(M = 𝑇 ∙ 𝛼 + 𝛽  (5) 198 

where T is the air temperature (°C), α is the sensitivity of Reco to T, and β is the minimum value 199 

that Reco can take on (µmol CO2 m-2 s-1). Leaf respiration typically accounts for 8-12% of 200 

ecosystem respiration (Tang et al., 2008) and is approximated to be 10% of Reco. Therefore, net 201 

photosynthesis of the canopy is estimated as: 202 

𝐴R = 𝐺𝐸𝐸 − 0.1 ∙ 𝑅+(M (6) 203 
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VPRM driver data come from publicly available remote sensing and modeling products. 204 

EVI and LSWI are calculated at 30m resolution using Landsat 7 and Landsat 8 Tier 1 Surface 205 

Reflectance products retrieved from Google Earth Engine (Dwyer et al. 2018; Gorelick et al., 206 

2017). Using data from two Landsat sensors allows for EVI to be obtained every eight days. Daily 207 

EVI values are interpolated between collection dates using a spline function (SI Figure 2). PAR 208 

data come from the Geostationary Operational Environmental Satellite (GOES; EUMETSAT OSI 209 

SAF, 2021) 16 which provides high spatial (0.05° x 0.05°) and temporal (hourly) resolution 210 

datasets of incoming shortwave radiation (SW; W m-2) to North America. In our study, PAR (µmol 211 

m-2 s-1) is approximated to be SW/0.505 (Mahadevan et al., 2008). Hourly temperature data come 212 

from the Rapid Refresh analysis product (RAP; Benjamin et al., 2016) at a native resolution of 213 

13km x 13km. Temperature data are adjusted as a linear function of ISA (MassGIS, 2019) and 214 

hour of year using the coefficients derived in Wang et al. (2017) and methods described in 215 

Hardiman et al. (2017). 216 

Medlyn Stomatal Conductance Model 217 

Given estimates of photosynthesis, surface conductance at 30m resolution is estimated 218 

using the Medlyn stomatal conductance model (2011) as: 219 

𝑔' = 𝑔X + 1.6 ⋅ (1 +
Z[
\
) ⋅ 4?

(]
3AE=7

 (7) 220 

where gs is the surface conductance (µmol H2O m-2 s-1), g0 is the minimum surface conductance 221 

(100 µmol H2O m-2 s-1), g1 is a unitless plant functional type dependent parameter that captures the 222 

sensitivity of surface conductance to photosynthesis rate, δ is the VPD (kPa), An is net 223 

photosynthesis (µmol CO2 m-2 s-1), cs is the partial pressure of CO2 (40.53 Pa), and Patm is the 224 

atmospheric pressure (101325 Pa). Patm and cs are held constant due to little sensitivity of model 225 

outputs to variations in the values. δ is calculated from RAP temperature and relative humidity, 226 

where values are adjusted to account for urban heat and dry islands as a linear function of ISA and 227 

hour of year using the coefficients derived in Wang et al. (2017). 228 

Penman-Monteith Model 229 

Given estimates of surface conductance, λE (W m-2) is calculated using the Penman-230 

Monteith model as: 231 

𝜆𝐸 = ∆(5?<`)1aA(D(\)ZA
∆1b(01ZA Z]7 )

 (8) 232 
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where  λ is the latent heat of vaporization of H2O (2260 J g-1), E is the mass H2O evaporation rate 233 

(g s-1 m-2), Δ describes the rate of change of saturation specific humidity with air temperature (Pa 234 

K-1), Rn is the net radiation balance of the surface (W m-2), G is the ground heat flux (W m-2), ρa is 235 

the dry air density (1.275 kg m-3), cp is the specific heat capacity of air (1005 J kg-1 K-1), δ is the 236 

VPD (Pa), ga is the atmospheric conductance (m s-1), gs is the surface conductance (m s-1), and γ 237 

is the psychrometric constant (66 Pa K-1). 238 

Δ is calculated following the methods outlined in Allen et al. (1998) as: 239 

∆=
cXde[X.g0Xehij	( [k.FkllmFnk.n)]

(;1pqr.q)F
 (9) 240 

where T is the ISA-adjusted air temperature. Rn is calculated as: 241 

𝑅R = (1 − 𝛼)𝐾 ↓ +𝐿 ↓ −(𝜀𝜎𝑇'c + (1 − 𝜀)𝐿 ↓) (10) 242 

where 𝛼 is the albedo (Trlica et al., 2017), 𝐾 ↓ is incoming shortwave radiation (W m-2; GOES-243 

16), 𝐿 ↓ is incoming longwave radiation (W m-2; GOES-16), 𝜀 is the surface emissivity (Estimated 244 

to be 0.95 in urban areas; Oke et al., 2017), 𝜎 is the Stefan-Boltzman constant (5.67 x 10-8 W m-2 245 

K-4), and 𝑇'	 is the surface temperature (K; RAP). G is approximated as 10% of Rn. ρa and cp are 246 

held constant as the model outputs show little sensitivity to variations in their values (SI Figure 3). 247 

Previous work found λE estimates to be relatively insensitive to variation in ga within the range of 248 

0.010–0.033 m s-1 (Zhang and Dawes, 1995), consistent with values measured in city canopies 249 

(Ballinas et al., 2016; Chen et al., 2011). We use the constant values of 0.033 and 0.010 m s-1 for 250 

forests/cities and croplands, respectively, as applied in Zhang et al. (2008).  251 

Model Validation 252 

Rural Validation 253 

VPRM-LH was validated across a range of rural ecosystem types. Three dominant North 254 

American land covers - deciduous broadleaf forest (DBF), evergreen needleleaf forest (ENF), and 255 

croplands (CRP) – were chosen as validation sites. Eddy covariance flux tower λE measurements 256 

were compared to model estimates in a 90m x 90m grid (10 pixels) centered on the flux tower for 257 

the most recent full year of available data (2017 for ENF, 2018 for DBF and CRP). 258 

The Harvard Forest (Ameriflux ID: US-Ha1) in Massachusetts, USA was the validation 259 

site for DBF and is dominated by red oak (Quercus rubra) and red maple (Acer rubrum; Munger, 260 

1991). The Howland Forest in Maine, USA (Ameriflux ID: US-Ho1) was the validation site for 261 

ENF and is dominated by red spruce (Picea rubens) and eastern hemlock (Tsuga canadensis; 262 
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Richardson, 1996). The Nebraska Agricultural Research and Development Center (Ameriflux ID: 263 

US-Ne1) in Nebraska, USA was the validation site for CRP and is an irrigated maize field (Suyker, 264 

2001).  265 

Urban Heatwave Modeling and Validation 266 

λE was modeled across Boston, MA during mean and heatwave conditions during the 267 

summer of 2018. Mean conditions were modeled during a 6-day period from July 10–July 15, 268 

2018 where the mean air temperature across the modeling domain was 23.1°C, approximately 269 

equal to the mean 2018 6-day rolling average temperature during June, July, and August (JJA; 270 

23.0°C). Heatwave conditions were modeled during a 6-day heat event from August 2–August 7, 271 

2018 where the mean air temperature across the modeling domain was 28.7°C (SI Figure 4). 272 

Validation of urban ecosystem models can be difficult due to limited field observations. 273 

Here, outputs were validated by modeling λE in five pixels ranging from 47%–99% ISA containing 274 

trees outfitted with sap flux sensors between July 18 and September 26, 2019. Details on sap flux 275 

sensor methodology are described in Jones et al. 2020. Validation trees were in healthy condition 276 

and included two sugar maples (Acer saccharum), two Norway maples (Acer platanoides), and 277 

one red maple (Acer rubrum). λE (W m-2) was estimated from sap flux measurements by estimating 278 

the rate of transpiration (g H2O s-1 m-2) via multiplying sap flux density (g H2O cm-2 s-1) by the 279 

active sapwood area (the fraction of the basal area cross-section that is active xylem; cm2) and 280 

dividing by the crown area of the tree (m2). λE (W m-2) was then computed as the transpiration 281 

rate multiplied by the latent heat of vaporization of H2O (2260 J g-1). The active sapwood area of 282 

the tree was estimated from species-specific allometric equations (Wullschleger et al., 2001; 283 

Gebauer et al., 2008). Statistical analyses were conducted in R version 3.6 (R Core Team, 2020).  284 

Results 285 

Rural λE 286 

We ran VPRM-LH for a full year in three rural ecosystems and compared outputs with 287 

eddy covariance flux measurements of λE. We find strong agreement between modeled and 288 

measured λE across a range of time scales, especially during the summer months (defined as JJA; 289 

Figure 1). Disagreement during the dormant season is likely due to a higher proportion of λE from 290 

evaporation not related to stomatal activity (e.g. evaporation from soils), rather than direct fluxes 291 

via transpiration. Modeled and measured λE show typical seasonal patterns with high rates during 292 

the warmer growing season and low rates during the cooler dormant season (Figure 1a-c). Modeled 293 
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versus measured λE are of the same order of magnitude at hourly and daily time scales. Mean 294 

diurnal patterns in λE, including afternoon peaks and nighttime lows, are successfully captured by 295 

VPRM-LH (Figure 1d-f). JJA comparisons of hourly λE show a high correlation (R2 values 0.83, 296 

0.75, and 0.89 for DBF, ENF, and CRP respectively; Figure 1g-i). The accuracy of VPRM-LH is 297 

comparable to the accuracy of VPRM estimates of net ecosystem exchange of CO2 (NEE) as the 298 

R2 values associated with hourly estimates of NEE for the same ecosystem types as reported in 299 

Mahadevan et al. (2008) are 0.83, 0.65, and 0.83 for DBF, ENF, and CRP, respectively.  300 

Urban λE 301 

λE across Boston varied substantially, with higher λE in the more vegetated portions of the 302 

city and lower λE in the more impervious portions of the city (Figure 2a). λE generally increased 303 

with temperature, except for cloudy days where λE was limited by available incoming solar 304 

radiation (SI Figure 4).  During the six-day heatwave event, λE averaged 85.6 W m-2 and was 305 

approximately 17% higher than during the six days representing mean summer conditions (73.1 306 

W m-2). Daily maximum λE ranged from 135.4 W m-2 on a cloudy day to 334.5 W m-2 during the 307 

warmest day in the study period. For reference, the maximum estimated λE during JJA at the DBF 308 

site, located approximately 100 km west of Boston, was 486.4 W m-2. 309 

The model modifications intended to capture urban λE dynamics were evaluated by 310 

comparing model estimates of λE in a subset of five pixels in Boston, MA to coincident λE 311 

estimates derived from sap flux measurements within the pixels. Hourly field and model estimates 312 

of daytime λE show a similarly strong agreement with the rural model application (R2=0.80) across 313 

a range of urbanization intensities and tree species (Figure 2b) 314 

In general, λE was lower in pixels with higher ISA (figures 2b and 3a), however, for a 315 

given EVI greenness the λE increased with ISA due to urban heat and dry island impacts on local 316 

meteorological conditions (Figure 3a). For example, for all pixels where EVI=0.70 (n=912), the 317 

average 14:00 EDT λE ranged from 219.1 to 249.7 W m-2 (Figure 3a). Furthermore, EVI remains 318 

relatively stable on the scale of weeks during the growing season, but λE has a diurnal cycle with 319 

peak fluxes occurring during the afternoon, is close to zero at night, and responds rapidly to 320 

changes in meteorological conditions. The temporal resolution of VPRM-LH captures this diurnal 321 

pattern and shows that enhancements of λE due to urbanization during the daytime, when exposure 322 

to high temperatures is greatest, is higher than nighttime (Figure 3b). The average range of λE for 323 
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all pixels with an EVI=0.70 was less than 1 W m-2 during the night and was greater than 30 W m-324 
2 between 12:00 and 15:00 EDT. 325 

The spatial patterns of λE and EVI are similar (Figures 2a and 3c), however, using λE as a 326 

metric of vegetation cooling benefits captures interactive impacts of greenspace distributions, 327 

radiation, and temperature drivers (ISA; Figure 3d). 328 

Discussion 329 

Cities are highly vulnerable to projected increases in mean air temperatures and the 330 

frequency of extreme heat events (Habeeb et al., 2015) and as a result are eager to obtain actionable 331 

ecological data informing their climate mitigation strategies (Zhou et al., 2019). Extreme 332 

temperatures already represent an important threat to public health, with vulnerable populations 333 

(in terms of age, race, and income) particularly susceptible to heat-related illness and death 334 

(Wellenius et al., 2017). Here, we introduce a simple tool to quantify vegetation cooling activity 335 

in cities with the potential to identify areas that will benefit most from tree planting or urban 336 

greening.  337 

Model Implementation and Limitations 338 

VPRM-LH uses several readily accessible data sources such as the Landsat, GOES, and 339 

RAP archives. Urban applications require the use of an additional spatially explicit ISA product 340 

and information about the region-specific relationship between air temperature and ISA, however, 341 

this could be determined using local weather station archives or low-cost sensor networks, such as 342 

those used in Wang et al. (2017). VPRM-LH estimates λE with good accuracy across ecosystems 343 

and time scales; the model driver data is independent of the field observations used for validation. 344 

The assumptions embedded in estimation of ground heat flux, dry air density, specific heat 345 

capacity, and leaf respiration rates do not appear to introduce critical errors into λE estimates. A 346 

sensitivity analysis of the incremental change in λE resultant from incremental changes in model 347 

parameters points to the atmospheric conductance term (treated as a constant) as a main source of 348 

unaccounted for variance/uncertainty in the model (SI Figure 3). Implementation of additional data 349 

sources capturing the variability in atmospheric conductance could further improve model 350 

accuracy. 351 

The model validation and application presented here was conducted in either mesic or 352 

irrigated ecosystems where water availability does not typically constrain transpiration. Model 353 

application would benefit from further validation in more water-limited regions. VPRM-LH 354 
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currently considers moisture limitations on transpiration in the Wscale term (equation 3), which 356 

leverages LSWI to restrict vegetation activity during dry periods. The availability of water for 357 

vegetation, whether from irrigation or precipitation, is a critical consideration in determining the 358 

location for urban vegetation expansion. Additionally, VPRM-LH only distinguishes vegetation at 359 

the plant functional type level and does not consider species-specific differences in transpiration 360 

strategies (e.g., isohydric vs. anisohydric). While the omission of species-specific parameters may 361 

limit model accuracy under certain climate conditions, VPRM-LH does not require high-resolution 362 

tree species maps, which are likely not available for many cities. 363 

The interpretation of model outputs in mesic climates, particularly on hot, humid days, 364 

should consider more than just the magnitude of λE. Regions with a relatively high λE will have 365 

more turbulent energy fluxes partitioned into latent rather than sensible heat, which results in a 366 

cooling effect on temperature. This interpretation, however, neglects to consider the impact of the 367 

increase in atmospheric moisture (resultant from increased transpiration) on perceived 368 

temperature. Higher atmospheric humidity reduces the ability of the human body to shed excess 369 

heat via the evaporation of sweat, lowering the rate that the body can cool and increasing the 370 

perceived temperature, where the perceived temperature is commonly quantified by the heat index. 371 

In New York City, NY, USA (approximately 300 km southwest of Boston), a significant increase 372 

in mortality risk was observed on days where the maximum heat index exceeded 35° C (Metzger 373 

et al., 2010). Heat indices in excess of 35°C were not observed when modeling mean summer 374 

conditions in Boston. However, during the six-day heatwave event, the average daily maximum 375 

temperature ranged from 27.7 – 35.7°C, with 5.7% of pixels exceeding 35°C. The average daily 376 

maximum heat index during the same time period ranged from 29.0 – 43.9°C with 78.4% of pixels 377 

exceeding the 35°C threshold, highlighting the impact of atmospheric moisture concentration on 378 

perceived temperature.  379 

The provision of shade, which represents another important determinant of perceived 380 

temperature, counteracts humidity effects. For example, Rahman et al. (2018) found that the 381 

daytime air temperature under urban tree canopies in a temperate climate was always lower than 382 

the air temperature in open areas. Furthermore, while λE was the predominant cooling mechanism 383 

of the air on days up to 30°C, shading effects were more prominent on extremely hot days in excess 384 

of 30°C (Rahman et al. 2018). Model output interpretation should consider the implications of 385 
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atmospheric moisture inputs and the type of vegetation present, where trees will provide shade 386 

benefits that are not provided by shrubs and grasses. 387 

Implications for Cities 388 

Urban greening, widely espoused as a climate mitigation strategy, has been implemented 389 

around the world (Pincetl et al., 2013; Tan et al., 2013; Mell et al., 2013) despite debates around 390 

the exact services and tradeoffs with disservices provided by urban canopies. Urban vegetation 391 

does store (Raciti et al., 2014) and take up more atmospheric carbon (Sargent et al., 2018) than 392 

most ecosystem models currently account for (Churkina, 2008), but due to accelerated turnover 393 

(Smith et al., 2019) and respiration (Decina et al., 2016) rates, tree planting is likely not a viable 394 

avenue for meaningful carbon sequestration. Additionally, urban trees are capable of removing 395 

atmospheric pollutants and particulates (Weber et al., 2014) but are also sources of volatile organic 396 

compounds (Churkina et al., 2015) and allergens (Beck et al., 2013). The urban canopy, however, 397 

undoubtedly contributes to local cooling via shading and transpiration (Bowler et al., 2010), with 398 

temperature reductions from vegetation observed to be up to 8°C (Rahman et al., 2017). The 399 

potential for vegetative cooling in cities is well established, but implementation of greening plans 400 

for effective urban cooling has been heretofore limited due to the inability to quantify variation in 401 

cooling potential across the complex landscape of cities. 402 

VPRM-LH offers a simple, satellite-based methodology for estimating urban λE 403 

contributions from vegetation at fine spatial and temporal resolution. The model incorporates a 404 

novel combination of urban-specific parameters capturing climatological, physical, and 405 

physiological intricacies of the urban environment and its components. Model outputs are 406 

consistent with ground measurements of λE and can be scaled to explore the cooling potential of 407 

vegetation across cities at hourly, diurnal, seasonal, and annual scales. In contrast to vegetation 408 

indices that are commonly used to quantify the benefits of urban greenspace, λE captures 409 

vegetation activity in addition to abundance and offers nuanced information about the ecosystem 410 

services provided by urban vegetation. VPRM-LH will be a valuable tool in the implementation 411 

of policies combatting heat related consequences of urbanization, especially as cities take the 412 

forefront in addressing climate-related matters. VPRM-LH offers an easy implementation and the 413 

ability to combine outputs with sociodemographic datasets at sufficient resolution for political 414 

action. The result is a unique opportunity to identify vulnerable neighborhoods and optimize 415 
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municipal decisions that repartition the surface energy balance to address historic inequities in 416 

canopy distribution and UHI (Hoffman et al., 2020). 417 
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Figure 1. Comparison of modeled vs. measured λE at DBF, ENF, and CRP flux tower sites. (a-c) 666 

Annual trends in hourly, daily, and weekly λE. (d-f) Average diurnal λE patterns during JJA. Error 667 

bars represent standard error for each hour during JJA. (g-i) Scatterplots of modeled vs. measure 668 

λE for each hour during JJA. (j-l) Scatterplots of modeled vs measured daytime average λE over 669 

the entire year. 670 

Figure 2. (a) Average 14:00 EDT λE at 30m resolution across Boston, MA under heatwave 671 

conditions. (b) Daytime (9:30-14:30) hourly estimated λE vs λE derived from sap flux 672 

measurements between July-September 2019. 673 

Figure 3. (a) EVI vs. average 14:00 λE color coded by ISA. (b) Diurnal hysteresis comparison of 674 

λE as a function of air temperature in two pixels with EVI=0.70 and ISA=10% and 90%. Numbers 675 

represent the hour of day (EDT). (c) Map and distribution of EVI in Boston on Aug 2, 2018. (d) 676 

Map and distribution of ISA in Boston. 677 In review
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