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ABSTRACT   
  
We measured the floral bud transcriptome of 151 fully sequenced lines of Mimulus 
guttatus from one natural population. Thousands of single nucleotide polymorphisms 
(SNPs) are implicated as transcription regulators, but there is a striking difference in the 
Allele Frequency Spectrum (AFS) of cis-acting and trans-acting mutations. Cis-SNPs 
have intermediate frequencies (consistent with balancing selection) while trans-SNPs 
exhibit a rare-alleles model (consistent with purifying selection). This pattern only 
becomes clear when transcript variation is normalized on a gene-to-gene basis. If a 
global normalization is applied, as is typically in RNAseq experiments, asymmetric 
transcript distributions combined with “rarity disequilibrium” produce a super-abundance 
of false positives for trans-acting SNPs. To explore the cause of purifying selection on 
trans-acting mutations, we identified gene expression modules as sets of co-expressed 
genes. The extent to which trans-acting mutations influence modules is a strong 
predictor of allele frequency. Mutations altering expression of genes with high 
“connectedness” (those that are highly predictive of the representative module 
expression value) have the lowest allele frequency. The expression modules can also 
predict whole-plant traits such as flower size. We find that a substantial portion of the 
genetic (co)variance among traits can be described as an emergent property of genetic 
effects on expression modules. 
 
INTRODUCTION 
 
Genetically controlled gene expression variation is prevalent within and between 1 

species, across different tissues, environments, and treatment contexts (Harding et al. 2 
1989, Whitehead and Crawford 2006, McManus et al. 2010, Meiklejohn et al. 2014, 3 

Signor and Nuzhdin 2018). Changes in gene expression can facilitate divergence 4 
between species (Johnson and Porter 2000, Tulchinsky et al. 2014, Mack and Nachman 5 
2017, McGirr and Martin 2020), and provide a mechanism for a population to rapidly 6 

adapt to a new environment (Morris et al. 2014, Ghalambor et al. 2015, Campbell-7 
Staton et al. 2017, Margres et al. 2017, Mack et al. 2018, Hamann et al. 2020). 8 

Standing genetic variation and plasticity in gene expression can buffer a population 9 
against environmental fluctuations (Podrabsky and Somero 2004, Stern et al. 2007, 10 
Acar et al. 2008, López-Maury et al. 2008). While much has been learned about the 11 
regulation of particular genes, genome-wide patterns in the evolutionary dynamics of 12 

gene expression are just beginning to be explored (e.g. Josephs et al. 2020). It also 13 
remains unclear how gene expression, as a molecular phenotype, might mediate the 14 
genetic underpinnings of quantitative trait variation, and ultimately fitness. 15 

 16 
Evolutionary dynamics of transcriptional effectors 17 
 18 
Mutations can alter gene expression in many ways, and we expect selection to act 19 
differently on different types of variants (Lawrence et al. 2016, Bewick and Schmitz 20 



2017, Duren et al. 2017). Gene expression can be affected by mutations acting either in 21 

cis or in trans. Cis-acting variants affect a closely linked gene directly, perhaps by 22 

altering sequences normally bound by transcription factors or other regulatory 23 
machinery. In contrast, trans-acting regulatory variants change the cellular environment 24 
in which transcription happens, say by altering diffusible products like the transcription 25 
factors themselves (Wittkopp et al 2004, Emerson and Li 2010).   26 
 27 

Natural selection could differ systematically between cis- and trans-acting variants for 28 
several reasons.  First, the mutational target for trans-acting effectors of a gene could 29 
be a substantial fraction of the genome (Boyle et al. 2017) while a more limited set of 30 
sites are available for cis-acting mutations (Gruber et al. 2012, Metzger et al. 2016). 31 
Second, trans-acting variants have the potential to affect multiple genes, and may thus 32 

have negative consequences on finely-tuned pathways (Stern and Orgogozo 2008; but 33 

see Hoekstra and Coyne, 2007).  If trans-mutations have opposing pleiotropic effects on 34 

many genes (antagonism), they may still increase in frequency in a conditional manner 35 
(Hall et al. 2010, Anderson et al. 2011). Third, if a trans-acting variant with weakly 36 

deleterious effects on the expression of one or more target genes increases 37 
substantially in frequency (due to drift or selection), cis-variants specific to each affected 38 

gene might then act as a buffer, leading to positive directional selection on cis-39 
compensatory mutations. This often occurs, for example, with pleiotropic mutations 40 
associated with antibiotic resistance (Maisnier-Patin and Andersson 2004, Brandis et al. 41 

2012) and compensatory pairs of cis- and trans-effectors have been documented in 42 
several systems (Coolon et al. 2014, Wang et al. 2015, Fear et al. 2016, Mack et al. 43 

2016, Verta et al. 2016, Metzger et al. 2017).  These theories generally suggest that 44 
trans-acting variants should be under stronger negative selection than cis-acting 45 
variants based on the premise that gene expression should usually experience strong 46 

stabilizing selection (Denver et al. 2005, Rifkin et al. 2005, Whitehead and Crawford 47 

2006, Hodgins-Davis et al. 2015).  If this is correct, then any mutation with broad effects 48 
on expression, regardless of cis- or trans-effect, will more likely be deleterious, perhaps 49 
through cascading effects on connected pathways or networks (Fisher 1930). 50 

 51 
Broad patterns of selection can be inferred from the allele frequency spectrum (AFS) of 52 

cis- and trans-acting variants. When compared to the neutral expectation, an excess of 53 
intermediate frequency variants suggests balancing selection while an excess of rare 54 
variants suggests purifying selection (Tajima, 1989). Demographic events, such as 55 
population expansions or contractions, can perturb the AFS away from the neutral 56 

expectation (Hartl and Clark, 1997).  However, since demographic effects are genome-57 
wide, we can make inferences about selection by comparing the AFS for a particular 58 

class of polymorphism (e.g. cis-effectors of gene expression) to that of the entire 59 
genome.  Of course, this is just a first step; inferences about selection require 60 
corroboration from multiple lines of evidence (Beaumont and Balding 2004, Bigham et 61 
al. 2010).  In this study, we find an AFS consistent with purifying selection for trans-62 
acting expression variants and corroborate this pattern by showing that the skew 63 

towards extreme allele frequencies is greatest at loci with the broadest effects on 64 
expression. In contrast, cis-acting SNPs exhibit an AFS suggesting balancing selection.  65 
The processes most likely to generate balancing selection on cis-SNPs depend on the 66 



specific ways that these mutations affect whole organism phenotypes, and also on the 67 

complicated and variable mapping from phenotype to fitness in nature. 68 

 69 
Transcriptional mutations generating genetic (co)variation in traits  70 
 71 
How important are transcriptional regulators in modifying fitness-related traits?  Case 72 
studies of specific genes with known mutant phenotypes provide many examples where 73 

gene expression influences fitness relevant traits of plants (Streisfeld and Rausher 74 
2009, Sobel and Streisfeld 2013, Ning et al. 2017, Kremling et al. 2018, Alonge et al. 75 
2020). The quantitative importance of transcriptional mutations relative to those that 76 
effect enzymatic or structural protein function remains a point of contention (Hoekstra 77 
and Coyne 2007, Stern and Orgogozo 2008), but a steady increase of evidence from 78 

human eQTL/eGWAS research suggests a predominant role for gene expression 79 

variation in generating quantitative trait variation (Nicolae et al. 2010, Maurano et al. 80 

2012, Torres et al. 2014, Farh et al. 2015, Boyle et al. 2017).  As a first step to 81 
understanding the relationships between mutations affecting transcription, quantitative 82 

trait variation, and fitness, we here use observed gene expression variation to predict 83 
variation and co-variation among a set of quantitative traits.  These traits correlate with 84 

field fitness components in yellow monkeyflower (Mimulus guttatus) and were previously 85 
analyzed as part of a GWAS that predicted trait and fitness measures directly from 86 
SNPs (Troth et al 2018).   87 

 88 
In this study, we associate SNPs segregating within inbred lines derived from the Iron 89 

Mountain population with gene expression variation in flower buds.  Allele frequencies in 90 
the inbred lines accurately represent those in the natural population (Troth et al. 2018).  91 
We first document strikingly different patterns of apparent selection from the AFS of cis- 92 

and trans-acting regulatory SNPs. We then show that modules of co-expressed genes 93 

predict the trait means of the inbred lines, despite that we measured gene expression 94 
and traits on different plants grown in different places. The stability of the relationship 95 
between transcriptome and trait is surprising, given the frequently cited “noisiness” of 96 

transcriptome data (Arias and Hayward 2006, Raj and Oudenaarden 2008). Finally, we 97 
demonstrate that correlations, including tradeoffs between fitness-related traits can be 98 

predicted from gene expression variation. 99 
 100 
 101 
METHODS 102 

 103 
Study system- We used randomly derived inbred lines of the yellow monkeyflower, 104 

Mimulus guttatus (syn Erythranthe guttata, Phrymaceae) from the Iron Mountain (IM) 105 
population in the Cascade Mountains of Oregon (44.402217N, 122.153317W; Willis 106 
1999, Kelly 2003). This population is predominantly outcrossing with little internal 107 
population structure (Sweigart et al. 1999, Willis 1993). Due to its annual/winter annual 108 
lifespan and short growing season, the IM population experiences a fitness tradeoff 109 

caused by variation in flower size and life-history phenotypes (Mojica et al. 2012). In 110 
2018, Troth et al. sequenced whole genomes of 187 IM inbred lines and phenotyped 111 



them for 13 flower size and developmental timing traits known to influence fitness in the 112 

field.    113 

 114 
RNAseq- We grew plants from 151 of the genome-sequenced inbred lines in the 115 
University of Kansas greenhouse under standard conditions (Monnahan and Kelly 116 
2015) in three different cohorts. For each cohort, we grew more plants than needed for 117 
tissue collection and randomly selected plants for sampling soon after germination. We 118 

chose a recognizable and consistent stage at which to collect tissue, which we call the 119 
late floral bud stage. These are unopened flower buds (approximately 2-6 mm in length) 120 
on the first flowering node (so the corolla is presumably not fully expanded), but are 121 
advanced enough that buds on the second flowering node are visible. We chose bud 122 
tissue to enrich for transcripts related to flower size. When beginning the first cohort, it 123 

was unclear if this tissue type/amount would yield enough RNA for adequate 124 

sequencing.  We thus pooled bud tissue from three plants of the same line in each tube 125 

prior to RNA extraction. Biological replicates were then multiple tubes of pooled tissue, 126 
all from the same line. Pooling was done randomly with regard to flowering time (ie. if 6 127 

plants per line were sequenced, 3 in each of 2 tubes, one tube was not all three earliest 128 
flowering plants). This process was not repeated in cohorts 2 and 3, for which 1-3 129 

biological replicates (plants) of each line were collected and sequenced separately. We 130 
collected tissue into liquid nitrogen at the same time of day (with regard to both actual 131 
time and hours after greenhouse lights turn on) within a two-hour window that was 132 

consistent between cohorts.   133 
 134 

We ground the collected tissue finely with a plastic micropestle and extracted RNA 135 
using the Qiagen RNeasy Plant Mini Kit (Hilden, Germany). We generated sequencing 136 
libraries using the QuantSeq 3’mRNA-Seq Library Prep Kit for Illumina (Lexogen, 137 

Vienna, Austria) per protocol, modified to perform half reactions, and we sequenced the 138 

libraries using NextSeq HO-SR75bp (Illumina, San Diego CA, USA) at the University of 139 
Kansas Genome Sequencing Core. Each cohort was sequenced separately with a 140 
maximum of 96 samples per flow cell (a total of 4 flow cells and 281 individual 141 

samples).  142 
 143 

To calculate read counts, we implemented the programs in Lexogen’s BlueBee pipeline. 144 
First, we trimmed reads with bbduk (k=13, ktrim=r, useshortkmers=t, mink=5, qtrim=r, 145 
trimq=10, minlength=20) from BBTools 38.86 (Bushnell 2014) and aligned reads to the 146 
M. guttatus V2.0 reference genome (Phytozome, Hellsten et al., 2013) with STAR 147 

2.5.0a (Dobin et al. 2013) using Lexogen’s recommended parameters 148 
(outFilterMultimapNmax 20, alignSJoverhangMin 8, alignSJDBoverhangMin 1, 149 

outFilterMismatchNmax 999, outFilterMismatchNoverLmax 0.1, alignIntronMin 20, 150 
alignIntronMax 1000000, alignMatesGapMax 1000000). Finally, we counted transcript 151 
copies using htseq-count 0.11.2 and the genome annotation (Anders et al. 2014). The 152 
output is a table of read counts for each transcript. We then removed 5 samples that 153 
had fewer than 250k mapped reads (mean for remaining samples of 3,877,524 mapped 154 

reads) and normalized the counts for each sample (to account for variable library quality 155 
and sequencing depth) using the estimateSizeFactors function in DESeq2 1.28.1 (Love 156 
et al. 2014).  157 



 158 

Predicting transcript levels from SNPs- Across all samples, 28,615 of 33,573 total 159 

annotated transcripts had at least one mapped read. We kept each gene isoform as a 160 
separate transcript. We first filtered out any transcripts which had mapped reads in 161 
fewer than 5% of samples, and which did not have 10 or more mapped reads in at least 162 
one sample. This left 20,463 transcripts for association mapping. The vast majority of 163 
genes (19,721 out of 20,463), had only one isoform with mapped reads. To account for 164 

the effect of cohort, we fit a linear model using lm in base R (R Core Team, 2013) to 165 
each transcript with cohort as a categorical predictor and then subtracted the estimated 166 
effect from each read count. We then transformed each transcript’s expression in each 167 
sample by two methods: 1) log(expression + 1), and 2) Box-Cox transformation (Box 168 
and Cox, 1964) using the boxcox() function in the R package EnvStats 2.3.1 with a 169 

range for λ between -5 and 5 (Millard, 2014). Because some counts were negative after 170 

factoring out the effect of cohort, we shifted the distributions of all gene counts such that 171 

the minimum value was 0 for both types of transformation. Additionally, because Box-172 
Cox transformation cannot accommodate zeros, we added a small value to each count 173 

that was equal to 10% of the minimum difference between any two samples (such that 174 
the difference between that value and zero was essentially undetectable in the original 175 

counts). Finally, we averaged every gene’s expression across plants with each inbred 176 
line.  177 
 178 

We obtained a filtered set of polymorphisms of the sequenced lines by starting with 179 
sites called by Troth et al. (2018).  We kept only biallelic SNPs with a minor allele 180 

frequency above 2.5% that were called in at least half of the sequenced lines. We then 181 
pruned these sites for local LD using PLINK 1.90b3.38 (Purcell et al. 2007) with a 182 
window size of 50 SNPs, a step size of 10 SNPs, and an R2 threshold of 0.9. This left 183 

2,952,894 SNPs for downstream analysis. We performed the GWAS using GEMMA 184 

0.98.1 (Zhou and Stephens 2014) by first constructing a centered relatedness matrix 185 
using all filtered, but unpruned sites. Finally, we used the univariate linear mixed model 186 
(-lmm) in GEMMA, which in the case of no covariates takes the form: expression = SNP 187 

genotype effect + random effect of relatedness + error. As part of the model, GEMMA 188 
outputs the ‘chip heritability’ for each gene; an estimate of the proportion of transcription 189 

variation that can be explained by all genetic causes. We used p-values taken from the 190 
likelihood ratio test to find associations between the levels of 20,463 transcripts and 191 
each of the 2,953,894 SNPs.  192 
 193 

We classified the associations as cis-acting if the site was within 25kb of any part of the 194 
transcribed gene and trans-acting otherwise. This distance-based approach for calling 195 

cis-effectors can be undermined by long-distance LD.  A physically distant SNP (which 196 
we would classify as trans) might be associated with expression simply because it is in 197 
LD with a cis-acting SNP. For this reason, we excluded data from the meiotic drive 198 
locus on chromosome 11 (a known region of extended LD, Fishman and Willis 2005, 199 
Fishman and Saunders 2008, Fishman and Kelly 2015) from genome-wide summaries.  200 

Overall, the sequenced lines from IM show a rapid decay of LD as inter-SNP distances 201 
exceed 10kb (Puzey et al. 2017) which makes our 25kb cutoff conservative.  Cis- and 202 
trans-acting mutations can be distinguished more directly using allele-specific 203 



expression data (Wittkopp et al. 2004, Springer and Stupar 2007, Tirosh et al. 2009, Shi 204 

et al. 2012, Osada et al. 2017, Signor and Nuzhdin 2018), but only in heterozygous 205 

individuals and here we are measuring expression in highly homozygous inbred lines.  206 
 207 
To interpret our estimates for SNP effects on transcription, we permuted the vector of 208 
gene expression data (all genes) against line genotypes 100 times.  For each replicate, 209 
we applied the GEMMA -lmm for all cis-tests (all cases where a SNP was within 25kb of 210 

a gene).  Across permutation replicates, we obtained ca. 1.2 billion tests to relate SNP 211 
allele frequency to significance levels under the null hypothesis of no SNP effect on 212 
expression (as in Josephs et al. 2015).   213 
 214 
We next performed simulations allowing SNP effects on gene expression.  As 215 

previously, we first permuted expression values against genotypes.  This simulates the 216 

“environmental variance” in expression.  We then added  2 ∗ 𝛽 to all lines carrying the 217 

homozygous alternate (non-reference) genotype, where the genotypic effect (𝛽) was 218 

determined separately for each gene.  Given the large number of lines in our panel, the 219 

variance in expression attributable to SNP genotype, 𝑉𝑠𝑛𝑝, is: 220 

 221 

𝑉𝑠𝑛𝑝 = 4 𝑞(1 − 𝑞)𝛽2                                                                                        (Equation 1) 222 

 223 

where q is the frequency of the reference base in the line panel.  Based on results from 224 

our significant cis-effect tests (described below), we set 𝑉𝑠𝑛𝑝 = 𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙   for the first set 225 

of simulations. In other words, SNP explains half the variance in expression. We 226 
calibrate the simulations with SNP effects in two different ways: 1) We consider the 227 

case where the proportion of variance due to SNP is held constant at 0.5.   228 

This implies: 229 

𝛽 = √
𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

4𝑞(1−𝑞)
                                                                                                  (Equation 2) 230 

 231 

Since all variation is environmental after permutation, 𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 is simply the variance of 232 

expression in the gene before adding effects to genotypes.  2) We set 𝑉𝑠𝑛𝑝 for each 233 

gene assuming that q = 0.5.  This implies 𝛽 = √ 𝑉𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙.  For this case, 𝑉𝑠𝑛𝑝 obtained 234 

after adding genotypic effects will vary with q (and be lower for SNPs with lower minor 235 
allele frequencies).  These simulation schemes were considered by Tung et al (2015) in 236 
analyzing expression data, although these authors simulated the residual variance from 237 
a normal distribution while we use permutation of the observed expression levels.  For 238 
both schemes, we performed tests on a random selection of 20 of the cis-SNPs for each 239 

gene with a distinct permutation of expression values versus line for each test.   240 
 241 
Predicting phenotypes from gene coexpression modules- To identify sets of 242 
coexpressed genes, we used WGCNA 1.69 in R (Langfelder and Horvath 2008) using 243 

the sample normalized and cohort factored, but untransformed, counts as input with a 244 
power of 3, max block size of 21000, minimum module size of 30, dynamic tree cut 245 
method, correlation using dissimilarity, and merge cut height of 0.25. During co-246 
expression analysis, one sample was removed as an outlier. WGCNA identified 37 247 
modules of coexpressed transcripts (Table S1, Fig S1). Next, we extracted the line 248 



means for 13 traits from Troth et al. (2018) for the 151 lines used in this study 249 

(germination date, days to flower, corolla width, corolla length, floral tube length, throat 250 

width, stigma length, anther length, height at flowering, first flowering node, width of 251 
widest leaf, and the first two principal components calculated from all floral dimensions. 252 
To look for associations between gene expression modules and measured traits, we 253 
Box-Cox transformed each module’s eigen expression value (which is the first principal 254 
component of a PCA for expression of all member genes in a module), as well as every 255 

trait and fit a linear model (all in R, R Core Team, 2013). We used the eigen gene 256 
expression for each module as a predictor in a simple regression, as well as fitting the 257 
multiple regression for each trait using all 37 modules simultaneously. We also used the 258 
program stepAIC from the R package MASS 7.3-52 (Venables and Ripley 2013) to 259 
choose a lowest AIC (Akaike Information Criterion) regression model including some but 260 

not all modules as predictors. 261 

 262 

For each best-fit multiple regression model, we used permutation to test for significance. 263 
We treated the set of traits as one block and the set of modules as another block and 264 

permuted which line had which of each block. This preserved the correlations between 265 
modules and between traits, but changed which sets of trait values and module values 266 

went together. To elaborate, imagine a line has a set of trait values X and module 267 
values K, and another line has a set of trait values Y and module values L. Then, a 268 
permuted data set might combine traits X with modules L and traits Y with modules K. 269 

This is referred to as Permutation 1 in the Results. We next used the coefficients from 270 
the best-fit model to predict trait variances and covariances. For each trait, we 271 

estimated the effect of each module included in the best fit model from a multiple linear 272 
regression and constructed an equation to predict trait value for each line:  273 
 274 

 𝑌𝑗𝑧
′ = 𝑏 + ∑ 𝑚𝑖𝑗𝑥𝑖𝑧𝑖                    (Equation 3) 275 

 276 

where 𝑌𝑗𝑧
′ is the predicted value of trait j for line z, 𝑚𝑖𝑗 is the estimated effect of module i 277 

on trait j, 𝑥𝑖𝑧 is the eigen expression of line z for module i, and the sum is taken over all 278 

modules in the model. The covariance of predicted values for traits j and k is: 279 
              280 

𝐶𝑜𝑣(𝑌𝑗
′, 𝑌𝑘

′) =  
1

𝑛−1
∑ (𝑌𝑗𝑧

′ − µ𝑗) ∗ (𝑌𝑘𝑧
′ − µ𝑘)𝑧                                                    (Equation 4) 281 

 282 

where µ𝑗 is the mean of trait j, µ𝑘 is the mean of trait k, and the sum is taken over all n 283 

lines. Calculations were done using a custom python script (Supplemental File 1). We 284 

permuted traits against module values for testing. For each permuted set, we again 285 

found a best-fit model with a subset of gene expression modules and asked how much 286 

trait covariation we could predict (using the above method) to generate a distribution. 287 
We determined if the amount of trait covariation explained by the real gene expression 288 
data, as represented by modules, was significant using alpha levels calculated from the 289 
permuted distribution.  290 
 291 

For each trait, we randomly sorted genes into modules with the same number of genes, 292 
calculated the eigen gene expression value (PC1) for each module for each line, Box-293 
Cox transformed the module eigenvalues, and then included them in multiple 294 



regression. In each case, we fit two models, one with all permuted modules and one 295 

with the stepAIC chosen set. We permuted the module composition 1000 times to 296 

generate distributions of R2 for each trait. Reported p-values for Permutation 2 in the 297 
Results are calculated from those distributions.  298 
 299 
 300 
RESULTS 301 

 302 
Genetic effects on transcription levels of individual genes  303 
 304 
The number of detected associations between genotype and expression, as well as the 305 
putative type of regulatory association (cis vs. trans), are contingent on how we 306 

transform transcript counts. Before testing for genetic effects on gene expression, we 307 

transformed expression read count data using two methods, log(count + 1) and Box-308 

Cox with λ estimated for each gene separately. Using a rounded p-value cutoff of 1e-12 309 
(Bonferroni = 8.27e-13), we identified 106,585 significant SNP/transcript associations 310 

using log(counts+1) transformed counts (10,087 cis associations and 96,498 trans, Fig 311 
1A). Using Box-Cox transformed counts, over 90% of the significant trans-effects 312 

evaporate and we find only 8,088 cis and 7,685 trans associations (Fig 1B).  313 
 314 
A careful inspection of the differences between the two methods indicates that the Box-315 

Cox results are more reliable. With log(counts+1) transformation, individual genes often 316 
have skewed distributions with a small number of lines exhibiting atypically high or low 317 

expression (Fig1C, Fig S2). The few outlier lines with extreme expression will harbor the 318 
same minor (and in most cases very rare) allele at many loci. In fact, the majority of the 319 
96,498 trans-regulatory associations (Fig 1A) involve SNPs with a minor allele 320 

frequency (MAF) between 2.5-5% (Fig 2A). When unlinked but rare alleles occur 321 

together in the same lines, LD is high owing to “rarity disequilibrium” (Houle and 322 
Márquez 2015, Lappalainen et al. 2013). If those same lines have extreme expression, 323 
all of the linked SNPs will show a strong association with expression. 324 

 325 
The Box-Cox transformation provides a scale adjustment specific to each gene. In 326 

transcripts with the largest number of genetic associations in the log(counts+1) analysis, 327 
Box-Cox more completely “normalizes” expression reducing the effect of outliers (Fig 328 
1C-D, Fig S2).  Estimates from the Box-Cox are less affected by the pull of extreme 329 
values and we will subsequently limit attention to these tests.  The mean estimated 330 

heritability of gene expression was 0.31 (see Fig S3 for the full distribution).  For 331 
genome-wide analyses, we removed SNPs on chromosome 11 because the large block 332 

of apparent trans-effects on chromosome 11 are within the meiotic drive locus (Fishman 333 
and Willis 2005, Fishman and Saunders 2008, Fishman and Kelly 2015). The Drive 334 
allele is essentially a single DNA sequence over >5Mb of DNA segregating in the inbred 335 
lines at ~30%.  As a consequence, it is impossible to distinguish trans-acting SNPs from 336 
those that are simply in linkage disequilibrium with cis-acting SNPs. This leaves 7,832 337 

cis and 4,626 trans associations.   338 
 339 



SNPs with significant cis-effects explain between 26-74% of the total variance in 340 

expression of a gene (Table S2).  Significant trans-effectors have a larger average 341 

effect size than cis-SNPs (cis=0.54, trans=1.16, F-value = 9.07, p-value =2.6e-3), and 342 
effect size is negatively correlated with MAF (both log-transformed; estimated effect of 343 
cis-SNP effect size on MAF = -0.029, t = -8.347, p < 2e-16; estimated effect of trans-344 
SNP effect size on MAF = -0.025, t = -4.351, p = 1.39e-05; Fig S4). Since we find trans-345 
acting SNPs have a distribution skewed toward low frequency, it follows that such 346 

mutations would also have larger effect sizes, as has been reported in other systems 347 
(Josephs et al. 2020).  348 
 349 
Across the genome, the distribution of minor allele frequency differs greatly between 350 
cis- and trans-acting mutations (Fig 2A). We find many rare alleles responsible for trans-351 

regulatory effects on gene expression, and an increasing number of cis effects at higher 352 

minor allele frequency (MAF). We find a mean MAF for cis and trans associations of 353 

0.342 and 0.215, respectively (F-value = 2197, p-value < 2.2e-16). The MAF 354 
distributions for cis- and trans-acting sites are both different from the MAF distribution of 355 

the entire genome (Fig S5, two-sample Kolmogorov-Smirnov tests: cis-to-all 356 
comparison: D = 0.51866, p < 2.2e-16, trans-to-all comparison: D = 0.1661, p < 2.2e-357 

16), and are different from each other (D = 0.43651, p < 2.2e-16). The difference in 358 
MAF could be due to differential power to detect cis- vs. trans-acting loci with different 359 
effect sizes, since we found larger effect sizes for trans effectors. To test whether 360 

differences in effect size were driving the MAF pattern, we took only the top quartile of 361 
effect sizes (after normalizing by mean expression level) in each regulatory class. The 362 

pattern remains the same (Fig 2B) – an excess of common cis-acting alleles and an 363 
excess of rare trans-acting alleles.  Finally, we established that the pattern is insensitive 364 
to our distance cutoff (25kb) for trans-effectors.  If we limit trans to SNPs that affect 365 

expression on different chromosomes (Fig S6), the cis/trans difference remains.   366 

  367 
Permutation tests indicated that our significance threshold for cis- tests is quite 368 
stringent.  Across 100 whole genome permutations, only three of out of 1.2 billion SNP 369 

tests passed our p < 10-12 threshold (Table S3A).  Following Josephs et al. (2015), we 370 
considered significance levels across allele frequency categories of SNPs to establish a 371 

null distribution for the AFS of tests.  For a given minor allele frequency, the fraction of 372 
tests that yield p-values less than a specified threshold (say 10-5) are reported in Table 373 
S3A.  Because permutation reiterates the null hypothesis, we expect the fraction to 374 
equal the threshold, e.g. about 1 test in a million would have p < 10-6.  In fact, we find 375 

that tests on intermediate allele frequency SNPs (minor allele > 20%) tend to be 376 
conservative (low p-values under-represented) while rare allele SNPs (minor allele < 377 

10%) tend to be anti-conservative.  These results imply a pull towards more minor 378 
frequencies in the null distribution for AFS.  However, it is noteworthy that an extremely 379 
small number of tests approach our actual threshold. 380 
 381 
The simulations allowing SNP effects on expression routinely yield significant results.  382 

The fraction of tests passing various thresholds for our two simulation schemes 383 
(constant 𝑉𝑠𝑛𝑝 and constant 𝛽) are reported in Table S3B,C.  With 𝑉𝑠𝑛𝑝 held constant 384 

(effect size varies with allele frequency), about 90% of tests pass our p < 10-12 threshold 385 



regardless of allele frequency.  Essentially all tests pass for lower thresholds.  With fixed 386 

𝛽 (where the proportion of variance explained by a SNP varies with AF), there is lower 387 

power for rare alleles than intermediate frequency SNPs, which is expected given that 388 
rare alleles generate less variation.  Most relevant to the results, we consider the 389 
relative proportion of significant tests that fall into each allele frequency class for each 390 
significance level, and how this compares to the observed AFS of significant tests.  This 391 

is depicted for three thresholds in Figure 3.  The AFS of significant tests with 𝑉𝑠𝑛𝑝 held 392 

constant is unaffected by threshold and matches the AFS of all tested SNPs.  With 𝑉𝑠𝑛𝑝 393 

constant, allele frequency has no effect on ascertainment.  With fixed 𝛽, a smaller 394 

fraction of tests are significant for rare alleles (contrast orange to grey bars in Fig 3).  395 
However, this skew towards intermediacy is not sufficient to explain the data – the AFS 396 
of real tests is substantially more intermediate than predicted by ascertainment with 397 

fixed 𝛽 (contrast orange to blue bars) at all significance thresholds.   398 

 399 
We find no evidence for “trans-eQTL hotspots”, single SNPs affecting many genes, 400 

similar to Populus tremula winter buds (Mähler et al. 2017). In fact, there are more 401 
genes with transcript levels that are affected by many trans-SNPs than SNPs with more 402 

than 2 trans-associations (Fig S7). The three genes with the most trans-acting SNPs 403 
are Migut.D00926 (160 SNPs) annotated as a jasmonate ZIM domain-containing protein 404 
(JAZ); Migut.M00568 (114 SNPs) annotated as a chlorophyll A/B binding protein; and 405 

N01403 (105 SNPs) annotated as an auxin-responsive F-box transport inhibitor 406 
response protein. For genes M00568 and N01403, the trans-associations are 407 

concentrated on the same chromosome as the gene (Fig 1B).  There is an apparent 408 
association between the Chr11 Drive Locus and one gene on chromosome 8 (Fig 1A). 409 
This gene (Migut.H01175) has three putative homologs in the Mimulus genome, only 410 

one of which was expressed in our samples (Migut.K01148). We found that all of our 411 

samples had high expression for only one of the two genes (Fig S8), and low to no 412 
expression for the other, which could indicate mis-assembly. Indeed, when we mapped 413 
reads from two samples with expression of either gene to the newer reference genome 414 

build (Mimulus guttatus TOL v5.0, DOE-JGI, http://phytozome.jgi.doe.gov/) they all 415 
mapped to the same region on chromosome 11, which supports that Migut.H01175 is a 416 
mis-assembled isoform of Migut.K01148.  Finally, the number of cis-associations for a 417 

gene is positively correlated with gene size (effect estimate for log(number of 418 
associations+1) ~ log(gene length) = 0.1797, t-value = 6.04, p = 1.87e-9 Fig S9). 419 
 420 
Rare allele load refers to the proportion of segregating loci at which an individual carries 421 
the minor allele, if the population frequency of that allele is very low. It is similar to the 422 

concept of deleterious mutation load, but assumes nothing about the fitness effect of 423 

individual rare alleles. Instead, it is usually used to test whether or not there is a 424 

cumulative fitness effect of harboring many rare variants. This load predicts 425 
dysregulation of gene expression in maize (Kremling et al. 2018) and the severity of 426 
inbreeding depression in M. guttatus (Brown and Kelly 2020).  We tested whether lines 427 
with an excess of rare alleles exhibit differing patterns of expression, but found no 428 
correlation between load and the number of genes showing extreme expression 429 
(plus/minus two standard deviations from the mean, Fig S10).  We also find no 430 
clustering of lines by rare allele load in gene expression principal component (PC) 431 

http://phytozome.jgi.doe.gov/


space (Fig S11). The many associations between gene expression and rare variants 432 

suggested by Fig 1A (and by the MAF of associations removed by Box-Cox 433 

transformation) is thus likely not a real cumulative effect of many rare alleles generating 434 
extreme gene expression genome-wide.  435 
 436 
Construction of gene co-expression networks 437 
 438 

We next sought to establish sets of genes that co-vary in expression across inbred 439 
lines. Using the cohort and individual normalized gene expression counts, WGCNA 440 
identified 37 modules of co-expressed transcripts. Each module includes between 37 441 
and 5767 genes (mean 553, median 231) and each transcript (gene) belongs to only 442 
one module (Table S1, Fig S1). WGCNA groups genes with correlated expression and 443 

further collapses groups such that gene expression between modules should not be 444 

highly correlated (R2 > 0.8). However, eigengene expression (principal component 1 for 445 

the PCA of all genes in a module) of a few pairs of modules remain moderately 446 
correlated (20 of 666 pairwise comparisons with 0.74 > R^2 > 0.5) (Fig S12). 447 

 448 
To determine if the apparent purifying selection on trans-effecting sites (Fig 2A) is due 449 

to their impact on regulatory networks, we calculated the “connectedness” of each gene 450 
by correlating the gene’s expression with the eigengene expression value of its module. 451 
This measures how predictive a gene’s expression is of the expression of all genes in 452 

the module. Note that we are not calculating the number of edges a gene has in a 453 
regulatory or interaction network, which is sometimes called connectivity. Hence, the 454 

use of a nonstandard term. The distribution of correlation coefficients (R2 with module 455 
PC1) is highly right-skewed (Fig 4A). For this reason, we grouped genes by 456 
“connectedness” quartile and then calculated the average MAF of sites affecting each 457 

gene either in cis or in trans. We find a consistent difference in MAF of cis- and trans-458 

effectors, with trans having lower MAF, especially in the highest quartile for 459 
“connectedness,” for which MAF is significantly lower than in all other categories (effect 460 
estimate for quartile 4 on trans-MAF = -0.143, p = 1.53e-14, effect estimate for quartile 461 

4 on cis-MAF = -0.022, p = 0.00872) (Fig 4B). We did not find enrichment for any GO 462 
terms in the set of genes in connectedness quartile 4, using the closest Arabidopsis 463 

thaliana putative homologs.  464 
 465 
Predicting phenotypes from expression 466 
 467 

We next tested whether floral bud gene expression affects quantitative traits (Line 468 
means from Troth et al. 2018). We use modules of co-expressed genes as predictors of 469 

phenotype because this provides a tractable way to incorporate the whole 470 
transcriptome. We used multiple linear regression including all 37 modules as predictors 471 
of trait, and then chose the AIC-best model for each trait. This selected model included 472 
from 6 (widest leaf) to 20 (flower size PC1) of the 37 total expression modules (Table 1). 473 
Parameter estimates for the best-fit models, including effect sizes for each included 474 

module, are reported in Table S4.  The best-fitting model for each trait explained from 475 
23% to 47% of trait variation, with the strongest prediction being for overall flower size 476 



(PC1 in Table 1). To establish statistical significance for prediction of trait variation, we 477 

permuted the data in two ways:  478 

 479 
Permutation 1: Does gene expression predict trait variation? To test the hypothesis that 480 
a model using gene expression explains no more trait variation than by chance, we 481 
permuted modules by line. Correlations among traits and among modules were 482 
preserved (see methods), but randomly associated with each other across lines. This 483 

tests whether the transcriptome (as collapsed into coexpression modules) is a 484 
significant predictor of traits in a linear model. Using this method, trait variation 485 
predicted by the real gene expression modules is highly significant (p < 0.01) for 7 of 8 486 
flower-size measurements (except flower size PC2), and marginally significant (0.01 < p 487 
< 0.05) for height and node (Table 1). These 9 traits are significantly correlated with 488 

each other, except for throat width with node (Fig 5, Table S5).  489 

 490 

Permutation 2: Do gene co-expression modules better predict traits than random groups 491 

of genes? The significant prediction of traits by modules does not imply that modules 492 
are necessarily the best summary of gene expression for trait prediction. In order to test 493 
the hypothesis that the predicted trait variation is just a function of including the whole 494 

transcriptome (by creating groups of genes as predictors), we permuted module 495 
membership by shuffling genes into random groups of the same size as the real 496 

modules. These groups contain the same amount of information in terms of fraction of 497 
transcriptome included, but eliminate clustering of genes based on co-expression that 498 
defines the real modules. Essentially, we are asking if co-expression networks are a 499 

better way of decreasing parameter space than grouping genes randomly when the goal 500 
is to predicts trait values. By permuting gene module membership, we find that only 4 501 

traits (corolla width and length, anther length, and flower size PC1) are significantly 502 
better predicted by co-expression modules than by random assortment of genes (Table 503 
1). For all other traits, the amount of trait variation explained is attributable to the 504 
inclusion of the whole transcriptome, not variation in co-expressed groups of genes. 505 
However, while most traits are not significantly better predicted by real modules than 506 

scrambled sets of genes, real modules better predict traits than the average permuted 507 

data set for all but four traits (days to flower, node, widest leaf, and flower size PC2). 508 
Quantiles for the distribution of permuted R2 for both permutations are presented in 509 
Table S6). 510 
 511 
Overlapping sets of gene expression modules are included in the best-fit model for the 512 

four traits where expression modules are significant by both permutation tests (corolla 513 
width and length, anther length, and flower size PC1). All four are significantly predicted 514 

(in their own best-fit regression models) by 14 common modules. These traits are all 515 
positively correlated (Fig 5). The 14 modules are not correlated (Fig S12), but they 516 
affect all 4 traits in the same direction.  As a consequence, trait correlations can emerge 517 
from the joint effects of uncorrelated modules. 518 
 519 

Prior studies indicate that tradeoffs between fitness components (and associated traits) 520 
are central to the maintenance of variation in this population (Mojica and Kelly 2010, 521 
Scoville et al. 2011, Mojica et al. 2012, Monnahan and Kelly 2015, Monnahan and Kelly 522 



2017, Brown and Kelly 2018). For this reason, we estimated the extent to which gene 523 

expression modules generate trait covariances. Among pairwise comparisons between 524 

the 9 traits that are significantly predicted by gene expression (Table 1 column 3, and 525 
see Permutation 1 above), 35 of 36 pairs are significantly correlated (R2 between 0.07-526 
0.91, p < 0.05 for all but node by throat width). We used estimates for the effect of each 527 
gene expression module on each trait from the best-fit multiple linear model (Table 1, 528 
column 1) to predict trait covariances using equations 1-2. If a module affects two traits, 529 

some fraction of the covariance between the traits can be attributed to the shared effect 530 
of that module. We find that 26-54% of the covariance between traits is attributable to 531 
this module-predicted covariance (35 pairwise comparisons). 33 of 36 covariances are 532 
significantly predicted by gene expression modules (Same permuted datasets as above, 533 
see equations 1 and 2 in Methods, p < 0.05, Fig 5 upper triangle). Modules are most 534 

strongly predictive of trait covariances among the four traits that are better predicted by 535 

modules than by the randomly grouped whole transcriptome (corolla width, corolla 536 

length, stigma length, anther length, and flower size PC1, see Table 1 column 4).  537 
 538 

A large fraction of module variation is genetic. For each individual, we calculated the 539 
eigen expression (PC1) for each module and tested for an effect of inbred line using an 540 

ANOVA. Line explains 57-91% of variance in gene module expression (Table S7). Of 541 
the 37 modules, 29 are significantly affected by line (p < 0.05). There is no correlation 542 
between the estimated genetic control of a module and the number of traits for which a 543 

module is a significant predictor. However, all modules that significantly predict at least 544 
half of our measured traits (save one, “brown”) are significantly affected by genotype (p 545 

from 0.046 to 8.18e-15, F from 1.34 to 4.04). That is to say, modules that significantly 546 
predict many traits exhibit genetic variation among lines.  547 
 548 

 549 

DISCUSSION 550 
 551 
Natural selection on regulatory variants- Using a collection of sequenced inbred lines 552 

derived from a single natural population of yellow monkeyflower (Mimulus guttatus), we 553 
have dissected the genetic variation in the floral bud transcriptome.  We found 12,458 554 

SNPs with genome-wide significant associations with expression, 62% of which act in 555 
cis. Striking differences in the allele frequency spectrum (AFS) suggest differing 556 
selection regimes on cis- and trans-acting regulatory SNPs. Sites proximal to the 557 
affected gene are enriched for intermediate frequency variants.  SNPs distant from 558 

target genes are enriched for rare variants. Hodgins-Davis et al. (2015) argue that gene 559 
expression should evolve according to a “house of cards” model, characterized by few 560 

mutations with large effects and moderate stabilizing selection (as opposed to a 561 
Gaussian model of evolution with many mutations of small effect and weak selection). 562 
Stabilizing selection on a quantitative trait with a fixed optimum predicts that minor 563 
alleles should be less common than under neutral evolution. Trans-acting mutations are 564 
more likely to be deleterious than cis-acting mutations if they have more pronounced 565 

effects (see introduction). The results of this study suggest that different selective 566 
pressures operate on cis and trans variation, consistent with previous work in a natural 567 
population of Capsella grandiflora (Josephs et al. 2020). The distribution of MAF for 568 



trans-effecting SNPs in Capsella was similar to the Mimulus estimate (Fig 2).  However, 569 

Capsella exhibits a nearly uniform distribution of MAF for cis-SNPs, while there is a 570 

definite inflation of intermediate frequency SNPs in Mimulus. The skew of cis-acting 571 
SNPs towards intermediate frequency, relative not only to trans-acting but also the 572 
genome as a whole, suggests balancing selection. 573 
 574 
Ascertainment is a central concern for inference in QTL and association mapping 575 

studies (Beavis 1994).  For loci with no effect on expression, our permutation study 576 
indicates that rare-allele SNPs are more likely to yield very low p-values than 577 
intermediate frequency SNPs.  Thus, false positives are more likely to come from rare 578 
alleles than common, although permutation almost never produced p-values that pass 579 
the thresholds imposed on the real data (Table S3A).  Considering SNPs with effects on 580 

expression, ascertainment depends on how we measure the ‘importance’ of a SNP.  In 581 

simulated data where SNPs explain the same amount of expression variation as 582 

observed in the real data (constant 𝑉𝑠𝑛𝑝), we find no effect of allele frequency on the 583 

probability that a SNP is detected (Fig 3, gray bars).  In contrast, if we hold the effect of 584 

alleles constant (constant 𝛽), then 𝑉𝑠𝑛𝑝 is lower with extreme than intermediate allele 585 

frequencies.  For fixed 𝛽, the simulations indicate that a SNP with equally frequent 586 

alleles (q = 0.5) is very likely to prove significant (90% of cases) while the detection 587 

probability falls to below 25% if 𝑞 ≤ 0.15 (Table S3C).  However, this sieve does not 588 

explain the intermediacy of q for significant cis-SNPs in the data.  First, the number of 589 
significant tests in the highest MAF categories significantly exceed the predicted 590 

number under the constant 𝛽 simulations (Fig 3C).  Second, the constant 𝛽 simulations 591 

predict that tests on SNPs with q<<0.5 will ‘fill in’ the lower portion of the distribution 592 
when the significance threshold is reduced (Orange bars in Fig 3A,B).  In other words, 593 

SNPs that do not pass the stringent 10-12 threshold simply because the minor allele is 594 

present in fewer lines should still routinely yield p < 10-9 or p < 10-6.  The real data 595 

provide no indication of these “almost significant” SNPs in the range if 0.05 ≤  𝑞 ≤ 0.25.  596 

The distribution is skewed intermediate across significance thresholds.  597 
 598 

Figures 2 and 4 support the hypothesis that trans-effectors are routinely subject to 599 
purifying selection, at least for mutations with large enough effects to be detected in this 600 

study. Loci influencing expression in trans can affect multiple components of finely-601 
tuned networks simultaneously. Here, we show that the minor allele frequency of SNPs 602 
affecting a gene’s expression is correlated with how well that gene predicts the 603 
expression of many other genes (those in the same coexpression module), what we call 604 
“connectedness.” Genes that are well-connected in this sense are likely to be the hub of 605 

a regulatory network, a role commonly filled by transcription factors (Babu et al. 2004), 606 

although we do not detect an enrichment for any particular type of gene in this set. We 607 

find that SNPs affecting well-connected genes tend to be lower in frequency and that 608 
the magnitude of decrease in MAF is stronger for trans-acting SNPs than cis-acting 609 
SNPs (Fig 4). This difference supports the idea that trans-effectors with broad 610 
pleiotropic effects on many genes are more likely to affect regulatory hubs and therefore 611 
be routinely subjected to purifying selection. Previous studies suggest that genes with 612 
high network connectivity are constrained by selection (Hahn and Kern 2005, Ramsay 613 



et al. 2009, Josephs et al. 2017), which could explain why their expression would also 614 

be stabilized.  615 

 616 
Connectedness of genes affected by trans-SNPs might explain the pattern of purifying 617 
selection, but it does not explain why cis-acting variants exhibit an MAF distribution 618 
suggestive of balancing selection. Cis-acting variants did have smaller effect sizes, 619 
which would explain a difference in severity of purifying selection, but not that allele 620 

frequencies at cis- SNPs are more intermediate than the genome-wide average. One 621 
potential explanation is that cis-acting variants may evolve on a gene-by-gene basis to 622 
counter the pleiotropic effects that trans-acting loci have on many genes. The 623 
hypothesis that cis-acting variants might evolve to mitigate trans-pleiotropy is supported 624 
by many studies finding opposing cis- and trans effects on the same gene (Coolon et al. 625 

2014, Wang et al. 2015, Mack et al. 2016, Metzger et al. 2017). In this study, we find no 626 

such preponderance of compensatory cis/trans pairs. Using a conservative set of 24 627 

genes with both cis-SNPs and inter-chromosome trans-SNPs, we find only one example 628 
of cis/trans compensation.   629 

 630 
Genetic effect on traits mediated through gene expression- Understanding selection 631 

requires that we look at how genetic effects on gene expression translate to effects on 632 
whole-organism phenotypes and, ultimately, to fitness in the natural environment.  Table 633 
1 shows that floral and plant height measures can be significantly predicted by the 634 

flower bud transcriptome when abstracted into coexpression modules. The most precise 635 
prediction is for overall flower size (flower size PC1) and for the component 636 

measurements that jointly determine flower size (corolla width and length, stigma and 637 
anther lengths).  The strength of prediction (nearly 50% of variation explained) is 638 
notable given that flower traits are likely established early in development (Krizek and 639 

Anderson, 2013). Accurate prediction of flower size from the RNAseq data does not 640 

imply that the bud mRNA from the exact time of sampling were causal to trait variation 641 
or covariation.  Measured transcript levels might simply be strongly correlated through 642 
development time, which might suggest that trait variation is continually reinforced 643 

through development.  644 
 645 

Prediction precision was likely reduced by the fact that modules were estimated from 646 
RNAseq performed on one set of plants, while the mean phenotypes were estimated 647 
from different plants of the same inbred lines. Plants from the two experiments almost 648 
certainly experienced subtle environmental differences (different greenhouses, growth 649 

at different times of the year, different years). The high R2 for flower size despite these 650 
limitations suggests that stable relationships between genotypes and traits are mediated 651 

through transcriptome variation. Additionally, the separation of experiments avoids a 652 
subtle but potentially important bias. When phenotypes and gene expression levels are 653 
measured on the same plants, the two can become associated owing to confounding 654 
factors, even if there is no effect of expression on phenotype.  Imagine that plants differ 655 
randomly in receipt of a resource such as soil nitrogen. If nitrogen affects both gene 656 

expression and phenotype, expression and phenotype will be correlated even if there is 657 
no inherent relationship. Establishing the mean phenotype of each line prior to 658 
measuring expression eliminates this bias (Rausher 1992).  659 



 660 

Gene expression modules predict not only trait variation but also the covariances 661 

between traits (Fig 5).  Trait correlations emerge when the same module influences 662 
multiple traits (Eqs 3-4).  We find that module predictions can explain up to 54% of the 663 
observed covariance between traits (throat width and height).  We further show that a 664 
substantial fraction of the variation in expression modules has a genetic basis (Table 665 
S7), which suggests variation in gene expression as a potential cause of genetic 666 

correlations between whole-plant traits. Understanding trait covariances is essential 667 
when natural selection involves trade-offs between traits.  Such trade-offs can provide 668 
the mechanistic basis of balancing selection (Mérot et al. 2020), which is suggested in 669 
our data by the intermediacy of the AFS for cis-acting variants.  670 
 671 

In many annual plants, suites of correlated life-history traits related to rate of 672 

development (progression to flowering) are subject to a tradeoff between flowering time 673 

and fecundity. In Mimulus specifically, variation in life-history traits is maintained by 674 
opposing selective pressures on survival to flower and seed set (Kelly 2008, Mojica and 675 

Kelly 2010, Mojica et al. 2012, Monnahan and Kelly 2015, Troth et al. 2018; Monnahan 676 
et al. 2021). As with many other species, small, fast-growing plants survive to flower but 677 

make fewer seeds.  Large, slow-growing plants have the capacity to make more seeds 678 
and perhaps disperse more pollen, but risk not reaching maturity before the end of the 679 
growing season. This type of tradeoff can maintain polymorphism through balancing 680 

selection on loci affecting the underlying traits such as days to flower or flower size 681 
(Austen et al. 2017, Brown and Kelly 2018, Exposito-Alonso et al. 2018). Our bud 682 

transcriptome modules predict floral dimensions, but not development rate under 683 
greenhouse conditions (days to germination or days to flower; Table 1).  However, we 684 
suggest that future studies measuring gene modules from a range of tissues at different 685 

time points, coupled with the statistical methods that we employ here (Eqs 3-4), might 686 

determine whether the survival/fecundity tradeoff in Mimulus contributes to the 687 
intermediate allele frequency pattern evident for cis-acting transcriptional mutations (Fig 688 
2). 689 

 690 
Scale of measurement for gene expression- Fig 1 contrasts two different ways to 691 

normalize read counts, Box-Cox and log(count+1).  The latter is most similar to models 692 
typically applied in RNAseq studies, such as generalized linear models that use the log-693 
link function (e.g. DESeq2; Love et al. 2014).  When expression is normalized in the 694 
same way across all genes (such as with the log(count+1) method), rare alleles 695 

occurring in lines with extreme expression produce many false positives as a result of 696 
“rarity disequilibrium” (Houle and Márquez 2015, Lappalainen et al. 2013). When counts 697 

are instead power transformed using an exponent (λ) estimated for each gene 698 
separately (Box-Cox), samples with extreme expression are pulled closer to the mean 699 
of the resulting distribution (compare Figs 1C,D). This decreases the occurrence of 700 
spurious associations due to rare alleles.  We retained the log(count+1) analysis in Fig 1 701 
as a caution for future studies.  This issue is likely to emerge in any situation where the 702 

absolute count of individuals carrying the rare allele is small (say less than 5).   703 
 704 
 705 

https://paperpile.com/c/iXsRiH/3wx8


Conclusion 706 

The two major findings from this study are connected through our summarization of the 707 

transcriptome in terms of gene expression modules.  The first result is that cis-acting 708 
SNPs tend to have intermediate allele frequencies (relative to the genome as a whole), 709 
while trans-SNPs exhibit a rare-alleles model consistent with purifying selection. Trans-710 
acting mutations are most rare if they have broad effects, with the latter measured by 711 
how strongly a trans-affected gene predicts the overall expression of its module.  The 712 

second result is that expression modules predict flower size with a surprising degree of 713 
precision.  As a consequence, we can attribute substantial fractions of the variance in 714 
flower size measures to variation in expression modules (R2 values in Table 1).  Despite 715 
that expression levels of different modules are largely uncorrelated (across lines), they 716 
can generate covariances among traits because individual modules influence multiple 717 

traits.  This ‘transcriptome-explained’ covariance can be a substantial portion of the total 718 

covariance across lines (up to 54%, Fig 5).  Our results do not provide a clear 719 

explanation for why cis-acting SNPs exhibit allele frequencies consistent with balancing 720 

selection, but the prediction of trait covariances suggests how future studies that may 721 
address this question.  Specifically, experiments that determine the nature and extent of 722 
transcriptional control of development rate could provide a more mechanistic 723 

understanding of balancing selection.  724 
 725 
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Figure Legends 741 

 742 
Figure 1. Genome-wide associations of gene expression. Above: Transcript levels were 743 
normalized using (A) log(count+1) or (B) Box-Cox. Associations are designated as cis (pink) or 744 
trans (blue). Chromosomes are numbered along both axes. Points are larger in panel B to aid 745 
visualization. The putative misassembly is indicated with a red asterisk. The three genes with the 746 
most trans-associations are indicated with blue asterisks. Distributions of read counts for a 747 
representative gene, Migut.D00004, which had 3,665 SNP associations with Log(counts+1) 748 
transformation (C), but none with Box-Cox transformation (D).  749 
 750 
Figure 2. (A) Minor allele frequency distribution for all associations excepting Chromosome 11.  751 
(B) The subset of associations in the top quartile of effect sizes for each regulatory category. Cis-752 
acting variants in pink and trans-acting variants in blue. Lowest MAF bin is 0.025 < x < 0.035.  753 
 754 
Figure 3.  The proportion of significant cis-tests from the real data (blue), simulations with 755 
constant 𝜷 (orange), and constant 𝑽𝒔𝒏𝒑 (grey) are reported for 10 AFS categories (minor allele 756 
q=0.0-0.05, 0.05-0.1, etc).  The panels indicate the proportions obtained by imposing different 757 
significance thresholds to call significance. 758 
 759 
Figure 4. Purifying selection on trans-effectors of highly connected genes. (A) The distribution of 760 
connectedness (as measured by R2 between a gene and its module expression) for genes with 761 
associated cis (pink) and trans (blue) acting variants. (B) The average minor allele frequency of 762 
sites affecting each gene in a given connectedness quartile, separated by cis- and trans-acting 763 
variants. Each data point in (B) is a gene, which is assigned a quartile and the MAF of sites 764 
affecting it is calculated and plotted on the Y-axis.  765 
 766 
Figure 5. Gene expression predicts trait covariances. The bottom triangle shows trait correlations. 767 
A line denotes a significant correlation at p < 0.05. The diagonal displays normalized trait 768 
histograms. Fraction covariance explained by gene expression, using the best-fit model 769 
coefficients for prediction, is shown in the top diagonal. Any displayed number is significant, 770 
asterisks denote levels of significance (determined by permutation, p < 0.05, p* < 0.025, p** < 0.01, 771 
p*** < 0.001). 772 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Tables  773 

 774 
Table 1. Variation in traits explained by the AIC best-fit model of gene expression modules. 775 
Significance was established by permuting either the module eigen values across lines, or the 776 
module gene composition. Bold indicates significance with *: p < 0.05, **: p < 0.01, ***: p<0.001.  777 
 778 

 
Trait 

 
R2 

 
Modules 

H0: Gene expression 
does not predict trait 

variation 

H0: Modules do not 
predict traits better than 
random groups of genes 

Days to germination 0.289  17 0.094 0.203 
Days to flower 0.246  12 0.253 0.516 

Corolla width 0.392  19 0.005** 0.040* 
Corolla length 0.435  17 0.000*** 0.015* 

Tube length 0.389  19 0.002** 0.078 
Throat width 0.309  11 0.044* 0.190 

Stigma length 0.382  18 0.005** 0.071 
Anther length 0.400  19 0.001** 0.032* 

Height 0.333  11 0.014* 0.341 
Node 0.314  8 0.036* 0.639 

Widest leaf 0.231  6 0.294 0.891 
Flower size PC1 0.472 20 0.000*** 0.006** 
Flower size PC2 0.270  9 0.149 0.501 
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