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a b s t r a c t

We present a systematic microscopic derivation of the semi-
classical Boltzmann equation for band structures with the finite
Berry curvature based on Keldysh technique of nonequilibrium
systems. In the analysis, an AC electrical driving field is kept up
to quadratic order, and both cases of small and large frequencies
corresponding to intra- and interband transitions are considered.
In particular, this formulation is suitable for the study of nonlin-
ear Hall effect and photogalvanic phenomena. The role of im-
purity scattering is carefully addressed. Specifically, in addition
to previously studied side-jump and skew-scattering processes,
quantum interference diffractive contributions are now explic-
itly incorporated within the developed framework. This theory
is applied to multifold fermions in topological semimetals, for
which the generic formula for the skew scattering rate from the
Pancharatnam phase is obtained along with the corresponding
anomalous Hall conductivity.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

1.1. A brief historical tour

The anomalous Hall effect (AHE), including its spin, valley, thermoelectric, and quantized coun-
erparts, in their complexity represents perhaps the most fascinating set of quantum transport
henomena, see Refs. [1–6] for reviews and references herein. At the same time, anomalous
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ransport coefficients provide key insights into correlated and topological quantum materials. This
ncludes the intriguing normal state of cuprate superconductors, with an anomalous temperature
caling of Hall and longitudinal resistivity which Anderson traced back to his theory of tomographic
uttinger liquids [7,8], as well as a giant enhancement of the thermal Hall effect [9]. In the
resence of spin–orbit coupling, a large anomalous Hall effect also gives access to the physics of
ocal moments, first discussed by Kondo [10] and later extended to the mixed valence regime
y Coleman, Anderson and Ramakrishnan [11,12], who demonstrate a massively enhanced skew
cattering off quantum impurities. Finally, Kerr rotation experiments [13], which probe the finite
requency anomalous Hall conductance, have become one of two litmus tests for time reversal
ymmetry breaking superconductors, i.e. solid state cousins of unconventional pairing states pio-
eered by Anderson, Brinkman and Morel in the context of 3He [14,15] (the other litmus test being

muon-spin-rotation).
In retrospect, when counting from the experimental discovery by Edwin Hall in 1880 it took

seven decades for a comprehensive theory of the AHE to be developed even for weakly coupled
materials. In their seminal work Karplus and Luttinger [16] laid out foundations of the AHE
by elaborating rigorous microscopic linear-response calculations in multi-band metals, recogniz-
ing importance of spin–orbit interaction, and most importantly discovering an anomalous group
velocity term in the semiclassical equation of motion of Bloch electrons in solids. During the
following several decades the extrinsic mechanisms of anomalous Hall transport were uncovered
and scrutinized. Smit [17,18] found a skew scattering mechanism of AHE that captures left–right
asymmetry in the differential scattering cross section of a conduction electron on an impurity
potential. Berger [19] studied another subtle quantum side-jump contribution, which occurs due
to coordinate shifts in electron trajectories following the consecutive scattering events.

The spin version of the Hall effect was proposed by Dyakonov and Perel [20,21], which consists of
spin accumulation by passing an electrical current. This insightful work ultimately triggered another
cycle of numerous studies where intrinsic and extrinsic origins of the spin Hall effect (SHE) were
debated.

The discovery of the integer Hall effect by von Klitzing, Dorda, and Pepper [22] and its further
explanation eventually greatly contributed to the deeper understanding of the AHE through the
work of Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) [23] who derived their famous
invariant for the Hall conductance formula. The next crucial steps was done by Haldane [24] who
presented a concrete model for the quantized anomalous Hall effect (QAHE) in a lattice system.
Shortly after that, the geometric and topological aspects of QAHE were understood and quickly
became the dominant paradigm. The anomalous velocity was connected to the Berry phase [25] so
it became possible to express the anomalous Hall conductance in terms of the integral of the Berry
curvature over the momentum space [26]. This ultimately gave a representation of quantization in
terms of the Chern number of fully filled bands.

These advances elucidated the geometrical origin of the AHE even in the situations when it
is not quantized. This is in fact true not only for the intrinsic mechanism, but also applicable to
extrinsic mechanisms: skew scattering amplitudes as well since coordinate shifts in the side-jump
processes can be expressed in terms of Pancharatnam phase [27], which represents a special case of
Berry phase. Indeed, gauge invariant formulas for coordinate displacements of electrons undergoing
quantum transitions were known early on from work of Belinicher, Ivchenko, and Sturman [28] on
the kinetic theory of photovoltaic effect, however, the topological aspects of the problem were not
realized at that time. This work was rediscovered only relatively recently and provided renewed
important insights [29]. The peculiar observation is that at least in some models of the disorder
potential the microscopic characteristics of the impurity potential drop out from the final expression
for the coordinate shifts that thus can be expressed only in terms of electronic Bloch functions. This
feature makes certain extrinsic contributions to some extent universal.

The quantum version of the spin Hall effect (QSHE) was discussed by Kane and Mele [30] in the
context of a hexagonal lattice model as in graphene. The description was constructed from the gen-
eralized model of Haldane extended to spin- 12 electrons with spin–orbit coupling. However, weak
spin–orbit interaction in graphene stimulated further searches material platforms where this effect
could manifest. The CdTe/HgTe heterostructure was proposed by Bernevig, Hughes, and Zhang [31]
2
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o have the right ingredients with an inverted band structure for the proper thickness of quantum
ells when a topological phase transition occurs. This prediction was confirmed experimentally [32]
ia observed robust conductance quantization facilited by topologically protected edge modes. The
ime reversal broken analog, i.e. the quantum anomalous Hall effect was recently observed in thin
ilms of magnetic topological insulators [33] as well as quantum valley Hall effect in graphene
uperlattices [34]. More generally, graphene bilayers at magic twist angle provide the most recent
xperimental platform for the study of interaction driven emergent ferromagnetic state exhibiting
iant anomalous Hall response [35] and possibly topological Chern insulating behavior.
From the present day perspective, it is perhaps fair to say that it took the physics community a

hole century to fully understand and conceptualize the plethora of anomalous Hall effects. This is
ertainly a noble achievement, but in hindsight one is left with a sobering realization that all that
ntellectual advance concerns essentially a single particle physics in the linear response transport
roblem. To a large extent we still know very little about effects of interactions [36–41], quantum
nterference corrections [42–45], and strong nonequilibrium conditions on linear and nonlinear
nomalous Hall responses. In part this motivates our work to advance current theory further and
ridge the gap towards modeling of experiments.

.2. Technical synopsis of previous works

At the technical level there exist several distinct approaches to describe generalities of the
nomalous Hall effect. An analytical theory based on a transport like equation for the density
atrix was developed by Luttinger [46]. In this framework effects of impurities can be incorporated
erturbatively by a systematic expansion in disorder potential. This treatment provides rigorous
nd controllable quantum-mechanical description which also reveals importance of the off-diagonal
lements of the density matrix and of the velocity operator in the calculation of conductivity tensor.
owever, this method is not very practical and is difficult to implement even in relatively simple
odel cases.
A precursor to modern semiclassical theory is the work by Adams and Blount [47,48] who

sed the picture of particle wave-packet dynamics in a crystal field described by noncommuting
oordinates. In a series of applications this formulation was generalized to degenerate bands in
he context of group III–V n-type semiconductors [49–51], which initially had difficulties with
ncorporation of extrinsic contributions. A modern version of these theories can be presented
n the form of Eilenberger-type equations for the reduced Green’s function, which incorporates
oth short-range impurity scattering, non-Abelian Berry curvature terms stemming from the band
egeneracies, as well as quantum anomalies [52–56].
A fully semiclassical description based on the Boltzmann equation, a diagrammatic method

ased on the Kubo–Streda formulas, as well as Keldysh technique, were applied to the problem
f AHE, see Ref. [57] for an overview. It should be stressed that establishing a connection between
hese methods is not merely a trivial exercise and requires quite laborious calculations [58,59].
or instance, at the level of the Boltzmann equation, one finds an additional contribution to
ransverse conductivity termed as an anomalous distribution. Indeed, the emergent asymmetry
f the distribution function, even without an asymmetry in the kernel of collision integral, is
he result of the side-jump process in the presence of external electric field which modifies
nergy conservation. The corresponding correction to the distribution function combined with
he conventional part of the band velocity leads to the additional Hall current. This term is not
mmediately evident at the level of diagrammatic Green’s function calculation [60] as it is absorbed
nto the part of side-jump contribution. This also suggests that clear separation of various terms is
omewhat ambiguous. At the same time, diagrammatics produces new terms that were missed in all
revious approaches. These are hybrid [59] and diffractive [61–63] skew scatterings. The former one
s inversely proportional to the impurity concentration, thus resembling the usual skew scattering
rom non-Gaussian disorder, but it is independent of impurity strength, resembling the side-
ump mechanism. The diffractive process is present already at the level of Gaussian disorder and,
erhaps counterintuitively, is independent of both impurity concentration and impurity strength
ue to subtle cancellations, so it scales as the intrinsic term. The validity of these results has been
stablished in different models [63–66].
3
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.3. Recent developments: nonlinear anomalous responses

The first systematic attempt to extend the semiclassical theory of AHE to the domain of nonlinear
all responses was presented in the paper by Deyo et al. [67]. The emphasis of the study was put
n the linear and circular photogalvanic phenomena, including calculation of the corresponding
esponse tensors in the presence of weak static magnetic field. The analysis was carried out for the
ulk crystal symmetries Td and C6v , and the point symmetry Cs of a quantum-well structures. Up to

that point such calculations were rigorously established only in the clean limit of semiconductor
structures [68]. In part motivated by experiments [69,70] further extensions of the theory and
applications were tailored towards circular photogalvanic effect in Weyl semimetals [71–74], which
can be considered as an ac non-linear Hall response at optical frequencies.

In a parallel line of developments, Sodemann and Fu [75] demonstrated the topological origin
of the transverse Hall-like currents that occur in second-order response to an external electric
field. Arguments were put forward that these effects can occur in a wide class of two- and
three-dimensional time-reversal invariant and inversion breaking materials, including topological
crystalline insulators, transition metal dichalcogenides and Weyl semimetals [76–78]. The crucial
distinction from the linear AHE is that these nonlinear response functions are governed by the
dipole moment of the Berry curvature in momentum space. Furthermore, the Berry curvature dipole
emerges both in the dc current and also in the second harmonic and can be related to a non-linear
Drude weight [79,80]. These initial results were extended to include effects of skew-scattering and
side-jump on the second order responses [81–85].

1.4. Overview of this work

In this work we construct kinetic theory of quantum transport in multiband materials with
nontrivial band topology. We base our analysis on Keldysh technique for nonequilibrium systems. In
the analysis, external potentials are kept to quadratic order which enables us to address nonlinear
anomalous transport effects. This includes both intraband processes at low frequency and interband
photogalvanic responses. Careful attention is paid to impurity scattering effects as we retain
in calculations disorder potential up to the fourth order. This automatically includes all known
skew scattering and side jump disorder-induced contributions, and also less studied quantum
interference processes. Even though we employ formal machinery to derive kinetic equation, we
use semiclassical language and interpretation of emergent terms. For instance at the level of the
Dyson equation for self-energies we make a connection between diagrammatic and semiclassical
approaches. To avoid spurious difficulties at the intermediate steps, we use fully gauge-invariant
construction and incorporate Berry connection explicitly in the Wigner transform of operators.
Given already quite a laborious task, we do not consider effects of external magnetic field.

1.5. Multifold fermions

As an application of our theory, in Section 4 we present the first microscopic study of anomalous
impurity scattering in models of multifold fermions, which are generalizations of 2D and 3D Weyl
and Dirac semimetals [86–90] that contain (2S+1)−fold degenerate touching point. We also use the
terminology of multifold fermions, when the degeneracy at touching point is lifted (in the simplest
case, this lifting occurs by a mass gap). The kinetic part of the Hamiltonian in the simplest k · p
expansion, is of the form

Hkin(p) = d0(p)+
3∑

i=1

di(p)Si. (1.1)

Here, d0,1,2,3(p) are momentum dependent functions and Si are spin-S matrices, with the usual
ommutation algebra [Si, Sj] = iεijkSk, where εijk is the Levi-Civita symbol. The Hamiltonian (1.1)
hereby generalizes the familiar S = 1/2 case applicable, e.g., to Weyl semimetals in 3D and
apped topological insulator surface states in 2D. Particularly 3D multifold fermions [91] have
4
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een of great interest for anomalous transport and optics [92–97], which is related to the fact
hat RhSi and CoSi contain 4- and 6-fold fermionic touching points [98] and display signatures of
uantized photocurrent generation [71,73,99]. At the same time, 2D multifold fermions may appear
s topological surface states [100] or in appropriately designed lattice models [101–107].
In our study we present general results for S = 1 and S = 3/2, and evaluate the impurity

scattering effects in the case of S = 1 fermions in detail. We contrast these results to the most well
studied S = 1/2 situation in the model of massive 2D Dirac fermions.

1.6. Outline of the paper

The rest of the paper is organized as follows. In Section 2 the general setup is introduced, along
with assumptions and notations. After defining the modified Wigner transform and Moyal expan-
sion, the Dyson equation for the Keldysh block of the Green’s function is discussed in detail. This
block has a non-diagonal structure in the band index and we outline the systematic solution strategy
for the off-diagonal quantum components to arrive at kinetic equations for the band-diagonal
distribution functions that have natural semiclassical interpretation. These equations are further
simplified by following the usual gradient expansion. From the projections onto corresponding
bands the collision terms are derived for various processes and topological terms are identified. In
Section 3 the electrical current operator is considered and its semiclassical form is deduced with the
side-jump contribution made explicit. These two sections represent the core of the paper. Finally,
as mentioned, we present an application to multifold fermions in Section 4 and conclude with a
summary and outlook in Section 5. Some additional technicalities concerning collision kernels and
momentum averages are presented in the Appendix.

2. Derivation of quantum kinetic equation

In this section we present a systematic derivation of the quantum kinetic equation in Berry
curved matter in the presence of impurity scattering and external nonlinear drive.

2.1. Setup and assumption

We consider generic N-band Hamiltonian containing kinetic and potential terms

H = Hkin(p)+ U(t, x). (2.1)

We now discuss each of these two terms in detail.

2.1.1. Kinetic energy and band structure
We use an effective description of Hkin(p) by means of k ·p Hamiltonians centered at Nc (avoided)

nodes in the Brillouin zone denoted bn, see Fig. 1 for an illustration with N = 4 and Nc = 2 (note
that b1 = b2 and b3 = b4 in this case). The solutions of the free Schrödinger equation are denoted
as

ψn,p(x) = ⟨x|ψn,p⟩ = ei(p−bn)·x|un,p⟩, (2.2)

and we use the index n = 1, . . .N to label the bands.
The N-vectors |un,p⟩ constitute the sections of a fiber bundle over momentum space. In what

follows we use the usual orthonormality and completeness relations ⟨un,p|un′,p⟩ = δn,n′ and∑
n|un,p⟩⟨un,p| = 1N . The gauge transformation |un,p⟩ → eiφn(p)|un,p⟩ is implied by the equivalence

of solutions for local (in momentum space), n dependent phase. We consider nondegenerate bands
and define the Berry connection as

Ann′ (p) = i⟨un,p|E|∇pun′,p⟩, (2.3)

which is gauge covariant

A ′ → e−iφn(p)[A ′ −∇ φ δ ′ ]eiφn′ (p). (2.4)
nn nn p n n,n

5
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Fig. 1. Illustration of the convention. a We use an N-band model (bands are labeled n = 1, . . . ,N) based on the k · p
expansion about special points (denoted by bn) in the Brillouin zone. Here, we exemplify this for the tight binding model
on a hexagonal lattice, where we keep only the states near K and K ′ nodes and thus N = 4, b1 = b2 = (4π/3, 0)/a and
b3 = b4 = (2π/3, 2π/

√
3)/a. b (c) Illustration of the possible small (large) frequency regime ω ≪ EF (ω ≳ EF ).

e have introduced the N×N matrix E which is particularly simple if the dimension of the Hilbert
pace is equal at each of the Nc nodes. Then it can be represented as a block matrix, within each
lock (diagonal blocks correspond to a given node) it is the N/Nc-dimensional identity,

E =

⎛⎜⎝1N/Nc · · · 1N/Nc
...

. . .
...

1N/Nc · · · 1N/Nc

⎞⎟⎠ . (2.5)

The Berry curvature of band n is defined through the curl of connection vector from Eq. (2.3)

Ωn = ∇p ×Ann. (2.6)

2.1.2. Potential
The scalar potential U(t, x) = [Φ(t, x)+V (x)]E contains a part Φ corresponding to the ac electric

field and a part V corresponding to the static disorder. The scalar potential may scatter between
the Nc nodes in momentum space, this is encoded in the N × N matrix E. We emphasize that this
does not mean that internode scattering is always important: as the nodes are centered at different
momenta, the off-diagonal elements acquire a phase factor. This leads to the finite momentum
Fourier transform of the potential, which in turn is small for smooth U(t, x). For a potential U(t, x)
to be able to scatter between nodes n and n′, the Fourier component U(t, q) must be sizable at
q = bn − bn′ .

For simplicity, we assume monochromatic ac field

Φ(t, x) =
∑
ξ=±

Φξ (x)eiξωt , Φξ (x) = −eEξωx, (2.7)

where Eξω = E∗

−ξω , and discuss the generalization to arbitrary Φ(t, x) in the results section.
Throughout the derivation we will treat the following two cases, see Fig. 1b, c. In the first case,
ω ≪ EF , the frequency is small as compared to the Fermi energy EF i.e. all excitations are close
to the Fermi surface. In the second case, ω > EF , the frequency is large as compared to the Fermi
energy and may lead to vertical interband transitions. We consider contributions up to second order
in driving fields.

The disorder potential is described by scalar impurities located at positions Ri that we assume
to be uniformly distributed in Rd with density nimp,

V (x) =
∑

i

V(x− Ri). (2.8)

Our calculations are perturbative in powers of the impurity strength (see details in the next section).
6
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.1.3. Wigner transform
In addition to perturbatively weak impurity scattering, we assume an elastic scattering rate

/τ ∝ nimp|V(0)|2ν(E), where ν(E) is the density of states), to be small as compared to the energy
of the electrons. Then a semiclassical expansion is controlled.
The semiclassical phase-space quantization is conveniently expressed in terms of the Wigner

ransform

Onn(x, p) =
∫
∆p

Onn

(
p+

∆p
2
, p−

∆p
2

)
ei∆pµ(xµ−Aµ

n (p)) (2.9)

of band-diagonal matrix elements of an arbitrary operator Ô

On,n′ (p; p′) =
∫
tt ′

eiEt−iE′t ′
⟨ψn,p|Ô|ψn′,p′⟩ =

∫
xx′
⟨un,p|O(x, x′)|un′,p′⟩e−ixµpµ+ix′µp

′µ

eibn·x−ibn′ ·x.

(2.10)

Here we introduced 1+d vectors p = (E, p), x = (t, x), An(p) = (0,Ann(p)) and used a
Minkowski metric with signature (−,+, . . . ,+). Note that the Wigner transform defined in Eq. (2.9)
differs from the conventional Wigner transform by the explicit account of Berry connection in the
exponential [108]. This ensures that Onn(x, p) → Onn(x, p) + O(∂2x ∂

2
p ) is invariant under gauge

transformations |un,p⟩ → eiφn,p |un,p⟩ up to subleading orders in the semiclassical gradient expansion.
A similar idea was first used by Altshuler [109] to account for the gauge invariance in real space
ψ(x) → eiφ(x)ψ(x) in the presence of an external electromagnetic vector potential.

As usual, the Wigner transform of convoluted operators defines the Moyal expansion (we drop
the index nn and phase space arguments of the functions O(x, p),Q (x, p) on the right hand side for
simplicity)

[O ◦ Q ]nn(x, p) ≈ O(x, p)Q (x, p)+
i
2
Ω · (∇xO×∇xQ )

−
i
2
(∂tO∂EQ − ∂EO∂tQ )+

i
2
(∇xO∇pQ −∇pO∇xQ ). (2.11)

e use the symbol ‘◦’ to denote integration/summation over repeated indices. Apart from the
lassical Poisson brackets we highlight the appearance of the Berry curvature in the complex,
ntisymmetric terms.

.2. Dyson equation

.2.1. General form and strategy
Following the standard strategy [110], the Boltzmann equation is derived systematically from

he Keldysh component of the Dyson equation (disorder average is denoted ⟨. . . ⟩)

−

([
GR]−1

◦ F − F ◦
[
GA]−1

)
=

⟨
ΣK

−
(
ΣR

◦ F − F ◦ΣA)⟩ . (2.12)

ach of the operators entering Eq. (2.12) is a matrix in N × N band space, and in space–time (or
quivalently, after Fourier transformation, in energy–momentum space). For example, the inverse
etarded bare Green’s function is [GR(p, p′)]−1

= [E + iη − Hkin(p)](2π )d+1δ(p− p′). The operator F
s the unknown of the equation and, as usual, is introduced to parametrize the Keldysh component
f the Green’s function

GK
= GR

◦ F − F ◦ GA. (2.13)

he strategy to find a solution to Eq. (2.12) is a semiclassical expansion using the Wigner-transform

(x, p) of which the on-shell intraband components define the distribution function.

7
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Fig. 2. Illustration of the diagrammatic rules explained in the text, including the external potential (panel a) and the
eldysh operator F (panel b). c Diagrammatic representation of the self energy up to fourth order in powers of U = Φ+V .
Diagrammatic representation of all band off-diagonal contributions to Fnn′ (p, p′). e Definition of the vertex leading to

he denominator [GA
n′ (p

′)]−1
−[GR

n(p)]
−1 (as obtained by taking an energy integral over E and assuming that the upper loop

ontains one F function, such that the two Green’s functions inside the loop have different advanced/retarded structure).
ere and in all diagrams, a slashed propagator represents an external on-shell leg.

.2.2. Self-energy
The right hand side of Eq. (2.12) contains the self-energy and thereby the effective impact of the

isorder potential after averaging. We also incorporate the scattering of the external electric field
n the self-energy. A diagrammatic representation, before disorder average ⟨. . . ⟩, is given in Fig. 2,
e use the notation ⟨ΣK

− (ΣR
◦ F − F ◦ ΣA)⟩ ≃

∑4
i=1Σi where i counts the order in external

erturbation. The following Feynman rules are used.

1. An arrow on a solid line represents a Green’s function GR/A
n .

2. An empty square on the solid line represents Fnn′ (p, p′), which contains band diagonal (solid
box) and off-diagonal (crossed box) contributions. Per definition, all Green’s functions with
arrow towards (away from) the square are advanced (retarded).

3. A curly line represents U(p, p′) = Φ(p, p′) + V (p, p′), where the photon is represented by a
wavy line and disorder by a dashed line.

4. To mth order draw all diagrams for the self-energy in the presence of m curly potential lines
connected by m − 1 Green’s functions. External legs are on-shell, which is represented by a
dashed arrow.

5. Generate 2m diagrams by placing the empty square between all vertices and arrows (includ-
ing those which are dashed). The sign of the diagram is (−1)s where s =(number of vertices
downstream)+ (number of arrowheads downstream), see Fig. 2b for an example.

6. Take the disorder average and, as usual, keep only one particle irreducible diagrams and
integrate over internal momenta.

.2.3. Interband Keldysh function
While the on-shell part to intraband (i.e. diagonal) matrix elements of F (x, p) corresponds to

he distribution function of states in a given band, off-diagonal matrix elements F ′ (n ̸= n′) are
nn

8
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nherently quantum mechanical and appear perturbatively in powers of V ,Φ . We thus derive off-
diagonal contributions to F order by order, for a diagrammatic representation see Fig. 2. In the
self-energy we use the subscript Σ[l,m] to denote lth order in E and mth order in V . We drop the
order l = 2 which contains two small denominators representing virtual transitions.

2.2.4. Effective Dyson equation
We insert this approximate solution for the off-diagonal terms into Eq. (2.12) in order to

perturbatively diagonalize the equation. The result is

−
1
2

[[
GR
n

]−1
+
[
GA
n

]−1
◦,Fnn

]
(p, p′) = Σn(p, p′). (2.14)

ere, the symbol ◦ denotes space–time (or energy–momentum) integration (without band summa-
ion) and [. . . ◦, . . . ] is the corresponding commutator. We will henceforth omit the band index n
henever possible. The effective self-energy

Σ(p, p′) =
4∑

l,m=1
l+m≤4

Σ[l,m](p, p′) (2.15)

an be Taylor expanded, where Σ[l,m](p, p′) is lth order in E and mth order in V . We keep up
o second order in electric field (as necessary for nonlinear transport) and up to fourth order in
mpurity scattering (which is important for skew scattering). Combined contributions are kept up to
+m = 4. The various contributions to Σl,m are represented in Fig. 3, where intraband components
nn(p, p′) are represented by a black box.

.3. Semiclassical expansion for ω ≪ EF

As announced above, the Boltzmann equation follows from Eq. (2.14) by a semiclassical gradient
xpansion. We first focus on the small frequency regime ω ≪ EF . In this regime it is convenient to
bsorb the external potential into the Green’s function GR/A

= E ± iη−Hkin(p)−Φ(x). This implies
thatΣ[1,0] is incorporated into the left hand side of Eq. (2.14). We note that interband transitions due
to photons are suppressed at small frequencies, such that Σ[2,0] is neglected along with all mixed
contributions, Fig. 3, with crossed boxes. All other diagrams of Fig. 3 (right panel) are accounted
or by replacing Green’s functions GR/A by GR/A in Fig. 3 (left panels). We define the distribution
unction by enforcing the on-shell constraint on diagonal components Fnn(x, p)

fn(t, x, p) =
∫
E
δ(E − En(p)−Φ(x))Fnn(x, p). (2.16)

.3.1. Liouville term
Using the Moyal expansion derived in Eq. (2.11) we readily obtain the Liouvillian term describing

he reactive response of the system

−
1
2

[[
GR
n

]−1
+
[
GA
n

]−1
◦,Fnn

]
(x, p) ≈ −i

(
[∂t + ∂tΦ∂E]Fnn(x, p)

+ [vn −Ωn ×∇xΦ] · ∇xFnn(x, p)−∇xΦ · ∇pFnn(x, p)
)
,

(2.17)

here the band velocity is vn = ∇pEn(p). Clearly it follows then

−
i
2

∫
E
δ(E − En(p)−Φ(x))

[
[GR

n ]
−1

+ [GA
n ]

−1◦,Fnn
]
(x, p) ≈

(
∂t + ṗ · ∇p + ẋ · ∇x

)
fn(t, x, p),

(2.18)

hich reproduces the usual appearance of the Liouville term in the Boltzmann equation, where
˙ = v +Ω × ṗ, and ṗ = −∇ Φ .
n n x

9
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H∑
a

Fig. 3. Effective total self energy for the intraband projected Dyson equation, Eq. (2.14), keeping only terms which are
either due to photons [top left panel], only, or due to disorder, only [bottom left panel]. [Right panel]: Mixed contributions
due to the self energy due to both disorder and photons.

2.3.2. Born scattering and side jump
The diagram for these processes is depicted in Fig. 3 (top left panel) and its analytical expression

in energy–momentum space is

Σ[0,2](p+, p−) = nimp

∮
n′p′

Fnn(p+, p−)|V((p− bn)− (p′ − bn′ ))|
2

×

[
|⟨un,p− |E|un′,p′

−
⟩|

2GA
n′ (E−, p

′

−
)− |⟨un,p+ |E|un′,p′

+
⟩|

2GR
n′ (E+, p

′

+
)
]

− nimp

∮
n′p′

Fn′n′ (E+, p′+; E−, p
′

−
)|V((p− bn)− (p′ − bn′ ))

× ⟨un,p+ |E|un′,p′
+
⟩⟨un′,p′

−
|E|un,p+⟩|

2
[GA

n′ (E−, p
′

−
)− GR

n′ (E+, p
′

+
)]. (2.19)

ere we introduced a joint integration symbol
∮

that implies summation over the discrete index
n′ and integration over the continuous variable

∫
p′ . We expand the above expression in small ∆p

nd use the Wigner transform, to obtain

Σ[0,2](x, p) ≈ inimp

∮
n′p′

(2π )2δ(E − En′ (p′))δ(E − E ′)|V((p− bn)− (p′ − bn′ ))|
2
|⟨un,p|E|un′,p′⟩|

2

×

[
Fnn(x, p)− [1+ δrn′n(p′, p)∇x]Fn′n′ (x, p′)

]
. (2.20)
10
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ere, we dropped principle value integrals (suppressed virtual processes) and introduced the
isplacement at a side-jump [28,29]

δrn′n(p′, p) = An′ (p′)−An(p)− (∇p +∇p′ ) arg(⟨un,′p′ |E|un,p⟩). (2.21)

fter projecting onto the mass shell, we obtain the collision integral (‘‘Stossintegral’’ in German) of
he right-hand-side in the Boltzmann equation

StBorn{f } + Stsj{f } = −2πnimp

∮
n′p′
δ(En(p)+Φ(t, x)− En′ (p′)−Φ(t, x+ δrn′n(p′, p)))

|V((p− bn)− (p′ − bn′ ))|
2
|⟨un,p|E|un′,p′⟩|

2

×
[
fn(t, x, p)− fn′ (t, x+ δrn′n(p′, p), p′)

]
. (2.22)

We highlight that this expression, which contains both Born scattering StBorn{f } (Eq. (2.22) at
δr = 0) and the side-jump effect Stsj{f } (Eq. (2.22) to first order in δr = 0), is to be understood up
to first order in the gradient expansion. We remind that in common notations, the latter collision
term Stsj{f } is often referred to as anomalous distribution.

2.3.3. Skew scattering
It will be useful to use a multi-index notation l = (n, p) as well as energy notation El = En(p),

and introduce matrix elements Vll′ = ⟨un,p|E|un′,p′⟩V ((p− bn)− (p′ − bn′ )). In this notation, we find
prior to disorder average

Σ[0,3](x, p) =
∮
l1,l2

Fnn(x, p)Vll1Vl1 l2Vl2 l
[
GA
l1G

A
l2 − GR

l1G
R
l2

]
+ Fn1n1 (x, p1)

[
GR
l1 − GA

l1

] [
Vll1Vl1 l2Vl2 lG

A
l2 + Vll2Vl2 l1Vl1 lG

R
l2

]
. (2.23)

We emphasize that all Green’s function have the same energy argument since impurity scattering is
elastic. We only need contributions which are odd under l ↔ l1 and obtain, after on-shell projection,
the skew scattering collision term in the form

Stsk{f } =
∮
l′
W sk

ll′ fl′ , (2.24a)

where the corresponding transition probability is

W sk
ll′ = −

∮
l2

(2π )2δ(El − El′ )δ(El − El2 )Im
[
Vll′Vl′ l2Vl2 l

]
. (2.24b)

With additional simplifying assumptions further analytical progress can be made. For instance,
one tractable example corresponds to a disorder model created by a centrosymmetric impurity
potential, V(x) = V(−x), that is assumed to vary slowly on the scale of the lattice constant. For this
model, the electron transition matrix element separates into the product of a Fourier transform
of the impurity potential and a Bloch wave function overlap of states within the same node,
∝ V(p1 − p2)⟨ul1 |ul2⟩ ≃ V0⟨ul1 |ul2⟩, where V0 denotes the strength of intranode scattering. Since
for a centrosymmetric impurity Im[Vp] = 0, the antisymmetric part of the scattering probability
defined by Eq. (2.24) becomes after disorder average

W sk
ll′ = −nimpV 3

0

∮
l′′
(2π )2δ(El − El′ )δ(El − El′′ )Zll′ l′′ , (2.24c)

here

Zl1 l2 l3 = Im[⟨ul1 |ul2⟩⟨ul2 |ul3⟩⟨ul3 |ul1⟩], (2.24d)

his contribution appears from third order scattering of a single impurity, see Fig. 3.
11
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.3.4. Gaussian, diffractive, and hybrid skew scattering
The first line of Σ[0,4] in Fig. 3 is small in powers of the semiclassical parameter of Fermi energy

being much larger than the elastic scattering rate. This follows, because both the crossed box and the
Green’s function account for virtual elastic (i.e. horizontal) interband transitions. Prior to disorder
average, we thus find

Σ[0,4](x, p) =
∮
l′,l1,l2

Fnn(x, p)Vll′Vl′ l1Vl1 l2Vl2 l[G
A
l′G

A
l1G

A
l2 − GR

l′G
R
l1G

R
l2 ] + Fn′n′ (x, p′)[GR

l′ − GA
l′ ]

× {Vll′Vl′ l1Vl1 l2Vl2 lG
A
l1G

A
l2 + Vll1Vl1 l2Vl2 l′Vl′ lGR

l1G
R
l2 + Vll1Vl1 l′Vl′ l2Vl2 lG

R
l1G

A
l2}. (2.25)

gain, we only keep the contribution which is odd under l ↔ l′ and project on-shell to obtain

St[4]sk [f ] =
∮
l′
W̃ sk

ll′ fl′ , (2.26a)

here

W̃ sk
ll′ = −

∮
l1,l2

(2π )2δ(El − El1 )δ(El − El′ )[GR
l2 + GA

l2 ]/2

×
{
Im[Vll′Vl′ l1Vl1 l2Vl2 l + (1 ↔ 2)] + 2Im[Vll2Vl2 l′Vl′ l1Vl1 l]

}
. (2.26b)

Note that contrary to all previous contributions, here one off-shell contribution [GR
l2
+ GA

l2
] is

xplicit. Disorder average implies the impurities leading to three different kinds of diagrams, see
ig. 3: scattering from two different impurities allows for a rainbow diagram (Gaussian skew
cattering) [29] and a crossed diagram (diffractive skew scattering) [61,62], while scattering from a
ingle impurity to fourth order leads to hybrid skew scattering [59].
We illustrate these three contributions, W̃ sk

ll′ = WGauss
ll′ + W diff

ll′ + W hybrid
ll′ again in the limit of

smooth, centrosymmetric impurity potential of intranode scattering strength V0. After impurity
verage, the expressions simplify to

WGauss
ll′ = −(nimpV0)2

∮
l1,l2

2π2δ(El − El1 )δ(El − El′ )[GR
l2 + GA

l2 ]

× {(Zll′ l1 l2δp2,p′ + Zll′ l2 l1δp1,p′ )+ 2Zll2 l′ l1δp1,p2}, (2.26c)

W diff
ll′ = −(nimpV0)2

∮
l1,l2

2π2δ(El − El1 )δ(El − El′ )[GR
l2 + GA

l2 ]

× {(Zll′ l1 l2δp2−p1,p−p′ + 1 ↔ 2)+ 2Zll2 l′ l1δp1+p2,p+p′}, (2.26d)

W hybrid
ll′ = −nimp(V0)4

∮
l1,l2

2π2δ(El − El1 )δ(El − El′ )[GR
l2 + GA

l2 ]{(Zll′ l1 l2 + 1 ↔ 2)+ 2Zll2 l′ l1},

(2.26e)

here we introduce the four index analog to Eq. (2.24d)

Zl1,l2,l3,l4 = Im[⟨ul1 |ul2⟩⟨ul2 |ul3⟩⟨ul3 |ul4⟩⟨ul4 |ul1⟩]. (2.26f)

e conclude the section on skew scattering from the fourth order potential with a technical remark
elating to the diagrammatic calculation of the anomalous Hall conductivity bubble. In the equation
or W diff

ll′ , the first two terms in the curly brackets represent so called Ψ diagrams, while the last
erm is the X diagram (in the notation of [61,62,64,65]).

.3.5. Summary small frequency result
This concludes the derivation of the Boltzmann equation in Berry curved matter in the low-

requency (ω ≪ EF limit):[
∂t + ẋ · ∇x + ṗ · ∇p

]
f (t, x, p) = St{f }, (2.27)

here ẋ = vn +Ωn × ṗ, ṗ = −∇xΦ and the collision integral St[f ] = StBorn{f } + Stsj{f } + Stsk{f } +
t[4]{f } is given by Eqs. (2.22), (2.24), (2.26). We explicitly kept non-linear orders of the external
sk

12
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otential in the collision integral (which eventually vanish), but restricted ourselves to terms of
eroth and first order in gradients (h̄∂x∂p), and dropped the combination of skew and side-jump
effects.

2.4. Semiclassical expansion for ω ≳ EF

In this section we derive the effective kinetic theory for an external field with fast driving
frequency. We concentrate on the rectified current stemming from slowly fluctuating Fnn(t, x; E, p)
for which a semiclassical gradient expansion is justified, while we omit quickly oscillating first
and second harmonics of Fnn(t, x; E, p). The physical reason behind concentrating on the rectified
current within the present Boltzmann technique is that the latter is mainly designed to incorporate
relaxation effects. On the other hand, relaxation is negligible for the quickly oscillating first and
second harmonic.

Technically, we time average Eq. (2.14) ⟨. . . ⟩time =
∫ 2π/ω
0 [dt...]ω/2π , whereby the terms

Σ1,0,Σ1,2,Σ1,3 vanish. Since the external potential is quickly oscillating, we use a slightly different
definition of the distribution function than in the slow frequency limit (cf. Eq. (2.16))

fn(t, x, p) =
∫
E
δ(E − En(p))Fnn(x, p). (2.28)

2.4.1. Liouville term and disorder scattering
The Liouville term and disorder induced collision integrals for the rectified distribution function

are essentially the same as in the slow-frequency limit, Eqs. (2.18), (2.22), (2.24), (2.26), and follow
rom analogous derivations. The only major difference is the cancellation of linear terms in the
xternal potential leading to absent force term, ṗ = 0, and side jump contributions.

.4.2. Injection and shift currents
The vertical interband scattering off two photons leads to a self-energy contribution

Σ[2,0](x, p) ≃ i
∑
n′

d∑
i,j=1

∑
ξ=±

2πδ(ξω + En′ (p)− En(p))e2E i
ξE

j
−ξA

i
nn′ (p)A

j
n′n(p)

×

{
Fnn(x, p)− [1+ Rn′n(p) · ∇x]Fn′n′ (x, p− ξω)

}
. (2.29)

ere we used a suggestive notation p−ξω = (E−ξω, p). On a technical level, the derivation is very
imilar to the derivation of Eq. (2.20) presented above. Again, the scattering process is accompanied
y a coordinate shift, which for photons reads [28]

Rn′n(p) = An′ (p)−An(p)−∇p arg(An′n(p)). (2.30)

he projection of this equation on the mass shell generates a collision ‘‘integral’’ (a source term for
hotocarrier injection)

StPGE{f } = −

∑
n′

d∑
i,j=1

∑
ξ=±

2πδ(ξω + En′ (p)− En(p))e2E i
ξE

j
−ξA

i
nn′ (p)A

j
n′n(p)

×

{
fn(t, x, p)− [1+ Rn′n(p) · ∇x]fn′ (t, x, p)

}
. (2.31)

.4.3. Mixed disorder and photon scattering
The interplay of disorder and optical excitation is encoded in Σ[2,2](x, p). To leading order, there

re two impurity induced contributions for optical transitions.
First, a particle in the filled valence band first scatters off an impurity to a virtual off-shell

tate, and then performs an optically allowed transition. Second, the reverse happens, i.e. an optical
ransition to an off-shell state in the conduction band, and an impurity assisted scattering to an
n-shell final state in the conduction band. The contribution Σ[2,2](x, p) describes these transitions
nd we leave a careful study to a separate publication.
13
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Fig. 4. Renormalization of the current vertex by the impurity potential. In the disorder contribution to the commutator
Eq. (3.2), the U(1) phase φq is represented by a disk.

We remark thatΣ[1,3](x, p) vanishes upon time average (as mentioned, this is the only relaxation
prone channel in the large frequency limit). Therefore interband contributions linear in external
field, as discussed in Ref. [85], are disregarded.

2.4.4. Summary of large frequency result
In total, the kinetic equation at large frequencies takes the form

[∂t + ẋ · ∇x]f (t, x, p) = St{f }, (2.32)

here ẋ = vn and St{f } has contributions from the injection of photocarriers, Eq. (2.31), relaxation
nd skew scattering effects at impurities, Eqs. (2.22), (2.24), (2.26), as well as mixed contributions
o be discussed elsewhere.

Note that the kinetic equation (2.32) contains a carrier injection far away from the Fermi surface
here the energy of on-shell particles does not necessarily coincide with the Fermi level and

nteractions induce inelastic energy relaxation effects necessary for photocarrier decay.

. Electrical current response

In this section we present derivation of the electrical current response and elucidate the origin
f the side-jump accumulation velocity.
In the field integral representation of the Keldysh technique [110], the electrical current is

efined by a functional derivative of the partition function, ji(x) = [∂Z/∂Ai
q(x)]|Aq=0, where the

ndex-q indicates the quantum component of the vector potential. The coupling of the latter to
he fields is imposed by electromagnetic U(1) gauge invariance. Therefore, the current operator
ssociated to Bloch-electrons of band n can be obtained from the gauge transformation of

Ĝ−1
nn =

(
[ĜR

]
−1

[Ĝ−1
]
K

0 [ĜA
]
−1

)
nn

→ e−iφq(x)γ̂q Ĝ−1
nn e

iφq(x)γ̂q . (3.1)

ere, following standard convention, γ̂q is the first Pauli matrix in Keldysh space. To leading order

δĜ−1
nn = i

[
φq

◦,Ĥnn

]
γ̂q, (3.2)

where Ĥnn is the full Hamiltonian prior to disorder average and projected on band n. We omitted
terms which are stemming from the regulation of Keldysh theory (e.g. [ĜR

]
−1

− [ĜA
]
−1

∼ iη→ 0).
For the clean part of Ĥnn we use the Wigner transform equation (2.9) to obtain δĜ−1

nn (x, p)|V=0≈

−ẋ · ∇xφqγ̂q, where ẋ = v + Ω × ṗ. The contribution from the disorder potential contains a
renormalization of the vertex depicted diagrammatically in Fig. 4. Here, the matrix γ̂q imposes that
Green’s functions which are coming into (going out of) the vertex are advanced (retarded). The
similarity of this diagrams with Σ[0,2] in Fig. 3, where the square representing Fnn(x, p) is replaced
by the disk representing φq(x), implies that the vertex renormalization is given in complete analogy
to Eq. (2.20) by

⟨δĜ−1
nn (x, p)⟩ ≈ −nimp

∮
n′p′

(2π )δ(E − En′ (p′))δrn′n(p′, p)∇xφq

× |V((p− bn)− (p′ − bn′ ))|
2
|⟨un,p|E|un′,p′⟩|

2γ̂ q. (3.3)
14
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he average current is thus

j = e
∫
p
[ẋ+ vsj

]fn(t, x, p). (3.4)

Here, we introduced the side jump accumulation velocity

vsj
= nimp

∮
n′p′

(2π )δ(E − En′ (p′))δrn′n(p′, p)|V((p− bn)− (p′ − bn′ ))|
2
|⟨un,p|E|un′,p′⟩|

2. (3.5)

In the case of large frequencies, we omit the photon field in ẋi, as it is only important for intraband
physics.

4. Anomalous Hall transport of multifold fermions

In this section we present an application of our theory for the anomalous transport in the
model of multifold fermions, as defined in Eq. (1.1). We remind that for a spin-S the corresponding
operators are square matrices of dimension 2S + 1. They can be conveniently represented in the
Zeeman basis with states labeling |S,m⟩. We choose to work in this basis.

4.1. Eigenstates and Berry curvature

As the starting point in obtaining the Berry curvature for this model it is convenient to use
spherical coordinates for the d-vector

d = d (sin(θ ) cos(φ), sin(θ ) sin(φ), cos(θ ))T . (4.1)

The eigenstates of Eq. (1.1) then readily follow from rotating the Hamiltonian onto the ẑ axis, i.e.

|um,p⟩ = e−iφSz e−iθSy êm, (4.2)

where êm is the unit vector pointing in m direction, with the conventional labeling of m = −S,−S+
1, . . . , S − 1, S. The energy of these states is Em(p) = d0(p)+md(p). From this definition, the Berry
curvature can be now computed from the standard formula

Ωa = iεabc⟨∂bum,p|∂cum,p⟩ = mεabc∂bφ∂cθ sin(θ ) = −
m
2
εabc d̂ · (∂bd̂× ∂c d̂). (4.3)

where the unit vector is d̂ = d/d.

4.2. Projectors on eigenstates

As we shall shortly see, the projectors of eigenstates

P̂m,p ≡ |um,p⟩⟨um,p| = e−iφSz e−iθSy êmêTme
iθSyeiφSz (4.4)

determine the microscopic form of the scattering rates. Specifically, we here review the simplest
cases of S ≤ 3/2. For the S = 1/2 case the result is well known

P̂m,p =
1+ 4m(d̂ · S)

2
. (4.5)

n contrast, for the S = 1 one finds instead a different expression

P̂m,p = (1−m2)+
m
2
(d̂ · S)+

3m2
− 2

2
(d̂ · S)2. (4.6)

Finally, for the S = 3/2 situation one needs to distinguish between projections with |m| = 3/2

P̂m,p = −
1
16

−
m
36

(d̂ · S)+
1
4
(d̂ · S)2 +

m
9
(d̂ · S)3, (4.7)

nd alternatively with |m| = 1/2, for which

P̂m,p =
9
16

+
9m
4

d̂ · S −
1
4
(d̂ · S)2 −m(d̂ · S)3. (4.8)
15
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.3. Overlap of states

The overlap of states in the same band can be directly calculated in complete analogy to
rojectors. For the above specified model examples they look as follows. For S = 1/2

|⟨um,p1 |um,p2⟩|
2
=

1+ d̂1 · d̂2
2

. (4.9)

For the S = 1 case the overlap depends on the value of m. The simplest is that of m = 0

|⟨um,p1 |um,p2⟩|
2
= (d̂1 · d̂2)2, (4.10)

hereas |m| = 1 is given by

|⟨um,p1 |um,p2⟩|
2
=

(1+ d̂1 · d̂2)2

4
. (4.11)

he overlap for S = 3/2 with |m| = 1/2 is more involved

|⟨um,p1 |um,p2⟩|
2
=

(1+ d̂1 · d̂2)3

8
− (d̂1 · d̂2)(d̂1 × d̂2)2, (4.12)

hile the last one for |m| = 3/2 is

|⟨um,p1 |um,p2⟩|
2
=

(1+ d̂1 · d̂2)3

8
. (4.13)

n all the above expressions we used a shorthand notation d̂i = d(pi)/d(pi).

.4. Pancharatnam phase

The Pancharatnam phase Φp1p2p3 of the underlying electronic band structure is defined by the
Bloch state overlap of the form

Φp1p2p3 = arg[⟨up1 |up2⟩⟨up2 |up3⟩⟨up3 |up1⟩]. (4.14)

nterestingly, as alluded in the introduction, there is a limit when both the skew scattering rate and
he side jump contribution can be directly related to Φp1p2p3 . Indeed, as it follows from the collision
terms derived in the preceding sections, the antisymmetric part of the scattering rate depends on
both properties of band structure and local impurity potential. Thus generic calculations are possible
only based on first principle numerical methods. However, under the simplifying assumptions
of a single relevant band and a smooth centrosymmetric potential, we demonstrated that skew
scattering depends on the quantity Zp1p2p3 , Eq. (2.24d) (we use li = (n, pi), i = 1, 2, 3 and suppress
he band index n) which is non-zero only if the Pancharatnam phase in Eq. (4.14) is finite. Below
we report results for Zp1p2p3 where we retained only intraband contributions. For S = 1/2 the result
was derived earlier [81]

Zp1p2p3 =
m
2
d̂1 · (d̂2 × d̂3). (4.15a)

or S = 1 we find

Zp1p2p2 =
m
8
d̂1 · (d̂2 × d̂3)(1+ d̂1 · d̂2 + d̂2 · d̂3 + d̂3 · d̂1). (4.15b)

or S = 3/2 the expressions we get are rather cumbersome

Zp1p2p3 = ±
d̂1 · (d̂2 × d̂3)

128

[
13+ 12(d̂1 · d̂2+ ⟳)− [(d̂2 · d̂3)2+ ⟳]

+ 8(d̂1 · d̂3d̂2 · d3+ ⟳)+ 14(d̂1 · d̂2d̂2 · d̂3d̂3 · d̂1)− 9(d̂1 · (d̂2 × d̂3))2
]

(4.15c)
16
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m

or |m| = 3/2 with symbol ⟳ indicating cyclic permutation of indices 1 → 2 → 3 → 1 in the sum
f respective terms. Lastly, when |m| = 1/2 the result is

Zp1p2p3 = ±
d̂1 · (d̂2 × d̂3)

128

[
−247+ 12(d̂1 · d̂2+ ⟳)+ 243[(d̂2 · d̂3)2+ ⟳]

− 36(d̂1 · d̂3d̂2 · d3+ ⟳)− 378(d̂1 · d̂2d̂2 · d̂3d̂3 · d̂1)+ 243(d̂1 · (d̂2 × d̂3))2
]
. (4.15d)

These formulas give us all the required ingredients to calculate anomalous Hall conductance. We
next proceed to solve the kinetic equation in the exemplary case of S = 1.

4.5. AHE of pseudospin-1 fermions

To illustrate the findings of the previous section, we calculate the anomalous Hall response from
Eq. (1.1) for S = 1, d0(p) = 0 and d(p) = (vpx, vpy,∆) in a two dimensional system with a single
spin-1 touching point. This can be modeled on a Kagome lattice with an appropriately tuned flux
pattern (∆ ̸= 0 when the fluxes are not in πZ), see Ref. [102] for details. It is worthwhile to highlight
that a single spin-1 node may appear in the Brillouin zone without defying the fermion-doubling
theorem.

We concentrate on m = +1 and take f = f0 + p · g , so that the collision integral is

StBorn{f } + Stsk{f } = −
p · g
τ

−
êz · [p× g]

τsk
, (4.16)

here
1
τ
= 2πnimpV 2

0 ν
E4

+ 2∆2E2
+ 5∆4

8E4 ,
1
τsk

= (2π )2nimpV 3
0 ν

2∆
3(E2

−∆2)
4E5 . (4.17)

ere we used Eqs. (4.11), (4.15b) in the evaluation of Eq. (2.27) and assumed point like impurities
of strength V0 (for details see the Appendix), the density of states is denoted as ν = ν(E) =

θ (E −∆)E/(2πv2). The solution of the Boltzmann equation to leading order in external static field
leads to

g =
v2

Ep

(
1 −τ/τsk

τ/τsk 1

)
τeEδ(EF − Ep), (4.18)

o that σxy = σ int
xy + σ sk

xy with respective terms

σ int
xy = −e2

∫
p
f0Ωz = −

e2

2π h̄
∆

EF
,

σ sk
xy = −e2

∫
p
δ(Ep − EF )

v4p2

E2
p

τ 2

2τsk
= −

e2

h̄
(∆τ )(νV0)

∆2(E2
F −∆2)2

E2
F (E

4
F + 2∆2E2

F + 5∆4)
. (4.19)

In the final result we restored Planck’s constant h̄ = h/2π . The relative importance of the side-jump
contribution can be also estimated σ sk

xy /σ
sj
xy ∼ (νV0)(EFτ ). For moderately strong impurity potential

when, νV0 ∼ 1, skew scattering dominates in the metallic regime EFτ ≫ 1. Note that the flat m = 0
band does not contribute, since its Berry curvature vanishes and it moreover does not intersect the
Fermi surface.

Perhaps most notably, the skew scattering contribution to the anomalous Hall response of
pseudospin-1 fermions, Fig. 5a, results in a non-monotonic behavior and decays as ∆2/E2

F at large
Fermi energies. This should be contrasted to the more familiar behavior of ordinary spin-1/2
fermions [58], governed by Eq. (1.1) for S = 1/2 and d0(p) = 0 and d(p) = 2(vpx, vpy,∆) (this
odel has the same density of states ν = ν(E) = θ (E − ∆)E/(2πv2) as the spin-1 model). In that

case we thereby have

1
= 2πnimpV 2

0 ν
E2

+ 3∆2
,

1
= (2π )2nimpV 3

0 ν
2∆(E2

−∆2)
, (4.20)
τ 4E2 τsk 8E3

17
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Fig. 5. a Anomalous Hall conductivity of massive spin-1 fermions plotted from Eq. (4.19). The inset shows the low-energy
and structure dispersion of a single massive pseudospin-1 fermion. b Anomalous Hall effect of massive 2D Dirac fermions,
q. (4.21). The inset shows dispersion of the model.

o that respective transverse conductivity contributions are given by

σ int
xy = −

e2

2π h̄
∆

2EF
, σ sk

xy = −
e2

h̄
(∆τ )(νV0)

(E2
F −∆2)2

4E2
F (E

2
F + 3∆2)

. (4.21)

Note that, in contrast to Eq. (4.19), here the skew scattering contribution saturates at large energies.
This crucial distinction of multifold fermions as compared to ordinary spin-1/2 fermions, which
is further exemplified in Fig. 5b, is a consequence of the differences in the Pancharatnam phase,
Eq. (4.14), and ultimately a consequence of a different behavior of wave function overlaps.

5. Summary and outlook

To conclude, we have presented a systematic derivation of the Boltzmann equation for materials
with finite Berry curvature in the regime of small frequency, Eq. (2.27), and large frequency,
Eq. (2.32). Our derivation is valid up to second order in driving fields and included a careful
treatment of quantum scattering events, such as side jump, skew scattering and shift current
contributions. Our results thus serve as the foundation for the theoretical description of linear and
nonlinear transport and optics phenomena in topological quantum materials. As an application
of our theory, we have considered the anomalous Hall response in multifold fermion systems.
Specifically, we have derived the formulas for skew scattering probability, Eqs. (2.24), (4.15) which
determine the skew scattering for spin-1 and spin-3/2 multifold fermions. As a concrete illustration,
we derived the anomalous Hall response for a simple, isotropic model of gapped spin-1 fermions
in two dimensions, Eq. (4.19), see Fig. 5.

Directions of future research include further studies of inelastic skew scattering and side
jump contributions due to electron–electron interaction [111] in the hydrodynamic regime or
electron–phonon interaction [112]. It should be possible to readily incorporate those using a similar
diagrammatic technique as exposed in Fig. 3. Moreover, a careful study of the interplay of mixed
contributions of photon and impurity scattering for a concrete model is left for the future as well
as the generalization of the Boltzmann–Berry equation to non-Abelian Berry curvature. Finally, in
regard of multifold fermion systems, which are at the center of the attention for the quantized
circular photogalvanic effect, a careful investigation of photocurrent relaxation is of experimental
and theoretical interest and readily achievable within the presented formalism.
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ppendix. Collision integrals and averages

In this section of the appendix we present supplemental details regarding calculations carried
ut in Section 4.5. For the point like impurities of strength V0 and the relevant collision integrals
hat determine intrinsic and skew scattering contributions are given by

St[2]Born{f } = −2πnimpV 2
0

∫
p′
δ(Ep − Ep′ )|⟨um,p|um,p′⟩|

2
[f (p)− f (p′)], (A.1)

St[3a]sk {f } = −2πnimpV 3
0

∫
p′p′′

δ(Ep − Ep′ )δ(Ep − Ep′′ )Zpp′p′′ f (p′). (A.2)

In order to extract scattering times τ and τsk entering Eq. (4.16) we need to perform several averages
over the Fermi surface. These averages can be split in groups of scalars

⟨d̂ · d̂′⟩p̂′ =
∆2

E2 , ⟨(d̂ · d̂′)2⟩p̂′ =
E4

− 2E2∆2
+ 3∆4

2E4 , (A.3)

ectors

⟨p′(d̂ · d̂′)⟩p̂′ =
E2

−∆2

2E2 p, ⟨p′(d̂ · d̂′)2⟩p̂′ =
∆2(E2

−∆2)
E4 p, (A.4a)

and tensors

⟨p′ · g d̂ · (d̂′ × d̂′′)⟩p̂′,p̂′′ =
∆(E2

−∆2)
2E3 êz · (p× g), (A.4b)

⟨p′ · g d̂ · (d̂′ × d̂′′)(d̂ · d̂′)⟩p̂′,p̂′′ =
∆2

E2 ⟨p
′
· g d̂ · (d̂′ × d̂′′)⟩p̂′,p̂′′ , (A.4c)

⟨p′ · g d̂ · (d̂′ × d̂′′)(d̂′ · d̂′′)⟩p̂′,p̂′′ =
3∆2

− E2

2E2 ⟨p′ · g d̂ · (d̂′ × d̂′′)⟩p̂′,p̂′′ , (A.4d)

⟨p′ · g d̂ · (d̂′ × d̂′′)(d̂ · d̂′′)⟩p̂′,p̂′′ =
3∆2

− E2

2E2 ⟨p′ · g d̂ · (d̂′ × d̂′′)⟩p̂′,p̂′′ . (A.4e)
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