

Compression Enhances Invasive Phenotype and Matrix Degradation of Breast Cancer Cells via Piezo1 Activation

4 Mingzhi Luo^{1,2}, Grace Cai³, Kenneth K. Y. Ho^{2,†}, Kang Wen¹, Zhaowen Tong³,
5 Linhong Deng^{1,*}, Allen P. Liu^{2,3,4,5,6*}

¹ Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu, P. R. China

² Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, United States

³ Applied Physics Program, University of Michigan, Ann Arbor, Michigan, United States

⁴ Department of Biophysics, University of Michigan, Ann Arbor, Michigan, United States

⁵ Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States

⁶ Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States

[†] Present location: Center for Molecular Imaging, Department of Radiology.

U.S. DEPARTMENT OF COMMERCE | U.S. GEOLOGICAL SURVEY | U.S. LANDSAT

* Corresponding author: Linhong Deng, +86-13685207009, dlh@cczu.edu.cn;
All rights reserved. © 2024. CC-BY-NC-ND.

26 **Abstract**

27 Background: Uncontrolled growth in solid breast cancer generates mechanical
28 compression that may drive the cancer cells into a more invasive phenotype,
29 but little is known about how such compression affects the key events and
30 corresponding regulatory mechanisms associated with invasion of breast
31 cancer cells including cellular behaviors and matrix degradation.

32 Results: Here we show that compression enhanced invasion and matrix
33 degradation of breast cancer cells. We also identified Piezo1 as the putative
34 mechanosensitive cellular component that transmitted compression to not only
35 enhance the invasive phenotype, but also induce calcium influx and
36 downstream Src signaling. Furthermore, we demonstrated that Piezo1 was
37 mainly localized in caveolae, and both Piezo1 expression and compression-
38 enhanced invasive phenotype of the breast cancer cells were reduced when
39 caveolar integrity was compromised by either knocking down caveolin1
40 expression or depleting cholesterol content.

41 Conclusions: Taken together, our data indicate that mechanical compression
42 activates Piezo1 channels to mediate enhanced breast cancer cell invasion,
43 which involves both cellular events and matrix degradation. This may be a
44 critical mechanotransduction pathway during breast cancer metastasis, and
45 thus potentially a novel therapeutic target for the disease.

46

47 **Keywords:** Compression, Breast cancer cell, Invasion, Piezo1

48

49

50

51 **Background**

52 Cancer invasion is a cumulative result of multiple processes including
53 directed cell migration and extracellular matrix (ECM) degradation. While these
54 processes are well known to be mediated by chemical factors, physical factors
55 such as compression-induced mechanical forces have also been identified as
56 essential regulators of these processes [1]. For example, an increase of
57 compression inside a solid tumor is accompanied by enhanced cell proliferation
58 [2]. Compression is also experienced by the cancer cells during migration
59 through capillary and confined tissue microenvironments [3, 4]. Recent *in vivo*
60 studies show that compression stimulates tumorigenic signaling in colon
61 epithelial cells [5], and pressure release can indeed be used as a clinical
62 strategy to enhance the efficiency of anti-tumor treatment [6]. Interestingly, it is
63 demonstrated *in vitro* that compression directly alters cancer cell proliferation
64 and migration, and thus drives them to be more invasive [7-9]. However, it is
65 still unclear whether compression can be sensed by the cancer cells and
66 transduced into cellular behaviors that promote matrix degradation and
67 ultimately enhance the invasive phenotype of the cancer cells.

68 Considering that compression stretches cell membrane and thus increases
69 membrane tension, it may as well alter the cellular behaviors of cancer cells
70 through tension-mediated conformational changes of proteins and lipids in the
71 membrane [10]. In particular, the increase of membrane tension can activate
72 several stretch-activated ion channels (SACs) including Piezo and transient
73 receptor potential (TRP) channels [11-14]. Comparing to TRP channels, Piezo
74 channels are known to respond to membrane tension with more exquisite
75 sensitivity [15, 16]. On the other hand, studies *in vivo* show that Piezo channels
76 mediate a variety of compression-associated physiological activities such as
77 touch perception [11] and blood pressure sensing [17], as well as pathological
78 processes such as breast cancer development [18]. In the latter case, the role
79 of Piezo channels is even substantiated by the fact that the survival time of the
80 breast cancer patients is negatively related to the mRNA expression level of

81 Piezo1 in the primary tumor [18]. Interestingly, it has been shown that the
82 response of breast cancer cells to compression is dependent on Piezo but not
83 TRP channels [19]. And upon activation of Piezo channels (Piezo1 in
84 particular), the corresponding calcium influx evokes several downstream
85 signaling pathways including Src and extracellular regulated protein kinase
86 (ERK) which in turn affect the dynamics of actin-based protrusion structures
87 such as invadopodia/invadosomes that degrade ECM proteins and thus
88 promote invasion [20, 21]. These data indicate that Piezo1 may be essential for
89 the compression-enhanced cancer invasion. However, whether and how
90 Piezo1 channels mediate compression-enhanced invasive phenotype of cancer
91 cells has not been examined.

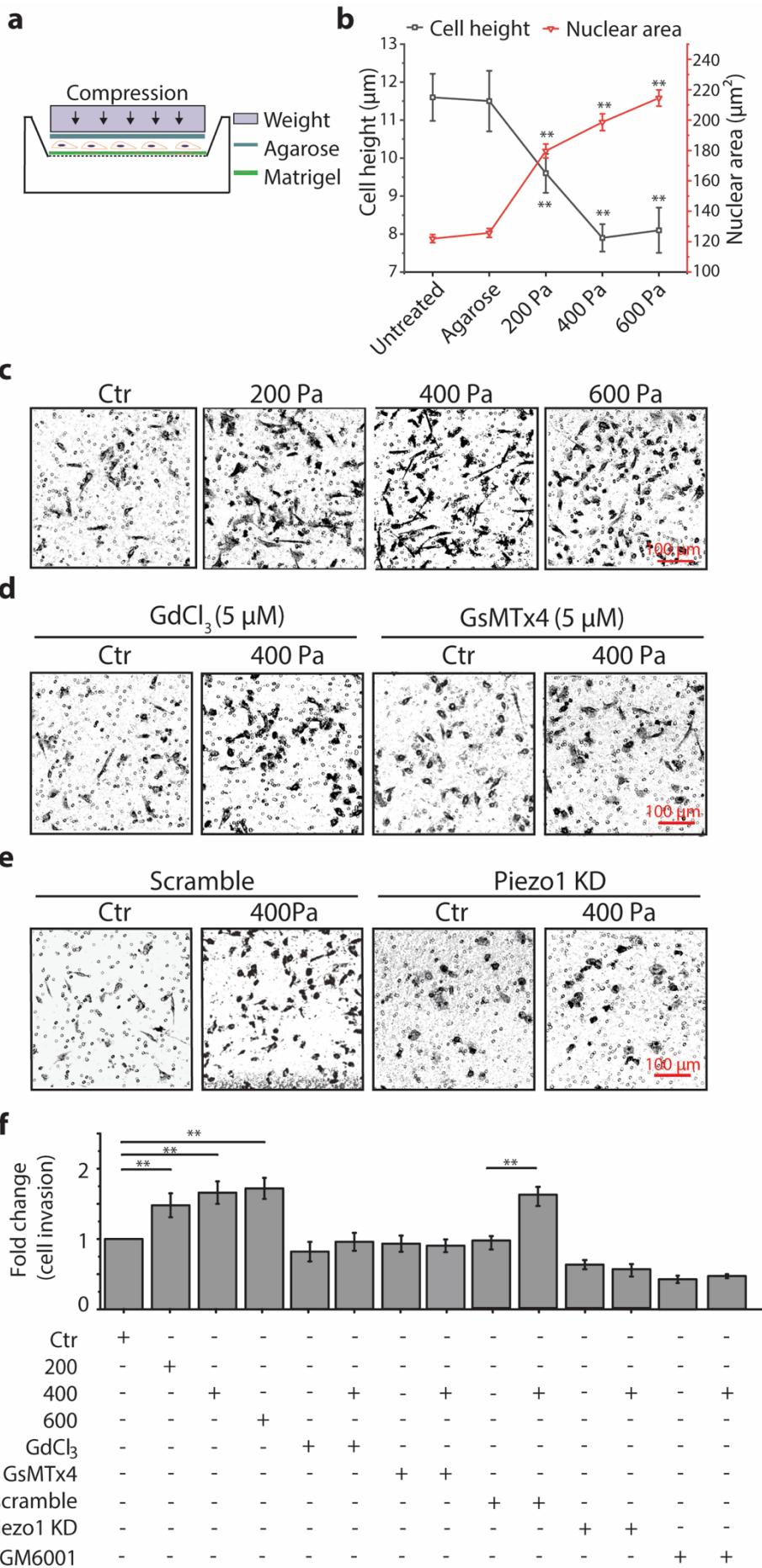
92 So far it is thought in general that SAC functions at “membrane force foci”
93 such as caveolae [22]. This is because caveolae are cholesterol-enriched flask-
94 like membrane invaginations that may rapidly flatten and disassemble in
95 response to an increase in membrane tension and thus provide proper
96 platforms for harboring and gating SACs [23-27]. As for Piezo1, structural
97 analysis has shown that there is a pocket sandwiched between Piezo1 repeat
98 B and C, which provides a binding site as a means of interaction with lipids [14].
99 Despite such evidence of the structure for interaction between Piezo1 and lipid,
100 where Piezo1 actually locates in the cell membrane is not well established and
101 it remains unclear whether Piezo1 activity is indeed regulated by caveolae.

102 In this study, we hypothesized that Piezo1 channels mediate the
103 compression-enhanced invasive phenotype of cancer cells. To test this
104 hypothesis, we examined *in vitro* cultured human breast cancer cells for their
105 ability to invade and degrade extracellular matrix in the presence or absence of
106 externally loaded compression, together with corresponding changes in Piezo1
107 and calcium signaling. We found that the compression promoted an invasive
108 phenotype in breast cancer cells, characterized by enhanced matrix
109 degradation, actin protrusion formation, and calcium signal initiation. More
110 importantly, the phenotypic changes in these cells appeared to be mediated by

111 the compression-induced Piezo1 activation, which in turn was dependent on
112 the caveolar integrity.

113

114 **Results**


115 **Compression enhanced invasion of breast cancer cells dependent on**
116 **Piezo1**

117 To test whether externally loaded compression enhances invasion of
118 breast cancer cells, MDA-MB-231 cells were grown on a two-dimensional (2D)
119 membrane filter (8 μ m pore) coated with Matrigel and covered with 1% agarose
120 gel and then compressed by a constant weight (Figure 1a). The compression-
121 induced stress levels in the experimental groups used in this study were 200,
122 400, and 600 Pa, which were considered pathophysiologically relevant as cells
123 are reported to experience compressive stress at up to about 800 Pa in the core
124 of solid breast tumor [9, 28]. To show whether compression squeezes the cell
125 and cell nucleus, we first evaluated the height of the cancer cells by looking at
126 side-view profiles of cells and the nuclear area of the cancer cells by looking at
127 top-view profiles of the nucleus under compression. The results show that as
128 the compression load increased, the cell height and the nuclear area
129 significantly decreased and increased, respectively (Figure 1b). It is worth
130 noting that while the cell height ceased to further decrease from 400 to 600 Pa,
131 the nuclear area kept increasing when the compression load increased. These
132 data indicate that the compression indeed squeezed the cells and nuclei, which
133 was most likely to alter the membrane tension, impact SACs activity, and thus
134 change the invasion capacity of the cells [29]. As shown in Figure 1c and 1f,
135 more MDA-MB-231 cells had invaded through the Matrigel-coated transwell
136 filters when exposed to the compression compared to their counterparts
137 covered with 1% agarose only (control, Ctr). The results clearly show that the
138 compression enhanced breast cancer cell invasion.

139 It has been reported that hypoxia enhances cancer cell invasion through
140 the mediation of hypoxia-inducible factor (HIF)-1 α [30]. In our experimental

141 setup, it is possible that the weight on top of the cells might interfere with oxygen
142 diffusion and cause hypoxia in the cells. Therefore, we treated the MDA-MB-
143 231 cells with HIF-1 α inhibitor (CAY10585, 10 μ M) and then examined the cell
144 invasion as described above. The results indicate that the compression-
145 enhanced cancer cell invasion was largely unaffected no matter the cells were
146 treated or not with HIF-1 α inhibitor (Figure S1). This suggests that the
147 compression-enhanced cancer cell invasion was unlikely to involve hypoxia-
148 related signaling, which is consistent with the hypothesis that the pores in the
149 membrane may permit nutrient and oxygen diffusion to the cells in the event of
150 physical confinement due to compression [9].

151

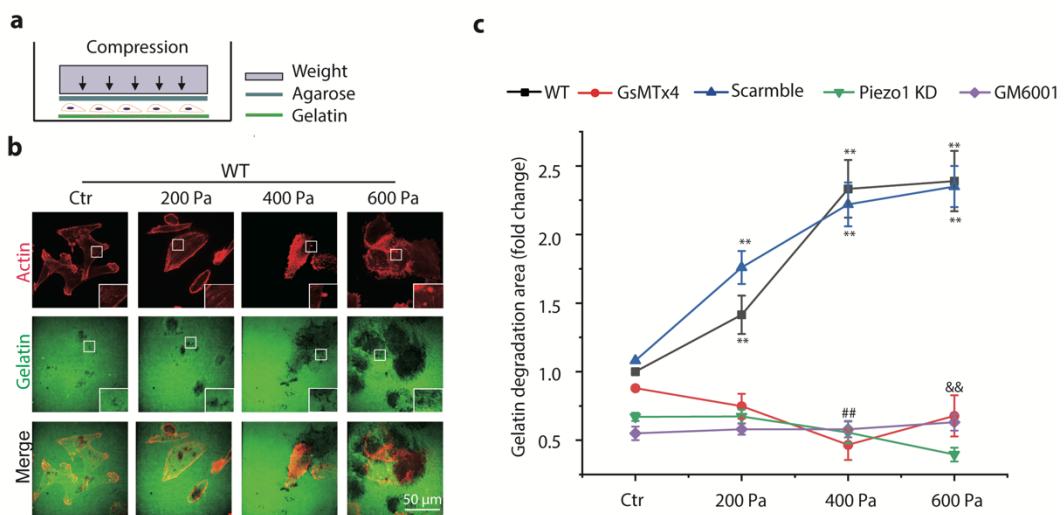
153 **Figure 1** Compression enhanced invasion of MDA-MB-231 cells depending on Piezo1.
154 Cell invasion was measured with *in vitro* transwell invasion assay. **a** Schematic
155 diagram of the compression experiment using a transwell setup. Cells grown on a
156 membrane filter (8 μ m pore) coated with Matrigel for 6 h were covered with 1% of
157 agarose gel and compressed with a specific weight. **b** The changes of cell height
158 and nuclear area of MDA-MB-231 under compression. Data are presented as
159 means \pm s.e.m. n = 4, ** p < 0.01 versus untreated groups. **c, d, e** Representative
160 images of invaded cells stained with crystal violet under different compression and
161 treated with gadolinium chloride (Gd³⁺), GsMTx4, or siRNA for Piezo1 under 400 Pa
162 (Bar = 100 μ m). **f** Quantification of the fold change of invaded cells. Data were
163 presented as means \pm s.e.m, n = 3, ** p < 0.01 versus control (Ctr) groups.

164

165 To test whether the compression-enhanced cancer cell invasion was
166 mediated through SACs or more specifically through Piezo1, we pretreated the
167 MDA-MB-231 cells with either Gd³⁺ (non-specific SACs inhibitor), or GsMTx4
168 (more specific Piezo1 inhibitor), followed by exposure to compression at 400
169 Pa. As shown in Figure 1d and 1f, pretreatment with Gd³⁺ or GsMTx4 either
170 partially attenuated or completely abrogated the compression-enhanced cancer
171 cell invasion.

172 To further confirm the specificity of Piezo1 in mediating compression-
173 enhanced cancer cell invasion, we examined the expression of Piezo1 in MDA-
174 MB-231 cells. We found that Piezo1 was expressed in MDA-MB-231 cells in
175 the form of punctate structures and located not only on the plasma membrane
176 but also over the intracellular space and nucleus (Figure S2a), which is
177 consistent with data reported by Gudipaty *et al.* [31]. We then silenced the
178 protein expression of Piezo1 in MDA-MB-231 cells by using siRNA. Western
179 blot results confirmed that the efficiency of Piezo1 knockdown (KD) was ~70%
180 (Figure S2b). When the MDA-MB-231 cells with Piezo1 KD were exposed to
181 compression at 400 Pa, the cells did not respond with enhanced cell invasion
182 at all (Figure 1e and 1f).

183 To test whether the compression-enhanced invasion was mediated by the
184 function of matrix metalloproteinases (MMPs), we pretreated MDA-MB-231
185 cells with GM6001, a general MMP inhibitor, and then evaluated the invasion
186 in the presence or absence of compression at 400 Pa. The results in Figure 1e
187 show that inhibition of MMP function with GM6001 completely abolished the
188 enhancement of cell invasion in response to compression, suggesting that the
189 compression-enhanced invasion capability of breast cancer cells was involved
190 in the function of MMPs.


191 The same experiments carried out with 4T1 cells (another breast cancer
192 cell line) showed similar results as those with MDA-MB-231 cells (Figure S3),
193 confirming that the compression-enhanced breast cancer cell invasion and
194 associated Piezo1 mediation were independent of the cell lines used.

195

196 **Compression enhanced matrix degradation dependent on Piezo1**

197 Considering that cell invasion is a complex phenomenon involving cell
198 proliferation, cell migration, and matrix degradation, it is necessary to examine
199 each of these aspects for its role in the compression-enhanced invasion of
200 breast cancer cells. We then measured cell proliferation and migration of MDA-
201 MB-231 cells in the presence or absence of compression, respectively. The
202 results show that compression increased cell proliferation, but the fold-change
203 of compression-enhanced cell proliferation was always less than that of
204 compression-enhanced cell invasion at the same load of compression as
205 shown in Figure S4 (i.e., 1.1 fold vs. 1.3 fold and 1.3 fold vs. 1.8 fold at 400 and
206 600 Pa, respectively). On the other hand, compression decreased cell migration
207 as shown in Figure S5. In addition, the compression-enhanced cell proliferation
208 was attenuated when Piezo1 was knocked down in the cells (Piezo1 siRNA vs.
209 scramble siRNA in Figure S4). These data indicate that cell proliferation, but
210 not cell migration, could contribute partially to the observed compression-
211 enhanced invasion of the breast cancer cells.

212 Since compression-enhanced invasion of the breast cancer cells was only
 213 partially due to cell proliferation and was involved in the function of MMPs, we
 214 suspect that compression may also influence cancer cells' capability for matrix
 215 degradation. To investigate this, we examined the extent of matrix degradation
 216 of MDA-MB-231 cells seeded on FITC-conjugated gelatin-coated glass-bottom
 217 dish followed by application of compression (Figure 2a). The fluorescence
 218 images showed dark puncta areas, corresponding to "holes" formed in the
 219 gelatin matrix due to degradation (Figure 2b). Thus, we quantified the extent of
 220 matrix degradation, and the results showed that MDA-MB-231 cells exposed to
 221 compression from 200 Pa to 600 Pa exhibited a significant increase of gelatin
 222 matrix degradation as compared to their counterparts without compression (Ctr)
 223 (Figure 2c). Similar to the case of cell invasion through Matrigel-coated
 224 transwell filters, pretreatment of MDA-MB-231 cells with GsMTx4 to inhibit
 225 Piezo1 or siRNA probe to silence Piezo1 expression completely abrogated the
 226 compression-enhanced gelatin matrix degradation in the cells (Figure 2c).
 227 These data indicate that compression did enhance the matrix degradation
 228 capability of breast cancer cells in a Piezo1-dependent manner.

229

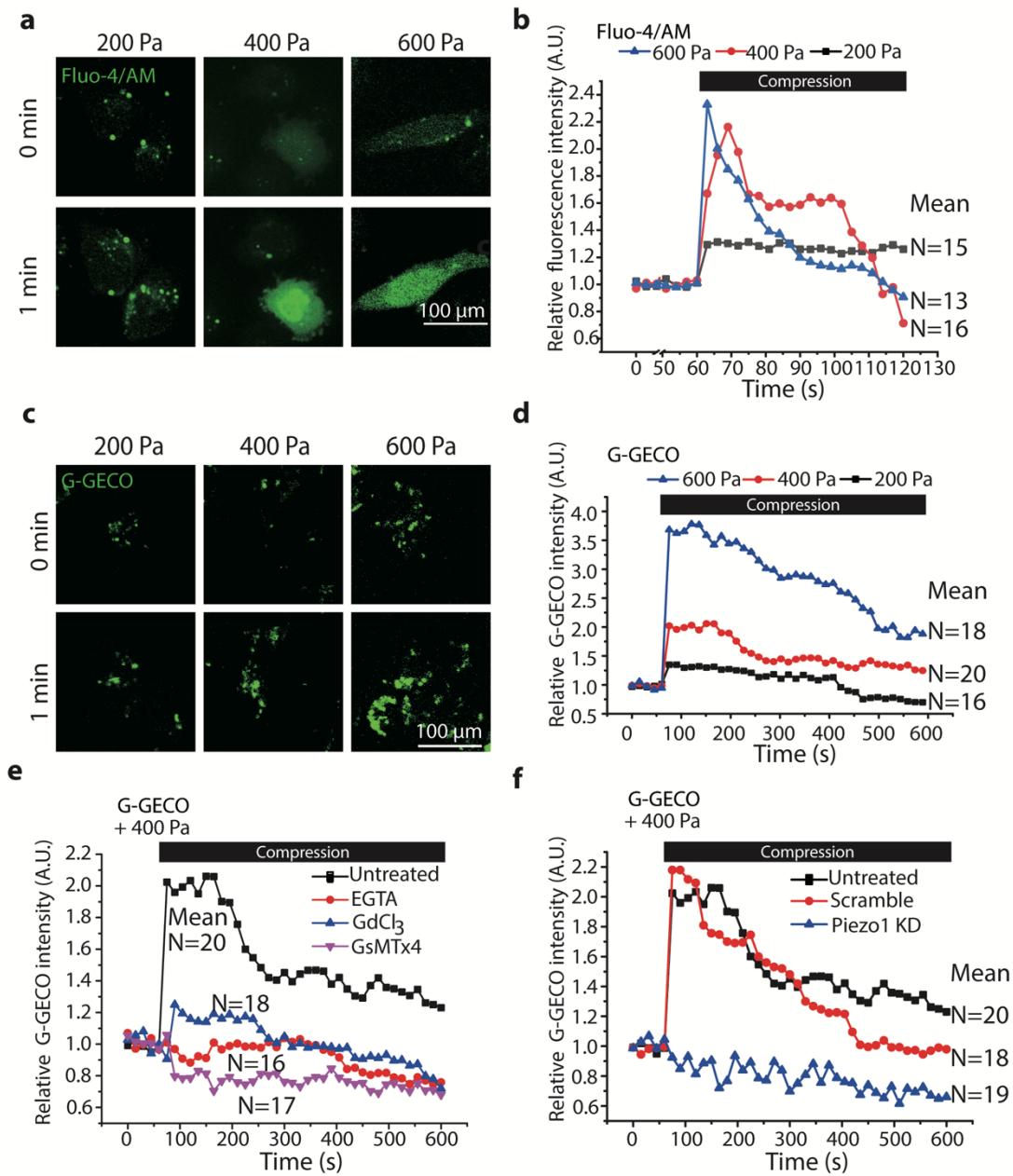
230 **Figure 2** Compression promoted matrix degradation in MDA-MB-231 cells. **a**
 231 Schematic diagram of the experiment. Cells grown on a glass-bottom dish coated with
 232 FITC-conjugated gelatin for 8 h were covered with 1% of agarose gel and compressed

233 with a specific weight. **b** Representative images (red: actin, green: gelatin) of
234 compression-promoted gelatin degradation at the ventral side of the cell. Gelatin
235 degradation was visualized by confocal microscopy (60X) as disappearance of green
236 fluorescence. Inset images are magnified views of the boxed regions. **c** The fold
237 change of gelatin degradation area under different treatment conditions (treated with
238 GsMTx4, Piezo1 KD, or GM6001) as a function of compression normalized to gelatin
239 degradation area at control (Ctr) groups; Data were presented as means \pm s.e.m, n =
240 3, ** $p < 0.01$ versus control groups, ## and \$\$ represent $p < 0.01$ versus 400 Pa and
241 600 Pa groups in wild type (WT), respectively.

242

243 To test whether the compression-enhanced matrix degradation was
244 mediated by MMPs, we pretreated MDA-MB-231 cells with MMP inhibitor
245 GM6001, and then evaluated the matrix degradation in the presence or
246 absence of compression as described above. The results in Figure 2c show
247 that inhibition of MMP function with GM6001 completely abolished the
248 enhancement of matrix degradation in response to compression, suggesting
249 that the compression-enhanced capability of breast cancer cells to degrade
250 gelatin matrix was indeed mediated by MMP.

251 Furthermore, cancer cells are known to use actin protrusions known as
252 invadopodia formed on the membrane to promote ECM degradation [20, 32-
253 34]. Thus, we examined whether compression could promote invadopodia
254 formation in MDA-MB-231 cells. We used immunofluorescence to visualize and
255 identify invadopodia in MDA-MB-231 cells labeled with actin and cortactin, both
256 of which are markers for invadopodia [35] (Figure S6a). The number of
257 invadopodia per cell was counted as actin-positive puncta and reported for
258 MDA-MB-231 cells with or without pretreatment with siRNA probe to silence
259 Piezo1, respectively, and with or without exposure to compression. The results
260 show that compression increased the number of invadopodia per cell in MDA-
261 MB-231 cells, which was significantly abrogated by silencing Piezo1 (Figure
262 S6b). These results demonstrate that breast cancer cells responded to


263 compression with an increased number of invadopodia and thus promoted ECM
264 degradation, which essentially depended on the activation of Piezo1.

265

266 **Piezo1 mediated compression-induced calcium signaling**

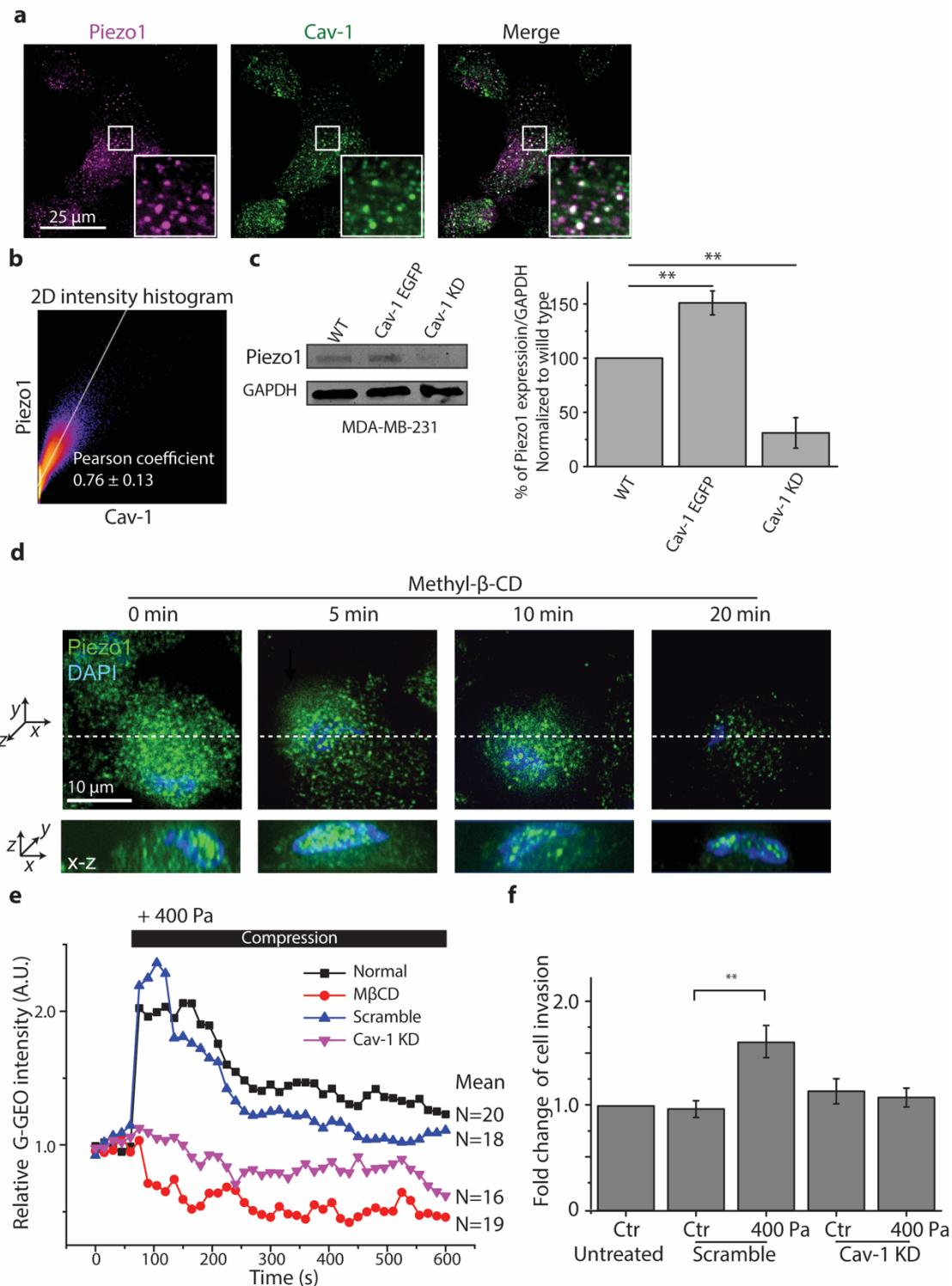
267 To determine whether calcium signaling was involved in the compression-
268 enhanced invasive phenotype of breast cancer cells, we labeled the cells with
269 canonical calcium dye Fluo-4/AM or transiently transfected novel calcium
270 biosensors green genetically encoded Ca^{2+} -indicators for optical imaging (G-
271 GECO) and performed live-cell imaging during application of compression to
272 MDA-MB-231 cells. As shown in Figure 3a, calcium signaling, as indicated by
273 the fluorescence intensity of Fluo-4, was activated instantaneously upon
274 exposure to compression (Supplementary video 1). The peak magnitude of
275 activation (the relative fluorescence intensity of Fluo-4) increased from ~1.5 to
276 ~2.5 fold as the compression increased from 200 Pa to 600 Pa (Figure 3b).
277 These results were confirmed by using G-GECO (Supplementary video 2,
278 Figure 3c and d). The peak magnitude of activation also increased from ~1.5 to
279 ~3.5 fold as the compression increased from 200 Pa to 600 Pa.

280 The G-GECO system was used to measure the calcium signaling in the
281 following experiments, because it is more convenient than the Fluo-4/AM
282 system. We treated cells transfected with G-GECO with 2 mM ethylene glycol
283 tetraacetic acid (EGTA) for 15 min to deplete extracellular calcium content
284 before application of compression (400 Pa), which completely eliminated the
285 compression-induced calcium signaling, suggesting the signaling was mainly
286 due to influx of extracellular calcium (Figure 3e). Furthermore, calcium influx
287 induced by compression (400 Pa) was also abrogated when cells were
288 pretreated with Gd^{3+} or GsMTx4 to block Piezo1 or siRNA probe to silence
289 Piezo1 expression (Figure 3f). Together, these observations support the finding
290 that Piezo1 mediated the cellular response to compression *via* calcium influx.

291 **Figure 3** Compression induced calcium signaling in MDA-MB-231 cells.
292 Representative images of intracellular $[Ca^{2+}]$ (a and c, bar = 100 μ m) visualized by
293 confocal microscopy (60X) and time-courses of changing relative mean fluorescence
294 intensity (b and d) of Fluo-4 or G-GECO (normalized to time 0) in MDA-MB-231 cells
295 labeled with Fluo-4/AM or transiently expressing G-GECO before (0 min) and after (1
296 min) exposure to compression at 200, 400, 600 Pa, respectively. e, f Time-courses of
297 changing relative mean fluorescence intensity of G-GECO in MDA-MB-231 cells
298 pretreated with or without EGTA, Gd³⁺, GsMTx4, and Piezo1 KD in response to 400
299 Pa.

300 Pa compression. Each experiment assayed 10-20 cells and repeated three times.
301 Black bars in **b, d, e, f** indicate the period of compression.

302


303 **Caveolae regulated the location and function of Piezo1**

304 Previous work suggests that cholesterol content that directly influences the
305 formation of caveolae might regulate Piezo1 functions [36-39]. To test whether
306 Piezo1 is located in caveolae, we first examined the distribution relationship
307 between Piezo1 and caveolae. We found that both Piezo1 and caveolae (Cav-
308 1) formed puncta structures and many of them were colocalized (Figure 4a).
309 The coefficient of colocalization in wild type cells (WT) was analyzed with
310 Coloc2 procedure in Fiji software as shown in Figure 4b. The results show that
311 the classical Pearson coefficient was 0.76 ± 0.13 , which indicates that Piezo1
312 and Cav-1 were highly colocalized. To test whether caveolae regulate the
313 Piezo1 expression, we quantified Piezo1 protein expression level in MDA-MB-
314 231 cells that were either wild type (WT), or transiently transfected with Cav-1
315 enhanced green fluorescent protein (Cav-1 EGFP), or siRNA probe for
316 silencing Cav-1 expression (Cav-1 KD). We found that as compared to WT,
317 Piezo1 expression was increased in Cav-1 EGFP cells while decreased in Cav-
318 1 KD cells (Figure 4c).

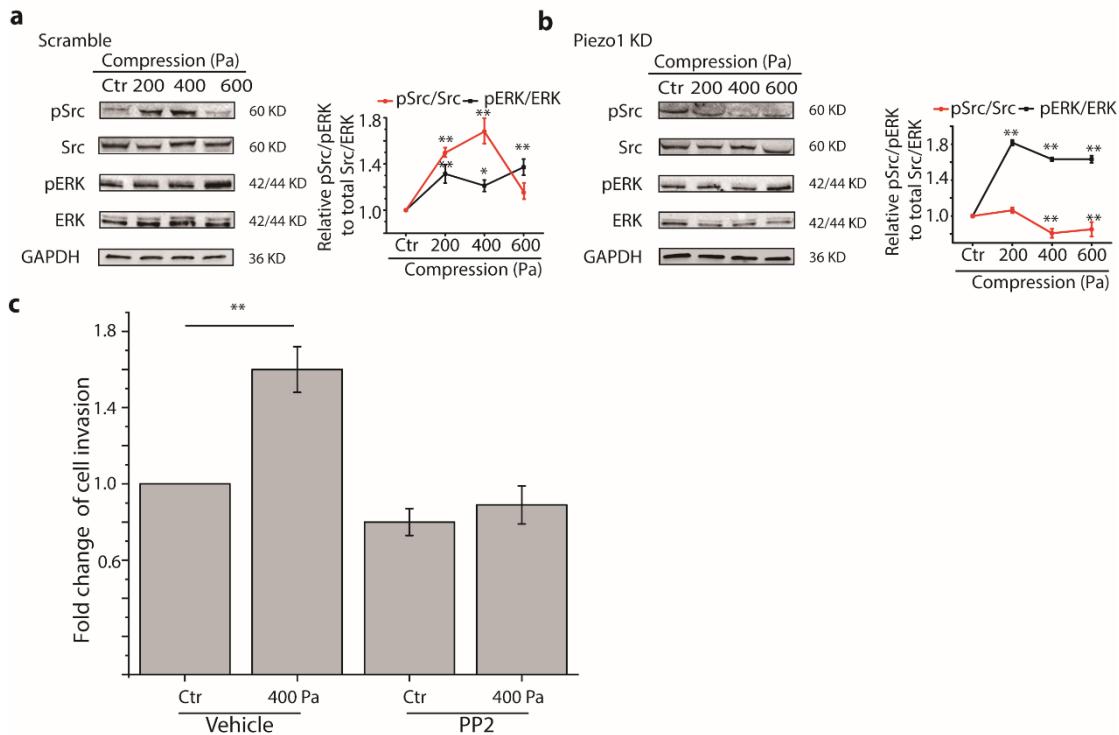
319 To verify the role of caveolae in regulating the Piezo location in the cell
320 membrane, MDA-MB-231 cells were treated with 5 mM of methyl- β -cyclodextrin
321 (M β CD) that dramatically reduced the number of caveolae (Figure S7a).
322 Consequently, the fluorescence intensity of Piezo1 appeared to decrease in the
323 cell membrane, but increased in the nucleus at 5 min and up to 20 min (Figure
324 4d), suggesting that caveolae regulated Piezo1 location in MDA-MB-231 cells.

325 To test the role of caveolae in regulating the Piezo1 function during
326 compression, MDA-MB-231 cells were pretreated with either 5 mM M β CD or
327 siRNA probe for silencing Cav-1 expression by about 60% (Figure S7b) and
328 then exposed to compression at 400 Pa. We found that compression-induced
329 calcium influx was blocked in both the M β CD-treated and Cav-1 KD cells

330 (Figure 4e). Consistent with these results, Cav-1 KD also abrogated the
 331 compression-enhanced cancer cell invasion (Figure 4f). These data indicate
 332 that at least in MDA-MB-231 cells the function of Piezo1 is dependent on
 333 caveolae.

334

335 **Figure 4** The expression and distribution of Piezo1 in MDA-MB-231 cells were
336 regulated by caveolae. **a** Representative fluorescence images of Piezo1 (magenta)
337 and caveolae (green) colocalization visualized by confocal microscopy (100X) and 2D
338 intensity histogram output in MDA-MB-231 cells. Insets in both conditions show a
339 magnified view of the boxed regions. **b** Representative image of 2D intensity histogram
340 output of Coloc2 analysis performed using Fiji software. The text indicates the Pearson
341 coefficient of the pixel-intensity correlation ($n = 8$). **c** Western blot images and
342 quantification of Piezo1 expression in wild type (WT), Cav-1 EGFP expressing, and
343 Cav-1 KD MDA-MB-231 cells (means \pm s.e.m, $n = 3$). Cropped images of Western
344 blots are shown and uncropped images are shown in Fig. S8b. $^{**} p < 0.01$ versus WT
345 groups. **d**, Representative fluorescence images of Piezo1 (green) and nucleus (blue)
346 visualized by confocal microscopy (100X) after cells were treated with M β CD for 5 min,
347 10 min, and 20 min (upper panel: x-y view, lower panel: x-z view, white dashed line
348 shows the position of a section of x-z view). **e** Time-courses of relative mean
349 fluorescence intensity of G-GECO in MDA-MB-231 cells pretreated with or without
350 M β CD, and Cav-1 KD in response to 400 Pa compression. Each experiment assayed
351 10-20 cells and repeated three times. The black bar indicates the period of
352 compression. **f** Quantification of the fold change of invaded cells treated with siRNA
353 for Cav-1 under 400 Pa. Data are presented as means \pm s.e.m, $n = 3$, $^{**} p < 0.01$ versus
354 Ctr groups.


355

356 **Piezo1 mediated compression-enhanced Src/ERK activation**

357 During invadopodia formation and maturation to degrade matrix, several
358 signaling pathways are involved including Src/ERK pathways [21]. To test
359 whether these signaling pathways are activated by compression, we quantified
360 the phosphorylation of Src and ERK in MDA-MB-231 cells following
361 compression. We found that compression significantly activated Src and ERK
362 (Figure 5a). Additionally, Piezo1 KD effectively abolished the compression-
363 promoted signaling of Src, but not ERK (Figure 5b), suggesting that Src, but not
364 ERK was activated by compression in a Piezo1-dependent manner. We also

365 treated MDA-MB-231 cells with either Src inhibitor PP2 or a blank vehicle, and
 366 found that compression-induced cell invasion was blocked in cells treated with
 367 PP2 whereas those treated with a vehicle increased cell invasion by ~1.6 fold
 368 at 400 Pa compression (Figure 5c). This suggests that the compression-
 369 enhanced invasion of MDA-MB-231 cells was indeed mediated by Piezo1-
 370 dependent Src signaling.

371

372

373 **Figure 5** Compression enhanced the activity of Src and ERK. **a** Western blot analyses
 374 of the phosphorylation of Src and ERK in MDA-MB-231 cells pretreated with scramble
 375 probes in the absence or presence of compression at 200, 400, 600 Pa. Cropped
 376 images of Western blot are shown and uncropped images are shown in Fig. S8d-g. **b**
 377 Western blot analyses of the phosphorylation of Src and ERK in MDA-MB-231 cells
 378 pretreated with siRNA for Piezo1 in the absence or presence of compression at 200,
 379 400, 600 Pa. Cropped images of Western blot are shown and uncropped images are
 380 shown in Fig. S8h-k. Relative phosphorylation levels were obtained by normalizing to
 381 GAPDH expression and value in control (Ctr) groups, n = 3. *p < 0.05 versus Ctr
 382 groups; ** p < 0.01 versus Ctr groups. **c** Quantification of fold change of invaded cells

383 in 400 Pa compression to the Ctr group pretreated with DMSO (vehicle). Data are
384 presented as means \pm s.e.m, n = 3, ** $p < 0.01$ versus Ctr groups.

385

386 **Discussion**

387 In the present study, we first observed that in breast cancer cells,
388 compression enhanced cancer cell invasion by promoting not only cell
389 proliferation but also matrix degradation through the formation of stress fiber
390 and actin protrusion. Additionally, we identified that Piezo1 mediated these
391 processes and the invasive phenotype of the breast cancer cells also depended
392 on the integrity of caveolae in the cell membrane. These findings provide the
393 first demonstration that compression can enhance matrix degradation by breast
394 cancer cells and Piezo1 is an essential sensor and transducer for such
395 mechanical stress in breast cancer cells.

396 Invasion of cancer cells through ECM is a critical activity during cancer
397 metastasis. Previous studies have shown that uncontrolled cancer growth can
398 induce remarkable compression and thus trigger invasive phenotype in
399 cancer's leader cells, and the cancer cell invasiveness is directly related to the
400 cell's ability to form invadopodia [9, 32]. It is, however, unknown whether such
401 compressive stress would affect the capability of cancer cells to induce ECM
402 degradation. Here we report that, in consistency with the enhanced invasion of
403 breast cancer cells, compression enhanced matrix degradation *via* promoting
404 actin protrusions in the ventral sides of breast cancer cells. Thus, it is plausible
405 that compression in the solid tumor might initiate invasion by enhancing the
406 cancer cells' capability of matrix degradation *via* actin protrusions. If that is the
407 case *in vivo*, compression might promote cancer cells to 'dig more holes' in the
408 basement membrane which provides a way for their metastasis.

409 While it is known that compression affects cancer progression, how cancer
410 cells sense and respond to compression is not completely understood. Under
411 compression, the cell membrane is likely to be stretched which in turn increases
412 the tension and thus stimulates the stretch-activated channels (SACs) in the

413 membrane. In this study, we found that compression indeed squeezed the cells,
414 and induced a series of cell responses that were dependent on the activation
415 of Piezo1. Piezo1 belongs to the family of Piezo channels that are the most
416 notable SACs in mammalian cells gated by membrane tension [40]. It has been
417 found that Piezo1 channels play essential roles in diverse physiological and
418 pathological processes including cell migration [41, 42], and the Piezo1 mRNA
419 expression level is highly correlated with the survival time of breast cancer
420 patients [18]. Our study confirmed that Piezo1 channels are also essential in
421 mediating the compression-enhanced invasion of breast cancer cells. We also
422 found that both Piezo1 KD and Cav-1 KD significantly affected all aspects
423 related to compression-enhanced invasion of MDA-MB-231 cells including cell
424 proliferation, cytoskeleton remodeling and matrix degradation, but the cells
425 seemed to be more sensitive to Piezo 1 KD than Cav-1 KD in their responses
426 to compression. This perhaps is reasonable because even in the absence of
427 weight-loaded compression, Piezo1 channels in the cells may have a basal
428 activity due to the constant existence of atmospheric pressure and culture
429 medium on top of the cells.

430 Emerging evidence indicates that caveolae harbor and modulate ion
431 channels. For example, removal of caveolae *via* cholesterol depletion can
432 disrupt the expression and distribution of TRPV1 channels on the plasma
433 membrane [43]. Similarly, we found that depletion of cholesterol in MDA-MB-
434 231 cells with M β CD caused Piezo1 to shift its localization from cell membrane
435 to the nucleus. Interestingly, in stretch-triggered mitosis, Piezo1 was also
436 observed to localize to the nuclear envelope [31]. Thus, it may be a general
437 strategy for cells to regulate force-sensing through a functional relationship
438 between caveolae and Piezo1, that is as our data suggested, caveolae might
439 concentrate Piezo1 as the “mechanical force foci” which facilitates force
440 sensing and transduction in mammalian cells.

441 Nonetheless, the mechanisms of how Piezo1 channels are gated by
442 mechanical stress are still unclear. It has been reported that Piezo1 channels

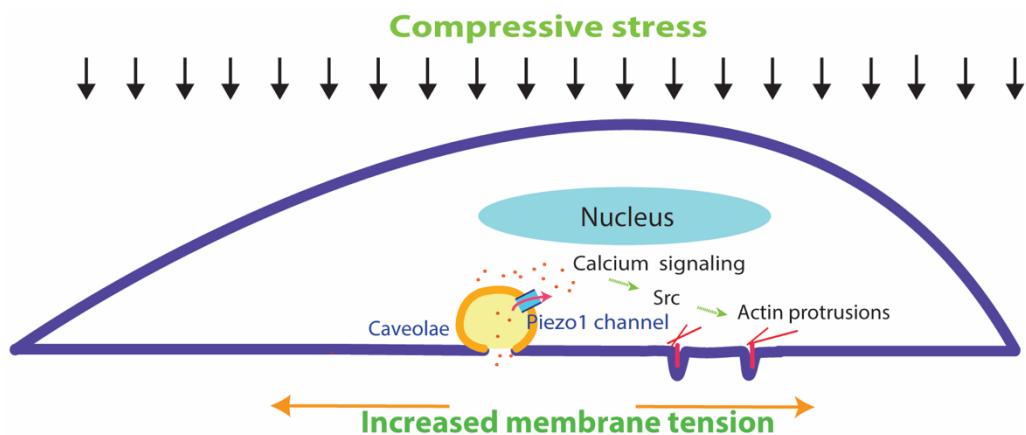
443 appear to be gated by the tension in the bilayer membrane according to the
444 “force-from-lipid” principle, which is an evolutionarily conserved gating
445 mechanism [44]. According to this paradigm, the activity and sensitivity of
446 Piezo1 channels can be regulated by the lipid membrane because the physical
447 properties of lipid membrane such as thickness, stiffness, and lateral pressure
448 profile found within caveolae may be different from those of the surrounding
449 membrane. In this context, it is plausible that cholesterol-enriched caveolae
450 might affect the sensitivity of transmembrane channels such as Piezo1 *via*
451 controlling the membrane pressure profile. For instance, disruption of caveolae
452 by cholesterol depletion has been demonstrated to change membrane
453 stiffness, and result in suppression of epithelial sodium and TRP channels [36,
454 38, 45]. Stomatin-like protein-3 has been reported to tune the sensitivity of
455 Piezo1 channels by controlling the membrane mechanical properties through
456 recruiting cholesterol [36, 46]. In this study, we found that the function of Piezo1
457 in compression sensing was regulated by caveolae. Taken together, it is likely
458 that Piezo1 is located in the microdomain of cholesterol-rich caveola and is thus
459 regulated by the caveolar integrity in order to function.

460 In addition, cells can also reorganize their cytoskeletal structures to adapt
461 to the changing mechanical microenvironment. Among them, stress fibers are
462 the essential cytoskeletal structures that control various cellular behaviors.
463 Reports have shown that mechanical tension induces the assembly of stress
464 fibers [47]. In this study, we found that cells under compression quickly
465 assembled new stress fibers within 10 min. This may be a requirement for the
466 cells to quickly increase their mechanical strength in order to balance the
467 compression.

468 Our results also demonstrate that some of the key pathways involved in
469 mechanotransduction played important roles in regulating the compression-
470 enhanced cancer cell invasive phenotype, including Src and calcium that are
471 also linked to the formation and function of actin protrusions such as
472 invadopodia [48, 49]. However, it remains unclear in detail how compression

473 actually activates Piezo1 and then triggers calcium signaling. For example, it is
474 still in question whether Piezo1 is activated by compression directly or indirectly
475 via compression-derived stretch. Additionally, in this study, we mainly focused
476 on the function of Piezo1 located in the plasma membrane, although it has been
477 reported that Piezo1 can also locate in the intracellular compartments such as
478 endoplasmic reticulum (ER) [50]. Since intracellular calcium signaling can arise
479 from both influx of extracellular calcium into the cell through ion channels in the
480 membrane and release of intracellular calcium stored in subcellular
481 compartments such as ER, our results therefore could not completely exclude
482 the possible role of intracellular calcium storage in mediating the compression-
483 induced cellular responses.

484 In fact, there is increasing evidence that cells are able to transmit external
485 mechanical forces to different organelles deep within the cell such as ER, where
486 a number of mechanosensitive ion channels such as TRP and Piezo may be
487 localized and activated correspondingly [51]. It is also reported recently that
488 calcium release from intracellular calcium stores in response to a mechanical
489 stimulus such as fluid shear stress was mediated by IP₃ and ryanodine
490 receptors, which are also vitally important in mechanotransduction [52, 53]. The
491 potential roles of these factors in the compression-enhanced invasion of breast
492 cancer cells are important open questions to be studied in the future.


493 For the effect of mechanical compression on cell proliferation of solid
494 tumors, there are still many conflicting views. Some studies report that
495 compression inside solid tumors inhibited cell proliferation and cell cycle
496 transition [54, 55]. For example, Delarue *et al.* [55] reported that compression
497 induced the blocking of cell cycle at the late of G1 checkpoint. On the contrary,
498 Basson *et al.* [56] reported that enhanced extracellular compression promoted
499 cell proliferation in several kinds of solid tumors including SW620, Caco-2, and
500 CT-26 colon, MCF-7 breast, and MLL and PC3 prostate. These discrepancies
501 may be due to the different experimental systems such as cell types,
502 compression devices, and thus differential cellular response mechanisms [57].

503 In our experimental conditions, the compression seemed to promote
504 proliferation of the cancer cells. Although this might have contributed to the
505 results of compression-induced invasion of cancer cells, such contribution
506 should be relatively small and insufficient to change the overall role of
507 compression in promoting cancer cell invasiveness.

508 Finally, it is worthy to note that, in this study, we only evaluated the effect
509 of uniaxial compression on breast cancer cells in a 2D culture model. However,
510 cells *in vivo* grow and live in a 3D microenvironment, which may impact the
511 force direction and change the dynamic response of the cells to compression.
512 Additionally, we only assayed cell invasion in response to compression. Many
513 other features of breast cancer cells such as the loss of acini morphologies in
514 response to compression still need to be explored. For instance, Ricca *et al.*
515 have shown that brief compression to a single malignant breast cancer cell in
516 laminin-rich ECM can stimulate the formation of acinar-like structures,
517 indicating that compression may cause malignancy reversion in breast cancer
518 cells [58]. Furthermore, in this study we only investigated Piezo1 for its role in
519 mediating the breast cancer cell response to compression. However, it has
520 been reported that these cells also express Piezo2 for promoting
521 mechanotransduction via RhoA activation and F-actin remodeling, raising the
522 question of potential implications of other members of the Piezo family in the
523 compression-induced cellular responses [59]. Therefore, further studies are
524 required to fully elucidate the behaviors and associated underlying mechanisms
525 of breast cancer cells in response to compression during tumor growth and
526 metastasis.

527 In conclusion, our study provides a comprehensive understanding of the
528 disparate systems involved in the context of compression-enhanced breast
529 cancer cell invasion (Figure 6), which may have relevance to the metastasis of
530 malignant human solid tumors such as the breast cancer *in vivo*. Specifically,
531 in a solid tumor the cancer cells may experience high compression due to
532 uncontrolled proliferation and stiff ECM confinement, and such a mechanical

533 microenvironment may ultimately facilitate compression-enhanced tumor cell
534 invasion via matrix degradation. In this process, Piezo1 plays a crucial role in
535 regulation of all the cellular behaviors associated with compression-enhanced
536 invasion including cell proliferation, matrix degradation, cytoskeleton
537 remodeling and intracellular Src and calcium signaling. These findings
538 underscore the cardinal role of Piezo1 channels in regulating cancer cell
539 invasion, and may inspire further development of anti-cancer drugs that use
540 Piezo1 as a potential therapeutic target.

541
542
543 **Figure 6** Model of compression-promoted invasive phenotype of MDA-MB-231 cells
544 and associated signaling pathways. Together, vertical mechanical compression might
545 increase the lateral plasma membrane tension and activate Piezo1 channels. The
546 opening of Piezo1 mediates the influx of calcium and evokes the downstream signaling
547 pathways such as Src. These activated signaling molecules promote actin protrusions
548 at the ventral side of cells, which in turn mediate enhanced matrix degradation and cell
549 invasion.

550
551 **Materials and Methods**

552 **Cell culture and preparation**

553 All cell lines described below were purchased and used for the study. MDA-
554 MB-231 cells (ATCC HTB-26), an invasive human breast adenocarcinoma cell
555 line, were cultured in Dulbecco's modified Eagle medium (DMEM) with 2 mM

556 L-glutamine (# 11965-092, Thermo Fisher, Waltham, MA) supplemented with
557 10% fetal bovine serum (FBS, # 35-010-CV, Thermo Fisher), 100 units/mL
558 penicillin, 100 µg/mL streptomycin, 2.5 µg/mL fungizone, and 5 µg/mL
559 gentamicin (# 15750-060, Invitrogen, Carlsbad, CA) at 5% CO₂ and 37 °C. 4T1
560 cells (ATCC CRL-2539, a mouse breast cancer cell line) purchased from BeNa
561 Culture Collection Corporation (# BNCC273810, Beijing, China) were cultured
562 in RPMI-1640 (Gibco-Invitrogen, Carlsbad, CA) supplemented with 100
563 units/mL penicillin, 100 µg/mL streptomycin, and 10% FBS. For matrix
564 degradation and invadopodia experiments, cells were incubated in invadopodia
565 medium containing DMEM supplement with 5% Nu-Serum (# 355104, Corning,
566 NY), 10% FBS, and 20 ng/mL EGF.

567 For labeling actin in live cells, stable cell lines expressing Lifeact-RFP were
568 generated *via* lentiviral transfection. The lentiviral transfer plasmids pLVX-puro-
569 GFP-Lifeact and pLVX-puro-RFP-Lifeact were cloned from RFP-Lifeact
570 plasmid obtained from Dr. Gaudenz Danuser (UT-Southwestern). Briefly,
571 lentiviruses were produced by transfecting human embryonic kidney 293T cells
572 (ATCC CRL-3216) with psPAX2 and pMD2.G (Addgene) and pLVX-puro-GFP-
573 Lifeact viral vectors. Conditioned medium containing viruses were collected
574 after 5 days and then used immediately to infect cells or stored at -80 °C.
575 Transduced target cells were selected with puromycin for 72 h.

576 For optical imaging of dynamic calcium signaling and caveolae localization
577 in live cells, cell lines transiently expressing G-GECO (a green fluorescent
578 genetically encoded calcium indicator) and caveolin-1 (Cav-1)-EGFP
579 respectively were generated *via* plasmid transfection. The plasmids expressing
580 G-GECO were a generous gift from Takanari Inoue (Johns Hopkins University)
581 [60], and those expressing Cav-1-EGFP were from Ari Helenius (ETH Zurich).
582 Briefly, cells were transfected with Lipofectamine-2000 (# 11668-019, Life
583 Technologies, Carlsbad, CA). For 35 mm glass-bottom dishes, 6 µg plasmid
584 DNA in OptiMEM transfection medium (# 31985062, Gibco, Waltham, MA) was

585 used for each transfection. After 24 h at 37 °C, the transfection medium was
586 replaced with a complete medium, and cells were processed 24-48 h later.

587

588 **Drug treatments**

589 For experiments involving inhibitors, cells were exposed to the inhibitor
590 for 0.5 h, unless stated otherwise, in the presence or absence of compression.
591 For inhibiting the function of mechanically sensitive ion channels, cells were
592 treated with gadolinium chloride (Gd³⁺, 5 µM, # 203289, Sigma) or GsMTx4 (5
593 µM, #ab141871; Abcam, Cambridge, MA). To remove calcium ions from the
594 DMEM, EGTA (2 mM, # E3889; Sigma) was added to the medium. To disrupt
595 caveolae in the membrane, cells were treated with 5 mM of methyl-β-
596 cyclodextrin (MβCD, # SLBP3372V, Sigma). To evaluate the impact of HIF-1a,
597 cells were treated with inhibitor CAY10585 (10 µM, # ab144422, Abcam). For
598 inhibiting the activity of Src, cells were treated with PP2 (10 µM, Calbiotech,
599 Spring Valley, CA). For inhibiting the activity of MMP, cells were treated with
600 GM-6001 (a broad-spectrum MMP inhibitor, 15 µM, #CC1000; Sigma).

601

602 **Antibodies for immunofluorescence and Western blot**

603 Antibodies used in immunofluorescence and Western blot include: anti-
604 Tks5 polyclonal antibody (# 09-403-MI) and anti-GAPDH mouse monoclonal
605 antibody (# CB1001) purchased from EMD Millipore (Billerica, MA); anti-Src
606 rabbit antibody (# 2108), anti-p-Src (Y416) rabbit antibody (# 2101), anti-p44/42
607 MAPK (ERK1/2) mouse monoclonal antibody (# 4696), and anti-p-ERK1/2
608 (Thr202Tyr204) rabbit monoclonal antibody (# 4370) obtained from Cell
609 Signaling Technology (Danvers, MA), respectively; anti-cortactin rabbit
610 monoclonal antibody (# Ab81208) purchased from Abcam; anti-Piezo1 rabbit
611 polyclonal antibody (# PA5-72974) and anti-Cav-1 rabbit polyclonal antibody (#
612 PA1-064) obtained from Thermo Fisher.

613

614 ***In vitro* compression device**

615 To investigate the effect of compression on cell behaviors, we used a
616 previously described setup [9, 61]. Briefly, cells were grown either in a 35 mm
617 culture dish with a glass bottom (# 12-565-90, Thermo Fisher, Waltham, MA)
618 that was coated with/without gelatin, or in a transwell chamber with a permeable
619 membrane of 8- μ m pores that were coated with Matrigel. Then the cells were
620 covered with a 1% soft agarose disk layer, and subsequently, a piston of
621 specific weight was placed on top of the agarose disk to apply given
622 compression to the cells underneath indirectly. The cross-sectional area of the
623 piston (24 mm diameter) was 4.52 cm² but its weight was variable at 9.22 g,
624 18.45 g, and 27.67 g, corresponding to a stress of 200 Pa, 400 Pa, and 600 Pa,
625 respectively, on the cells. Cells prepared as such but not subjected to piston
626 weight were used as control (Ctr). It needs to note that even cells in the control
627 groups were also exposed to 1% agarose, a constant atmosphere pressure,
628 and culture medium.

629

630 **RNA interference**

631 To silence the expression of Piezo1 and Cav-1, Negative Control Medium
632 GC Duplex #2 and siRNA interference for Piezo1 (# AM16708, Assay
633 ID:138387, Thermo Fisher) and Cav-1 (# AM16708, Assay ID: 10297, Thermo
634 Fisher) were used. Briefly, cells were seeded in 6-well plates at 1 \times 10⁶
635 cells/well for 24 h before transfection. At 90% confluence, the cells were
636 transfected with 30 nmol/L siRNA using Lipofectamine RNAi MAX (# 13778,
637 Invitrogen) in OptiMEM according to the manufacturer's instructions.
638 Transfection mixes were applied to the cells for 24 h, subsequently removed
639 and replaced with 2 mL of growth media. The cells were cultured for 48 h before
640 use in experiments. The protein expression levels of Piezo1 and Cav-1 were
641 ascertained by Western blot.

642

643 ***In vitro* transwell invasion assay**

644 To assay the effect of compression on cell invasion, standard transwell
645 invasion assay adapted from Bravo-Cordero [62, 63] was performed using 6-
646 well Transwell chambers that were separated as upper and lower chambers by
647 filter membrane with 8 μ m pores (# 07-200-169, Corning). For the assay, the
648 transwell filter membrane was coated with 300 μ l Matrigel (12 mg/mL, # E1270,
649 Sigma, Burlington, MA) diluted in serum-free DMEM (2 mg/mL final
650 concentration), followed by incubation for 1 h at 37 °C. MDA-MB-231 cells in
651 serum-free medium (5×10^5 cells/well) were placed in the upper chamber, while
652 the lower chamber was filled with 2 mL complete medium. Cells were allowed
653 to grow for 6 h and then compressed for 18 h before being fixed with 4%
654 paraformaldehyde (# 30525-89-4, Electron Microscopy Sciences, Hatfield, PA).
655 The non-invasive cells on the upper chamber were removed with cotton swabs,
656 and the invaded cells in the lower chamber were stained with 0.1% crystal violet
657 (# C6158; Sigma) for 10 min at room temperature, before being examined and
658 imaged by light microscopy at 10X magnification (Olympus BX60; Olympus
659 Corporation, Tokyo, Japan). Then the number of stained cells was counted
660 using ImageJ software (National Institute of Health, Bethesda, MD) and the
661 enhancement of cellular invasion induced by compression was quantified as a
662 percentage (%) of the number of compressed cells over that of the non-
663 compressed cells that had invaded through the filter membrane, *i.e.* [$\#$ of cells
664 in the lower chamber in the presence of a specific weight (experiment group)]/[$\#$
665 of cells in the lower chamber in the absence of a specific weight (control group)].
666 Results are based on the analysis of 10 random fields per transwell in each
667 condition and each experiment was repeated three times.
668

669 **Live fluorescence microscopy**

670 To observe the dynamics of actin, Cav-1, and calcium signaling, live cells
671 expressing Lifeact-RFP, Cav-1-EGFP, and G-GECO were imaged with a
672 spinning disk confocal microscope with a 60X or 100X oil immersion objective
673 (Olympus IX73 with Yokogawa CSU-X1). For live fluorescence microscopy,

674 cells were seeded in a 35 mm glass-bottom dish that was placed in an
675 environmental chamber mounted on the microscope to maintain constant 37
676 °C, 5% CO₂, and humidity. Cav-1-EGFP was observed at the excitation
677 wavelength of 488 nm. For dynamic tracking of actin in live cells, the cells were
678 consecutively imaged for up to 60 min, and the images were processed using
679 ImageJ. Cells were observed from both top-down and side view for spatial
680 localization of actin, and caveolae by 3D reconstruction of images in Z-stacks
681 (0.4 μm increments).

682

683 **Cell height and nuclear area assay**

684 Cell height and nuclear area can be used to indicate the effect of
685 compression on cells. MDA-MB-231 cells transduced with Lifeact-RFP were
686 plated in glass-bottom dishes at a density of 2×10⁵ cells/mL and cultured for 24
687 h at 37 °C and 5% CO₂. At 24 h, the cells were incubated with Hoechst 33342
688 in PBS (1: 2000) for 20 min. 1% agarose disks were UV-treated, incubated in
689 media for 1 h at 37 °C, and then placed on top of the cells. Weights were applied
690 to achieve 200 Pa, 400 Pa, and 600 Pa. For the condition of a control group,
691 an agarose disk was applied without any weight. The agarose disks allow
692 nutrient diffusion and sit in between the weight and the cells. Fluorescence live-
693 cell imaging was performed using a spinning disk confocal microscope.
694 Hoechst and Lifeact-RFP were excited at wavelengths of 405 nm and 561 nm,
695 respectively. Image stacks were taken at 30 min intervals for 2 h. Cell height
696 and nuclear area were quantified by the side-view profiles of Lifeact-RFP
697 images and the top-view profiles of Hoechst 33342 images, respectively, using
698 ImageJ.

699

700 **Cell proliferation assay**

701 MDA-MB-231 cells were plated in transwell cell culture inserts at a density of
702 2×10⁵ cells/mL and cultured for 24 h at 37 °C and 5% CO₂. The cells were then
703 transfected with scramble siRNA or Piezo1 siRNA using Lipofectamine 3000

704 and cultured for another 24 h. Pre-incubated agarose disks were placed on top
705 of the cells, and weights were applied on top of the agarose disks. After 24 h,
706 the weights and the agarose disks were removed. The media was collected in
707 labeled centrifuge tubes. The cells were detached using 0.05% trypsin,
708 transferred to the corresponding tubes, and spun down at 1000 \times g for 5 min.
709 The cells were then resuspended in 1 mL of fresh media. 50 μ L of cell
710 suspension, 55 μ L of DMEM, and 5 μ L of WST-8 solution were added to each
711 well in a 96-well plate, mixed gently on an orbital shaker, and incubated for 2 h
712 at 37 °C and 5% CO₂. The absorbance of the samples at a wavelength of 450
713 nm was measured using a plate reader.

714

715 **Cell migration assay**

716 To assay the effect of compression on cell migration, standard wound healing
717 assays were performed using 6-well Transwell chambers that were separated
718 as upper and lower chambers by a filter membrane with 0.4 μ m pores (# 07-
719 200-148, Corning). For the assay, MDA-MB-231 cells (1 \times 10⁶ cells/well) were
720 placed in the upper chamber, while the lower chamber was filled with 2 mL
721 complete medium. Cells were allowed to grow for 24 h to achieve a confluent
722 monolayer. An experimental wound was made using a sterile micropipette tip,
723 then the cells were washed 3 times with sterile PBS and compressed for 24 h.
724 Wound areas were observed and recorded at 24 h by using a Nikon TiE Perfect
725 Focus System microscope equipped with an 10X objective, an sCMOS camera
726 (Flash 4.0, Hamamatsu Photonics, Japan), and a laser launch controlled by an
727 acousto-optical tunable filter (AOTF). The experimental wound area was
728 quantified manually using “Area measurement” in ImageJ software and
729 normalized to the wound area at the start of the experiment, and the ratio of cell
730 migration was defined by the ratio of the wound healing area of compression-
731 treated groups to that of control groups. Results are based on the analysis of 3
732 random fields per transwell in each condition and each experiment was
733 repeated three times.

734

735 **Evaluation of invadopodia formation and ECM degradation**

736 To determine whether compression enhances cells' ability to degrade ECM,
737 we examined cells cultured on gelatin substrate for their tendency to form
738 invadopodia and associated gelatin degradation, according to a protocol
739 adapted from Artym *et al.* [64]. Briefly, glass-bottom dishes were treated with
740 20% nitric acid for 1 h, washed with H₂O for 4 times, then incubated with 50
741 µg/mL poly-L-lysine (# P8920, Sigma) in phosphate buffer solution (PBS) for 15
742 min and washed with PBS, then further incubated with 0.5% glutaraldehyde in
743 PBS on ice for 15 min followed by thorough washes with PBS. Subsequently,
744 the dishes were coated with 1 mL of gelatin in PBS (1:9 of 0.1% fluorescein
745 isothiocyanate (FITC)-gelatin (# G13186, Invitrogen): 2% porcine gelatin), then
746 washed in PBS, incubated with 5 mg/mL sodium borohydride (NaBH₄) for 3
747 min, rinsed in PBS, and then incubated in 10% FBS/DMEM at 37° for 2 h.
748 Afterward, MDA-MB-231 cells were seeded in each dish at 5x10⁵ cells per well
749 and incubated for 8 h, and then subjected to compression of either 200 Pa, 400
750 Pa, or 600 Pa, respectively, for 8 h as aforementioned.

751 Upon completion of compression, the cells were imaged with live
752 fluorescence microscopy (60X) and the microscopic images were analyzed by
753 using ImageJ to assess the formation of invadopodia and the degradation of
754 gelatin matrix. Invadopodia were defined as F-actin-positive puncta protruding
755 from the cells into the gelatin matrix underneath the cell in our experiments [65].
756 For each independent experiment that was performed in triplicates, the number
757 of invadopodia per cell was quantified with cells imaged randomly in >15
758 microscope view fields, representing a total of ~100 cells per experimental
759 condition. At the same time, degradation of the gelatin matrix was quantified as
760 the percentage of the degraded area (dark spots comprised of dense degraded
761 protein products) in the whole area underneath each cell.

762

763 **Intracellular Ca²⁺ measurement**

764 To evaluate the intracellular calcium concentration ($[Ca^{2+}]$), we used cells
765 labeled with Fluo-4/AM (# F14201, Thermo Fisher) or transiently expressed
766 with calcium-sensitive reporter G-GECO [66] and then evaluated the intensity
767 of intracellular calcium signaling. For the Fluo-4/AM system, cells were
768 incubated with Fluo-4/AM for 1 h at room temperature (25 ± 2 °C) followed by
769 a 0.5 h wash at 37 °C. For G-GECO systems, cells transfected with G-GECO
770 for 48 h were plated into a glass-bottom dish, which was further incubated for
771 24 h. Subsequently, the cells were imaged with the spinning disk confocal
772 microscope (60X objective), with fluorescence excitation and emission at 488
773 nm and 533 nm, respectively. For each experimental group, twenty cells were
774 randomly selected and the fluorescence intensity per cell was quantified using
775 ImageJ.

776

777 **Western blot**

778 Western blot assay was used to examine the protein expression and/or
779 activity of Piezo1, Cav-1, Src, and ERK in MDA-MB-231 cells after exposure to
780 control groups or mechanical compression conditions for 4 h. Cells grown on
781 glass-bottom dishes under described assay conditions were lysed using RIPA
782 buffer (# R0278, Sigma) with an added cocktail of protease and phosphatase
783 inhibitors (MS-SAFE, Sigma). The protein concentration of cell lysates was
784 determined using the Protein Assay Reagent (#23227, Thermo Fisher). Cell
785 lysis buffer was combined in 4× SDS sample buffer and 2-mercaptoethanol and
786 incubated at 95 °C for 5 min. After loading an equal amount of protein per lane,
787 SDS-PAGE was performed. The proteins were transferred onto 0.22 µm
788 nitrocellulose membranes (# 66485, Pall Life Sciences) using Pierce G2 Fast
789 Blotter (Thermo Fisher). Following the transfer, the membranes were cut before
790 probing with antibodies to save antibodies. Membranes were first blocked using
791 5% nonfat milk in 1x TBST (Tris-buffered saline and 0.1% of Tween-20) for 1 h
792 at RT with gentle agitation and incubated with the primary antibodies overnight
793 at 4 °C under mild shaking condition. After washing three times with 1x TBST,

794 membranes were incubated with goat anti-rabbit secondary antibody (DyLight
795 800, # SA5-10036, Thermo Fisher) or goat anti-mouse secondary antibody
796 (DyLight 680, # 35518, Thermo Fisher) at RT for 1 h. Signals of immunoblots
797 were detected using the Odyssey Infrared Imaging System (LI-COR, Lincoln,
798 NE). Images were cropped to only show the molecular weight regions that are
799 informative for our proteins of interest and were grouped into panels for clearer
800 presentation and easier comprehension. For quantification, the intensity of the
801 gel band was calculated after subtracting the background. The relative protein
802 expression was expressed as a ratio of the band intensity to that of the control
803 group after both of them were normalized to that of GAPDH.

804

805 **Immunofluorescence and colocalization analysis**

806 Cells were fixed with 4% paraformaldehyde for 10 min and permeabilized
807 with 0.1 % TritonX-100 for 10 min at room temperature. Non-specific sites were
808 blocked using 5 % non-fat milk in PBS for 1 h at room temperature. Cells were
809 then incubated in 5 % non-fat milk in PBS containing primary antibodies at
810 1:100 dilution for 1 h at room temperature. After washing with PBS, cells were
811 incubated with Alexa Fluor 594 or 640 conjugated secondary antibody for 60
812 min at room temperature. Cells were visualized using the spinning disk confocal
813 microscope with a 60X oil immersion objective. For F-actin staining, cells were
814 incubated with 1:100 rhodamine-phalloidin (# PHDR1, Cytoskeleton Inc.) for 60
815 min at room temperature.

816 Colocalization of Piezo1 and Cav-1 was analyzed using Fiji software [67]
817 containing a procedure for colocalization analysis, designated as Coloc2, which
818 is based on pixel-intensity-correlation measurements. Pearson coefficient and
819 2D intensity histograms were recorded to quantify the degree of the
820 colocalization between Piezo1 and Cav-1.

821

822 **Statistical analysis**

823 Statistical analysis was done using one-way analysis of variance
824 (ANOVA), followed by post hoc student's *t* test for multiple comparisons.
825 Statistical significance set to **p* < 0.05 and ***p* < 0.01. All experiments were
826 repeated at least three times and the data expressed as means ± s.e.m.
827 (standard error of the mean).

828

829 **Abbreviations**

830 2D: two dimensional; 3D: three dimensional; [Ca²⁺]: intracellular calcium
831 concentration; ANOVA: analysis of variance; Cav-1: caveolin-1; Ctr: control;
832 DMEM: Dulbecco's modified Eagle medium; ECM: extracellular matrix; EGF:
833 epidermal growth factor; EGFP: enhanced green fluorescent protein; EGTA:
834 ethylene glycol tetraacetic acid; ER: endoplasmic reticulum; ERK: extracellular
835 regulated protein kinase; FITC: isothiocyanate; Gd³⁺: gadolinium chloride; G-
836 GECO: green genetically encoded Ca²⁺-indicators for optical imaging; HIF:
837 hypoxia-inducible factor; KD: knockdown; MMP: matrix metalloproteinase;
838 M β CD: methyl- β -cyclodextrin; qRT-PCR: quantitative real-time polymerase
839 chain reaction; PBS: phosphate buffer solution; RFP: red fluorescent protein;
840 RT: room temperature; SACs: stretch-activated ion channels; TRP: transient
841 receptor potential; WT: wild type.

842

843 **Declarations**

844 **Ethics approval and consent to participate**

845 Not applicable

846

847 **Consent for publication**

848 Not applicable

849

850 **Availability of data and materials**

851 The datasets supporting the conclusions of this article are included within the
852 article and its additional files.

853

854 **Competing interests**

855 The authors declare no competing financial interests in relation to the work
856 described.

857

858 **Funding**

859 Funding for the work was provided by the Key Program of NSF of China
860 (11532003) to L.D. M.L. is supported by the NSF of China (12072048). A.P.L.
861 is supported by NSF-MCB 1561794.

862

863 **Authors' contributions**

864 M.L conceived, designed, and performed the experiments, analyzed the data,
865 prepared figures, and wrote the manuscript. K.H., G.C., K. W., Z.T. assisted in
866 experiments, data analysis, and discussion, L.D and A.P.L. conceived and
867 financially supported the study, edited and finalized the manuscript.

868

869 **Acknowledgments**

870 We thank Takanari Inoue (Johns Hopkins University) for providing the G-GECO
871 plasmid. The technical assistance from Shue Wang and Maxwell DeNies is
872 gratefully acknowledged.

873

874

875

876 **References**

- 877 1. Liu AP, Chaudhuri O, Parekh SH. New advances in probing cell-extracellular matrix
878 interactions. *Integr Biol (Camb)*. 2017; 9(5):383-405.
- 879 2. Stylianopoulos T, Munn LL, Jain RK. Reengineering the physical microenvironment of
880 tumors to improve drug delivery and efficacy: from mathematical modeling to bench to
881 bedside. *Trends in Cancer*. 2018; 4(4):292-319.
- 882 3. Petrie RJ, Harlin HM, Korsak LIT, Yamada KM. Activating the nuclear piston
883 mechanism of 3D migration in tumor cells. *J Cell Biol*. 2016.

884 4. Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical
885 interactions and mechanical forces in metastasis. *Nature Reviews Cancer*. 2011; 11:512.

886

887 5. Fernandez-Sanchez ME, Barbier S, Whitehead J, Bealle G, Michel A, Latorre-Ossa H,
888 Rey C, Fouassier L, Claperon A, Brulle L et al. Mechanical induction of the tumorigenic
889 beta-catenin pathway by tumour growth pressure. *Nature*. 2015; 523(7558):92-95.

890 6. Ariffin AB, Forde PF, Jahangeer S, Soden DM, Hinchion J. Releasing pressure in
891 tumors: what do we know so far and where do we go from here? A review. *Cancer Res*.
892 2014; 74(10):2655-2662.

893 7. Stylianopoulos T. The solid mechanics of cancer and strategies for improved therapy.
894 *J Biomech Eng*. 2017; 139(2):021004.

895 8. Johanna Heureaux-Torres KEL, Henry Haley, Matthew Pirone, Lap Man Lee, Yoani
896 Herrera, Gary D. Luker, and Allen P. Liu. The effect of mechanosensitive channel MsCL
897 expression in cancer cells on 3D confined migration. *APL bioengineering*. 2018;
898 2(3):032001.

899 9. Tse JM, Cheng G, Tyrrell JA, Wilcox-Adelman SA, Boucher Y, Jain RK, Munn LL.
900 Mechanical compression drives cancer cells toward invasive phenotype. *Proc Natl
901 Acad Sci*. 2012; 109(3):911-916.

902 10. Tao J, Sun Sean X. Active biochemical regulation of cell volume and a simple model
903 of cell tension response. *Biophys J*. 2015; 109(8):1541-1550.

904 11. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian
905 A. Piezo1 and Piezo2 are essential components of distinct mechanically activated
906 cation Channels. *Science*. 2010; 330(6000):55-60.

907 12. He L, Tao J, Maity D, Si F, Wu Y, Wu T, Prasath V, Wirtz D, Sun SX. Role of membrane-
908 tension gated Ca(2+) flux in cell mechanosensation. *Journal of cell science*. 2018;
909 131(4).

910 13. Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong M-Q
911 et al. Structure and mechanogating mechanism of the Piezo1 channel. *Nature*. 2018;
912 554:487.

913 14. Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, Ward AB. Structure
914 of the mechanically activated ion channel Piezo1. *Nature*. 2018; 554(7693):481-486.

915 15. Lewis AH, Grandl J. Mechanical sensitivity of Piezo1 ion channels can be tuned by
916 cellular membrane tension. *eLife*. 2015; 4:e12088.

917 16. Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS, Martinac B, Patapoutian A.
918 Piezo1 channels are inherently mechanosensitive. *Cell Rep*. 2016; 17(7):1739-1746.

919 17. Zeng W, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD,
920 Patapoutian A. PIEZOs mediate neuronal sensing of blood pressure and the
921 baroreceptor reflex. *Science*. 2018; 362(6413):464-467.

922 18. Li C, Rezania S, Kammerer S, Sokolowski A, Devaney T, Gorischek A, Jahn S, Hackl
923 H, Groschner K, Windpassinger C et al. Piezo1 forms mechanosensitive ion channels
924 in the human MCF-7 breast cancer cell line. *Sci Rep*. 2015; 5:8364.

925 19. Weng Y, Yan F, Chen R, Qian M, Ou Y, Xie S, Zheng H, Li J. PIEZO channel protein
926 naturally expressed in human breast cancer cell MDA-MB-231 as probed by atomic
927 force microscopy. *AIP Advances*. 2018; 8(5):055101.

928 20. Mrkonjic S, Destaing O, Albiges-Rizo C. Mechanotransduction pulls the strings of
929 matrix degradation at invadosome. *Matrix Biol.* 2017; 57-58:190-203.

930 21. Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Díaz B, Courtneidge
931 SA, Seals DF. Src-dependent Tks5 phosphorylation regulates invadopodia-associated
932 invasion in prostate cancer cells. *The Prostate.* 2014; 74(2):134-148.

933 22. Anishkin A, Kung C. Stiffened lipid platforms at molecular force foci. *Proc Natl Acad
934 Sci U S A.* 2013; 110(13):4886-4892.

935 23. Teng J, Loukin S, Anishkin A, Kung C. The force-from-lipid (FFL) principle of
936 mechanosensitivity, at large and in elements. *Pflugers Arch.* 2015; 467(1):27-37.

937 24. Park SW, Shin KC, Park HJ, Yoou S-K, Park J-Y, Kang Y-S, Sung DJ, Kim JG, Park
938 SH, Kim B et al. Caveolar remodeling is a critical mechanotransduction mechanism of
939 the stretch-induced L-type Ca²⁺ channel activation in vascular myocytes. *Pflugers
940 Arch.* 2017; 469(5):829-842.

941 25. Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS. Assembly of Trp1
942 in a signaling complex associated with caveolin-scaffolding lipid raft domains. *J Biol
943 Chem.* 2000; 275(16):11934-11942.

944 26. Yang L, Scarlata S. Super-resolution visualization of caveola deformation in response
945 to osmotic stress. *J Biol Chem.* 2017; 292(9):3779-3788.

946 27. Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M, Abankwa D, Stan RV, Butler-
947 Browne G, Vedie B, Johannes L et al. Cells respond to mechanical stress by rapid
948 disassembly of caveolae. *Cell.* 2011; 144(3):402-413.

949 28. Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression.
950 *Nature reviews Cancer.* 2009; 9(2):108-122.

951 29. Nader GPF, Agüera-Gonzalez S, Routet F, Gratia M, Maurin M, Cancila V, Cadart C,
952 Palamidessi A, Ramos RN, San Roman M et al. Compromised nuclear envelope
953 integrity drives TREX1-dependent DNA damage and tumor cell invasion. *Cell.* 2021;
954 184(20):5230-5246 e5222.

955 30. Tam SY, Wu VWC, Law HKW. Hypoxia-Induced Epithelial-Mesenchymal Transition in
956 Cancers: HIF-1 α and Beyond. *Front Oncol.* 2020; 10.

957 31. Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, Krishnegowda V,
958 Rosenblatt J. Mechanical stretch triggers rapid epithelial cell division through Piezo1.
959 *Nature.* 2017; 543(7643):118-121.

960 32. Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function
961 and disease relevance. *FEBS J.* 2017.

962 33. Parekh A, Weaver AM. Regulation of invadopodia by mechanical signaling. *Exp Cell
963 Res.* 2016; 343(1):89-95.

964 34. Parekh A, Ruppender NS, Branch KM, Sewell-Loftin MK, Lin J, Boyer PD, Candiello
965 JE, Merryman WD, Guelcher SA, Weaver AM. Sensing and modulation of invadopodia
966 across a wide range of rigidities. *Biophys J.* 2011; 100(3):573-582.

967 35. Sala K, Raimondi A, Tonoli D, Tacchetti C, de Curtis I. Identification of a membrane-
968 less compartment regulating invadosome function and motility. *Sci Rep.* 2018;
969 8(1):1164.

970 36. Qi Y, Andolfi L, Frattini F, Mayer F, Lazzarino M, Hu J. Membrane stiffening by STOML3
971 facilitates mechanosensation in sensory neurons. *Nat Commun.* 2015; 6:8512-8512.

972 37. Ridone P, Cox C, Vassalli M, Pandzic E, Gottlieb P, Martinac B. Human Piezo1
973 membrane localization and gating kinetics are modulated by cholesetrol levels.
974 *Biophys J.* 2017; 112(3, Supplement 1):533a.

975 38. Levitan I, Fang Y, Rosenhouse-Dantsker A, Romanenko V. Cholesterol and ion
976 channels. *Subcell Biochem.* 2010; 51:509-549.

977 39. Balijepalli RC, Kamp TJ. Caveolae, ion channels and cardiac arrhythmias. *Prog
978 Biophys Mol Biol.* 2008; 98(2-3):149-160.

979 40. Parpaite T, Coste B. Piezo channels. *Curr Biol.* 2017; 27(7):R250-R252.

980 41. Maneshi MM, Ziegler L, Sachs F, Hua SZ, Gottlieb PA. Enantiomeric Abeta peptides
981 inhibit the fluid shear stress response of PIEZO1. *Sci Rep.* 2018; 8(1):14267.

982 42. Hung W, Yang JR, Yankaskas CL, Wong BS, Wu P, Pardo-Pastor C, Serra SA, Chiang
983 M-J, Gu Z, Wirtz D et al. Confinement sensing and signal optimization via Piezo1/PKA
984 and myosin II pathways. *Cell Reports.* 2016; 15(7):1430-1441.

985 43. Liu M, Huang W, Wu D, Priestley JV. TRPV1, but not P2X, requires cholesterol for its
986 function and membrane expression in rat nociceptors. *Eur J Neurosci.* 2006; 24(1):1-
987 6.

988 44. Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V, Rohde PR, Ng C-A, Sachs
989 F, Gottlieb PA, Martinac B. Removal of the mechanoprotective influence of the
990 cytoskeleton reveals PIEZO1 is gated by bilayer tension. *Nat Commun.* 2016; 7:10366-
991 10366.

992 45. Huang H, Bae C, Sachs F, Suchyna TM. Caveolae regulation of mechanosensitive
993 channel function in myotubes. *PLoS One.* 2013; 8(8):e72894.

994 46. Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. Tuning Piezo ion channels to
995 detect molecular-scale movements relevant for fine touch. *Nat Commun.* 2014; 5:3520.

996 47. Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. *Exp Cell
997 Res.* 2016; 343(1):14-20.

998 48. Gorman JL, Ispanovic E, Haas TL. Regulation of matrix metalloproteinase expression.
999 *Drug Discov Today Dis Models.* 2011; 8(1):5-11.

1000 49. Yang H, Guan L, Li S, Jiang Y, Xiong N, Li L, Wu C, Zeng H, Liu Y. Mechanosensitive
1001 caveolin-1 activation-induced PI3K/Akt/mTOR signaling pathway promotes breast
1002 cancer motility, invadopodia formation and metastasis in vivo. *Oncotarget.* 2016;
1003 7(13):16227-16247.

1004 50. McHugh BJ, Murdoch A, Haslett C, Sethi T. Loss of the integrin-activating
1005 transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-
1006 dependent mode of cell migration. *PLoS One.* 2012; 7(7):e40346.

1007 51. Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang
1008 N, Ha T, Jakobsson E et al. Distinct mechanisms regulating mechanical force-induced
1009 Ca^{2+} signals at the plasma membrane and the ER in human MSCs. *eLife.* 2015;
1010 4:e04876.

1011 52. Son K, Hussain A, Sehmi R, Janssen L. The Cycling of Intracellular Calcium Released
1012 in Response to Fluid Shear Stress Is Critical for Migration-Associated Actin
1013 Reorganization in Eosinophils. *Cells.* 2021; 10(1).

1014 53. Ríos E. Calcium-induced release of calcium in muscle: 50 years of work and the
1015 emerging consensus. *Journal of General Physiology.* 2018; 150(4):521-537.

1016 54. Moriarty RA, Stroka KM. Physical confinement alters sarcoma cell cycle progression
1017 and division. *Cell Cycle*. 2018; 17(19-20):2360-2373.

1018 55. Delarue M, Montel F, Vignjevic D, Prost J, Joanny JF, Cappello G. Compressive stress
1019 inhibits proliferation in tumor spheroids through a volume limitation. *Biophys J*. 2014;
1020 107(8):1821-1828.

1021 56. Basson MD, Zeng B, Downey C, Sirivelu MP, Tepe JJ. Increased extracellular pressure
1022 stimulates tumor proliferation by a mechanosensitive calcium channel and PKC- β . *Mol
1023 Oncol*. 2015; 9(2):513-526.

1024 57. Hung WC, Chen SH, Paul CD, Stroka KM, Lo YC, Yang JT, Konstantopoulos K. Distinct
1025 signaling mechanisms regulate migration in unconfined versus confined spaces. *J Cell
1026 Biol*. 2013; 202(5):807-824.

1027 58. Ricca BL, Venugopalan G, Furuta S, Tanner K, Orellana WA, Reber CD, Brownfield
1028 DG, Bissell MJ, Fletcher DA. Transient external force induces phenotypic reversion of
1029 malignant epithelial structures via nitric oxide signaling. *eLife*. 2018; 7:e26161.

1030 59. Pardo-Pastor C, Rubio-Moscardo F, Vogel-González M, Serra SA, Afthinos A, Mrkonjic
1031 S, Destaing O, Abenza JF, Fernández-Fernández JM, Trepaut X et al. Piezo2 channel
1032 regulates RhoA and actin cytoskeleton to promote cell mechanobiological responses.
1033 *Proc Natl Acad Sci*. 2018.

1034 60. Su S, Phua SC, DeRose R, Chiba S, Narita K, Kalugin PN, Katada T, Kontani K,
1035 Takeda S, Inoue T. Genetically encoded calcium indicator illuminates calcium
1036 dynamics within primary cilia. *Nat Methods*. 2013; 10(11):10.1038/nmeth.2647.

1037 61. Srivastava N, Kay RR, Kabla AJ. Method to study cell migration under uniaxial
1038 compression. *Mol Biol Cell*. 2017; 28(6):809-816.

1039 62. Bravo-Cordero Jose J, Oser M, Chen X, Eddy R, Hodgson L, Condeelis J. A novel
1040 spatiotemporal RhoC activation pathway locally regulates cofilin activity at
1041 invadopodia. *Curr Biol*. 2011; 21(8):635-644.

1042 63. Oser M, Mader CC, Gil-Henn H, Magalhaes M, Bravo-Cordero JJ, Koleske AJ,
1043 Condeelis J. Specific tyrosine phosphorylation sites on cortactin regulate Nck1-
1044 dependent actin polymerization in invadopodia. *J Cell Sci*. 2010; 123(21):3662-3673.

1045 64. Artym VV, Yamada KM, Mueller SC. ECM degradation assays for analyzing local cell
1046 invasion. In: *Extracellular matrix protocols*: Second edition. edn. Edited by Even-Ram
1047 S, Artym V. Totowa, NJ: Humana Press; 2009: 211-219.

1048 65. Kumar S, Das A, Barai A, Sen S. MMP secretion rate and inter-invadopodia spacing
1049 collectively govern cancer invasiveness. *Biophys J*. 2018; 114(3):650-662.

1050 66. Majumder S, Garamella J, Wang Y, DeNies M, Noireaux V, Liu AP. Cell-sized
1051 mechanosensitive and biosensing compartment programmed with DNA. *Chem
1052 Commun (Camb)*. 2017; 53(53):7349-7352.

1053 67. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch
1054 S, Rueden C, Saalfeld S, Schmid B et al. Fiji: an open-source platform for biological-
1055 image analysis. *Nat Methods*. 2012; 9(7):676-682.

1056

1057