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ABSTRACT

The widespread use of personal geospatial data raises serious geoprivacy concerns for sharing
these data, which may limit the reproducibility of research findings. One widely used method for
securely sharing confidential geospatial information is applying geomasking techniques before
sharing. Geomasking may reduce the usability of the data. Thus, researchers need to strike
a balance between privacy protection and analytical accuracy. Although many geomasking meth-
ods have been proposed, there is no systematic evaluation of these methods or guidance on which
method to use and how to apply it properly. To address this gap, we evaluate eight geomasking
methods with simulated geospatial data with various spatial patterns and investigate their perfor-
mance on privacy protection and analytical accuracy. We propose not only a set of preliminary
guidelines for applying the proper geomasking methods when using different spatial analysis
methods but also an evaluation framework for assessing geomasking methods for other spatial
analysis methods. The findings will help researchers to properly apply geomasking for sensitive
geospatial data and thus promote data sharing and interdisciplinary collaboration while protecting
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personal geoprivacy.

1. Background

With the widespread use of personal geospatial data in
GIScience and other fields (e.g. health geography) in recent
decades, geoprivacy has become a major concern
(Sherman & Fetters, 2007). Personal geospatial data were
collected and analyzed with advanced geospatial methods
in many research projects (Chaix et al., 2016; Wang &
Kwan, 2018; Yoo et al., 2015). These data provide detailed
information on the private locations of individuals, includ-
ing where people live, work, and undertake other daily
activities. Moreover, recent advances in geospatial technol-
ogies, such as wearable sensors integrated with global
positioning systems (GPS), enable researchers to collect
richer and more detailed personal location information
(Boulos et al., 2019; Fuller et al., 2017; Kwan, 2012). The
detailed geospatial information allowed for exciting new
research findings, but the use of personal geospatial infor-
mation also puts data contributors (e.g. research partici-
pants) at risk of being identified, especially when sensitive
location data (e.g. patients’ home locations) is involved
(Brownstein et al., 2006; Curtis et al., 2006; Kim et al.,
2021). In addition, when linked to other data sources via

location details, personal information may be misused and
individual privacy may be breached, which poses potential
risks to data contributors (Kounadi & Leitner, 2014;
Kounadi et al., 2018; VanWey et al., 2005).

In the context of public health, geospatial data related to
personal health information is normally protected by gov-
ernment regulations (e.g. the Health Insurance Portability
and Accountability Act [HIPAA] in the US). To avoid the
potential leak of protected health information (PHI), the
HIPAA regulates 18 identifiers of PHI for geographic
scales smaller than the state level, where data cannot be
shared or published if not de-identified (Delmelle et al.,
2022; Tellman et al,, 2010). Additionally, processing PHI
may involve geocoding addresses or performing spatial
analysis via online platforms. The sensitive data uploaded
to the online geocoding servers may breach the confidenti-
ality rules (Duncan et al., 2012). Although the geocoder in
use may be inherently poor in accuracy and introduce
error in the geocoded addresses (Owusu et al., 2020,
2017) and thus hide the true location, the errors are sys-
tematic and not random, which means reverse engineering
could potentially re-identify the original address.
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To protect the geoprivacy of data contributors, per-
sonal geospatial information collected in one research
project may not be shared with others. This impedes
data sharing in the research community and consumes
invaluable resources for repetitive data collection
(Wang & Kwan, 2020). Further, the ability to reproduce
research outcomes - reproducibility, which is the cor-
nerstone of the scientific paradigm (McNutt, 2014) - is
limited by the difficulties of sharing personal geospatial
information in geographic studies. Reproducibility,
defined as “obtaining consistent computational results
using the same input data, computational steps, meth-
ods, code, and conditions of analysis” (National
Academies of Sciences, 2019), promotes robustness as
well as the generalizability of research results (McNutt,
2014; Richardson et al., 2015). In this light, for research-
ers who utilize sensitive geospatial data, sharing geospa-
tial datasets faces more challenges because of geoprivacy
(Boulos et al., 2019; Curtis et al., 2011; Fuller et al., 2017;
Gutmann et al., 2008; VanWey et al., 2005).

Significant efforts have been made in securely sharing
personal geospatial information (Armstrong & Ruggles,
2005; Duncan & Pearson, 1991; Kwan et al., 2004;
Richardson et al., 2015). In GIScience and related fields,
spatial anonymization of address points is an essential
way to share sensitive geospatial data while protecting
geoprivacy (Charleux & Schofield, 2020). One widely
recognized method is to apply geographic masking (or
geomasking) techniques on the geospatial data before
sharing (Allshouse et al., 2010; Armstrong et al., 1999).
Geomasking methods relocate individual geographic
locations in the original data to other locations by add-
ing a controlled level of noise, which masked the perso-
nal geospatial information by reducing the accuracy to
a certain degree while retaining the usability of the data
for research. “The goal is to provide individuals, institu-
tions, and public health authorities a comfort level with
the sharing of skewed, and hence, anonymized data,
rather than using raw, fully identifiable data” (Cassa
et al., 2006). Although many geomasking methods
have been proposed (Hampton et al., 2010; Lu et al,,
2012; Zhang et al., 2017), no previous study has evalu-
ated these methods or provided guidance on which
method to use and how to apply them properly.

Further, applying geomasking may reduce the usability
of the data for research purposes. Thus, researchers need to
strike a balance between privacy protection and analytical
accuracy (Carr et al., 2014; Kwan et al., 2004; Nissenbaum,
2009). For example, when applying random perturbation
geomasking methods, the level of confidentiality or protec-
tion increases when a larger radius is applied. At the same
time, however, the analytical accuracy decreases because
the spatial pattern of the original points can be distorted

due to the error introduced, which implies that analytical
accuracy has a negative relationship with the level of data
confidentiality. Moreover, since different geomasking
methods operate in different ways, there may be particular
patterns of the trade-off relationship for specific geomask-
ing methods, which is worth further investigation. There
are currently two major hurdles to getting scholars or data
managers to actually use geomasking methods: the diffi-
culty or burden of applying geomasks, and the lack of
guidance on which method to use. Some scholars have
recently tried to mitigate the first hurdle by developing
more accessible tools (e.g. Charleux & Schofield, 2020;
Swanlund, Schuurman, et al., 2020a) and providing prac-
tical privacy-preserving steps for the collection, storage,
analysis, and dissemination of spatiotemporal participa-
tory sensing data (Kounadi & Resch, 2018), but there is
no guidance to date that could inform people outside the
field to make appropriate geomasking decisions.

To address this research gap, this study addresses
the second hurdle and seeks to provide guidelines for
applying geomasking by evaluating the performance of
several widely used geomasking methods while consider-
ing the balance between data confidentiality and analytical
accuracy. Specifically, this research aims to 1) understand
the effectiveness of geomasking methods, and 2) explore
the trade-off patterns between privacy protection and ana-
lytical accuracy, thus 3) provide preliminary guidelines on
applying geomasking methods. In this study, we propose
not only a set of guidelines for choosing proper geomask-
ing methods for five widely used spatial analysis methods
but also an evaluation framework for assessing geomasking
methods for other spatial analysis methods. It will help
researchers in different fields to properly apply geomasking
for sensitive geospatial data and thus promote data sharing
and collaboration among the disciplines while protecting
personal privacy.

2. Geomasking methods

This section introduces the existing geomasking methods
to protect geoprivacy when using spatial datasets collected
at the individual level. Geomasking methods can be classi-
fied into three broad categories according to two charac-
teristics (i.e. whether the method preserves the number of
records and whether the method randomly relocates
records): aggregation, affine transformation, and random
perturbation (Armstrong et al., 1999; Kwan et al., 2004;
Zandbergen, 2014). Figure 1 illustrates how existing geo-
masking methods can be classified into these three cate-
gories. Affine transformation and random perturbation
preserve both the number of records and the data type
(e.g. point), but aggregation preserves only one of these
because it either aggregates the records of the original



&O
Whether preserve the
number of records

Geomasking
Techniques

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 3

Aggregation

geomasking methods

Affine transformation

&0 geomasking methods
Whether relocate
records with
randomness
J’e Random perturbation
S geomasking methods

Figure 1. Classification of geomasking methods for geospatial datasets that are measured at an individual level.

geospatial data into a smaller number of records in the
same data type or uses a lower spatial resolution and turn
the original data into a different data type (e.g. from points
to polygons or raster cells). Considering whether a method
randomly relocates records, geomasking methods can be
further distinguished: affine transformation deterministi-
cally relocates original points, while random perturbation
does so stochastically. For affine transformation, the coor-
dinates of the original records can be easily recovered from
the geomasked dataset if the intruder knows the transfor-
mation matrix. Thus, this method is not widely used.
Please also note other recently developed geomasking
algorithms, such as the Voronoi masking (Seidl et al.,
2015), adaptive areal elimination (Kounadi & Leitner,
2016), adaptive areal masking (Charleux & Schofield,
2020), street masking (Swanlund, Schuurman, et al,
2020b), and the Military Grid Reference System (MGRS)
masking (Clarke, 2016). As the first exploratory study
seeking to develop guidance on geomasking, this research
focuses on relatively conventional geomasking methods,
such as aggregation and random perturbation methods,
which have been utilized by application studies (e.g.
Clifton & Gehrke, 2013; Curtis et al., 2011; Kim & Kwan,
2021). However, it is worth mentioning that traditional
geomasking methods do not always result in optimized
results. Thus, future studies can benefit from examining
the performance of new geomasking methods and com-
paring it with that of traditional geomasking methods.

2.1. Aggregation geomasking methods

Aggregation combines location records and assigns the
aggregated attributes to a unit at a lower spatial resolution,
such as the census unit or administrative area (Armstrong
et al,, 1999). It aggregates individual points into a smaller
number of points or polygons so that the true locations of
the original geographic records are hidden. Those poly-
gons can also be the unit cell of a uniform raster (square or
hexagonal grid cells) covering the study area. In the tests of
this study, we implement the point aggregation geomask-
ing method by aggregating points to the nearest centroids

of grid cells since the simulated dataset does not contain
any administrative boundaries. Aggregation geomasking
methods thus reduce disclosure risk by summarizing or
averaging individual records into a coarser resolution.
However, the application of these methods leads to the
loss of the precise location of the original data and thus
may reduce the accuracy of analytical methods or even
diminish the ability to detect spatial clusters (Cassa et al.,
2006).

2.2. Random perturbation geomasking methods

Random perturbation relocates each geospatial record in
a dataset to a new location by introducing a random spatial
displacement (Armstrong et al., 1999). The random spatial
displacement is calculated one by one for each record
independently. Assume that one original record is located
at (Xold, Yola) in a planar coordinate system, the relocated
new point (Xpew, Yuew) can be calculated by Equation 1:

(Xnews Ynew) = (Xold + dx, Youd + dy) (1)

where d, and d, denote a spatial displacement intro-
duced by a random perturbation method in the x- and
y-axes. There are several types of random perturbation
methods that use different approaches to determine d,
and d,. In general, these methods can be classified into
three categories depending on how the spatial displace-
ments (d, and d,) are generated.

(a) Naive random perturbation: This type of method
relocates a geospatial record to a random location with the
same probability to any location within a region or on
a circle around the original location. These methods (see,
Figure Al in Supplementary Materials) include random
perturbation within a circle (Armstrong et al., 1999), ran-
dom direction with a fixed radius (Zandbergen, 2014), and
random perturbation within an annulus (donut masking;
Hampton et al., 2010; Stinchcomb, 2004) centered at the
original location.

(b) Random perturbation with distribution functions:
Instead of calculating random spatial displacements with
the same probability in the naive random perturbation,
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distribution functions can be used to determine the ran-
dom spatial displacement. Gaussian displacement and
bimodal Gaussian displacement are two examples of ran-
dom perturbation with distribution function methods
(Zandbergen, 2014). Gaussian displacement employs
a Gaussian distribution function to calculate the random
spatial displacement, while bimodal Gaussian displacement
uses the bimodal Gaussian distribution function instead of
the Gaussian distribution to calculate the random spatial
displacement (see, Figure A2 in Supplementary Materials).
Compared to Gaussian distribution, the bimodal Gaussian
distribution shows a more complex distribution pattern of
probability density.

(c) Random perturbation with pre-set potential loca-
tions (also called location swapping): This type of geomask-
ing method considers the land-use patterns of the study
area (Zhang et al, 2017). Different from the methods
mentioned above, which may relocate the original records
(subjects” home addresses) to unreasonable locations (e.g.
a random location in the middle of a lake or other non-
residential area), location swapping methods relocates the
original records to other potential locations that share
similar geographic characteristics (i.e. nearby residential
locations). In summary, the location swapping methods
relocate an original point to a randomly selected location
out of all the potential locations of a similar type within
a region around the original location (see, Figure A3 in
Supplementary Materials). The region can be defined as
a circle (location swapping within a circle) or an annulus
(location swapping within an annulus). One of the major
advantages of both methods is the potential that they can
adaptively adjust the radii necessary to guarantee
a minimum spatial k-anonymity if needed.

3. Methods

To assess the effectiveness of the geomasking methods
described in the previous section and provide guidelines
on using them to protect geoprivacy, we evaluate their
performance with regard to analytical accuracy, data con-
fidentiality, and their trade-off relationships. In this
exploratory research, we evaluated geomasking methods
applied to geospatial datasets that are measured at the
individual level (e.g. residential location of patience).

3.1. Analytical accuracy and confidentiality
measurement

Analytical accuracy represents the accuracy of the spa-
tial information (e.g. spatial pattern) in the geomasked
dataset compared to the original dataset. Since geo-
masking methods introduce spatial error (noise) into
the geospatial dataset to reduce disclosure risk, it is

unavoidable that the analytical accuracy of the geo-
masked data decreases, and the results generated from
geomasked data may be different from those generated
from the unmasked data. Thus, it is critical to under-
stand how different geomasking methods with various
settings affect the accuracy of the results (compared to
the results generated using unmasked data).

In this study, the data accuracy of various geomask-
ing methods is assessed by comparing the degree of
difference in the results of five widely-used spatial ana-
lysis methods based on original and geomasked data.
These methods include the average nearest neighbor
index (ANN), the minimum convex polygon (MCP),
the standard deviation ellipse (a directional distribution
with 1 standard deviation; SDE), kernel density estima-
tion (KDE), and point density estimation (PDE). The
ANN calculates the average distance of all points in
a dataset to their nearest neighbor, which is used to
measure the spatial pattern of a dataset. The MCP and
SDE are widely used to represent the spatial distribution
of features in a dataset or to generate activity space in
human mobility studies. The KDE and the PDE are
ways to create density surfaces or maps based on point
feature datasets to represent spatial patterns.

Data confidentiality assesses how well the original geos-
patial records are effectively protected from re-
identification risk. Applying a suitable and effective geo-
masking method can reduce the risk that intruders re-
identify the true location of geomasked records. Spatial
k-anonymity is a widely used metric for measuring the
disclosure risk of a geomasked dataset (Zhang et al.,
2017). It is an extension of k-anonymity, which measures
the possibility of a certain record being uniquely identi-
fied among all the records in a dataset (Sweeney, 2002).
The value k indicates the number of records that share
similar attributes in a dataset. The smaller the k value, the
more likely a record can be distinguished among all other
records in the dataset. Similarly, spatial k-anonymity
calculates the number of potential geospatial records in
the anonymizing spatial region around one record
(Ghinita et al., 2010). The anonymizing region is gener-
ated as a buffer with a radius of r and centered at the
location to be masked or relocated. The radius is the
distance between the original location and the relocated
location (see, Figure A4 in Supplementary Materials).
Thus, spatial k-anonymity can be used to evaluate the
performance of geomasking methods: a larger k value
indicates a lower probability of re-identifying the original
location, implying a better performance of the geomask-
ing method. It is worth noting that calculating spatial
k-anonymity needs the residential locations of the general
population in the study area. However, there are many
ways to generate such dataset with publicly available data
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(e.g. local government open data, OpenStreetMap by
overlapping the point of interests data or building foot-
print data with a land-use map to abstract the residential
locations in the study area). If the detailed residential
location data is unavailable in anyway, though not ideal,
aggregated reference data (e.g. census units/administra-
tion areas with population information) can also be used
to calculate the spatial k-anonymity (Allshouse et al.,
2010; Kounadi & Leitner, 2016).

We acknowledge there are other recently developed
data confidentiality assessment methods, such as
l-diversity (Machanavajjhala et al., 2007), t-closeness
(Lietal,, 2007). Though these methods may have advan-
tages in privacy assessment, spatial k-anonymity, con-
sidering the spatial component in geospatial data, is still
one of the widely used measurements for geoprivacy
(Charleux & Schofield, 2020). Consistent with previous
research, in this exploratory study, we evaluate data
confidentiality by spatial k-anonymity (Ghinita et al,,
2010; Sweeney, 2002).

3.2. Data Simulation

A large volume of geospatial data was collected in urban
areas. Taking the United States as an example, 80.7% of
the population is living within urban areas (United
States Census Bureau, 2021). Thus, in the setting of an
urban area, this exploratory study generates 100 points
of sensitive locations that need to be geomasked (simu-
lating the subjects’ home locations from a sensitive data-
set, such as AIDS patients) and 1,000 points of simulated
residential locations (simulating other home locations
besides the sensitive ones in the same hypothetical study
area). These two sets are named the sensitive locations
and residential locations respectively hereafter. It is
noteworthy to mention that the arbitrary ratio of 1/10
between sensitive and residential locations used in the
study is because the ratio in the real world is uncertain.
Moreover, if this ratio in the real world is much smaller
(e.g. 1/100 - 1/1,000), our study thus used a ratio that
represents a much greater risk of disclosure than what is
commonly encountered in real-world situations. This is
meaningful because our focus would thus be on situa-
tions with higher risks of disclosure. The simulations are
conducted within a hypothetical study area with a size of
5 km by 4 km, with an area of 20 km? (about the area of
a circular buffer region of 30-minutes walking distance).

The geomasking methods relocate individual geo-
graphic locations in the original data to other loca-
tions while spatial k-anonymity calculates the number
of potential geospatial records around each geo-
masked record, so the performance of the geomasking
methods may be influenced by the specific spatial
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patterns of both the sensitive and residential locations.
Three types of point patterns are considered for the
simulated sensitive and residential locations: random,
regular, and clustered (Figure 2), following a general
approach of point pattern and urban form analysis
(e.g. Bivand et al, 2008; Lu et al., 2008; Marshall &
Garrick, 2010). For example, study areas with regular
residential location patterns include high-density
urban areas, such as Downtown Chicago and
Manhattan Island in New York City, where the
urban form has a regular pattern, such as rectangular-
shaped blocks. Additionally, to understand how geo-
masking methods perform with clustered or random
point patterns (that may capture most of the real-
world scenarios, such as suburban areas in the
U.S. context), we also analyze the performance with
a regular point pattern as a baseline.

As a result of different combinations of random,
regular, and clustered residential or sensitive locations,
there are 9 different simulation scenarios (Table 1). For
example, rdR-rdS means the scenario with random resi-
dential locations and random sensitive locations, while
rgR-ctS stands for the scenario with regular residential
locations and clustered sensitive locations.

Figure 2 shows the simulated point datasets of residen-
tial locations and sensitive locations in the random, reg-
ular, and clustered spatial patterns. To generate the points
with a random pattern, the “Create Random Points” tool
in ArcGIS 10.7 was employed. This tool creates the speci-
fied number of random points within the defined rectan-
gular area of the study (Environmental Systems Research
Institute, 2022). For the clustered patterns, the points were
generated in ArcGIS with statistically significant clusters,
as shown in Figures 2 (c) and 2 (f). The regular pattern
point datasets are generated so that all the points are evenly
located in the study area. The statistical significance of the
clustered and random datasets was assessed by calculating
the K-function value and conducting Monte-Carlo simu-
lations (999 permutations). The results indicate that both
the residential locations and sensitive locations have sig-
nificant clustered patterns (p <0.05) for the clustered point
datasets and significant random patterns (complete spatial
randomness; p <0.05) for the random point datasets.

3.3. Evaluation of geomasking methods

Based on these simulated point datasets, the performance
of different geomasking methods is evaluated with respect
to both data confidentiality and data accuracy. We test
eight geomasking methods, including random perturba-
tion within a circle (RPC), random direction with a fixed
radius (RDF), random perturbation within an annulus
(RPA), Gaussian displacement (GD), bimodal Gaussian
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Figure 2. The simulated point datasets: a) random residential locations, b) regular residential locations, c) clustered residential
locations, d) random sensitive locations, e) regular sensitive locations, f) clustered sensitive locations.

Table 1. The 9 different simulation scenarios with the residential
and sensitive locations in various spatial patterns.
Sensitive location pattern (S)

Random Regular Clustered
(rdS) (rgS) (ctS)
Residential location Random (rdR)  rdR-rdS  rdR-rgS  rdR-ctS
pattern (R) Regular (rgR)  rgR-rdS  rgR-rgS  rgR-ctS
Clustered (ctR) ctR-rdS  ctR-rgS  ctR-ctS

displacement (BGD), location swapping within a circle
(LSC), location swapping within an annulus (LSA), and
point aggregation (PA). Each of these geomasking meth-
ods is evaluated using ten different radii: 50, 100, 150, 200,
250, 300, 350, 400, 450, and 500 meters.

To assess the levels of data confidentiality achieved by
different geomasking methods, we calculate and com-
pare the average spatial k-anonymity of all geomasked
points for a given geomasking method and its parameter
setting (radius). K,,,, the level of confidentiality
achieved by applying geomasking method m with
a radius of r is calculated by Equation 2.

Yk,

Kinr = (2)

n

where n denotes the number of geomasked points. For
the simulated point datasets, n equals 100, which is the
number of sensitive locations. However, n can be differ-
ent when the point aggregation method is applied
because it aggregates (summarizes) multiple points into
one point. p indicates each geomasked sensitive location
in the dataset, and k, indicates the spatial k-anonymity
value calculated for point p. k, is estimated by counting
the number of potential residential locations that are
closer to the masked location p than the distance between
the masked and the original locations (also illustrated in
Figure A4). A higher value of K,,, , indicates a higher level
of confidentiality (i.e. geoprivacy protection).

For the five widely used spatial analysis methods
being evaluated, the default parameter settings are
used when implementing these methods in ArcGIS.
However, for the KDE and the PDE, we use 50 m as
the cell size and 500 m as the bandwidth. For each
spatial analysis method, we examine to what extent
the analytical accuracy of the original data is changed
by applying each geomasking method with a specific
radius setting. A high level of error introduced by
a geomasking method indicates reduced analytical
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accuracy. Specifically, for the ANN, we calculate the
relative error of the index generated from using the
geomasked data. For the MCP and SDE, we compute
the ratio of the area of the shape (e.g. polygon or
ellipse) that is not preserved after applying
a geomasking method to the area of the original
shape. For the KDE and PDE, we calculate the
Root Mean Square Error (RMSE) to represent the
level of error introduced by a geomasking method.

To sum up, for the eight geomasking methods imple-
mented with ten different radii, we first calculate the
average spatial k-anonymity (K,,,) that indicates the
level of data confidentiality. A higher value of K,,,
indicates a higher level of confidentiality. Second, we
calculate the analytical accuracy of five spatial analysis
methods for geomasking methods with various radii.
These two steps are repeated for the 9 different simula-
tion scenarios with the residential and sensitive loca-
tions in various spatial patterns. In addition, the entire
evaluation process is independently repeated ten times
to ensure the reliability of the results.

4. Results

4.1. Evaluation based on the average spatial
k-anonymity

The average spatial k-anonymity of the sensitive
locations geomasked by various methods with differ-
ent radius settings are compared in the nine simu-
lated scenarios (Figure 3). Not surprisingly, spatial
k-anonymity increases (higher confidentiality level)
as the masking radius increases. However, the
growth rates are not the same for different methods.
Interestingly, the point aggregation method breaks
away from others when longer radii are used
(r >300m in the experiment). Point aggregation
(PA) achieves lower confidentiality compared to
other methods in all simulated scenarios. The differ-
ences in spatial k-anonymity between aggregation
and other geomasking methods are the largest for
the scenario rgS, followed by ctS and rdS.

In addition, the spatial k-anonymity of most geo-
masking methods (except point aggregation) is not
notably affected by the pattern of the sensitive locations
while affected by the residential location pattern when
shorter masking radii are used. In the scenarios of rgR,
the location swapping methods (LSC and LSA) do not
perform as well as other methods regarding spatial
k-anonymity. However, they stand out and achieve
higher spatial k-anonymity in the scenarios of ctR than
other methods when longer radii are used.
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4.2. Evaluation of the average nearest neighbor
(ANN) index

The differences in the results of ANN before and after
applying geomasking, considered as the error introduced,
were evaluated in the nine simulated scenarios with
different geomasking methods with various masking
radii. Figure 4 shows results with respect to the patterns
of residential and sensitive locations. The y-axis of these
graphs indicates the error (percent of difference) intro-
duced by the geomasking methods. Thus, higher y values
indicate larger errors (or lower analytical accuracy). As
the figure shows, error increases as radius increases for
most geomasking methods. However, the error intro-
duced by point aggregation increases dramatically when
longer masking radii are used.

It is worth noting that in the scenarios of rdS and rgS,
point aggregation performs better than other methods
when shorter radii are used, while the contrary is the case
when longer radii are employed. For reasons discussed
later (Section 5), the performance of geomasking meth-
ods (except point aggregation) increases with longer radii
being used in the scenario of rgS. Differently, point
aggregation has a larger error than the other 7 geomask-
ing methods when applied to ctS regardless of the size of
the radius. The errors introduced by point aggregation
grow linearly as the masking radius increases, while
errors introduced by other masking methods remain
stable. Regarding the effects of the residential location
patterns, however, there is no notable difference.

4.3. Evaluation of the minimum convex polygon
(MCP)

The differences in the results of the MCP before and after
applying geomasking to the sensitive datasets are shown in
Figure 5. Not surprisingly, the error increases as the geo-
masking radius increases for most geomasking methods.
However, the results show less consistent trends in the
errors when compared to other analysis methods investi-
gated in this study. Observing the effects of the sensitive
location patterns on the error of the MCP, in the rdS
scenarios, most geomasking methods have similar trends
with different radii, while the point aggregation method
has much larger errors when longer radii are used. In
contrast, in the ctS scenarios, point aggregation has rela-
tively smaller errors regardless of masking radii. However,
the trend is less consistent as the errors of point aggrega-
tion are unstable as the radius increases. As to the effects of
residential location patterns on the errors, similar trends in
errors are observed in rdR and rgR. It is worth noting that
random direction has relatively higher errors in rgR and
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location swapping methods show relatively higher errors
in the ctR scenarios compared to other geomasking
methods.

4.4. Evaluation of the standard deviation ellipse
(SDE)

Figure 6 illustrates the errors of the SDE for different
patterns of residential and sensitive locations when var-
ious geomasking methods with different radii are
applied. Observing the effects of the patterns of sensitive
locations on the errors of the SDE, location swapping
methods show higher errors in rgS when compared to
rdS. Also, the differences in errors between the point
aggregation and other geomasking methods are espe-
cially higher in ctS than in rdS and rgS regardless of the
size of the radius. As to the effects of the patterns of
residential locations on analytical errors, location swap-
ping methods show higher errors in ctR when compared
to rdR when longer radii are used. It is worth noting
that, similar to the case of the MCP, the results show less
consistent trends in the errors.

4.5. Evaluation of kernel density estimation (KDE)

Figure 7 shows the differences (evaluated by RMSE)
in the result of the KDE before and after geomasking
with respect to different patterns of residential and
sensitive locations. Consistent with other analytical
methods, error increases as the radius used in
a geomasking method increases. For reasons dis-
cussed later (Section 5), the point aggregation
shows lower errors than other geomasking methods
regardless of the spatial patterns of the datasets.

Observing the effects of the patterns of sensitive
locations, the ctS scenario gives the highest errors, fol-
lowed by rgS and rdS. However, there is no notable
difference in errors between geomasking methods
applied to rdS, except for point aggregation, which
gives the lowest errors. In rg$ or ctS, the random direc-
tion geomasking method has relatively higher errors
than other geomasking methods when longer radii are
used. As to the effects of residential locations, there is no
notable difference.

4.6. Evaluation of point density estimation (PDE)

Same as the KDE, we used the RMSE to assess the
differences in the PDE results before and after applying
geomasking (Figure 8). Error increases as radius
increases. The point aggregation has higher errors
than other geomasking methods when applied to ctS.
In rdS and rgS, the errors of the point aggregations are

CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE . 1"

smaller than the errors of other geomasking methods
when shorter radii are used. However, errors of the
point aggregations are larger than those of other geo-
masking methods when longer radii are applied.
Regarding the effects of the patterns of residential loca-
tions on the errors of PDE, similar trends are observed
for all three patterns.

As discussed in the Methods section, the entire eva-
luation process is independently repeated ten times to
ensure the reliability of the results. The spatial k-anon-
ymity and analytical errors were calculated as the aver-
age of results from the ten rounds of testing when
different geomasking methods are applied to the pat-
terns of residential and sensitive locations. Therefore,
we investigated the distribution of spatial k-anonymity
value and analytical errors since the average values
could potentially hide extreme values that may be of
concern. The evaluation of the boxplot results of spatial
k-anonymity and analytical errors in two different radii,
500 m and 250 m, for different geomasking methods
indicates a low variation, so the average values are
sufficient to represent the general performance of geo-
masking methods.

5. Discussion and conclusion

In this study, the effectiveness of different geomasking
methods was evaluated considering both data confiden-
tiality and analytical accuracy. Spatial k-anonymity was
used to assess data confidentiality, while the error intro-
duced to the results of spatial analysis after applying
geomasking was used to assess analytical accuracy.
Consistent with previous studies (e.g. Armstrong et al,,
1999; Kwan et al., 2004), our results suggest that there is
a trade-off between geoprivacy protection and analytical
accuracy when applying geomasking methods. Also, the
findings provide general guidance on how to properly
select geomasking methods based on the spatial patterns
of sensitive datasets.

Regarding geoprivacy protection, the results suggest
that point aggregation performs poorly when compared
to other geomasking methods in almost all the simu-
lated scenarios, and that location swapping methods
perform better than other geomasking methods in ctR
scenarios but perform worse in most rgR scenarios. This
may be explained by the fact that the k value becomes
higher when more residential locations are clustered
near the geomasked points (Zhang et al., 2017), which
leads to higher spatial k-anonymity of the location
swapping methods. Based on the results of spatial
k-anonymity, we suggest that it is better not to use
point aggregation regardless of the spatial patterns of
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the residential and sensitive locations, and that location
swapping geomasking methods seem preferable for ctR
scenarios.

The results of the ANN suggest that point aggrega-
tion has higher errors than other geomasking methods
when longer radii are used and has lower errors when
shorter radii are used, especially for rdS and rg$ scenar-
ios. These findings can be explained by the fact that the
ANN is evaluated largely based on the distances
between two nearest points. Thus, if the overall distri-
bution of the distances between two nearest points is
preserved after geomasking, the error introduced by
geomasking would be lower. Specifically, when longer
radii are used, point aggregation leads to higher errors
(than other geomasking methods) because it distorts the
overall distribution of the distances between two nearest
points to a larger extent. This is especially true for the
case of ctS because the clustered patterns may be highly
distorted by geomasking, which leads to higher errors.
For example, the histograms in Figure 9 show the fre-
quencies of different distances to the nearest points. As
seen in this figure, the histogram of geomasked data by
point aggregation is notably different from that of the
original points, while the one by location swapping is

a) Raw data (Clustered)

b) Point aggregation
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similar to that of the original points. Generally, when
data analysis is conducted with the ANN, we suggest not
using point aggregation with long radii in all scenarios,
but point aggregation with short radii may be used
in rds.

For MCP analysis, the results suggest that the errors
introduced by geomasking vary considerably. This can
be explained by the fact that the MCP is highly sensitive
to specific locations of points (e.g. outliers). Recall that
the MCP is defined by the smallest polygon that con-
tains all points. If the few original points comprising the
edges of the MCP are relocated far from the original
points (due to geomasking), the overall shape of the
MCP can change significantly. In this light, the MCP
is particularly sensitive to geomasking, which leads to
higher variations in errors. In addition, it was observed
that higher errors were introduced by the location
swapping methods with long radii for ctR. It may be
because the location swapping methods consider sur-
rounding residential locations to relocate the geomasked
points: if a sensitive location is far from the clusters of
the residential locations, these methods may lead to
higher errors given that the MCP is sensitive to the
specific locations of points. Thus, based on the findings

c) Location swapping
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Figure 9. The histogram of the distance to the nearest points in the original data and geomasked data: a) original points (clustered
pattern) and the histogram of frequency by distance to the nearest point, b) geomasked points by point aggregation method with
500 m radius and the histogram of frequency by distance to the nearest point, ) geomasked points by location swapping method

with 500 m radius.
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and for data analysis using the MCP, we recommend
avoiding using location swapping methods regardless of
the length of the radius, especially for ctR scenarios.

Notably, the variation in errors introduced by geo-
masking methods in SDE analysis is smaller than that in
the MCP. This is because, unlike the MCP where the
exact locations of points are directly used for defining
the polygon, the SDE captures the general dispersion
and orientation of points. Therefore, errors of the SDE
tend to be less sensitive than those of the MCP. In
general, when data analysis is conducted with the SDE,
we suggest not using the location swapping methods for
rgS when long radii are used, not using the point aggre-
gation for ctS regardless of the length of the radius, and
not using the location swapping methods for ctR when
long radii are used.

Interestingly, the results of the kernel density analysis
show that point aggregation has lower errors than other
geomasking methods. This may be explained by the fact
that KDE calculates the overall density of observations
at each raster cell by using a smoothly curved surface
(i.e. the kernel) that fits points within the bandwidth
(Environmental Systems Research Institute, 2022; Yin,
2020). The point aggregation geomasking method
aggregates points to the nearest centroids of grid cells,
and those aggregated centroids may somewhat capture
the local density of points. Actually, the aggregating
points can be considered as an approximation of KDE.
For instance, Figure 10 shows that the kernel density
surface generated from geomasked data by point aggre-
gation has high-density regions (i.e. reddish color) that
are similar to those generated from the original points,
while the random direction method significantly chan-
ged the original high-density regions. Thus, the errors of
KDE when using point aggregation can be smaller than
those of other geomasking methods. In summary, when
data analysis is conducted using KDE, we recommend
that point aggregation may be used regardless of the
patterns of the residential and sensitive locations, and
not using random direction geomasking method for rgS
or ctS when long radii are used.

Different from kernel density analysis, the results
of PDE suggest that the point aggregation method
has higher errors than other geomasking methods,
especially for ctS. This may be explained by the fact
that point density is largely influenced by the num-
ber of points within a certain bandwidth (illustrated
in Figure 11). Unlike KDE, which estimates
a smoothly curved surface within the bandwidth,
point density is estimated by counting points located
within the bandwidth. If the number of points within
the bandwidth changes considerably (which largely

occurs in the point aggregation method), point den-
sity would also change considerably. It implies that
the locations of points play an important role in
PDE. Therefore, when data analysis is conducted
with PDE, we recommend not using point aggrega-
tion for ctS regardless of the radius or for rgS when
long radii are used.

Summarizing the results of all the tests in this study,
we propose Tables 2—4 as the guidelines of the geomask-
ing method with respect to the spatial patterns of sensi-
tive and residential locations. Researchers can refer to
this table to select the suitable geomasking methods for
their analysis: first, identify the spatial patterns of the
sensitive locations (e.g. home locations of AIDS
patients) and residential locations (e.g. existing residen-
tial locations in the study area) being studied; second,
refer to the corresponding cell of the table for both
suggested (denoted by “+”) and not suggested (denoted
by “-”) geomasking methods based on the spatial pat-
terns of the point datasets and spatial analysis method.
Additionally, “O” in the table indicates there is no
notable difference observed or no specific suggestion
concluded from the test and thus researchers should
consider testing different geomasking methods based
on their data because geomasking methods may be
sensitive to the unique spatial pattern.

Taking MCP analysis as an example, according to the
guidelines in Table 4, if the sensitive locations have
a regular pattern and the residential locations have
a clustered pattern, the location swapping methods
(LSC and LSA) are not suggested to be used with longer
geomasking radii. Instead, point aggregation methods
are recommended in this scenario.

Further, when using the proposed guidelines to select
the proper geomasking methods for their data, we
strongly recommend that researchers apply the guide-
lines in a flexible manner. For example, when
a guideline suggests PA, it does not imply that research-
ers must select the point aggregation method. Instead, it
suggests that point aggregation may be one of the sui-
table choices for the case. Also, when a guideline does
not suggest LSC, for instance, it indicates that research-
ers should consider using other geomasking methods
than the location swapping within a circle method, by
testing the performance of other geomasking methods
according to the framework, and then choosing the ones
with the best performance for their data. Since the
guidelines are not exhaustive, we recommend research-
ers interpret the guidelines in a flexible manner and pay
more attention to the unique spatial patterns of their
data when selecting geomasking methods. The best
practice may be testing the performance of several
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Figure 10. The kernel density estimation (KDE) generated from original data and geomasked data: a) KDE generated from original
points; b) KDE generated from geomasked points by point aggregation with 500 m radius; ¢) KDE generated from geomasked points

by random direction with 500 m radius.
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Figure 11. The point density estimation (PDE) generated from original data and geomasked data: a) PDE generated from original
points; b) PDE generated from geomasked points by point aggregation with 500 m radius; ¢) PDE generated from geomasked points

by location swapping with 500 m radius.

geomasking methods for a given dataset by following
the evaluation framework proposed in this study and
choosing the geomasking method that performed best.

Although the tests we conducted in this study cover
many spatial analysis methods that are widely used in
the field of geography and other relevant fields, many
issues still need further exploration and to be addressed
in future studies. First of all, the assessment in this study
is not exhaustive, so there are many other spatial analy-
sis methods (e.g. Moran’s I, spatial regression models)
that were not evaluated. In addition, these guidelines
focus only on individual-level geospatial data with con-
fidential locations. However, researchers may want to
explore proper geomasking methods for more complex
data, such as GPS trajectories. We did not address GPS

trajectories data because geomasking methods for GPS
trajectories data are limited (Seidl et al., 2016; Wang &
Kwan, 2020). Furthermore, this study focuses on geo-
privacy concerns raised by the spatial component of
sensitive datasets. However, geospatial data often con-
tains personal socio demographic information, such as
age, gender, income level, and health status, which may
also cause serious privacy concerns if not handled prop-
erly. Also, the masking performance may be affected
when population density is considered. For example,
random perturbation and donut masking are easily per-
formed while considering population density and doing
so would significantly affect the trade-off between
k-anonymity and analytical accuracy. It calls for further
investigation in future studies. Another interesting
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Table 2. Geomasking method guidelines for residential locations in random pattern with various spatial patterns of sensitive locations.
Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)
Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking

Radii Radii Radii Radii Radii Radii

Residential location in random SKA 0 -PA 0 -PA 0 -PA
pattern (rdR) ANN +PA -PA 0 -PA -PA -PA
MCP 0 -PA 0 0 +PA +PA

SDE -PA 0 -PA -LSC -PA -PA

-LSA

KDE +PA +PA 0 +PA +PA +PA

-RD -RD

PDE 0 0 0 -PA -PA -PA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD:
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking
methods.

Table 3. Geomasking method guidelines for residential locations in regular pattern with various spatial patterns of sensitive locations.
Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)
Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking
Radii Radii Radii Radii Radii Radii
Residential location in regular SKA -LSC -PA -LSC -PA -LSC -PA
pattern (rgR) -LSA -LSA -LSA
ANN +PA -PA 0 -PA -PA -PA
MCP -RD -PA -RD -RD (] -RD
SDE -PA 0 -PA -LSC -PA -PA
-LSA
KDE +PA +PA 0 +PA +PA +PA
-RD -RD
PDE 0 0 +LSC -PA -PA -PA
+LSA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD:
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking
methods.

Table 4. Geomasking method guidelines for residential locations in clustered pattern with various spatial patterns of sensitive
locations.

Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)
Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking ~ Shorter Masking ~ Longer Masking
Radii Radii Radii Radii Radii Radii
Residential location in clustered SKA +LSC +LSC +LSC +LSC +LSC +LSC
pattern (ctR) +LSA +LSA +LSA +LSA +LSA +LSA
-PA -PA -PA
ANN +PA -PA 0 -PA -PA -PA
McP +PA -LSC 0 +PA 0 +PA
-LSA -LSC -LSC
-LSA -LSA
SDE -PA -LSC 0 -LSC -PA -PA
-LSC -LSA -LSA -LSC
-LSA -LSA
KDE +PA +PA (0] +PA +PA +PA
-RD -RD
PDE 0 0 0o -PA -PA -PA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD:
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking
methods.



future research direction is to examine the feasibility of
integrating geomasking into online geocoders or data
analysis platforms, which return masked geocoded loca-
tions to protect sensitive geospatial data.

In this exploratory assessment, a limited number of
the widely used basic geomasking methods and geopriv-
acy measurement in the field of spatial data privacy
research were studied. We acknowledge there are other
geomaksing methods (e.g. the Voronoi masking, adap-
tive areal elimination or masking, street masking, and
MGRS masking) and measures of disclosure risk (e.g.
l-diversity and t-closeness), and further study based on
other methods or measures are needed in the future.
Readers can refer to existing open-source codes and
tools of different geomaksing and geoprivacy measure-
ment algorithms, such as adaptive geographical masking
(Kounadi, 2020), adaptive areal anonymization ArcGIS
toolbox (Charleux & Schofield, 2020), MaskMy.XYZ
(Swanlund, Schuurman, et al, 2020a), Privy
(Ajayakumar et al., 2019).

Additionally, false identification (Kim et al.,
2021; Seidl et al., 2018) is an emerging concern of
applying geomasking methods, which indicate the
linking of the masked data points to incorrect per-
sons or households (Polzin & Kounadi, 2021). The
false identification transferred the potential negative
effects of being identified from the true persons or
households to individuals who were not part of the
research (National Research Council, 2007). There
are newly developed geomasking methods that tar-
get addressing this issue, such as the adaptive
Voronoi masking (Polzin & Kounadi, 2021). In
future studies, false identification should be
involved in the assessment when comparing the
newer geomasking methods. Further, the guideline
obtained from the test results can be scale-
dependent, so researchers should carefully consider
the study area context (especially spatial scale) when
selecting geomasking methods based on our guide-
line. Lastly, the evaluation was not implemented
with real-world datasets due to privacy concerns.
That is the major reason for using simulated data.
However, the performance of geomasking may be
affected by the specific characteristic (e.g. the shape
of the study area is irregular) of real-world applica-
tions. Real-world applications in various locations,
on the premise of ensuring geoprivacy, need to be
tested in future studies. Also, applying geomasking
techniques on large real-world datasets may be pro-
hibitively computationally intensive, and CyberGIS
can be a promising direction to explore for addres-
sing this issue in future studies (Delmelle et al.,
2022).
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Rather than the performance of geomasking meth-
ods, applying geomasking needs to consider the confi-
dential degree of different datasets and the legal
framework of various countries. Geospatial data comes
with different levels of confidentiality, thus requiring
various levels of geomasking to be protected. For
instance, the dataset containing residential locations of
sexual assault victims may require a higher level of
geomasking when compared to the one with locations
of street vandalism. Further, the degree of geomasking
may also depend on the legal framework of the country
within which the study area is located. In the United
States, there are no other formal laws about the protec-
tion of personal location privacy except the Privacy Act
of 1974. Other countries (e.g. the European Union) may
have stricter personal privacy laws compared to the US,
such as the European Union’s Data Protection Directive
and General Data Protection Regulation (GDPR),
Australian Information Privacy Principles under the
Privacy Act of 1988, Japan’s Personal Information
Protection Law, and Singapore’s E-commerce Code for
the Protection of Personal Information and
Communications of Consumers of Internet Commerce.

Privacy protection of personal geospatial data is
a systematic project, and more studies are needed in
this field to explore and discuss the issue. This research
is an exploratory study to investigate the performance of
some selected geomasking methods under different
urban pattern scenarios, explore practical ways to eval-
uate them and provide preliminary guidelines for poten-
tial users. This research may shed new light on the
geoprivacy protection research and help the construc-
tion of guidelines for preserving personal location priv-
acy. The findings of this research facilitate researchers to
understand the effectiveness of geomasking methods
and provide practical guidelines on how to properly
apply geomasking methods related to the spatial struc-
ture of their data. Ultimately, this study may promote
the sharing of geospatial data, which will encourage
collaboration among disciplines and promote research
reproducibility while protecting personal geoprivacy,
thereby benefiting not only the academic community
but also humans individually.
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