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ABSTRACT

We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus
guttatus from one natural population. Thousands of single nucleotide polymorphisms
(SNPs) are implicated as transcription regulators, but there is a striking difference in the
Allele Frequency Spectrum (AFS) of cis-acting and trans-acting mutations. Cis-SNPs
have intermediate frequencies (consistent with balancing selection) while trans-SNPs
exhibit a rare-alleles model (consistent with purifying selection). This pattern only
becomes clear when transcript variation is normalized on a gene-to-gene basis. If a
global normalization is applied, as is typically in RNAseq experiments, asymmetric
transcript distributions combined with “rarity disequilibrium” produce a super-abundance
of false positives for trans-acting SNPs. To explore the cause of purifying selection on
trans-acting mutations, we identified gene expression modules as sets of co-expressed
genes. The extent to which trans-acting mutations influence modules is a strong
predictor of allele frequency. Mutations altering expression of genes with high
‘connectedness” (those that are highly predictive of the representative module
expression value) have the lowest allele frequency. The expression modules can also
predict whole-plant traits such as flower size. We find that a substantial portion of the
genetic (co)variance among traits can be described as an emergent property of genetic
effects on expression modules.

INTRODUCTION

Genetically controlled gene expression variation is prevalent within and between
species, across different tissues, environments, and treatment contexts (Harding et al.
1989, Whitehead and Crawford 2006, McManus et al. 2010, Meiklejohn et al. 2014,
Signor and Nuzhdin 2018). Changes in gene expression can facilitate divergence
between species (Johnson and Porter 2000, Tulchinsky et al. 2014, Mack and Nachman
2017, McGirr and Martin 2020), and provide a mechanism for a population to rapidly
adapt to a new environment (Morris et al. 2014, Ghalambor et al. 2015, Campbell-
Staton et al. 2017, Margres et al. 2017, Mack et al. 2018, Hamann et al. 2020).
Standing genetic variation and plasticity in gene expression can buffer a population
against environmental fluctuations (Podrabsky and Somero 2004, Stern et al. 2007,
Acar et al. 2008, Lopez-Maury et al. 2008). While much has been learned about the
regulation of particular genes, genome-wide patterns in the evolutionary dynamics of
gene expression are just beginning to be explored (e.g. Josephs et al. 2020). It also
remains unclear how gene expression, as a molecular phenotype, might mediate the
genetic underpinnings of quantitative trait variation, and ultimately fitness.

Evolutionary dynamics of transcriptional effectors

Mutations can alter gene expression in many ways, and we expect selection to act
differently on different types of variants (Lawrence et al. 2016, Bewick and Schmitz
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2017, Duren et al. 2017). Gene expression can be affected by mutations acting either in
cis or in trans. Cis-acting variants affect a closely linked gene directly, perhaps by
altering sequences normally bound by transcription factors or other regulatory
machinery. In contrast, trans-acting regulatory variants change the cellular environment
in which transcription happens, say by altering diffusible products like the transcription
factors themselves (Wittkopp et al 2004, Emerson and Li 2010).

Natural selection could differ systematically between cis- and trans-acting variants for
several reasons. First, the mutational target for trans-acting effectors of a gene could
be a substantial fraction of the genome (Boyle et al. 2017) while a more limited set of
sites are available for cis-acting mutations (Gruber et al. 2012, Metzger et al. 2016).
Second, trans-acting variants have the potential to affect multiple genes, and may thus
have negative consequences on finely-tuned pathways (Stern and Orgogozo 2008; but
see Hoekstra and Coyne, 2007). If trans-mutations have opposing pleiotropic effects on
many genes (antagonism), they may still increase in frequency in a conditional manner
(Hall et al. 2010, Anderson et al. 2011). Third, if a trans-acting variant with weakly
deleterious effects on the expression of one or more target genes increases
substantially in frequency (due to drift or selection), cis-variants specific to each affected
gene might then act as a buffer, leading to positive directional selection on cis-
compensatory mutations. This often occurs, for example, with pleiotropic mutations
associated with antibiotic resistance (Maisnier-Patin and Andersson 2004, Brandis et al.
2012) and compensatory pairs of cis- and trans-effectors have been documented in
several systems (Coolon et al. 2014, Wang et al. 2015, Fear et al. 2016, Mack et al.
2016, Verta et al. 2016, Metzger et al. 2017). These theories generally suggest that
trans-acting variants should be under stronger negative selection than cis-acting
variants based on the premise that gene expression should usually experience strong
stabilizing selection (Denver et al. 2005, Rifkin et al. 2005, Whitehead and Crawford
2006, Hodgins-Davis et al. 2015). If this is correct, then any mutation with broad effects
on expression, regardless of cis- or trans-effect, will more likely be deleterious, perhaps
through cascading effects on connected pathways or networks (Fisher 1930).

Broad patterns of selection can be inferred from the allele frequency spectrum (AFS) of
cis- and trans-acting variants. When compared to the neutral expectation, an excess of
intermediate frequency variants suggests balancing selection while an excess of rare
variants suggests purifying selection (Tajima, 1989). Demographic events, such as
population expansions or contractions, can perturb the AFS away from the neutral
expectation (Hartl and Clark, 1997). However, since demographic effects are genome-
wide, we can make inferences about selection by comparing the AFS for a particular
class of polymorphism (e.g. cis-effectors of gene expression) to that of the entire
genome. Of course, this is just a first step; inferences about selection require
corroboration from multiple lines of evidence (Beaumont and Balding 2004, Bigham et
al. 2010). In this study, we find an AFS consistent with purifying selection for trans-
acting expression variants and corroborate this pattern by showing that the skew
towards extreme allele frequencies is greatest at loci with the broadest effects on
expression. In contrast, cis-acting SNPs exhibit an AFS suggesting balancing selection.
The processes most likely to generate balancing selection on cis-SNPs depend on the
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specific ways that these mutations affect whole organism phenotypes, and also on the
complicated and variable mapping from phenotype to fitness in nature.

Transcriptional mutations generating genetic (co)variation in traits

How important are transcriptional regulators in modifying fitness-related traits? Case
studies of specific genes with known mutant phenotypes provide many examples where
gene expression influences fitness relevant traits of plants (Streisfeld and Rausher
2009, Sobel and Streisfeld 2013, Ning et al. 2017, Kremling et al. 2018, Alonge et al.
2020). The quantitative importance of transcriptional mutations relative to those that
effect enzymatic or structural protein function remains a point of contention (Hoekstra
and Coyne 2007, Stern and Orgogozo 2008), but a steady increase of evidence from
human eQTL/eGWAS research suggests a predominant role for gene expression
variation in generating quantitative trait variation (Nicolae et al. 2010, Maurano et al.
2012, Torres et al. 2014, Farh et al. 2015, Boyle et al. 2017). As a first step to
understanding the relationships between mutations affecting transcription, quantitative
trait variation, and fitness, we here use observed gene expression variation to predict
variation and co-variation among a set of quantitative traits. These traits correlate with
field fithess components in yellow monkeyflower (Mimulus guttatus) and were previously
analyzed as part of a GWAS that predicted trait and fithess measures directly from
SNPs (Troth et al 2018).

In this study, we associate SNPs segregating within inbred lines derived from the Iron
Mountain population with gene expression variation in flower buds. Allele frequencies in
the inbred lines accurately represent those in the natural population (Troth et al. 2018).
We first document strikingly different patterns of apparent selection from the AFS of cis-
and trans-acting regulatory SNPs. We then show that modules of co-expressed genes
predict the trait means of the inbred lines, despite that we measured gene expression
and traits on different plants grown in different places. The stability of the relationship
between transcriptome and trait is surprising, given the frequently cited “noisiness” of
transcriptome data (Arias and Hayward 2006, Raj and Oudenaarden 2008). Finally, we
demonstrate that correlations, including tradeoffs between fitness-related traits can be
predicted from gene expression variation.

METHODS

Study system- We used randomly derived inbred lines of the yellow monkeyflower,
Mimulus guttatus (syn Erythranthe guttata, Phrymaceae) from the Iron Mountain (IM)
population in the Cascade Mountains of Oregon (44.402217N, 122.153317W; Willis
1999, Kelly 2003). This population is predominantly outcrossing with little internal
population structure (Sweigart et al. 1999, Willis 1993). Due to its annual/winter annual
lifespan and short growing season, the IM population experiences a fitness tradeoff
caused by variation in flower size and life-history phenotypes (Mojica et al. 2012). In
2018, Troth et al. sequenced whole genomes of 187 IM inbred lines and phenotyped
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them for 13 flower size and developmental timing traits known to influence fitness in the
field.

RNAseq- We grew plants from 151 of the genome-sequenced inbred lines in the
University of Kansas greenhouse under standard conditions (Monnahan and Kelly
2015) in three different cohorts. For each cohort, we grew more plants than needed for
tissue collection and randomly selected plants for sampling soon after germination. We
chose a recognizable and consistent stage at which to collect tissue, which we call the
late floral bud stage. These are unopened flower buds (approximately 2-6 mm in length)
on the first flowering node (so the corolla is presumably not fully expanded), but are
advanced enough that buds on the second flowering node are visible. We chose bud
tissue to enrich for transcripts related to flower size. When beginning the first cohort, it
was unclear if this tissue type/amount would yield enough RNA for adequate
sequencing. We thus pooled bud tissue from three plants of the same line in each tube
prior to RNA extraction. Biological replicates were then multiple tubes of pooled tissue,
all from the same line. Pooling was done randomly with regard to flowering time (ie. if 6
plants per line were sequenced, 3 in each of 2 tubes, one tube was not all three earliest
flowering plants). This process was not repeated in cohorts 2 and 3, for which 1-3
biological replicates (plants) of each line were collected and sequenced separately. We
collected tissue into liquid nitrogen at the same time of day (with regard to both actual
time and hours after greenhouse lights turn on) within a two-hour window that was
consistent between cohorts.

We ground the collected tissue finely with a plastic micropestle and extracted RNA
using the Qiagen RNeasy Plant Mini Kit (Hilden, Germany). We generated sequencing
libraries using the QuantSeq 3'mRNA-Seq Library Prep Kit for Illumina (Lexogen,
Vienna, Austria) per protocol, modified to perform half reactions, and we sequenced the
libraries using NextSeq HO-SR75bp (lllumina, San Diego CA, USA) at the University of
Kansas Genome Sequencing Core. Each cohort was sequenced separately with a
maximum of 96 samples per flow cell (a total of 4 flow cells and 281 individual
samples).

To calculate read counts, we implemented the programs in Lexogen’s BlueBee pipeline.
First, we trimmed reads with bbduk (k=13, ktrim=r, useshortkmers=t, mink=5, qtrim=r,
trimq=10, minlength=20) from BBTools 38.86 (Bushnell 2014) and aligned reads to the
M. guttatus V2.0 reference genome (Phytozome, Hellsten et al., 2013) with STAR
2.5.0a (Dobin et al. 2013) using Lexogen’s recommended parameters
(outFilterMultimapNmax 20, alignSJoverhangMin 8, alignSJDBoverhangMin 1,
outFilterMismatchNmax 999, outFilterMismatchNoverLmax 0.1, alignintronMin 20,
alignintronMax 1000000, alignMatesGapMax 1000000). Finally, we counted transcript
copies using htseg-count 0.11.2 and the genome annotation (Anders et al. 2014). The
output is a table of read counts for each transcript. We then removed 5 samples that
had fewer than 250k mapped reads (mean for remaining samples of 3,877,524 mapped
reads) and normalized the counts for each sample (to account for variable library quality
and sequencing depth) using the estimateSizeFactors function in DESeqg2 1.28.1 (Love
et al. 2014).



158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

Predicting transcript levels from SNPs- Across all samples, 28,615 of 33,573 total
annotated transcripts had at least one mapped read. We kept each gene isoform as a
separate transcript. We first filtered out any transcripts which had mapped reads in
fewer than 5% of samples, and which did not have 10 or more mapped reads in at least
one sample. This left 20,463 transcripts for association mapping. The vast majority of
genes (19,721 out of 20,463), had only one isoform with mapped reads. To account for
the effect of cohort, we fit a linear model using Im in base R (R Core Team, 2013) to
each transcript with cohort as a categorical predictor and then subtracted the estimated
effect from each read count. We then transformed each transcript’s expression in each
sample by two methods: 1) log(expression + 1), and 2) Box-Cox transformation (Box
and Cox, 1964) using the boxcox() function in the R package EnvStats 2.3.1 with a
range for A between -5 and 5 (Millard, 2014). Because some counts were negative after
factoring out the effect of cohort, we shifted the distributions of all gene counts such that
the minimum value was 0 for both types of transformation. Additionally, because Box-
Cox transformation cannot accommodate zeros, we added a small value to each count
that was equal to 10% of the minimum difference between any two samples (such that
the difference between that value and zero was essentially undetectable in the original
counts). Finally, we averaged every gene’s expression across plants with each inbred
line.

We obtained a filtered set of polymorphisms of the sequenced lines by starting with
sites called by Troth et al. (2018). We kept only biallelic SNPs with a minor allele
frequency above 2.5% that were called in at least half of the sequenced lines. We then
pruned these sites for local LD using PLINK 1.90b3.38 (Purcell et al. 2007) with a
window size of 50 SNPs, a step size of 10 SNPs, and an R? threshold of 0.9. This left
2,952,894 SNPs for downstream analysis. We performed the GWAS using GEMMA
0.98.1 (Zhou and Stephens 2014) by first constructing a centered relatedness matrix
using all filtered, but unpruned sites. Finally, we used the univariate linear mixed model
(-Imm) in GEMMA, which in the case of no covariates takes the form: expression = SNP
genotype effect + random effect of relatedness + error. As part of the model, GEMMA
outputs the ‘chip heritability’ for each gene; an estimate of the proportion of transcription
variation that can be explained by all genetic causes. We used p-values taken from the
likelihood ratio test to find associations between the levels of 20,463 transcripts and
each of the 2,953,894 SNPs.

We classified the associations as cis-acting if the site was within 25kb of any part of the
transcribed gene and trans-acting otherwise. This distance-based approach for calling
cis-effectors can be undermined by long-distance LD. A physically distant SNP (which
we would classify as trans) might be associated with expression simply because it is in
LD with a cis-acting SNP. For this reason, we excluded data from the meiotic drive
locus on chromosome 11 (a known region of extended LD, Fishman and Willis 2005,
Fishman and Saunders 2008, Fishman and Kelly 2015) from genome-wide summaries.
Overall, the sequenced lines from IM show a rapid decay of LD as inter-SNP distances
exceed 10kb (Puzey et al. 2017) which makes our 25kb cutoff conservative. Cis- and
trans-acting mutations can be distinguished more directly using allele-specific
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expression data (Wittkopp et al. 2004, Springer and Stupar 2007, Tirosh et al. 2009, Shi
et al. 2012, Osada et al. 2017, Signor and Nuzhdin 2018), but only in heterozygous
individuals and here we are measuring expression in highly homozygous inbred lines.

To interpret our estimates for SNP effects on transcription, we permuted the vector of
gene expression data (all genes) against line genotypes 100 times. For each replicate,
we applied the GEMMA -Imm for all cis-tests (all cases where a SNP was within 25kb of
a gene). Across permutation replicates, we obtained ca. 1.2 billion tests to relate SNP
allele frequency to significance levels under the null hypothesis of no SNP effect on
expression (as in Josephs et al. 2015).

We next performed simulations allowing SNP effects on gene expression. As
previously, we first permuted expression values against genotypes. This simulates the
‘environmental variance” in expression. We then added 2 * f to all lines carrying the
homozygous alternate (non-reference) genotype, where the genotypic effect () was
determined separately for each gene. Given the large number of lines in our panel, the
variance in expression attributable to SNP genotype, Vs, is:

Vinp = 4 q(1 — q)B? (Equation 1)

where q is the frequency of the reference base in the line panel. Based on results from
our significant cis-effect tests (described below), we set Vg, = Vyesiquar for the first set
of simulations. In other words, SNP explains half the variance in expression. We
calibrate the simulations with SNP effects in two different ways: 1) We consider the
case where the proportion of variance due to SNP is held constant at 0.5.

This implies:

_ Vresidual H
B = Hatlea) (Equation 2)

Since all variation is environmental after permutation, V,.g;quq: 1S Simply the variance of
expression in the gene before adding effects to genotypes. 2) We set V;,,, for each

gene assuming that q = 0.5. This implies f = |/ Vyesiquai- FoOr this case, Vs, obtained
after adding genotypic effects will vary with q (and be lower for SNPs with lower minor
allele frequencies). These simulation schemes were considered by Tung et al (2015) in
analyzing expression data, although these authors simulated the residual variance from
a normal distribution while we use permutation of the observed expression levels. For
both schemes, we performed tests on a random selection of 20 of the cis-SNPs for each
gene with a distinct permutation of expression values versus line for each test.

Predicting phenotypes from gene coexpression modules- To identify sets of
coexpressed genes, we used WGCNA 1.69 in R (Langfelder and Horvath 2008) using
the sample normalized and cohort factored, but untransformed, counts as input with a
power of 3, max block size of 21000, minimum module size of 30, dynamic tree cut
method, correlation using dissimilarity, and merge cut height of 0.25. During co-
expression analysis, one sample was removed as an outlier. WGCNA identified 37
modules of coexpressed transcripts (Table S1, Fig S1). Next, we extracted the line
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means for 13 traits from Troth et al. (2018) for the 151 lines used in this study
(germination date, days to flower, corolla width, corolla length, floral tube length, throat
width, stigma length, anther length, height at flowering, first flowering node, width of
widest leaf, and the first two principal components calculated from all floral dimensions.
To look for associations between gene expression modules and measured traits, we
Box-Cox transformed each module’s eigen expression value (which is the first principal
component of a PCA for expression of all member genes in a module), as well as every
trait and fit a linear model (all in R, R Core Team, 2013). We used the eigen gene
expression for each module as a predictor in a simple regression, as well as fitting the
multiple regression for each trait using all 37 modules simultaneously. We also used the
program stepAlC from the R package MASS 7.3-52 (Venables and Ripley 2013) to
choose a lowest AIC (Akaike Information Criterion) regression model including some but
not all modules as predictors.

For each best-fit multiple regression model, we used permutation to test for significance.
We treated the set of traits as one block and the set of modules as another block and
permuted which line had which of each block. This preserved the correlations between
modules and between traits, but changed which sets of trait values and module values
went together. To elaborate, imagine a line has a set of trait values X and module
values K, and another line has a set of trait values Y and module values L. Then, a
permuted data set might combine traits X with modules L and traits Y with modules K.
This is referred to as Permutation 1 in the Results. We next used the coefficients from
the best-fit model to predict trait variances and covariances. For each trait, we
estimated the effect of each module included in the best fit model from a multiple linear
regression and constructed an equation to predict trait value for each line:

YjZ, =b+ Zimijxiz (Equation 3)

where Y;, is the predicted value of trait j for line z, m;; is the estimated effect of module i

on trait j, x;, is the eigen expression of line z for module i, and the sum is taken over all
modules in the model. The covariance of predicted values for traits j and k is:

Cov(¥},Yi) = —=%,(%, = ;) * (g’ — 1) (Equation 4)

where p; is the mean of trait j, u is the mean of trait k, and the sum is taken over all n
lines. Calculations were done using a custom python script (Supplemental File 1). We
permuted traits against module values for testing. For each permuted set, we again
found a best-fit model with a subset of gene expression modules and asked how much
trait covariation we could predict (using the above method) to generate a distribution.
We determined if the amount of trait covariation explained by the real gene expression
data, as represented by modules, was significant using alpha levels calculated from the
permuted distribution.

For each trait, we randomly sorted genes into modules with the same number of genes,
calculated the eigen gene expression value (PC1) for each module for each line, Box-
Cox transformed the module eigenvalues, and then included them in multiple
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regression. In each case, we fit two models, one with all permuted modules and one
with the stepAlC chosen set. We permuted the module composition 1000 times to
generate distributions of R? for each trait. Reported p-values for Permutation 2 in the
Results are calculated from those distributions.

RESULTS
Genetic effects on transcription levels of individual genes

The number of detected associations between genotype and expression, as well as the
putative type of regulatory association (cis vs. trans), are contingent on how we
transform transcript counts. Before testing for genetic effects on gene expression, we
transformed expression read count data using two methods, log(count + 1) and Box-
Cox with A estimated for each gene separately. Using a rounded p-value cutoff of 1e-12
(Bonferroni = 8.27e-13), we identified 106,585 significant SNP/transcript associations
using log(counts+1) transformed counts (10,087 cis associations and 96,498 trans, Fig
1A). Using Box-Cox transformed counts, over 90% of the significant trans-effects
evaporate and we find only 8,088 cis and 7,685 trans associations (Fig 1B).

A careful inspection of the differences between the two methods indicates that the Box-
Cox results are more reliable. With log(counts+1) transformation, individual genes often
have skewed distributions with a small number of lines exhibiting atypically high or low
expression (Fig1C, Fig S2). The few outlier lines with extreme expression will harbor the
same minor (and in most cases very rare) allele at many loci. In fact, the majority of the
96,498 trans-regulatory associations (Fig 1A) involve SNPs with a minor allele
frequency (MAF) between 2.5-5% (Fig 2A). When unlinked but rare alleles occur
together in the same lines, LD is high owing to “rarity disequilibrium” (Houle and
Marquez 2015, Lappalainen et al. 2013). If those same lines have extreme expression,
all of the linked SNPs will show a strong association with expression.

The Box-Cox transformation provides a scale adjustment specific to each gene. In
transcripts with the largest number of genetic associations in the log(counts+1) analysis,
Box-Cox more completely “normalizes” expression reducing the effect of outliers (Fig
1C-D, Fig S2). Estimates from the Box-Cox are less affected by the pull of extreme
values and we will subsequently limit attention to these tests. The mean estimated
heritability of gene expression was 0.31 (see Fig S3 for the full distribution). For
genome-wide analyses, we removed SNPs on chromosome 11 because the large block
of apparent trans-effects on chromosome 11 are within the meiotic drive locus (Fishman
and Willis 2005, Fishman and Saunders 2008, Fishman and Kelly 2015). The Drive
allele is essentially a single DNA sequence over >5Mb of DNA segregating in the inbred
lines at ~30%. As a consequence, it is impossible to distinguish trans-acting SNPs from
those that are simply in linkage disequilibrium with cis-acting SNPs. This leaves 7,832
cis and 4,626 trans associations.
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SNPs with significant cis-effects explain between 26-74% of the total variance in
expression of a gene (Table S2). Significant trans-effectors have a larger average
effect size than cis-SNPs (cis=0.54, trans=1.16, F-value = 9.07, p-value =2.6e-3), and
effect size is negatively correlated with MAF (both log-transformed; estimated effect of
cis-SNP effect size on MAF =-0.029, t = -8.347, p < 2e-16; estimated effect of trans-
SNP effect size on MAF = -0.025, t = -4.351, p = 1.39e-05; Fig S4). Since we find trans-
acting SNPs have a distribution skewed toward low frequency, it follows that such
mutations would also have larger effect sizes, as has been reported in other systems
(Josephs et al. 2020).

Across the genome, the distribution of minor allele frequency differs greatly between
cis- and trans-acting mutations (Fig 2A). We find many rare alleles responsible for trans-
regulatory effects on gene expression, and an increasing number of cis effects at higher
minor allele frequency (MAF). We find a mean MAF for cis and trans associations of
0.342 and 0.215, respectively (F-value = 2197, p-value < 2.2e-16). The MAF
distributions for cis- and trans-acting sites are both different from the MAF distribution of
the entire genome (Fig S5, two-sample Kolmogorov-Smirnov tests: cis-to-all
comparison: D = 0.51866, p < 2.2e-16, trans-to-all comparison: D = 0.1661, p < 2.2e-
16), and are different from each other (D = 0.43651, p < 2.2e-16). The difference in
MAF could be due to differential power to detect cis- vs. trans-acting loci with different
effect sizes, since we found larger effect sizes for trans effectors. To test whether
differences in effect size were driving the MAF pattern, we took only the top quartile of
effect sizes (after normalizing by mean expression level) in each regulatory class. The
pattern remains the same (Fig 2B) — an excess of common cis-acting alleles and an
excess of rare trans-acting alleles. Finally, we established that the pattern is insensitive
to our distance cutoff (25kb) for trans-effectors. If we limit trans to SNPs that affect
expression on different chromosomes (Fig S6), the cis/trans difference remains.

Permutation tests indicated that our significance threshold for cis- tests is quite
stringent. Across 100 whole genome permutations, only three of out of 1.2 billion SNP
tests passed our p < 10712 threshold (Table S3A). Following Josephs et al. (2015), we
considered significance levels across allele frequency categories of SNPs to establish a
null distribution for the AFS of tests. For a given minor allele frequency, the fraction of
tests that yield p-values less than a specified threshold (say 10-°) are reported in Table
S3A. Because permutation reiterates the null hypothesis, we expect the fraction to
equal the threshold, e.g. about 1 test in a million would have p < 10-¢. In fact, we find
that tests on intermediate allele frequency SNPs (minor allele > 20%) tend to be
conservative (low p-values under-represented) while rare allele SNPs (minor allele <
10%) tend to be anti-conservative. These results imply a pull towards more minor
frequencies in the null distribution for AFS. However, it is noteworthy that an extremely
small number of tests approach our actual threshold.

The simulations allowing SNP effects on expression routinely yield significant results.
The fraction of tests passing various thresholds for our two simulation schemes
(constant V;,,, and constant f) are reported in Table S3B,C. With V,,,, held constant

(effect size varies with allele frequency), about 90% of tests pass our p < 10-'? threshold
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regardless of allele frequency. Essentially all tests pass for lower thresholds. With fixed
B (where the proportion of variance explained by a SNP varies with AF), there is lower
power for rare alleles than intermediate frequency SNPs, which is expected given that
rare alleles generate less variation. Most relevant to the results, we consider the
relative proportion of significant tests that fall into each allele frequency class for each
significance level, and how this compares to the observed AFS of significant tests. This
is depicted for three thresholds in Figure 3. The AFS of significant tests with V;,,, held
constant is unaffected by threshold and matches the AFS of all tested SNPs. With 1,

constant, allele frequency has no effect on ascertainment. With fixed £, a smaller
fraction of tests are significant for rare alleles (contrast orange to grey bars in Fig 3).
However, this skew towards intermediacy is not sufficient to explain the data — the AFS
of real tests is substantially more intermediate than predicted by ascertainment with
fixed B (contrast orange to blue bars) at all significance thresholds.

We find no evidence for “trans-eQTL hotspots”, single SNPs affecting many genes,
similar to Populus tremula winter buds (Mahler et al. 2017). In fact, there are more
genes with transcript levels that are affected by many trans-SNPs than SNPs with more
than 2 trans-associations (Fig S7). The three genes with the most trans-acting SNPs
are Migut.D00926 (160 SNPs) annotated as a jasmonate ZIM domain-containing protein
(JAZ); Migut.M00568 (114 SNPs) annotated as a chlorophyll A/B binding protein; and
NO01403 (105 SNPs) annotated as an auxin-responsive F-box transport inhibitor
response protein. For genes M00568 and N01403, the trans-associations are
concentrated on the same chromosome as the gene (Fig 1B). There is an apparent
association between the Chr11 Drive Locus and one gene on chromosome 8 (Fig 1A).
This gene (Migut.H01175) has three putative homologs in the Mimulus genome, only
one of which was expressed in our samples (Migut.K01148). We found that all of our
samples had high expression for only one of the two genes (Fig S8), and low to no
expression for the other, which could indicate mis-assembly. Indeed, when we mapped
reads from two samples with expression of either gene to the newer reference genome
build (Mimulus guttatus TOL v5.0, DOE-JGI, http://phytozome.jgi.doe.gov/) they all
mapped to the same region on chromosome 11, which supports that Migut.HO1175 is a
mis-assembled isoform of Migut.K01148. Finally, the number of cis-associations for a
gene is positively correlated with gene size (effect estimate for log(number of
associations+1) ~ log(gene length) = 0.1797, t-value = 6.04, p = 1.87¢e-9 Fig S9).

Rare allele load refers to the proportion of segregating loci at which an individual carries
the minor allele, if the population frequency of that allele is very low. It is similar to the
concept of deleterious mutation load, but assumes nothing about the fitness effect of
individual rare alleles. Instead, it is usually used to test whether or not there is a
cumulative fitness effect of harboring many rare variants. This load predicts
dysregulation of gene expression in maize (Kremling et al. 2018) and the severity of
inbreeding depression in M. guttatus (Brown and Kelly 2020). We tested whether lines
with an excess of rare alleles exhibit differing patterns of expression, but found no
correlation between load and the number of genes showing extreme expression
(plus/minus two standard deviations from the mean, Fig S10). We also find no
clustering of lines by rare allele load in gene expression principal component (PC)
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space (Fig S11). The many associations between gene expression and rare variants
suggested by Fig 1A (and by the MAF of associations removed by Box-Cox
transformation) is thus likely not a real cumulative effect of many rare alleles generating
extreme gene expression genome-wide.

Construction of gene co-expression networks

We next sought to establish sets of genes that co-vary in expression across inbred
lines. Using the cohort and individual normalized gene expression counts, WGCNA
identified 37 modules of co-expressed transcripts. Each module includes between 37
and 5767 genes (mean 553, median 231) and each transcript (gene) belongs to only
one module (Table S1, Fig S1). WGCNA groups genes with correlated expression and
further collapses groups such that gene expression between modules should not be
highly correlated (R? > 0.8). However, eigengene expression (principal component 1 for
the PCA of all genes in a module) of a few pairs of modules remain moderately
correlated (20 of 666 pairwise comparisons with 0.74 > R*2 > 0.5) (Fig S12).

To determine if the apparent purifying selection on trans-effecting sites (Fig 2A) is due
to their impact on regulatory networks, we calculated the “connectedness” of each gene
by correlating the gene’s expression with the eigengene expression value of its module.
This measures how predictive a gene’s expression is of the expression of all genes in
the module. Note that we are not calculating the number of edges a gene hasin a
regulatory or interaction network, which is sometimes called connectivity. Hence, the
use of a nonstandard term. The distribution of correlation coefficients (R? with module
PC1) is highly right-skewed (Fig 4A). For this reason, we grouped genes by
“connectedness” quartile and then calculated the average MAF of sites affecting each
gene either in cis or in trans. We find a consistent difference in MAF of cis- and trans-
effectors, with trans having lower MAF, especially in the highest quartile for
“connectedness,” for which MAF is significantly lower than in all other categories (effect
estimate for quartile 4 on trans-MAF = -0.143, p = 1.53e-14, effect estimate for quartile
4 on cis-MAF = -0.022, p = 0.00872) (Fig 4B). We did not find enrichment for any GO
terms in the set of genes in connectedness quartile 4, using the closest Arabidopsis
thaliana putative homologs.

Predicting phenotypes from expression

We next tested whether floral bud gene expression affects quantitative traits (Line
means from Troth et al. 2018). We use modules of co-expressed genes as predictors of
phenotype because this provides a tractable way to incorporate the whole
transcriptome. We used multiple linear regression including all 37 modules as predictors
of trait, and then chose the AIC-best model for each trait. This selected model included
from 6 (widest leaf) to 20 (flower size PC1) of the 37 total expression modules (Table 1).
Parameter estimates for the best-fit models, including effect sizes for each included
module, are reported in Table S4. The best-fitting model for each trait explained from
23% to 47% of trait variation, with the strongest prediction being for overall flower size
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(PC1in Table 1). To establish statistical significance for prediction of trait variation, we
permuted the data in two ways:

Permutation 1: Does gene expression predict trait variation? To test the hypothesis that
a model using gene expression explains no more trait variation than by chance, we
permuted modules by line. Correlations among traits and among modules were
preserved (see methods), but randomly associated with each other across lines. This
tests whether the transcriptome (as collapsed into coexpression modules) is a
significant predictor of traits in a linear model. Using this method, trait variation
predicted by the real gene expression modules is highly significant (p < 0.01) for 7 of 8
flower-size measurements (except flower size PC2), and marginally significant (0.01 < p
< 0.05) for height and node (Table 1). These 9 traits are significantly correlated with
each other, except for throat width with node (Fig 5, Table S5).

Permutation 2: Do gene co-expression modules better predict traits than random groups
of genes? The significant prediction of traits by modules does not imply that modules
are necessarily the best summary of gene expression for trait prediction. In order to test
the hypothesis that the predicted trait variation is just a function of including the whole
transcriptome (by creating groups of genes as predictors), we permuted module
membership by shuffling genes into random groups of the same size as the real
modules. These groups contain the same amount of information in terms of fraction of
transcriptome included, but eliminate clustering of genes based on co-expression that
defines the real modules. Essentially, we are asking if co-expression networks are a
better way of decreasing parameter space than grouping genes randomly when the goal
is to predicts trait values. By permuting gene module membership, we find that only 4
traits (corolla width and length, anther length, and flower size PC1) are significantly
better predicted by co-expression modules than by random assortment of genes (Table
1). For all other traits, the amount of trait variation explained is attributable to the
inclusion of the whole transcriptome, not variation in co-expressed groups of genes.
However, while most traits are not significantly better predicted by real modules than
scrambled sets of genes, real modules better predict traits than the average permuted
data set for all but four traits (days to flower, node, widest leaf, and flower size PC2).
Quantiles for the distribution of permuted R? for both permutations are presented in
Table S6).

Overlapping sets of gene expression modules are included in the best-fit model for the
four traits where expression modules are significant by both permutation tests (corolla
width and length, anther length, and flower size PC1). All four are significantly predicted
(in their own best-fit regression models) by 14 common modules. These traits are all
positively correlated (Fig 5). The 14 modules are not correlated (Fig S12), but they
affect all 4 traits in the same direction. As a consequence, trait correlations can emerge
from the joint effects of uncorrelated modules.

Prior studies indicate that tradeoffs between fitness components (and associated traits)
are central to the maintenance of variation in this population (Mojica and Kelly 2010,
Scoville et al. 2011, Mojica et al. 2012, Monnahan and Kelly 2015, Monnahan and Kelly
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2017, Brown and Kelly 2018). For this reason, we estimated the extent to which gene
expression modules generate trait covariances. Among pairwise comparisons between
the 9 traits that are significantly predicted by gene expression (Table 1 column 3, and
see Permutation 1 above), 35 of 36 pairs are significantly correlated (R? between 0.07-
0.91, p < 0.05 for all but node by throat width). We used estimates for the effect of each
gene expression module on each trait from the best-fit multiple linear model (Table 1,
column 1) to predict trait covariances using equations 1-2. If a module affects two traits,
some fraction of the covariance between the traits can be attributed to the shared effect
of that module. We find that 26-54% of the covariance between traits is attributable to
this module-predicted covariance (35 pairwise comparisons). 33 of 36 covariances are
significantly predicted by gene expression modules (Same permuted datasets as above,
see equations 1 and 2 in Methods, p < 0.05, Fig 5 upper triangle). Modules are most
strongly predictive of trait covariances among the four traits that are better predicted by
modules than by the randomly grouped whole transcriptome (corolla width, corolla
length, stigma length, anther length, and flower size PC1, see Table 1 column 4).

A large fraction of module variation is genetic. For each individual, we calculated the
eigen expression (PC1) for each module and tested for an effect of inbred line using an
ANOVA. Line explains 57-91% of variance in gene module expression (Table S7). Of
the 37 modules, 29 are significantly affected by line (p < 0.05). There is no correlation
between the estimated genetic control of a module and the number of traits for which a
module is a significant predictor. However, all modules that significantly predict at least
half of our measured traits (save one, “brown”) are significantly affected by genotype (p
from 0.046 to 8.18e-15, F from 1.34 to 4.04). That is to say, modules that significantly
predict many traits exhibit genetic variation among lines.

DISCUSSION

Natural selection on regulatory variants- Using a collection of sequenced inbred lines
derived from a single natural population of yellow monkeyflower (Mimulus guttatus), we
have dissected the genetic variation in the floral bud transcriptome. We found 12,458
SNPs with genome-wide significant associations with expression, 62% of which act in
cis. Striking differences in the allele frequency spectrum (AFS) suggest differing
selection regimes on cis- and trans-acting regulatory SNPs. Sites proximal to the
affected gene are enriched for intermediate frequency variants. SNPs distant from
target genes are enriched for rare variants. Hodgins-Davis et al. (2015) argue that gene
expression should evolve according to a “house of cards” model, characterized by few
mutations with large effects and moderate stabilizing selection (as opposed to a
Gaussian model of evolution with many mutations of small effect and weak selection).
Stabilizing selection on a quantitative trait with a fixed optimum predicts that minor
alleles should be less common than under neutral evolution. Trans-acting mutations are
more likely to be deleterious than cis-acting mutations if they have more pronounced
effects (see introduction). The results of this study suggest that different selective
pressures operate on cis and trans variation, consistent with previous work in a natural
population of Capsella grandiflora (Josephs et al. 2020). The distribution of MAF for
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trans-effecting SNPs in Capsella was similar to the Mimulus estimate (Fig 2). However,
Capsella exhibits a nearly uniform distribution of MAF for cis-SNPs, while there is a
definite inflation of intermediate frequency SNPs in Mimulus. The skew of cis-acting
SNPs towards intermediate frequency, relative not only to trans-acting but also the
genome as a whole, suggests balancing selection.

Ascertainment is a central concern for inference in QTL and association mapping
studies (Beavis 1994). For loci with no effect on expression, our permutation study
indicates that rare-allele SNPs are more likely to yield very low p-values than
intermediate frequency SNPs. Thus, false positives are more likely to come from rare
alleles than common, although permutation almost never produced p-values that pass
the thresholds imposed on the real data (Table S3A). Considering SNPs with effects on
expression, ascertainment depends on how we measure the ‘importance’ of a SNP. In
simulated data where SNPs explain the same amount of expression variation as
observed in the real data (constant I4,,,,), we find no effect of allele frequency on the

probability that a SNP is detected (Fig 3, gray bars). In contrast, if we hold the effect of
alleles constant (constant g), then V,,,, is lower with extreme than intermediate allele
frequencies. For fixed g, the simulations indicate that a SNP with equally frequent
alleles (q = 0.5) is very likely to prove significant (90% of cases) while the detection
probability falls to below 25% if g < 0.15 (Table S3C). However, this sieve does not
explain the intermediacy of q for significant cis-SNPs in the data. First, the number of
significant tests in the highest MAF categories significantly exceed the predicted
number under the constant g simulations (Fig 3C). Second, the constant § simulations
predict that tests on SNPs with q<<0.5 will fill in’ the lower portion of the distribution
when the significance threshold is reduced (Orange bars in Fig 3A,B). In other words,
SNPs that do not pass the stringent 10-'2 threshold simply because the minor allele is
present in fewer lines should still routinely yield p < 10° or p < 10. The real data
provide no indication of these “almost significant” SNPs in the range if 0.05 < g < 0.25.
The distribution is skewed intermediate across significance thresholds.

Figures 2 and 4 support the hypothesis that trans-effectors are routinely subject to
purifying selection, at least for mutations with large enough effects to be detected in this
study. Loci influencing expression in trans can affect multiple components of finely-
tuned networks simultaneously. Here, we show that the minor allele frequency of SNPs
affecting a gene’s expression is correlated with how well that gene predicts the
expression of many other genes (those in the same coexpression module), what we call
‘connectedness.” Genes that are well-connected in this sense are likely to be the hub of
a regulatory network, a role commonly filled by transcription factors (Babu et al. 2004),
although we do not detect an enrichment for any particular type of gene in this set. We
find that SNPs affecting well-connected genes tend to be lower in frequency and that
the magnitude of decrease in MAF is stronger for trans-acting SNPs than cis-acting
SNPs (Fig 4). This difference supports the idea that trans-effectors with broad
pleiotropic effects on many genes are more likely to affect regulatory hubs and therefore
be routinely subjected to purifying selection. Previous studies suggest that genes with
high network connectivity are constrained by selection (Hahn and Kern 2005, Ramsay
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et al. 2009, Josephs et al. 2017), which could explain why their expression would also
be stabilized.

Connectedness of genes affected by trans-SNPs might explain the pattern of purifying
selection, but it does not explain why cis-acting variants exhibit an MAF distribution
suggestive of balancing selection. Cis-acting variants did have smaller effect sizes,
which would explain a difference in severity of purifying selection, but not that allele
frequencies at cis- SNPs are more intermediate than the genome-wide average. One
potential explanation is that cis-acting variants may evolve on a gene-by-gene basis to
counter the pleiotropic effects that trans-acting loci have on many genes. The
hypothesis that cis-acting variants might evolve to mitigate trans-pleiotropy is supported
by many studies finding opposing cis- and trans effects on the same gene (Coolon et al.
2014, Wang et al. 2015, Mack et al. 2016, Metzger et al. 2017). In this study, we find no
such preponderance of compensatory cis/trans pairs. Using a conservative set of 24
genes with both cis-SNPs and inter-chromosome trans-SNPs, we find only one example
of cis/trans compensation.

Genetic effect on traits mediated through gene expression- Understanding selection
requires that we look at how genetic effects on gene expression translate to effects on
whole-organism phenotypes and, ultimately, to fitness in the natural environment. Table
1 shows that floral and plant height measures can be significantly predicted by the
flower bud transcriptome when abstracted into coexpression modules. The most precise
prediction is for overall flower size (flower size PC1) and for the component
measurements that jointly determine flower size (corolla width and length, stigma and
anther lengths). The strength of prediction (nearly 50% of variation explained) is
notable given that flower traits are likely established early in development (Krizek and
Anderson, 2013). Accurate prediction of flower size from the RNAseq data does not
imply that the bud mRNA from the exact time of sampling were causal to trait variation
or covariation. Measured transcript levels might simply be strongly correlated through
development time, which might suggest that trait variation is continually reinforced
through development.

Prediction precision was likely reduced by the fact that modules were estimated from
RNAseq performed on one set of plants, while the mean phenotypes were estimated
from different plants of the same inbred lines. Plants from the two experiments almost
certainly experienced subtle environmental differences (different greenhouses, growth
at different times of the year, different years). The high R? for flower size despite these
limitations suggests that stable relationships between genotypes and traits are mediated
through transcriptome variation. Additionally, the separation of experiments avoids a
subtle but potentially important bias. When phenotypes and gene expression levels are
measured on the same plants, the two can become associated owing to confounding
factors, even if there is no effect of expression on phenotype. Imagine that plants differ
randomly in receipt of a resource such as soil nitrogen. If nitrogen affects both gene
expression and phenotype, expression and phenotype will be correlated even if there is
no inherent relationship. Establishing the mean phenotype of each line prior to
measuring expression eliminates this bias (Rausher 1992).
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Gene expression modules predict not only trait variation but also the covariances
between traits (Fig 5). Trait correlations emerge when the same module influences
multiple traits (Eqs 3-4). We find that module predictions can explain up to 54% of the
observed covariance between traits (throat width and height). We further show that a
substantial fraction of the variation in expression modules has a genetic basis (Table
S7), which suggests variation in gene expression as a potential cause of genetic
correlations between whole-plant traits. Understanding trait covariances is essential
when natural selection involves trade-offs between traits. Such trade-offs can provide
the mechanistic basis of balancing selection (Mérot et al. 2020), which is suggested in
our data by the intermediacy of the AFS for cis-acting variants.

In many annual plants, suites of correlated life-history traits related to rate of
development (progression to flowering) are subject to a tradeoff between flowering time
and fecundity. In Mimulus specifically, variation in life-history traits is maintained by
opposing selective pressures on survival to flower and seed set (Kelly 2008, Mojica and
Kelly 2010, Mojica et al. 2012, Monnahan and Kelly 2015, Troth et al. 2018; Monnahan
et al. 2021). As with many other species, small, fast-growing plants survive to flower but
make fewer seeds. Large, slow-growing plants have the capacity to make more seeds
and perhaps disperse more pollen, but risk not reaching maturity before the end of the
growing season. This type of tradeoff can maintain polymorphism through balancing
selection on loci affecting the underlying traits such as days to flower or flower size
(Austen et al. 2017, Brown and Kelly 2018, Exposito-Alonso et al. 2018). Our bud
transcriptome modules predict floral dimensions, but not development rate under
greenhouse conditions (days to germination or days to flower; Table 1). However, we
suggest that future studies measuring gene modules from a range of tissues at different
time points, coupled with the statistical methods that we employ here (Egs 3-4), might
determine whether the survival/fecundity tradeoff in Mimulus contributes to the
intermediate allele frequency pattern evident for cis-acting transcriptional mutations (Fig
2).

Scale of measurement for gene expression- Fig 1 contrasts two different ways to
normalize read counts, Box-Cox and log(count+1). The latter is most similar to models
typically applied in RNAseq studies, such as generalized linear models that use the log-
link function (e.g. DESeq2; Love et al. 2014). When expression is normalized in the
same way across all genes (such as with the log(count+1) method), rare alleles
occurring in lines with extreme expression produce many false positives as a result of
“rarity disequilibrium” (Houle and Marquez 2015, Lappalainen et al. 2013). When counts
are instead power transformed using an exponent (A) estimated for each gene
separately (Box-Cox), samples with extreme expression are pulled closer to the mean
of the resulting distribution (compare Figs 1C,D). This decreases the occurrence of
spurious associations due to rare alleles. We retained the log(count+1) analysis in Fig 1
as a caution for future studies. This issue is likely to emerge in any situation where the
absolute count of individuals carrying the rare allele is small (say less than 5).
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Conclusion

The two major findings from this study are connected through our summarization of the
transcriptome in terms of gene expression modules. The first result is that cis-acting
SNPs tend to have intermediate allele frequencies (relative to the genome as a whole),
while trans-SNPs exhibit a rare-alleles model consistent with purifying selection. Trans-
acting mutations are most rare if they have broad effects, with the latter measured by
how strongly a trans-affected gene predicts the overall expression of its module. The
second result is that expression modules predict flower size with a surprising degree of
precision. As a consequence, we can attribute substantial fractions of the variance in
flower size measures to variation in expression modules (R? values in Table 1). Despite
that expression levels of different modules are largely uncorrelated (across lines), they
can generate covariances among traits because individual modules influence multiple
traits. This ‘transcriptome-explained’ covariance can be a substantial portion of the total
covariance across lines (up to 54%, Fig 5). Our results do not provide a clear
explanation for why cis-acting SNPs exhibit allele frequencies consistent with balancing
selection, but the prediction of trait covariances suggests how future studies that may
address this question. Specifically, experiments that determine the nature and extent of
transcriptional control of development rate could provide a more mechanistic
understanding of balancing selection.

Data Availability

Gene expression data has been submitted to NCBI's SRA (project number
PRJNA736440). The Python scripts used to generate trait covariances as well as those
used for permutation and simulations are available as Supplemental File 1.
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Figure Legends

Figure 1. Genome-wide associations of gene expression. Above: Transcript levels were
normalized using (A) log(count+1) or (B) Box-Cox. Associations are designated as cis (pink) or
trans (blue). Chromosomes are numbered along both axes. Points are larger in panel B to aid
visualization. The putative misassembly is indicated with a red asterisk. The three genes with the
most trans-associations are indicated with blue asterisks. Distributions of read counts for a
representative gene, Migut.D00004, which had 3,665 SNP associations with Log(counts+1)
transformation (C), but none with Box-Cox transformation (D).

Figure 2. (A) Minor allele frequency distribution for all associations excepting Chromosome 11.
(B) The subset of associations in the top quartile of effect sizes for each regulatory category. Cis-
acting variants in pink and trans-acting variants in blue. Lowest MAF bin is 0.025 < x < 0.035.

Figure 3. The proportion of significant cis-tests from the real data (blue), simulations with
constant g (orange), and constant V,, (grey) are reported for 10 AFS categories (minor allele
q=0.0-0.05, 0.05-0.1, etc). The panels indicate the proportions obtained by imposing different
significance thresholds to call significance.

Figure 4. Purifying selection on trans-effectors of highly connected genes. (A) The distribution of
connectedness (as measured by R? between a gene and its module expression) for genes with
associated cis (pink) and trans (blue) acting variants. (B) The average minor allele frequency of
sites affecting each gene in a given connectedness quartile, separated by cis- and trans-acting
variants. Each data point in (B) is a gene, which is assigned a quartile and the MAF of sites
affecting it is calculated and plotted on the Y-axis.

Figure 5. Gene expression predicts trait covariances. The bottom triangle shows trait correlations.
A line denotes a significant correlation at p < 0.05. The diagonal displays normalized trait
histograms. Fraction covariance explained by gene expression, using the best-fit model
coefficients for prediction, is shown in the top diagonal. Any displayed number is significant,
asterisks denote levels of significance (determined by permutation, p < 0.05, p* < 0.025, p** < 0.01,
p*** < 0.001).



773  Tables
774

775 Table 1. Variation in traits explained by the AIC best-fit model of gene expression modules.
776 Significance was established by permuting either the module eigen values across lines, or the
777 module gene composition. Bold indicates significance with *: p < 0.05, **: p < 0.01, ***: p<0.001.

778

Ho: Gene expression

Ho: Modules do not

Trait R? Modules does not predict trait predict traits better than
variation random groups of genes
Days to germination | 0.289 17 0.094 0.203
Days to flower | 0.246 12 0.253 0.516
Corolla width | 0.392 19 0.005** 0.040*
Corolla length | 0.435 17 0.000*** 0.015*
Tube length | 0.389 19 0.002** 0.078
Throat width | 0.309 11 0.044* 0.190
Stigma length | 0.382 18 0.005** 0.071
Anther length | 0.400 19 0.001** 0.032*
Height | 0.333 11 0.014* 0.341
Node | 0.314 8 0.036* 0.639
Widest leaf | 0.231 6 0.294 0.891
Flower size PC1 | 0.472 20 0.000*** 0.006**
Flower size PC2 | 0.270 9 0.149 0.501
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