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ABSTRACT
The widespread use of personal geospatial data raises serious geoprivacy concerns for sharing 
these data, which may limit the reproducibility of research findings. One widely used method for 
securely sharing confidential geospatial information is applying geomasking techniques before 
sharing. Geomasking may reduce the usability of the data. Thus, researchers need to strike 
a balance between privacy protection and analytical accuracy. Although many geomasking meth
ods have been proposed, there is no systematic evaluation of these methods or guidance on which 
method to use and how to apply it properly. To address this gap, we evaluate eight geomasking 
methods with simulated geospatial data with various spatial patterns and investigate their perfor
mance on privacy protection and analytical accuracy. We propose not only a set of preliminary 
guidelines for applying the proper geomasking methods when using different spatial analysis 
methods but also an evaluation framework for assessing geomasking methods for other spatial 
analysis methods. The findings will help researchers to properly apply geomasking for sensitive 
geospatial data and thus promote data sharing and interdisciplinary collaboration while protecting 
personal geoprivacy.
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1. Background

With the widespread use of personal geospatial data in 
GIScience and other fields (e.g. health geography) in recent 
decades, geoprivacy has become a major concern 
(Sherman & Fetters, 2007). Personal geospatial data were 
collected and analyzed with advanced geospatial methods 
in many research projects (Chaix et al., 2016; Wang & 
Kwan, 2018; Yoo et al., 2015). These data provide detailed 
information on the private locations of individuals, includ
ing where people live, work, and undertake other daily 
activities. Moreover, recent advances in geospatial technol
ogies, such as wearable sensors integrated with global 
positioning systems (GPS), enable researchers to collect 
richer and more detailed personal location information 
(Boulos et al., 2019; Fuller et al., 2017; Kwan, 2012). The 
detailed geospatial information allowed for exciting new 
research findings, but the use of personal geospatial infor
mation also puts data contributors (e.g. research partici
pants) at risk of being identified, especially when sensitive 
location data (e.g. patients’ home locations) is involved 
(Brownstein et al., 2006; Curtis et al., 2006; Kim et al., 
2021). In addition, when linked to other data sources via 

location details, personal information may be misused and 
individual privacy may be breached, which poses potential 
risks to data contributors (Kounadi & Leitner, 2014; 
Kounadi et al., 2018; VanWey et al., 2005).

In the context of public health, geospatial data related to 
personal health information is normally protected by gov
ernment regulations (e.g. the Health Insurance Portability 
and Accountability Act [HIPAA] in the US). To avoid the 
potential leak of protected health information (PHI), the 
HIPAA regulates 18 identifiers of PHI for geographic 
scales smaller than the state level, where data cannot be 
shared or published if not de-identified (Delmelle et al., 
2022; Tellman et al., 2010). Additionally, processing PHI 
may involve geocoding addresses or performing spatial 
analysis via online platforms. The sensitive data uploaded 
to the online geocoding servers may breach the confidenti
ality rules (Duncan et al., 2012). Although the geocoder in 
use may be inherently poor in accuracy and introduce 
error in the geocoded addresses (Owusu et al., 2020, 
2017) and thus hide the true location, the errors are sys
tematic and not random, which means reverse engineering 
could potentially re-identify the original address.
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To protect the geoprivacy of data contributors, per
sonal geospatial information collected in one research 
project may not be shared with others. This impedes 
data sharing in the research community and consumes 
invaluable resources for repetitive data collection 
(Wang & Kwan, 2020). Further, the ability to reproduce 
research outcomes – reproducibility, which is the cor
nerstone of the scientific paradigm (McNutt, 2014) – is 
limited by the difficulties of sharing personal geospatial 
information in geographic studies. Reproducibility, 
defined as “obtaining consistent computational results 
using the same input data, computational steps, meth
ods, code, and conditions of analysis” (National 
Academies of Sciences, 2019), promotes robustness as 
well as the generalizability of research results (McNutt, 
2014; Richardson et al., 2015). In this light, for research
ers who utilize sensitive geospatial data, sharing geospa
tial datasets faces more challenges because of geoprivacy 
(Boulos et al., 2019; Curtis et al., 2011; Fuller et al., 2017; 
Gutmann et al., 2008; VanWey et al., 2005).

Significant efforts have been made in securely sharing 
personal geospatial information (Armstrong & Ruggles, 
2005; Duncan & Pearson, 1991; Kwan et al., 2004; 
Richardson et al., 2015). In GIScience and related fields, 
spatial anonymization of address points is an essential 
way to share sensitive geospatial data while protecting 
geoprivacy (Charleux & Schofield, 2020). One widely 
recognized method is to apply geographic masking (or 
geomasking) techniques on the geospatial data before 
sharing (Allshouse et al., 2010; Armstrong et al., 1999). 
Geomasking methods relocate individual geographic 
locations in the original data to other locations by add
ing a controlled level of noise, which masked the perso
nal geospatial information by reducing the accuracy to 
a certain degree while retaining the usability of the data 
for research. “The goal is to provide individuals, institu
tions, and public health authorities a comfort level with 
the sharing of skewed, and hence, anonymized data, 
rather than using raw, fully identifiable data” (Cassa 
et al., 2006). Although many geomasking methods 
have been proposed (Hampton et al., 2010; Lu et al., 
2012; Zhang et al., 2017), no previous study has evalu
ated these methods or provided guidance on which 
method to use and how to apply them properly.

Further, applying geomasking may reduce the usability 
of the data for research purposes. Thus, researchers need to 
strike a balance between privacy protection and analytical 
accuracy (Carr et al., 2014; Kwan et al., 2004; Nissenbaum, 
2009). For example, when applying random perturbation 
geomasking methods, the level of confidentiality or protec
tion increases when a larger radius is applied. At the same 
time, however, the analytical accuracy decreases because 
the spatial pattern of the original points can be distorted 

due to the error introduced, which implies that analytical 
accuracy has a negative relationship with the level of data 
confidentiality. Moreover, since different geomasking 
methods operate in different ways, there may be particular 
patterns of the trade-off relationship for specific geomask
ing methods, which is worth further investigation. There 
are currently two major hurdles to getting scholars or data 
managers to actually use geomasking methods: the diffi
culty or burden of applying geomasks, and the lack of 
guidance on which method to use. Some scholars have 
recently tried to mitigate the first hurdle by developing 
more accessible tools (e.g. Charleux & Schofield, 2020; 
Swanlund, Schuurman, et al., 2020a) and providing prac
tical privacy-preserving steps for the collection, storage, 
analysis, and dissemination of spatiotemporal participa
tory sensing data (Kounadi & Resch, 2018), but there is 
no guidance to date that could inform people outside the 
field to make appropriate geomasking decisions.

To address this research gap, this study addresses 
the second hurdle and seeks to provide guidelines for 
applying geomasking by evaluating the performance of 
several widely used geomasking methods while consider
ing the balance between data confidentiality and analytical 
accuracy. Specifically, this research aims to 1) understand 
the effectiveness of geomasking methods, and 2) explore 
the trade-off patterns between privacy protection and ana
lytical accuracy, thus 3) provide preliminary guidelines on 
applying geomasking methods. In this study, we propose 
not only a set of guidelines for choosing proper geomask
ing methods for five widely used spatial analysis methods 
but also an evaluation framework for assessing geomasking 
methods for other spatial analysis methods. It will help 
researchers in different fields to properly apply geomasking 
for sensitive geospatial data and thus promote data sharing 
and collaboration among the disciplines while protecting 
personal privacy.

2. Geomasking methods

This section introduces the existing geomasking methods 
to protect geoprivacy when using spatial datasets collected 
at the individual level. Geomasking methods can be classi
fied into three broad categories according to two charac
teristics (i.e. whether the method preserves the number of 
records and whether the method randomly relocates 
records): aggregation, affine transformation, and random 
perturbation (Armstrong et al., 1999; Kwan et al., 2004; 
Zandbergen, 2014). Figure 1 illustrates how existing geo
masking methods can be classified into these three cate
gories. Affine transformation and random perturbation 
preserve both the number of records and the data type 
(e.g. point), but aggregation preserves only one of these 
because it either aggregates the records of the original 
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geospatial data into a smaller number of records in the 
same data type or uses a lower spatial resolution and turn 
the original data into a different data type (e.g. from points 
to polygons or raster cells). Considering whether a method 
randomly relocates records, geomasking methods can be 
further distinguished: affine transformation deterministi
cally relocates original points, while random perturbation 
does so stochastically. For affine transformation, the coor
dinates of the original records can be easily recovered from 
the geomasked dataset if the intruder knows the transfor
mation matrix. Thus, this method is not widely used. 
Please also note other recently developed geomasking 
algorithms, such as the Voronoi masking (Seidl et al., 
2015), adaptive areal elimination (Kounadi & Leitner, 
2016), adaptive areal masking (Charleux & Schofield, 
2020), street masking (Swanlund, Schuurman, et al., 
2020b), and the Military Grid Reference System (MGRS) 
masking (Clarke, 2016). As the first exploratory study 
seeking to develop guidance on geomasking, this research 
focuses on relatively conventional geomasking methods, 
such as aggregation and random perturbation methods, 
which have been utilized by application studies (e.g. 
Clifton & Gehrke, 2013; Curtis et al., 2011; Kim & Kwan, 
2021). However, it is worth mentioning that traditional 
geomasking methods do not always result in optimized 
results. Thus, future studies can benefit from examining 
the performance of new geomasking methods and com
paring it with that of traditional geomasking methods.

2.1. Aggregation geomasking methods

Aggregation combines location records and assigns the 
aggregated attributes to a unit at a lower spatial resolution, 
such as the census unit or administrative area (Armstrong 
et al., 1999). It aggregates individual points into a smaller 
number of points or polygons so that the true locations of 
the original geographic records are hidden. Those poly
gons can also be the unit cell of a uniform raster (square or 
hexagonal grid cells) covering the study area. In the tests of 
this study, we implement the point aggregation geomask
ing method by aggregating points to the nearest centroids 

of grid cells since the simulated dataset does not contain 
any administrative boundaries. Aggregation geomasking 
methods thus reduce disclosure risk by summarizing or 
averaging individual records into a coarser resolution. 
However, the application of these methods leads to the 
loss of the precise location of the original data and thus 
may reduce the accuracy of analytical methods or even 
diminish the ability to detect spatial clusters (Cassa et al., 
2006).

2.2. Random perturbation geomasking methods

Random perturbation relocates each geospatial record in 
a dataset to a new location by introducing a random spatial 
displacement (Armstrong et al., 1999). The random spatial 
displacement is calculated one by one for each record 
independently. Assume that one original record is located 
at xold; yoldð Þ in a planar coordinate system, the relocated 
new point xnew; ynewð Þ can be calculated by Equation 1: 

xnew; ynewð Þ ¼ xold þ dx; yold þ dy
� �

(1) 

where dx and dy denote a spatial displacement intro
duced by a random perturbation method in the x- and 
y-axes. There are several types of random perturbation 
methods that use different approaches to determine dx 
and dy. In general, these methods can be classified into 
three categories depending on how the spatial displace
ments (dx and dy) are generated.

(a) Naïve random perturbation: This type of method 
relocates a geospatial record to a random location with the 
same probability to any location within a region or on 
a circle around the original location. These methods (see, 
Figure A1 in Supplementary Materials) include random 
perturbation within a circle (Armstrong et al., 1999), ran
dom direction with a fixed radius (Zandbergen, 2014), and 
random perturbation within an annulus (donut masking; 
Hampton et al., 2010; Stinchcomb, 2004) centered at the 
original location.

(b) Random perturbation with distribution functions: 
Instead of calculating random spatial displacements with 
the same probability in the naïve random perturbation, 

Figure 1. Classification of geomasking methods for geospatial datasets that are measured at an individual level.
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distribution functions can be used to determine the ran
dom spatial displacement. Gaussian displacement and 
bimodal Gaussian displacement are two examples of ran
dom perturbation with distribution function methods 
(Zandbergen, 2014). Gaussian displacement employs 
a Gaussian distribution function to calculate the random 
spatial displacement, while bimodal Gaussian displacement 
uses the bimodal Gaussian distribution function instead of 
the Gaussian distribution to calculate the random spatial 
displacement (see, Figure A2 in Supplementary Materials). 
Compared to Gaussian distribution, the bimodal Gaussian 
distribution shows a more complex distribution pattern of 
probability density.

(c) Random perturbation with pre-set potential loca
tions (also called location swapping): This type of geomask
ing method considers the land-use patterns of the study 
area (Zhang et al., 2017). Different from the methods 
mentioned above, which may relocate the original records 
(subjects’ home addresses) to unreasonable locations (e.g. 
a random location in the middle of a lake or other non
residential area), location swapping methods relocates the 
original records to other potential locations that share 
similar geographic characteristics (i.e. nearby residential 
locations). In summary, the location swapping methods 
relocate an original point to a randomly selected location 
out of all the potential locations of a similar type within 
a region around the original location (see, Figure A3 in 
Supplementary Materials). The region can be defined as 
a circle (location swapping within a circle) or an annulus 
(location swapping within an annulus). One of the major 
advantages of both methods is the potential that they can 
adaptively adjust the radii necessary to guarantee 
a minimum spatial k-anonymity if needed.

3. Methods

To assess the effectiveness of the geomasking methods 
described in the previous section and provide guidelines 
on using them to protect geoprivacy, we evaluate their 
performance with regard to analytical accuracy, data con
fidentiality, and their trade-off relationships. In this 
exploratory research, we evaluated geomasking methods 
applied to geospatial datasets that are measured at the 
individual level (e.g. residential location of patience).

3.1. Analytical accuracy and confidentiality 
measurement

Analytical accuracy represents the accuracy of the spa
tial information (e.g. spatial pattern) in the geomasked 
dataset compared to the original dataset. Since geo
masking methods introduce spatial error (noise) into 
the geospatial dataset to reduce disclosure risk, it is 

unavoidable that the analytical accuracy of the geo
masked data decreases, and the results generated from 
geomasked data may be different from those generated 
from the unmasked data. Thus, it is critical to under
stand how different geomasking methods with various 
settings affect the accuracy of the results (compared to 
the results generated using unmasked data).

In this study, the data accuracy of various geomask
ing methods is assessed by comparing the degree of 
difference in the results of five widely-used spatial ana
lysis methods based on original and geomasked data. 
These methods include the average nearest neighbor 
index (ANN), the minimum convex polygon (MCP), 
the standard deviation ellipse (a directional distribution 
with 1 standard deviation; SDE), kernel density estima
tion (KDE), and point density estimation (PDE). The 
ANN calculates the average distance of all points in 
a dataset to their nearest neighbor, which is used to 
measure the spatial pattern of a dataset. The MCP and 
SDE are widely used to represent the spatial distribution 
of features in a dataset or to generate activity space in 
human mobility studies. The KDE and the PDE are 
ways to create density surfaces or maps based on point 
feature datasets to represent spatial patterns.

Data confidentiality assesses how well the original geos
patial records are effectively protected from re- 
identification risk. Applying a suitable and effective geo
masking method can reduce the risk that intruders re- 
identify the true location of geomasked records. Spatial 
k-anonymity is a widely used metric for measuring the 
disclosure risk of a geomasked dataset (Zhang et al., 
2017). It is an extension of k-anonymity, which measures 
the possibility of a certain record being uniquely identi
fied among all the records in a dataset (Sweeney, 2002). 
The value k indicates the number of records that share 
similar attributes in a dataset. The smaller the k value, the 
more likely a record can be distinguished among all other 
records in the dataset. Similarly, spatial k-anonymity 
calculates the number of potential geospatial records in 
the anonymizing spatial region around one record 
(Ghinita et al., 2010). The anonymizing region is gener
ated as a buffer with a radius of r and centered at the 
location to be masked or relocated. The radius is the 
distance between the original location and the relocated 
location (see, Figure A4 in Supplementary Materials). 
Thus, spatial k-anonymity can be used to evaluate the 
performance of geomasking methods: a larger k value 
indicates a lower probability of re-identifying the original 
location, implying a better performance of the geomask
ing method. It is worth noting that calculating spatial 
k-anonymity needs the residential locations of the general 
population in the study area. However, there are many 
ways to generate such dataset with publicly available data 
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(e.g. local government open data, OpenStreetMap by 
overlapping the point of interests data or building foot
print data with a land-use map to abstract the residential 
locations in the study area). If the detailed residential 
location data is unavailable in anyway, though not ideal, 
aggregated reference data (e.g. census units/administra
tion areas with population information) can also be used 
to calculate the spatial k-anonymity (Allshouse et al., 
2010; Kounadi & Leitner, 2016).

We acknowledge there are other recently developed 
data confidentiality assessment methods, such as 
l-diversity (Machanavajjhala et al., 2007), t-closeness 
(Li et al., 2007). Though these methods may have advan
tages in privacy assessment, spatial k-anonymity, con
sidering the spatial component in geospatial data, is still 
one of the widely used measurements for geoprivacy 
(Charleux & Schofield, 2020). Consistent with previous 
research, in this exploratory study, we evaluate data 
confidentiality by spatial k-anonymity (Ghinita et al., 
2010; Sweeney, 2002).

3.2. Data Simulation

A large volume of geospatial data was collected in urban 
areas. Taking the United States as an example, 80.7% of 
the population is living within urban areas (United 
States Census Bureau, 2021). Thus, in the setting of an 
urban area, this exploratory study generates 100 points 
of sensitive locations that need to be geomasked (simu
lating the subjects’ home locations from a sensitive data
set, such as AIDS patients) and 1,000 points of simulated 
residential locations (simulating other home locations 
besides the sensitive ones in the same hypothetical study 
area). These two sets are named the sensitive locations 
and residential locations respectively hereafter. It is 
noteworthy to mention that the arbitrary ratio of 1/10 
between sensitive and residential locations used in the 
study is because the ratio in the real world is uncertain. 
Moreover, if this ratio in the real world is much smaller 
(e.g. 1/100 – 1/1,000), our study thus used a ratio that 
represents a much greater risk of disclosure than what is 
commonly encountered in real-world situations. This is 
meaningful because our focus would thus be on situa
tions with higher risks of disclosure. The simulations are 
conducted within a hypothetical study area with a size of 
5 km by 4 km, with an area of 20 km2 (about the area of 
a circular buffer region of 30-minutes walking distance).

The geomasking methods relocate individual geo
graphic locations in the original data to other loca
tions while spatial k-anonymity calculates the number 
of potential geospatial records around each geo
masked record, so the performance of the geomasking 
methods may be influenced by the specific spatial 

patterns of both the sensitive and residential locations. 
Three types of point patterns are considered for the 
simulated sensitive and residential locations: random, 
regular, and clustered (Figure 2), following a general 
approach of point pattern and urban form analysis 
(e.g. Bivand et al., 2008; Lu et al., 2008; Marshall & 
Garrick, 2010). For example, study areas with regular 
residential location patterns include high-density 
urban areas, such as Downtown Chicago and 
Manhattan Island in New York City, where the 
urban form has a regular pattern, such as rectangular- 
shaped blocks. Additionally, to understand how geo
masking methods perform with clustered or random 
point patterns (that may capture most of the real- 
world scenarios, such as suburban areas in the 
U.S. context), we also analyze the performance with 
a regular point pattern as a baseline.

As a result of different combinations of random, 
regular, and clustered residential or sensitive locations, 
there are 9 different simulation scenarios (Table 1). For 
example, rdR-rdS means the scenario with random resi
dential locations and random sensitive locations, while 
rgR-ctS stands for the scenario with regular residential 
locations and clustered sensitive locations.

Figure 2 shows the simulated point datasets of residen
tial locations and sensitive locations in the random, reg
ular, and clustered spatial patterns. To generate the points 
with a random pattern, the “Create Random Points” tool 
in ArcGIS 10.7 was employed. This tool creates the speci
fied number of random points within the defined rectan
gular area of the study (Environmental Systems Research 
Institute, 2022). For the clustered patterns, the points were 
generated in ArcGIS with statistically significant clusters, 
as shown in Figures 2 (c) and 2 (f). The regular pattern 
point datasets are generated so that all the points are evenly 
located in the study area. The statistical significance of the 
clustered and random datasets was assessed by calculating 
the K-function value and conducting Monte-Carlo simu
lations (999 permutations). The results indicate that both 
the residential locations and sensitive locations have sig
nificant clustered patterns (p <0.05) for the clustered point 
datasets and significant random patterns (complete spatial 
randomness; p <0.05) for the random point datasets.

3.3. Evaluation of geomasking methods

Based on these simulated point datasets, the performance 
of different geomasking methods is evaluated with respect 
to both data confidentiality and data accuracy. We test 
eight geomasking methods, including random perturba
tion within a circle (RPC), random direction with a fixed 
radius (RDF), random perturbation within an annulus 
(RPA), Gaussian displacement (GD), bimodal Gaussian 
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displacement (BGD), location swapping within a circle 
(LSC), location swapping within an annulus (LSA), and 
point aggregation (PA). Each of these geomasking meth
ods is evaluated using ten different radii: 50, 100, 150, 200, 
250, 300, 350, 400, 450, and 500 meters.

To assess the levels of data confidentiality achieved by 
different geomasking methods, we calculate and com
pare the average spatial k-anonymity of all geomasked 
points for a given geomasking method and its parameter 
setting (radius). Km;r, the level of confidentiality 
achieved by applying geomasking method m with 
a radius of r is calculated by Equation 2. 

Km;r ¼

Pn
p¼1 kp

n
(2) 

where n denotes the number of geomasked points. For 
the simulated point datasets, n equals 100, which is the 
number of sensitive locations. However, n can be differ
ent when the point aggregation method is applied 
because it aggregates (summarizes) multiple points into 
one point. p indicates each geomasked sensitive location 
in the dataset, and kp indicates the spatial k-anonymity 
value calculated for point p. kp is estimated by counting 
the number of potential residential locations that are 
closer to the masked location p than the distance between 
the masked and the original locations (also illustrated in 
Figure A4). A higher value of Km;r indicates a higher level 
of confidentiality (i.e. geoprivacy protection).

For the five widely used spatial analysis methods 
being evaluated, the default parameter settings are 
used when implementing these methods in ArcGIS. 
However, for the KDE and the PDE, we use 50 m as 
the cell size and 500 m as the bandwidth. For each 
spatial analysis method, we examine to what extent 
the analytical accuracy of the original data is changed 
by applying each geomasking method with a specific 
radius setting. A high level of error introduced by 
a geomasking method indicates reduced analytical 

Figure 2. The simulated point datasets: a) random residential locations, b) regular residential locations, c) clustered residential 
locations, d) random sensitive locations, e) regular sensitive locations, f) clustered sensitive locations.

Table 1. The 9 different simulation scenarios with the residential 
and sensitive locations in various spatial patterns.

Sensitive location pattern (S)

Random  
(rdS)

Regular  
(rgS)

Clustered  
(ctS)

Residential location 
pattern (R)

Random (rdR) rdR-rdS rdR-rgS rdR-ctS
Regular (rgR) rgR-rdS rgR-rgS rgR-ctS
Clustered (ctR) ctR-rdS ctR-rgS ctR-ctS
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accuracy. Specifically, for the ANN, we calculate the 
relative error of the index generated from using the 
geomasked data. For the MCP and SDE, we compute 
the ratio of the area of the shape (e.g. polygon or 
ellipse) that is not preserved after applying 
a geomasking method to the area of the original 
shape. For the KDE and PDE, we calculate the 
Root Mean Square Error (RMSE) to represent the 
level of error introduced by a geomasking method.

To sum up, for the eight geomasking methods imple
mented with ten different radii, we first calculate the 
average spatial k-anonymity (Km;r) that indicates the 
level of data confidentiality. A higher value of Km;r 
indicates a higher level of confidentiality. Second, we 
calculate the analytical accuracy of five spatial analysis 
methods for geomasking methods with various radii. 
These two steps are repeated for the 9 different simula
tion scenarios with the residential and sensitive loca
tions in various spatial patterns. In addition, the entire 
evaluation process is independently repeated ten times 
to ensure the reliability of the results.

4. Results

4.1. Evaluation based on the average spatial 
k-anonymity

The average spatial k-anonymity of the sensitive 
locations geomasked by various methods with differ
ent radius settings are compared in the nine simu
lated scenarios (Figure 3). Not surprisingly, spatial 
k-anonymity increases (higher confidentiality level) 
as the masking radius increases. However, the 
growth rates are not the same for different methods. 
Interestingly, the point aggregation method breaks 
away from others when longer radii are used 
(r � 300m in the experiment). Point aggregation 
(PA) achieves lower confidentiality compared to 
other methods in all simulated scenarios. The differ
ences in spatial k-anonymity between aggregation 
and other geomasking methods are the largest for 
the scenario rgS, followed by ctS and rdS.

In addition, the spatial k-anonymity of most geo
masking methods (except point aggregation) is not 
notably affected by the pattern of the sensitive locations 
while affected by the residential location pattern when 
shorter masking radii are used. In the scenarios of rgR, 
the location swapping methods (LSC and LSA) do not 
perform as well as other methods regarding spatial 
k-anonymity. However, they stand out and achieve 
higher spatial k-anonymity in the scenarios of ctR than 
other methods when longer radii are used.

4.2. Evaluation of the average nearest neighbor 
(ANN) index

The differences in the results of ANN before and after 
applying geomasking, considered as the error introduced, 
were evaluated in the nine simulated scenarios with 
different geomasking methods with various masking 
radii. Figure 4 shows results with respect to the patterns 
of residential and sensitive locations. The y-axis of these 
graphs indicates the error (percent of difference) intro
duced by the geomasking methods. Thus, higher y values 
indicate larger errors (or lower analytical accuracy). As 
the figure shows, error increases as radius increases for 
most geomasking methods. However, the error intro
duced by point aggregation increases dramatically when 
longer masking radii are used.

It is worth noting that in the scenarios of rdS and rgS, 
point aggregation performs better than other methods 
when shorter radii are used, while the contrary is the case 
when longer radii are employed. For reasons discussed 
later (Section 5), the performance of geomasking meth
ods (except point aggregation) increases with longer radii 
being used in the scenario of rgS. Differently, point 
aggregation has a larger error than the other 7 geomask
ing methods when applied to ctS regardless of the size of 
the radius. The errors introduced by point aggregation 
grow linearly as the masking radius increases, while 
errors introduced by other masking methods remain 
stable. Regarding the effects of the residential location 
patterns, however, there is no notable difference.

4.3. Evaluation of the minimum convex polygon 
(MCP)

The differences in the results of the MCP before and after 
applying geomasking to the sensitive datasets are shown in 
Figure 5. Not surprisingly, the error increases as the geo
masking radius increases for most geomasking methods. 
However, the results show less consistent trends in the 
errors when compared to other analysis methods investi
gated in this study. Observing the effects of the sensitive 
location patterns on the error of the MCP, in the rdS 
scenarios, most geomasking methods have similar trends 
with different radii, while the point aggregation method 
has much larger errors when longer radii are used. In 
contrast, in the ctS scenarios, point aggregation has rela
tively smaller errors regardless of masking radii. However, 
the trend is less consistent as the errors of point aggrega
tion are unstable as the radius increases. As to the effects of 
residential location patterns on the errors, similar trends in 
errors are observed in rdR and rgR. It is worth noting that 
random direction has relatively higher errors in rgR and 
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location swapping methods show relatively higher errors 
in the ctR scenarios compared to other geomasking 
methods.

4.4. Evaluation of the standard deviation ellipse 
(SDE)

Figure 6 illustrates the errors of the SDE for different 
patterns of residential and sensitive locations when var
ious geomasking methods with different radii are 
applied. Observing the effects of the patterns of sensitive 
locations on the errors of the SDE, location swapping 
methods show higher errors in rgS when compared to 
rdS. Also, the differences in errors between the point 
aggregation and other geomasking methods are espe
cially higher in ctS than in rdS and rgS regardless of the 
size of the radius. As to the effects of the patterns of 
residential locations on analytical errors, location swap
ping methods show higher errors in ctR when compared 
to rdR when longer radii are used. It is worth noting 
that, similar to the case of the MCP, the results show less 
consistent trends in the errors.

4.5. Evaluation of kernel density estimation (KDE)

Figure 7 shows the differences (evaluated by RMSE) 
in the result of the KDE before and after geomasking 
with respect to different patterns of residential and 
sensitive locations. Consistent with other analytical 
methods, error increases as the radius used in 
a geomasking method increases. For reasons dis
cussed later (Section 5), the point aggregation 
shows lower errors than other geomasking methods 
regardless of the spatial patterns of the datasets.

Observing the effects of the patterns of sensitive 
locations, the ctS scenario gives the highest errors, fol
lowed by rgS and rdS. However, there is no notable 
difference in errors between geomasking methods 
applied to rdS, except for point aggregation, which 
gives the lowest errors. In rgS or ctS, the random direc
tion geomasking method has relatively higher errors 
than other geomasking methods when longer radii are 
used. As to the effects of residential locations, there is no 
notable difference.

4.6. Evaluation of point density estimation (PDE)

Same as the KDE, we used the RMSE to assess the 
differences in the PDE results before and after applying 
geomasking (Figure 8). Error increases as radius 
increases. The point aggregation has higher errors 
than other geomasking methods when applied to ctS. 
In rdS and rgS, the errors of the point aggregations are 

smaller than the errors of other geomasking methods 
when shorter radii are used. However, errors of the 
point aggregations are larger than those of other geo
masking methods when longer radii are applied. 
Regarding the effects of the patterns of residential loca
tions on the errors of PDE, similar trends are observed 
for all three patterns.

As discussed in the Methods section, the entire eva
luation process is independently repeated ten times to 
ensure the reliability of the results. The spatial k-anon
ymity and analytical errors were calculated as the aver
age of results from the ten rounds of testing when 
different geomasking methods are applied to the pat
terns of residential and sensitive locations. Therefore, 
we investigated the distribution of spatial k-anonymity 
value and analytical errors since the average values 
could potentially hide extreme values that may be of 
concern. The evaluation of the boxplot results of spatial 
k-anonymity and analytical errors in two different radii, 
500 m and 250 m, for different geomasking methods 
indicates a low variation, so the average values are 
sufficient to represent the general performance of geo
masking methods.

5. Discussion and conclusion

In this study, the effectiveness of different geomasking 
methods was evaluated considering both data confiden
tiality and analytical accuracy. Spatial k-anonymity was 
used to assess data confidentiality, while the error intro
duced to the results of spatial analysis after applying 
geomasking was used to assess analytical accuracy. 
Consistent with previous studies (e.g. Armstrong et al., 
1999; Kwan et al., 2004), our results suggest that there is 
a trade-off between geoprivacy protection and analytical 
accuracy when applying geomasking methods. Also, the 
findings provide general guidance on how to properly 
select geomasking methods based on the spatial patterns 
of sensitive datasets.

Regarding geoprivacy protection, the results suggest 
that point aggregation performs poorly when compared 
to other geomasking methods in almost all the simu
lated scenarios, and that location swapping methods 
perform better than other geomasking methods in ctR 
scenarios but perform worse in most rgR scenarios. This 
may be explained by the fact that the k value becomes 
higher when more residential locations are clustered 
near the geomasked points (Zhang et al., 2017), which 
leads to higher spatial k-anonymity of the location 
swapping methods. Based on the results of spatial 
k-anonymity, we suggest that it is better not to use 
point aggregation regardless of the spatial patterns of 
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the residential and sensitive locations, and that location 
swapping geomasking methods seem preferable for ctR 
scenarios.

The results of the ANN suggest that point aggrega
tion has higher errors than other geomasking methods 
when longer radii are used and has lower errors when 
shorter radii are used, especially for rdS and rgS scenar
ios. These findings can be explained by the fact that the 
ANN is evaluated largely based on the distances 
between two nearest points. Thus, if the overall distri
bution of the distances between two nearest points is 
preserved after geomasking, the error introduced by 
geomasking would be lower. Specifically, when longer 
radii are used, point aggregation leads to higher errors 
(than other geomasking methods) because it distorts the 
overall distribution of the distances between two nearest 
points to a larger extent. This is especially true for the 
case of ctS because the clustered patterns may be highly 
distorted by geomasking, which leads to higher errors. 
For example, the histograms in Figure 9 show the fre
quencies of different distances to the nearest points. As 
seen in this figure, the histogram of geomasked data by 
point aggregation is notably different from that of the 
original points, while the one by location swapping is 

similar to that of the original points. Generally, when 
data analysis is conducted with the ANN, we suggest not 
using point aggregation with long radii in all scenarios, 
but point aggregation with short radii may be used 
in rdS.

For MCP analysis, the results suggest that the errors 
introduced by geomasking vary considerably. This can 
be explained by the fact that the MCP is highly sensitive 
to specific locations of points (e.g. outliers). Recall that 
the MCP is defined by the smallest polygon that con
tains all points. If the few original points comprising the 
edges of the MCP are relocated far from the original 
points (due to geomasking), the overall shape of the 
MCP can change significantly. In this light, the MCP 
is particularly sensitive to geomasking, which leads to 
higher variations in errors. In addition, it was observed 
that higher errors were introduced by the location 
swapping methods with long radii for ctR. It may be 
because the location swapping methods consider sur
rounding residential locations to relocate the geomasked 
points: if a sensitive location is far from the clusters of 
the residential locations, these methods may lead to 
higher errors given that the MCP is sensitive to the 
specific locations of points. Thus, based on the findings 

Figure 9. The histogram of the distance to the nearest points in the original data and geomasked data: a) original points (clustered 
pattern) and the histogram of frequency by distance to the nearest point, b) geomasked points by point aggregation method with 
500 m radius and the histogram of frequency by distance to the nearest point, c) geomasked points by location swapping method 
with 500 m radius.
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and for data analysis using the MCP, we recommend 
avoiding using location swapping methods regardless of 
the length of the radius, especially for ctR scenarios.

Notably, the variation in errors introduced by geo
masking methods in SDE analysis is smaller than that in 
the MCP. This is because, unlike the MCP where the 
exact locations of points are directly used for defining 
the polygon, the SDE captures the general dispersion 
and orientation of points. Therefore, errors of the SDE 
tend to be less sensitive than those of the MCP. In 
general, when data analysis is conducted with the SDE, 
we suggest not using the location swapping methods for 
rgS when long radii are used, not using the point aggre
gation for ctS regardless of the length of the radius, and 
not using the location swapping methods for ctR when 
long radii are used.

Interestingly, the results of the kernel density analysis 
show that point aggregation has lower errors than other 
geomasking methods. This may be explained by the fact 
that KDE calculates the overall density of observations 
at each raster cell by using a smoothly curved surface 
(i.e. the kernel) that fits points within the bandwidth 
(Environmental Systems Research Institute, 2022; Yin, 
2020). The point aggregation geomasking method 
aggregates points to the nearest centroids of grid cells, 
and those aggregated centroids may somewhat capture 
the local density of points. Actually, the aggregating 
points can be considered as an approximation of KDE. 
For instance, Figure 10 shows that the kernel density 
surface generated from geomasked data by point aggre
gation has high-density regions (i.e. reddish color) that 
are similar to those generated from the original points, 
while the random direction method significantly chan
ged the original high-density regions. Thus, the errors of 
KDE when using point aggregation can be smaller than 
those of other geomasking methods. In summary, when 
data analysis is conducted using KDE, we recommend 
that point aggregation may be used regardless of the 
patterns of the residential and sensitive locations, and 
not using random direction geomasking method for rgS 
or ctS when long radii are used.

Different from kernel density analysis, the results 
of PDE suggest that the point aggregation method 
has higher errors than other geomasking methods, 
especially for ctS. This may be explained by the fact 
that point density is largely influenced by the num
ber of points within a certain bandwidth (illustrated 
in Figure 11). Unlike KDE, which estimates 
a smoothly curved surface within the bandwidth, 
point density is estimated by counting points located 
within the bandwidth. If the number of points within 
the bandwidth changes considerably (which largely 

occurs in the point aggregation method), point den
sity would also change considerably. It implies that 
the locations of points play an important role in 
PDE. Therefore, when data analysis is conducted 
with PDE, we recommend not using point aggrega
tion for ctS regardless of the radius or for rgS when 
long radii are used.

Summarizing the results of all the tests in this study, 
we propose Tables 2–4 as the guidelines of the geomask
ing method with respect to the spatial patterns of sensi
tive and residential locations. Researchers can refer to 
this table to select the suitable geomasking methods for 
their analysis: first, identify the spatial patterns of the 
sensitive locations (e.g. home locations of AIDS 
patients) and residential locations (e.g. existing residen
tial locations in the study area) being studied; second, 
refer to the corresponding cell of the table for both 
suggested (denoted by “+”) and not suggested (denoted 
by “-”) geomasking methods based on the spatial pat
terns of the point datasets and spatial analysis method. 
Additionally, “O” in the table indicates there is no 
notable difference observed or no specific suggestion 
concluded from the test and thus researchers should 
consider testing different geomasking methods based 
on their data because geomasking methods may be 
sensitive to the unique spatial pattern.

Taking MCP analysis as an example, according to the 
guidelines in Table 4, if the sensitive locations have 
a regular pattern and the residential locations have 
a clustered pattern, the location swapping methods 
(LSC and LSA) are not suggested to be used with longer 
geomasking radii. Instead, point aggregation methods 
are recommended in this scenario.

Further, when using the proposed guidelines to select 
the proper geomasking methods for their data, we 
strongly recommend that researchers apply the guide
lines in a flexible manner. For example, when 
a guideline suggests PA, it does not imply that research
ers must select the point aggregation method. Instead, it 
suggests that point aggregation may be one of the sui
table choices for the case. Also, when a guideline does 
not suggest LSC, for instance, it indicates that research
ers should consider using other geomasking methods 
than the location swapping within a circle method, by 
testing the performance of other geomasking methods 
according to the framework, and then choosing the ones 
with the best performance for their data. Since the 
guidelines are not exhaustive, we recommend research
ers interpret the guidelines in a flexible manner and pay 
more attention to the unique spatial patterns of their 
data when selecting geomasking methods. The best 
practice may be testing the performance of several 
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geomasking methods for a given dataset by following 
the evaluation framework proposed in this study and 
choosing the geomasking method that performed best.

Although the tests we conducted in this study cover 
many spatial analysis methods that are widely used in 
the field of geography and other relevant fields, many 
issues still need further exploration and to be addressed 
in future studies. First of all, the assessment in this study 
is not exhaustive, so there are many other spatial analy
sis methods (e.g. Moran’s I, spatial regression models) 
that were not evaluated. In addition, these guidelines 
focus only on individual-level geospatial data with con
fidential locations. However, researchers may want to 
explore proper geomasking methods for more complex 
data, such as GPS trajectories. We did not address GPS 

trajectories data because geomasking methods for GPS 
trajectories data are limited (Seidl et al., 2016; Wang & 
Kwan, 2020). Furthermore, this study focuses on geo
privacy concerns raised by the spatial component of 
sensitive datasets. However, geospatial data often con
tains personal socio demographic information, such as 
age, gender, income level, and health status, which may 
also cause serious privacy concerns if not handled prop
erly. Also, the masking performance may be affected 
when population density is considered. For example, 
random perturbation and donut masking are easily per
formed while considering population density and doing 
so would significantly affect the trade-off between 
k-anonymity and analytical accuracy. It calls for further 
investigation in future studies. Another interesting 

Figure 10. The kernel density estimation (KDE) generated from original data and geomasked data: a) KDE generated from original 
points; b) KDE generated from geomasked points by point aggregation with 500 m radius; c) KDE generated from geomasked points 
by random direction with 500 m radius.

Figure 11. The point density estimation (PDE) generated from original data and geomasked data: a) PDE generated from original 
points; b) PDE generated from geomasked points by point aggregation with 500 m radius; c) PDE generated from geomasked points 
by location swapping with 500 m radius.
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Table 4. Geomasking method guidelines for residential locations in clustered pattern with various spatial patterns of sensitive 
locations.

Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Residential location in clustered 
pattern (ctR)

SKA +LSC 
+LSA

+LSC 
+LSA 
-PA

+LSC 
+LSA

+LSC 
+LSA 
-PA

+LSC 
+LSA

+LSC 
+LSA 
-PA

ANN +PA -PA O -PA -PA -PA
MCP +PA -LSC 

-LSA
O +PA 

-LSC 
-LSA

O +PA 
-LSC 
-LSA

SDE -PA 
-LSC 
-LSA

-LSC 
-LSA

O -LSC 
-LSA

-PA -PA 
-LSC 
-LSA

KDE +PA +PA O +PA 
-RD

+PA +PA 
-RD

PDE O O O -PA -PA -PA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density 
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD: 
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking 
methods.

Table 3. Geomasking method guidelines for residential locations in regular pattern with various spatial patterns of sensitive locations.
Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Residential location in regular 
pattern (rgR)

SKA -LSC 
-LSA

-PA -LSC 
-LSA

-PA -LSC 
-LSA

-PA

ANN +PA -PA O -PA -PA -PA
MCP -RD -PA -RD -RD O -RD
SDE -PA O -PA -LSC 

-LSA
-PA -PA

KDE +PA +PA O +PA 
-RD

+PA +PA 
-RD

PDE O O +LSC 
+LSA

-PA -PA -PA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density 
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD: 
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking 
methods.

Table 2. Geomasking method guidelines for residential locations in random pattern with various spatial patterns of sensitive locations.
Sensitive location pattern

Random (rdS) Regular (rgS) Cluster (ctS)

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Shorter Masking 
Radii

Longer Masking 
Radii

Residential location in random 
pattern (rdR)

SKA O -PA O -PA O -PA
ANN +PA -PA O -PA -PA -PA
MCP O -PA O O +PA +PA
SDE -PA O -PA -LSC 

-LSA
-PA -PA

KDE +PA +PA O +PA 
-RD

+PA +PA 
-RD

PDE O O O -PA -PA -PA

Notes: SKA: Spatial k-anonymity; ANN: Average Nearest Neighbor Index; MCP: Minimum Convex Polygon; SDE: Standard Deviation Ellipse; KDE: Kernel Density 
Estimation; PDE: Point Density Estimation. PA: Point Aggregation; LSC: Location Swapping within a circle; LSA: location swapping within an annulus; RD: 
Random Direction; +: the specific method is suggested; -: the specific method is not suggested; O: no notable difference observed among the tested masking 
methods.
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future research direction is to examine the feasibility of 
integrating geomasking into online geocoders or data 
analysis platforms, which return masked geocoded loca
tions to protect sensitive geospatial data.

In this exploratory assessment, a limited number of 
the widely used basic geomasking methods and geopriv
acy measurement in the field of spatial data privacy 
research were studied. We acknowledge there are other 
geomaksing methods (e.g. the Voronoi masking, adap
tive areal elimination or masking, street masking, and 
MGRS masking) and measures of disclosure risk (e.g. 
l-diversity and t-closeness), and further study based on 
other methods or measures are needed in the future. 
Readers can refer to existing open-source codes and 
tools of different geomaksing and geoprivacy measure
ment algorithms, such as adaptive geographical masking 
(Kounadi, 2020), adaptive areal anonymization ArcGIS 
toolbox (Charleux & Schofield, 2020), MaskMy.XYZ 
(Swanlund, Schuurman, et al., 2020a), Privy 
(Ajayakumar et al., 2019).

Additionally, false identification (Kim et al., 
2021; Seidl et al., 2018) is an emerging concern of 
applying geomasking methods, which indicate the 
linking of the masked data points to incorrect per
sons or households (Polzin & Kounadi, 2021). The 
false identification transferred the potential negative 
effects of being identified from the true persons or 
households to individuals who were not part of the 
research (National Research Council, 2007). There 
are newly developed geomasking methods that tar
get addressing this issue, such as the adaptive 
Voronoi masking (Polzin & Kounadi, 2021). In 
future studies, false identification should be 
involved in the assessment when comparing the 
newer geomasking methods. Further, the guideline 
obtained from the test results can be scale- 
dependent, so researchers should carefully consider 
the study area context (especially spatial scale) when 
selecting geomasking methods based on our guide
line. Lastly, the evaluation was not implemented 
with real-world datasets due to privacy concerns. 
That is the major reason for using simulated data. 
However, the performance of geomasking may be 
affected by the specific characteristic (e.g. the shape 
of the study area is irregular) of real-world applica
tions. Real-world applications in various locations, 
on the premise of ensuring geoprivacy, need to be 
tested in future studies. Also, applying geomasking 
techniques on large real-world datasets may be pro
hibitively computationally intensive, and CyberGIS 
can be a promising direction to explore for addres
sing this issue in future studies (Delmelle et al., 
2022).

Rather than the performance of geomasking meth
ods, applying geomasking needs to consider the confi
dential degree of different datasets and the legal 
framework of various countries. Geospatial data comes 
with different levels of confidentiality, thus requiring 
various levels of geomasking to be protected. For 
instance, the dataset containing residential locations of 
sexual assault victims may require a higher level of 
geomasking when compared to the one with locations 
of street vandalism. Further, the degree of geomasking 
may also depend on the legal framework of the country 
within which the study area is located. In the United 
States, there are no other formal laws about the protec
tion of personal location privacy except the Privacy Act 
of 1974. Other countries (e.g. the European Union) may 
have stricter personal privacy laws compared to the US, 
such as the European Union’s Data Protection Directive 
and General Data Protection Regulation (GDPR), 
Australian Information Privacy Principles under the 
Privacy Act of 1988, Japan’s Personal Information 
Protection Law, and Singapore’s E-commerce Code for 
the Protection of Personal Information and 
Communications of Consumers of Internet Commerce.

Privacy protection of personal geospatial data is 
a systematic project, and more studies are needed in 
this field to explore and discuss the issue. This research 
is an exploratory study to investigate the performance of 
some selected geomasking methods under different 
urban pattern scenarios, explore practical ways to eval
uate them and provide preliminary guidelines for poten
tial users. This research may shed new light on the 
geoprivacy protection research and help the construc
tion of guidelines for preserving personal location priv
acy. The findings of this research facilitate researchers to 
understand the effectiveness of geomasking methods 
and provide practical guidelines on how to properly 
apply geomasking methods related to the spatial struc
ture of their data. Ultimately, this study may promote 
the sharing of geospatial data, which will encourage 
collaboration among disciplines and promote research 
reproducibility while protecting personal geoprivacy, 
thereby benefiting not only the academic community 
but also humans individually.
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