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Recent experiments in the topological Weyl semimetal TaAs have observed record-breaking second-harmonic
generation (SHG), a nonlinear optical response at 2w generated by an incoming light source at w. However,
whether SHG is enhanced in topological semimetals in general is a challenging open question because their
band structure entangles the contributions arising from trivial bands and topological band crossings. In this
work, we circumvent this problem by studying RhSi, a chiral topological semimetal with a simple band structure
with topological multifold fermions close to the Fermi energy. We measure SHG in a wide frequency window,
w € [0.27, 1.5]eV and, using first-principles calculations, we establish that, due to their linear dispersion, the
contribution of multifold fermions to SHG is subdominant as compared with other regions in the Brillouin zone.
Our calculations suggest that parts of the bands where the dispersion is relatively flat contribute significantly to
SHG. As a whole, our results suggest avenues to enhance SHG responses.
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I. INTRODUCTION

Second-harmonic generation (SHG) is a nonlinear optical
response that is useful in interrogating quantum phases of mat-
ter; since it only occurs in media without inversion symmetry,
it is used as a proxy for spontaneous symmetry breaking
[1-6] and in studies of the surface and interfacial properties of
materials [7—12]. It is also widely applied technologically as
the basis for generating light sources at different wavelengths
[13,14]. Therefore finding systems without inversion symme-
try and with a high second-harmonic yield is a contemporary
material science challenge.

A central challenge to finding materials with a large SHG
is identifying the microscopic origin of large nonlinear optical
responses. In two recent experiments [15,16], the topological
semimetal TaAs [17-23] was reported to exhibit a giant SHG
response at w ~ 1.5 eV (800 nm) [15], reaching a maxi-
mum yield ~2 x 10? larger than the maximum response of
the semiconductor GaAs at 0.7 eV incoming photon energy
[16]. The ~eV frequencies at which the band structure was
probed, however, were far larger than the ~60 meV energy
scale associated with the topological degeneracies of its low-
energy band structure, the Weyl nodes. Hence the existence of
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Weyl nodes cannot explain the enhanced response. Instead,
the enhancement was attributed phenomenologically to the
skewness of the polarization distribution [16], but a general
microscopic origin has yet to be uncovered. Moreover, the
role of topological degeneracies with linear dispersion, such
as Weyl nodes, in determining SHG remains experimentally
unclear mainly due to the complex band structure of TaAs
when probed at large (~eV) frequencies [15,16,24].

In this work, we show experimentally, and demonstrate
theoretically that transitions between linearly dispersing
bands, specifically those close to topological band degenera-
cies, suppress rather than enhance SHG. We do so by studying
the chiral topological semimetal RhSi in space group 198,
which has a relatively simple band structure [25-28] as com-
pared with TaAs [18,29]. Close to the Fermi energy (Er) three
and four bands meet at the Brillouin center and corner, respec-
tively, resulting in two topological degenerate points known as
multifold nodes [30-33,33]. Additionally, the cubic symmetry
and the absence of inversion and mirror symmetries in space
group 198 simplify the analysis of SHG from RhSi because,
unlike TaAs, there is only one independent component of the
SHG tensor, x**. The simplicity of this space group has aided
the interpretation of other nonlinear optical responses, notably
the circular-photogalvanic effect [34-36]

We report x** of RhSi over a wide frequency range
(see Fig. 1), i.e., from 0.27 to 1.55eV, and compare it with
first-principles calculations which, at low energies, are also
benchmarked with a k - p model [36]. By identifying the re-
gions in the band structure connected by optical transitions,
we can infer that contributions between linearly dispersing
bands are relatively small compared with those regions with
relatively flat dispersion. When linear contributions are active
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FIG. 1. (a) Schematic diagram of setup used in SHG measure-
ments. Optics are P, polarizer; WP, waveplate; LPF, longpass filter;
SM, spherical mirror; S, sample; DM, D-shaped mirror; A, analyzer;
M, mirror; SPF, shortpass filter; L, lens; D, detector. (b) Repre-
sentative data and fit for w = 1.24eV. The data are in blue while
the fit to Eq. (A2) in Ref. [53] is in red. (c) Experimentally mea-
sured (red line with black error bars) and theoretically calculated
(colored lines) SHG susceptibilities. Fermi energies are indicated
by colors Ef = 0.0 (blue), —0.15 (green) eV. Solid (dashed) lines
present theoretical results without (with) SOC. The scissors potential
is A = 1.23eV. Shaded areas represent the photon energies at which
different transitions from the valance to conduction bands occur. See
also Figs. 2(a) and 3(a) for examples of these transitions. Shaded ar-
eas span w € [0.276, 0.58] (green), [0.58,0.74] (purple), [0.74,1.05]
(orange), and [1.05,1.33] (red) eV. For the definition of the error bars,
see the Supplemental Material [53].

(green and yellow regions in Fig. 1), the increase of the
SHG signal as a function of frequency is relatively small
compared with other frequency regions (purple and red re-
gions in Fig. 1). We refer to this smaller contribution as
a suppression of the SHG signal. The best agreement with
the data is obtained after correcting the bare separation be-
tween bands by incorporating many-body effects [37-41],
suggesting that capturing other nonlinear responses in chiral
topological semimetals may require these corrections as well.

At the single-particle level, the suppression of SHG from
transitions involving to linear bands compared with transi-
tions involving other types of bands can be understood from

dimensional analysis [42,43]; since the SHG susceptibility x
has units of inverse energy squared (in units of fundamental
constants) and the linear bands have no associated energy
scale, the first finite contribution to SHG is due to quadratic
corrections to the linear bands. This contribution is frequency
independent because, by dimensional analysis, the SHG may
scale as 1/t> where 1 is inversely related to the band curvature.
Hence linear bands, where 7 is large, have smaller contribu-
tions than other points in the Brillouin zone. In contrast, flatter
parts of the Brillouin zone contribute with a larger density of
states, resulting in a comparatively larger SHG.

RhSi crystalizes in the cubic space group P2;3 (number
198). Several materials in this space group, notably CoSi,
RhSi, AlPt, PdGa, and PtGa [25-27,44-49], are known chiral
topological semimetals that lack inversion and mirror symme-
tries [30-33]. Photoemission experiments revealed that these
materials showed spectra consistent with a threefold degener-
acy at the I point and a fourfold degeneracy at the zone corner
[27,44-47]. These are topological band degeneracies and lead
to exotic photogalvanic effects, including a quantized circular
photogalvanic effect [25,50-52], which has been proven to be
challenging to observe [34-36].

II. EXPERIMENT

Figure 1(a) shows a schematic diagram of our SHG setup.
The output of a regeneratively amplified Ti:sapph laser pro-
ducing 1.2 mJ, 35-fs pulses centered at 800 nm at a repetition
rate of 5 kHz was used to pump an optical parametric
amplifier (OPA) from which we derived the incoming funda-
mental laser field in the 800 nm—4.5 um wavelength range
(0.276 — 1.55eV). More details on the experimental sys-
tem can be found in the Supplemental Material [53]. The
intensity of the vertically polarized SHG output was mea-
sured as a function of incoming polarization angle ¢, an
example of which is shown in Fig. 1(b) with a typical fit
to the expression 2/3[ x> cos(2¢)]?. The fits were corrected
for the experimental parameters of pulse duration, spot size,
and instrument response and then normalized against a GaAs
standard in order to arrive at an absolute quantitative value
for the SHG susceptibility element x**, with results in a
ratio xG Ao/ Xgns; = 2-4 for photon energy w = 1.24eV. This
calibration procedure is described in detail in Ref. [16]. The
resulting SHG in the 0.27 — 1.5eV energy range is shown in
Fig 1(c). We note that this spectrum covers over five octaves of
bandwidth and reaches, to our knowledge, a far lower energy
than any SHG previously reported.

III. THEORY

We have carried out the density functional theory (DFT)
calculation using the EXCITING package [54] based on
state-of-the-art full-potential linearized augmented plane-
wave implementations. We have employed the generalized
gradient approximations within the Perdew-Burke-Ernzerhof
scheme [55] as an exchange-correlation functional. The lattice
parameters of the chiral cubic crystal RhSi have been chosen
based on experimental measurements [25,56]. Four atoms of
Rh and four atoms of Si in the unit cell are located in the
Wyckoff positions for the space group P2,3 [27,56]. We have
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FIG. 2. (a) First-principles band structure of RhSi without SOC.
Arrows indicate representative two-photon electronic transitions in
SHG, and their color code corresponds to that of the shaded areas
representing different frequency windows in Fig. 1(c). (b) Zoom to
the low-energy bands between I and M points close to the Fermi
level. Dashed lines indicate the Fermi energy at which the theoret-
ical curves in Fig. 1(c) are plotted, namely, E; = —0.15 (blue) eV.
(c) Same as (b) but close to energy —1.6eV. The zero of energy
scale represents the Fermi energy of the pristine system.

performed our calculations on a 50 x 50 x 50 k-point grid.
In the following, we present our results in the presence and
absence of the spin-orbit coupling (SOC).

The electronic band structure for RhSi along the lines con-
necting high-symmetry points in the Brillouin zone is shown
in Fig. 2 when SOC is not included and in Fig. 3 in the
presence of SOC. The energy is measured with respect to
the Fermi energy of the pristine system E; = 0eV. Close to

FIG. 3. (a) First-principles band structure of RhSi with SOC.
Arrows indicate representative two-photon electronic transitions in
SHG, and their color code corresponds to that of the shaded areas
representing different frequency windows in Fig. 1(c). (b) Zoom to
the low-energy bands between the I" and M points close to the Fermi
level. Dashed lines indicate the Fermi energy at which the theoretical
curves in Fig. 1(c) are plotted, namely, E; = —0.15eV. (c) Same as
(b) but close to energy —1.6eV. The zero of energy scale represents
the Fermi energy of the pristine system.
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FIG. 4. Calculated different components of SHG from two-
photon (solid sky blue line), one-photon (dashed royal blue line)
transitions calculated without SOC as well as two-photon (solid
green line), one-photon (dashed dark green line) transitions in the
presence of SOC. Both sets of results are at Fermi energy E; =
—0.15 eV. The total SHG susceptibility is plotted in Fig. 1(c) and
scissors potential A = 1.23 eV.

the Fermi energy, the electronic structure possesses a threefold
degeneracy at the I'" point, Fig. 2(b) and Fig. 3(b), and a
fourfold degenerate point at the R point. We note that degen-
erate threefold crossings also exist at different energies at the
I' point, e.g., around E ~ —1.57eV, a region magnified in
Fig. 2(c) and Fig. 3(c).

Our ab initio results for the nonlinear susceptibility x** of
RhSi are shown in Fig. 1(c); see Ref. [53] for more details. As
in the experimental analysis, we also calibrate our results with
GaAs [57]. The position of the Fermi energy in our system is
determined indirectly, as in other optics experiments [35,36].
To account for the effects of disorder and finite temperature
in our experimental sample, we have employed a Gaussian
broadening with width § = 0.1eV, consistent with previous
findings [35]. We also include a scissors shift [39] of A =
1.23 eV to account for renormalized occupied and unoccupied
bands due to many-body effects; see Ref. [53].

Our results for RhSi, for Fermi energies that lie below
the threefold node (0.0 — 0.15eV) in the presence/absence of
SOC, are shown in Fig. 1(c). For RhSi, we observe that for
w < 0.6eV, theory (with/without SOC) and experiment are
in reasonable agreement. One should note that for w < 0.4,
the agreement between theory and four data points of the
experiment deteriorates in which the experimental data exhibit
nearly 50% errors. This low-energy regime is, not coinciden-
tally, where the experiment is extraordinarily challenging to
perform due to both a lack of sensitive detection technology
and an absence of standard candle calibrants.

The small SHG yield in the green frequency window w €
[0.276, 0.58] in Fig. 1(c) is a result of the suppressed opti-
cal transitions between low-energy linearly dispersing bands
close to the I' point; see green arrows in Figs. 2 and 3. To
support this conclusion we first separate one-photon (w) and
two-photon (2w) transitions contributing to x™* in Fig. 4.
We observe that two-photon transitions dominate the green
frequency region regardless including or excluding the SOC.
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FIG. 5. Optical joint density of states for SHG from two-photon
(a) and one-photon (b) contributions calculated without SOC (solid
blue lines) and in the presence of SOC (dashed magenta lines). In the
presence of SOC, spin-resolved JDOS is plotted. Note the different
vertical scales in each panel.

Next, we compare this result to the two-photon and one-
photon joint density of states (JDOS) in Figs. 5(a) and 5(b),
respectively. The JDOS counts allowed optical transitions
between occupied (with energy w,) and unoccupied (with
energy w,,) states ignoring their associated matrix elements,
ie., JDOS(Q) =", , 8(wy — w, — ), where Q =2w (=
w) for the two-(one—)’photon JDOS. In the green frequency
window, the one-photon JDOS dominates compared with the
two-photon JDOS, cf. Figs. 5(a) and 5(b). Comparing with
Fig. 4, this indicates that the optical matrix elements suppress
the one-photon contribution to x**, reducing the overall SHG
for w < 0.58 eV. The band structures in Figs. 2 and 3 suggest
that the contribution to one-photon processes in this frequency
region arises from linear bands around I', whose matrix ele-
ments therefore suppress SHG.

In order to further understand the low-energy region and to
benchmark our DFT calculations, we have developed a low-
energy k - p model; see the Supplemental Material [53]. This
model captures low-energy excitations around the I" point
and brings insight into understanding the optical transitions
resulting from the threefold node. Specifically, the SHG re-
sponse around I displays a broad, low-energy peak below the
experimentally accessible frequencies. This single peak re-
sults from the merging of a dominant two-photon peak with a
subdominant one-photon peak due to the large § ~ 100 meV.
A qualitatively similar broadened peak is also present by DFT
when A = 0, which additionally receives contributions not
captured by the k- p model. Consequently, the DFT peak
is broader compared with that found using the k - p model.
When A # 0, the DFT results show that this low-energy peak
is largely suppressed. This is because A is a correction that
pushes occupied and empty bands away from each other, and
thus the optical transitions responsible for the peak are pushed
to higher energies, resulting in a better agreement with the
experimental data. These results highlight the fact that both
the many-body corrections, modeled with a scissors potential
A, and the quasiparticle broadening § are essential to explain
the experimental measurements.

In addition, we note that the scissors potential A favors
two-photon contributions. The reason is that, by separating
occupied and unoccupied states, A reduces the available phase
space for one-photon transitions with @ < A. In contrast, the
phase space for two-photon transitions is only reduced for
lower photon energies, w < A/2. As a result, two-photon
transitions dominate for v < A, as seen in Fig. 4.

We move on to analyze the purple frequency window in
Fig. 1(c), i.e., w € [0.58,0.74]eV. The SHG increases in
this region, a feature that is well captured in our calculation
when Ey < 0eV irrespective of whether SOC is included or
not. Separately plotting one- and two-photon contributions as
before in Fig. 4 reveals that the two-photon response in the
purple energy window is dominant. Consistent with our dis-
cussion in the previous paragraph, the rise of the two-photon
contributions occurs around w &~ A/2 in the JDOS. When
compared with the band structure, the observation of a domi-
nant two-photon transition in Fig. 4 suggests that two partially
flat bands close to the I' point, separated by approximately
1.3eV and connected by two-photon excitations (purple ar-
rows) in Figs. 2 and 3, are responsible for enhancing x** in
the purple energy window. The width of this energy window
is comparable to the quasiparticle broadening (§ = 0.1eV),
supporting their flat band origin.

At photon energies w € [0.74, 1.05] eV, i.e., in the orange
window in Fig. 1(c), the data exhibit a plateaulike structure.
Our DFT calculations show that this feature is reproduced
better when SOC is present for E; = —0.15eV. Naively, one
would expect that in this frequency window, the one-photon
electronic transitions from linear bands close to the R point
are activated. However, Figs. 4 and 5 reveal that the one-
photon contribution (dashed lines) is small compared with the
dominant two-photon transitions. The small contribution of
the linearly dispersing bands close to the R point is expected
by dimensional analysis and confirmed by our results. The
two-photon transitions responsible for SHG in this region
likely involve dispersing valance bands around the M and T’
points, as indicated by the orange arrows in Figs. 2 and 3.

Last, there is a drastic increase of x** measured within
the red energy window of w € [1.05, 1.33]eV in Fig. 1(c).
Our theoretical results also report an increased SHG yield in
this energy range with a sharper rise when SOC is included.
Once more we can identify the substantial role of two-photon
transitions compared with the smaller one-photon contribu-
tion; see Figs. 4 and 5. The large photon energies that define
this energy window enable electrons to reach a considerable
number of bands exemplified by red arrows in Figs. 2 and 3.
As frequency increases, we observe quantitative differences
between our DFT results and the experimental measure-
ments, especially when @ > 1.33eV. These deviations could
be attributed to the insufficient many-body corrections in our
first-principles calculations.

IV. CONCLUSIONS

In summary, our SHG spectra on RhSi together with
our first principles and k- p calculations show that one-
photon transitions among relatively linear bands have a
small contribution to SHG. Because of the linear dispersion,
these transitions are suppressed compared with the dominant
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two-photon transitions among other types of dispersive bands
including those between relatively flat bands, account for the
observed SHG signal. At the single-particle level, this result
is consistent with the expectation that one-photon transitions
are more likely to connect linear bands close to E¢, which are
expected by dimensional analysis to suppress the SHG. An
additional, many-body effect results from a sizable scissors
potential A, which separates occupied and unoccupied states
and favors two-photon over one-photon transitions. We expect
that materials in the same space group such as AlPt [46], PdGa
[47,49], and PtGa [48] behave similarly.

Our findings complement earlier observations that predict
the enhancement of SHG due to other factors, such as the
skewness of the polarization distribution [16] or a significant
intersite hopping [58]. Taken together, these results outline
strategies to find materials with high SHG yield.

ACKNOWLEDGMENTS

S.S. thanks G. Davino for his suggestions on improv-
ing DFT calculations. We thank F. de Juan, J. E. Moore,

T. Morimoto, J. Orenstein, D. Parker, L. Wu, and Y. Zhang
for discussions and related collaborations. A.G.G. and S.S.
acknowledge funding by the ANR under Grant ANR-18-
CE30-0001-01 (TOPODRIVE). A.G.G. is also funded by
the European Union Horizon 2020 research and innovation
program under Grant Agreement No. 829044 (SCHINES).
M.A.S.M. is supported by the European Union’s Horizon
2020 research and innovation programme under the Marie-
Sklodowska-Curie Grant Agreement No. 754303 and the
GreQuE Cofund programme. D.H.T. acknowledges Temple
University startup funding. K.M. and C.F. acknowledge the
financial support from the European Research Council (ERC)
Advanced Grant No. 742068 “TOP-MAT,” European Union’s
Horizon 2020 research and innovation program (Grants No.
824123 and No. 766566), and Deutsche Forschungsgemein-
schaft (DFG) through SFB 1143. K.M. acknowledges the Max
Planck Society for the funding support under Max Planck-
India partner group project. The work at Temple University
was funded in part by the National Science Foundation under
Award No. NSF/DMR-1945222.
B.L. and S.S. contributed equally.

[1] Y. R. Shen, Surface second harmonic generation: A new tech-
nique for surface studies, Annu. Rev. Mater. Sci. 16, 69 (1986).

[2] Y. R. Shen, Surface properties probed by second-harmonic and
sum-frequency generation, Nature (London) 337, 519 (1989).

[3] A. Ddhn, W. Hiibner, and K. H. Bennemann, Symmetry Anal-
ysis of the Nonlinear Optical Response: Second Harmonic
Generation at Surfaces of Antiferromagnets, Phys. Rev. Lett.
77,3929 (1996).

[4] J. C. Petersen, M. D. Caswell, J. S. Dodge, I. A. Sergienko, J.
He, R. Jin, and D. Mandrus, Nonlinear optical signatures of the
tensor order in Cd,Re, 07, Nat. Phys. 2, 605 (2006).

[5] J. W. Harter, Z. Y. Zhao, J.-Q. Yan, D. G. Mandrus, and D.
Hsieh, A parity-breaking electronic nematic phase transition
in the spin-orbit coupled metal Cd, Re, O7, Science 356, 295
(2017).

[6] N. Sirica, P. P. Orth, M. S. Scheurer, Y. M. Dai, M. C. Lee, P.
Padmanabhan, L. T. Mix, S. W. Teitelbaum, M. Trigo, L. X.
Zhao, G. F. Chen, B. Xu, R. Yang, B. Shen, C. C. Lee, H. Lin,
T. A. Cochran, S. A. Trugman, J. X. Zhu, M. Z. Hasan et al.,
Photocurrent-driven transient symmetry breaking in the Weyl
semimetal TaAs, Nat. Mater. 21, 62 (2022).

[7] V. Mizrahi and J. E. Sipe, Phenomenological treatment of sur-
face second-harmonic generation, J. Opt. Soc. Am. B 5, 660
(1988).

[8] R.-P. Pan, H. D. Wei, and Y. R. Shen, Optical second-harmonic
generation from magnetized surfaces, Phys. Rev. B 39, 1229
(1989).

[9] Y. M. Chang, L. Xu, and H. W. K. Tom, Observation of Co-
herent Surface Optical Phonon Oscillations by Time-Resolved
Surface Second-Harmonic Generation, Phys. Rev. Lett. 78,
4649 (1997).

[10] A. Kirilyuk and T. Rasing, Magnetization-induced-second-
harmonic generation from surfaces and interfaces, J. Opt. Soc.
Am. B 22, 148 (2005).

[11] D. Hsieh, J. W. Mclver, D. H. Torchinsky, D. R. Gardner,
Y. S. Lee, and N. Gedik, Nonlinear Optical Probe of Tunable
Surface Electrons on a Topological Insulator, Phys. Rev. Lett.
106, 057401 (2011).

[12] C. Lee, F. Katmis, P. Jarillo-Herrero, J. S. Moodera, and N.
Gedik, Direct measurement of proximity-induced magnetism at
the interface between a topological insulator and a ferromagnet,
Nat. Commun. 7, 1 (2016).

[13] 2. far-infrared wave generation, in Physical Principles of Far-
Infrared Radiation, Methods in Experimental Physics, edited by
L.C. Robinson (Academic Press, 1973), Vol. 10, pp. 10-81.

[14] J. Zhao, J. Fan, W. Liu, H. Shi, N. Xiao, and M. Hu, Ultra-
broadband second-harmonic generation in ZnO nano-tetrapod
with over-one-octave bandwidth, IEEE Photonics Technol. Lett.
31,250 (2019).

[15] L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt,
A. Little, J. G. Analytis, J. E. Moore, and J. Orenstein, Gi-
ant anisotropic nonlinear optical response in transition metal
monopnictide Weyl semimetals, Nat. Phys. 13, 350 (2017).

[16] S. Patankar, L. Wu, B. Lu, M. Rai, J. D. Tran, T. Morimoto,
D. E. Parker, A. G. Grushin, N. L. Nair, J. G. Analytis,
J. E. Moore, J. Orenstein, and D. H. Torchinsky, Resonance-
enhanced optical nonlinearity in the Weyl semimetal TaAs,
Phys. Rev. B 98, 165113 (2018).

[17] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[18] H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai,
Weyl Semimetal Phase in Noncentrosymmetric Transition-
Metal Monophosphides, Phys. Rev. X §, 011029 (2015).

[19] B. Q. Lv, H. M. Weng, B. B. Fu, X. P. Wang, H. Miao, J. Ma,
P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, Z. Fang, X.
Dai, T. Qian, and H. Ding, Experimental Discovery of Weyl
Semimetal TaAs, Phys. Rev. X 5, 031013 (2015).

L022022-5


https://doi.org/10.1146/annurev.ms.16.080186.000441
https://doi.org/10.1038/337519a0
https://doi.org/10.1103/PhysRevLett.77.3929
https://doi.org/10.1038/nphys392
https://doi.org/10.1126/science.aad1188
https://doi.org/10.1038/s41563-021-01126-9
https://doi.org/10.1364/JOSAB.5.000660
https://doi.org/10.1103/PhysRevB.39.1229
https://doi.org/10.1103/PhysRevLett.78.4649
https://doi.org/10.1364/JOSAB.22.000148
https://doi.org/10.1103/PhysRevLett.106.057401
https://doi.org/10.1109/LPT.2018.2890562
https://doi.org/10.1038/nphys3969
https://doi.org/10.1103/PhysRevB.98.165113
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevX.5.031013

BAOZHU LU et al.

PHYSICAL REVIEW RESEARCH 4, 1022022 (2022)

[20] S.-Ming Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang,
B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia,
A. Bansil, H. Lin, and M. Hasan, A Weyl fermion semimetal
with surface Fermi arcs in the transition metal monopnictide
TaAs class, Nat. Commun. 6, 7373 (2015).

[21] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang,
B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z.
Hussain, S. K. Mo, C. Felser, B. Yan, and Y. L. Chen, Weyl
semimetal phase in the non-centrosymmetric compound TaAs,
Nat. Phys. 11, 728 (2015).

[22] S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian,
C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al.,
Discovery of a Weyl fermion semimetal and topological Fermi
arcs, Science 349, 613 (2015).

[23] B.Q.Lv,N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang,
L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti et al., Observation
of weyl nodes in taas, Nat. Phys. 11, 724 (2015).

[24] Z. Li, Y.-Q. Jin, T. Tohyama, T. litaka, J.-X. Zhang, and H.
Su, Second harmonic generation in the Weyl semimetal TaAs
from a quantum kinetic equation, Phys. Rev. B 97, 085201
(2018).

[25] G. Chang, S.-Y. Xu, B. J. Wieder, D. S. Sanchez, S.-M. Huang,
I. Belopolski, T.-R. Chang, S. Zhang, A. Bansil, H. Lin, and
M. Z. Hasan, Unconventional Chiral Fermions and Large Topo-
logical Fermi Arcs in RhSi, Phys. Rev. Lett. 119, 206401
(2017).

[26] P. Tang, Q. Zhou, and S.-C. Zhang, Multiple Types of Topologi-
cal Fermions in Transition Metal Silicides, Phys. Rev. Lett. 119,
206402 (2017).

[27] D. S. Sanchez, 1. Belopolski, T. A. Cochran, X. Xu, J. X. Yin,
G. Chang, W. Xie, K. Manna, V. Sii}, C. Y. Huang, N. Alidoust,
D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G. Q. Wang,
T. R. Chang, C. Felser, S. Y. Xu, S. Jia et al., Topological chiral
crystals with helicoid-arc quantum states, Nature (London) 567,
500 (2019).

[28] T. A. Cochran, G. Chang, I. Belopolski, K. Manna, D. S.
Sanchez, Z. Chéng, J.-X. Yin, H. Borrmann, J. Denlinger, C.
Felser, H. Lin, and M. Zahid Hasan, A Fermi Arc Quantum
Ladder, arXiv:2004.11365 (2020).

[29] J. Buckeridge, D. Jevdokimovs, C. R. A. Catlow, and A. A.
Sokol, Bulk electronic, elastic, structural, and dielectric prop-
erties of the Weyl semimetal TaAs, Phys. Rev. B 93, 125205
(2016).

[30] J. L. Mafies, Existence of bulk chiral fermions and crystal sym-
metry, Phys. Rev. B 85, 155118 (2012).

[31] B. J. Wieder, Y. Kim, A. M. Rappe, and C. L. Kane, Double
Dirac Semimetals in Three Dimensions, Phys. Rev. Lett. 116,
186402 (2016).

[32] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions:
Unconventional quasiparticles in conventional crystals, Science
353, aaf5037 (2016).

[33] G. Chang, B. J. Wieder, F. Schindler, D. S. Sanchez, I.
Belopolski, S.-M. Huang, B. Singh, D. Wu, T.-R. Chang, T.
Neupert et al., Topological quantum properties of chiral crys-
tals, Nat. Mater. 17, 978 (2018).

[34] D. Rees, K. Manna, B. Lu, T. Morimoto, H. Borrmann, C.
Felser, J. E. Moore, D. H. Torchinsky, and J. Orenstein,
Helicity-dependent photocurrents in the chiral Weyl semimetal
RhSi, Sci. Adv. 6, eaba0509 (2020).

[35] Z. Ni, B. Xu, M.-A. Sanchez-Martinez, Y. Zhang, K. Manna,
C. Bernhard, J. W. F. Venderbos, F. de Juan, C. Felser, A. G.
Grushin, and L. Wu, Linear and nonlinear optical responses
in the chiral multifold semimetal RhSi, npj Quantum Mater. 5,
96(2020).

[36] Z. Ni, K. Wang, Y. Zhang, O. Pozo, B. Xu, X. Han, K. Manna, J.
Paglione, C. Felser, A. G. Grushin et al., Giant topological lon-
gitudinal circular photo-galvanic effect in the chiral multifold
semimetal CoSi, Nat. Commun. 12 (2021).

[37] Z. H. Levine and D. C. Allan, Linear Optical Response in
Silicon and Germanium Including Self-Energy Effects, Phys.
Rev. Lett. 63, 1719 (1989).

[38] J. L. P. Hughes and J. E. Sipe, Calculation of second-order
optical response in semiconductors, Phys. Rev. B 53, 10751
(1996).

[39] F. Nastos, B. Olejnik, K. Schwarz, and J. E. Sipe, Scis-
sors implementation within length-gauge formulations of the
frequency-dependent nonlinear optical response of semicon-
ductors, Phys. Rev. B 72, 045223 (2005).

[40] B. Sadhukhan, Y. Zhang, R. Ray, and J. van den Brink,
First-principles calculation of shift current in chalcopy-
rite semiconductor ZnSnP,, Phys. Rev. Mater. 4, 064602
(2020).

[41] W. Song, G.-Y. Guo, S. Huang, L. Yang, and L. Yang, First-
principles studies of second-order nonlinear optical properties
of organic-inorganic hybrid halide perovskites, Phys. Rev. Appl.
13, 014052 (2020).

[42] X. Yang, K. Burch, and Y. Ran, Divergent bulk photovoltaic
effect in Weyl semimetals, arXiv:1712.09363.

[43] O. Pozo and F. de Juan, Computing observables without eigen-
states: Applications to bloch hamiltonians, Phys. Rev. B 102,
115138 (2020).

[44] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L.
Wang, Z. Li, W. Fan et al., Observation of unconventional chiral
fermions with long Fermi arcs in CoSi, Nature (London) 567,
496 (2019).

[45] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura, H.
Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba,
H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato, Observa-
tion of Chiral Fermions with a Large Topological Charge and
Associated Fermi-Arc Surface States in CoSi, Phys. Rev. Lett.
122, 076402 (2019).

[46] N. B. M. Schréter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna,
F. de Juan, J. A. Krieger, V. Siiss, M. Schmidt, P. Dudin et al.,
Chiral topological semimetal with multifold band crossings and
long Fermi arcs, Nat. Phys.1 (2019).

[47] N. B. M. Schroter, S. Stolz, K. Manna, F. de Juan, M. G.
Vergniory, J. A. Krieger, D. Pei, T. Schmitt, P. Dudin, T. K.
Kim, C. Cacho, B. Bradlyn, H. Borrmann, M. Schmidt, R.
Widmer, V. N. Strocov, and C. Felser, Observation and control
of maximal chern numbers in a chiral topological semimetal,
Science 369, 179 (2020).

[48] M. Yao, K. Manna, Q. Yang, A. Fedorov, V. Voroshnin, B. V.
Schwarze, J. Hornung, S. Chattopadhyay, Z. Sun, S. N. Guin,
J. Wosnitza, H. Borrmann, C. Shekhar, N. Kumar, J. Fink, Y.
Sun, and C. Felser, Observation of giant spin-split Fermi-arc
with maximal Chern number in the chiral topological semimetal
PtGa, Nat. Commun. 11, 2033 (2020).

[49] P. Sessi, F.-R. Fan, E. Kiister, K. Manna, N. B. M. Schréter,
J.-R. Ji, S. Stolz, J. A. Krieger, D. Pei, T. K. Kim, P. Dudin, C.

L022022-6


https://doi.org/10.1038/ncomms8373
https://doi.org/10.1038/nphys3425
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1038/nphys3426
https://doi.org/10.1103/PhysRevB.97.085201
https://doi.org/10.1103/PhysRevLett.119.206401
https://doi.org/10.1103/PhysRevLett.119.206402
https://doi.org/10.1038/s41586-019-1037-2
http://arxiv.org/abs/arXiv:2004.11365
https://doi.org/10.1103/PhysRevB.93.125205
https://doi.org/10.1103/PhysRevB.85.155118
https://doi.org/10.1103/PhysRevLett.116.186402
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1038/s41563-018-0169-3
https://doi.org/10.1126/sciadv.aba0509
https://doi.org/10.1038/s41535-020-00298-y
https://doi.org/10.1038/s41467-020-20408-5
https://doi.org/10.1103/PhysRevLett.63.1719
https://doi.org/10.1103/PhysRevB.53.10751
https://doi.org/10.1103/PhysRevB.72.045223
https://doi.org/10.1103/PhysRevMaterials.4.064602
https://doi.org/10.1103/PhysRevApplied.13.014052
http://arxiv.org/abs/arXiv:1712.09363
https://doi.org/10.1103/PhysRevB.102.115138
https://doi.org/10.1038/s41586-019-1031-8
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1126/science.aaz3480
https://doi.org/10.1038/s41467-020-15865-x

SECOND-HARMONIC GENERATION IN THE TOPOLOGICAL ...

PHYSICAL REVIEW RESEARCH 4, 1022022 (2022)

Cacho, R. Widmer, H. Borrmann, W. Shi, K. Chang, Y. Sun, C.
Felser, and S. S. P. Parkin, Handedness-dependent quasiparticle
interference in the two enantiomers of the topological chiral
semimetal PdGa, Nat. Commun. 11, 3507 (2020).

[50] F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore,
Quantized circular photogalvanic effect in Weyl semimetals,
Nat. Commun. 8, 15995 (2017).

[51] E. J. Konig, H.-Y. Xie, D. A. Pesin, and A. Levchenko, Pho-
togalvanic effect in Weyl semimetals, Phys. Rev. B 96, 075123
(2017).

[52] FE. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G.
Vergniory, and A. G. Grushin, Chiral optical response of multi-
fold fermions, Phys. Rev. B 98, 155145 (2018).

[53] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.4.L.022022 for details on the ex-
perimental measurements, details on calculating the second-
harmonic generation response function within the scissor
approximation, the SHG in family of transition metal silicides,

and further details on the low-energy model discussed in the
main text.

[54] A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone,
S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, exciting:
a full-potential all-electron package implementing density-
functional theory and many-body perturbation theory, J. Phys.:
Condens. Matter 26, 363202 (2014).

[55] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gra-
dient Approximation Made Simple, Phys. Rev. Lett. 77, 3865
(1996).

[56] I. Engstrom and T. Johnsson, Least-squares refinement of the
structure of RhSi (FeSi-type), Acta Chem. Scand. 19, 1508
(1965).

[57] S. Bergfeld and W. Daum, Second-Harmonic Generation in
GaAs: Experiment Versus Theoretical Predictions of Xﬁ), Phys.
Rev. Lett. 90, 036801 (2003). '

[58] L. Z. Tan and A. M. Rappe, Upper limit on shift current gen-
eration in extended systems, Phys. Rev. B 100, 085102 (2019).

L022022-7


https://doi.org/10.1038/s41467-020-17261-x
https://doi.org/10.1038/ncomms15995
https://doi.org/10.1103/PhysRevB.96.075123
https://doi.org/10.1103/PhysRevB.98.155145
http://link.aps.org/supplemental/10.1103/PhysRevResearch.4.L022022
https://doi.org/10.1088/0953-8984/26/36/363202
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.3891/acta.chem.scand.19-1508
https://doi.org/10.1103/PhysRevLett.90.036801
https://doi.org/10.1103/PhysRevB.100.085102

Supplementary Material:
Suppression of second-harmonic generation from linear bands in the topological
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A. EXPERIMENTAL DETAILS

The light source was described in the main text as
an optical parametric amplifier (OPA, Light Conversion
- TOPAS Twins) pumped by a regeneratively amplified
Ti:sapph laser system (Coherent - Astrella). The polar-
ization of the OPA output was purified using a linear wire
grid polarizer (Thorlabs - WP12L-UB) and then passed
through a quarter waveplate (Thorlabs - AQWP05M-
980, AQWPO05M-1600 or Alphalas - PO-TWP-L4-25-
FIR) matched to the photon energy to produce a cir-
cularly polarized beam. After removing parasitic wave-
lengths due to other nonlinear optical processes in the
OPA (as well as from interactions with the optics them-
selves), the beam was passed through a mechanically-
driven polarizer spinning at 5 Hz in order to generate a
varying incoming polarization angle ¢. For photon en-
ergies > 0.480 eV, the beam was then focused onto the
sample using a 50 cm reflecting mirror at near-normal in-
cidence so as to produce a relatively large spot. This en-
ables high laser power to be incident on the sample while
restricting the fluence to below the damage threshold. It
also permitted for more SHG photons to be emitted per
laser shot, yielding large enough signals to be measured
by detection electronics in the IR frequency range where
detector responsivity is relatively low. For photon ener-
gies < 0.480 eV, the beam instead was focused using a
Cassegrain objective (Edmund Optics - 68-188) in order
to obtain high enough fluences to produce measurable
signals. The incidence angle introduced by the reflective
objective was accounted for in the data analysis.

After reflecting from the sample, the beam was in-
cident on a D-shaped mirror and then passed through
an analyzer that was chosen to remain stationary in the
vertical orientation to produce the signal I(¢). Upon
emerging from the polarizer, the beam passed through
a filter assembly to remove the fundamental wavelength
while preserving the second-harmonic response. The fil-
ters that we used were: 2 shortpass 650 nm (Thorlabs
- FESHO0650) and 2 shortpass 700 nm filters for the
800 — 1200 nm wavelength range; 2 shortpass 800 nm

* These two authors contributed equally

(Thorlabs - FESH0800) and 2 shortpass 1000 nm (Thor-
labs - FESH0800) filters for the 1140 — 1500 nm wave-
length range; 2 longpass 600 nm (Thorlabs - FELH0600),
2 shortpass 900 nm (Thorlabs - FESH0900) and 2
shorpass 1000 nm (Thorlabs - FESH1000) filters for the
1400 — 1620 nm wavelength range; 2 longpass 700 nm
(Thorlabs - FELH0700) and 2 shortpass 1326 nm (Sem-
rock - FF01-1326/SP-25) filters for the 1580 — 2000 nm
wavelength range; 2 shortpass 1326 nm (Semrock - FF01-
1326/SP-25) and 2 shorpass 1550 nm (Spectrogon - SP-
1550) filters for the 2000 — 2600 nm wavelength range; 2
shortpass 1550 nm (Spectrogon - SP-1550) for 2800 nm;
and 2 shortpass 2600 nm filters (Spectrogon - SP-2600)
for the 3500 — 4500 nm wavelength range.

The detectors we used were: a multialkali photo-
cathode photomultiplier tube (Hamamatsu - R12829)
biased by a high voltage power supply socket assem-
bly (Hamamatsu - C12597-01) for incoming wavelength
range 800 — 1620 nm with transimpedance amplifica-
tion performed by a charge sensitive preamplifier (Cre-
mat CR-Z-PMT) in tandem with a shaping device (Cre-
mat - CR-S-8us-US); an InGaAs photodiode (Thorlabs
- FGAO1) with transimpedance amplification performed
by a charge sensitive preamplifier (Cremat - CR-~Z-110)
and a shaping device (Cremat - CR-S-8us-US) for in-
coming wavelength range 1580 — 2800 nm; and a cooled
InGaAs photodiode (Hamamatsu G12183-203K) for the
2600—4700 nm incoming wavelength range, also attached
to the same charge integrator/shaper as used for the
1580 — 2800 photon range. In the 800 — 2800 nm wave-
length range, the intensity was recorded using a data
acquisition card-based fast-sampling technique, a more
detailed description of which is provided within Ref [1],
whereas for the 2600 — 4700 nm wavelength range, the
signal was measured using a lock-in amplifier (Zurich In-
struments - MFLI) locked to the laser repetition rate.

Experiments were conducted on the polished (111) face
of RhSi. Further details on the sample preparation can
be found in a prior publication [2]. On this face, the
second-harmonic generation susceptibility tensor is given
by

T adolfo.grushin@neel.cnrs. fr
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Xk (2w; w,w) =

S ‘
w
o

The data were taken for incident polarization of the fun-
damental light dynamically rotating as angle ¢. As de-
tailed above, there was a static polarizer in front of the
detector to measure the emitted SHG for both vertical
outgoing polarization, referred to as Ipo. Using the tensor
of Eq. (1), we get

16) = & WV (Quiw,w)cos2) (A2)
as the expected response to which the data of Fig. 1 were
fit. In order to build a spectrum, these fits were also
controlled for photon-energy-dependent variable laser pa-
rameters including the incident power 12, spot size d and
pulse duration 7, as well as the detector responsivity and
filter transmission coefficients according to the equation

I2d?
221

Lo o (282 (A3)
where I, is the measured SHG intensity, f is the fo-
cal length of the lens, and A is the incident wavelength.
A derivation of these normalization parameters can be
found in Ref. [3]. Several data points were taken in com-
mon between different detectors to account for differing
detector sensitivity.

The error bars of Fig. ?7c were calculated using stan-
dard error propagation methods on Eq. 3 which requires a
numerical estimate of the errors in the quantities I, I,
d, and 7. The error in I, was retrieved from the fitting
routine used to obtain the fits of, e.g., Fig. ?7b, while the
error in I, was determined from measuring the variability
in the laser power at all the measured wavelengths. Error
in both the spot size and pulse duration were determined
from repeated measurement of these quantities.

B. SECOND-HARMONIC GENERATION
RESPONSE FUNCTION WITHIN THE
SCISSORS APPROXIMATION

The nonlinear polarization describing second-harmonic
generation induced by an electric field E®(w) at a fre-
quency w along the Cartesian coordinate b is written in
the length gauge [4] as

P (2w) =

X“bc(2w;w7w)Eb(w)Ec(w), (B4)
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Figure S1. Different scissors corrections for y in pristine
RhSi (Ey = 0) with a disorder broadening of § = 0.1 eV.
Solid (Dashed) lines present results without (with) spin-orbit
coupling. Note that results with spin-orbit coupling for
A = 0.0 eV are identical to results with the same A (solid
dark blue line). For the visibility purpose, we multiplied all
results with A = 0.0 eV by 1/50.

where % is the second-order susceptibility which satis-

fies the intrinsic permutation symmetry y®¢ = 0.

The non-linear response function y**¢ accounts for in-
terband and intraband contributions [5], and has the
form

abc(

2w;w, w) =X3p0 (W) + Xiph (W), (B5)

_Xgll;i 1nter( ) + Xlllgi inter (Ld)
+ ng% 1ntra( ) + thl]l;fl mtra(w)

+0"(w), (B6)

where the labels 2ph and 1ph denote two- and one—photon
transitions, respectively, X350 = X356 inter X0 intras a0

abc abc abc abc
X1ph = Xiph,inter T Xiph,intra T 0" °- The above terms of
be
x*’¢ are

abc "m it n 2f
XQgh 1nter C/Z nm{ o = (B7)

wln - wml) (Wmn - 2(4])7
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where C = e3/h?, the wave vector k is defined in

the Brillouin zone, [, = [d*k/(47?), lowercase Ro-
man subscripts denote band indices, the energy of band
n is hwy,, and the frequency difference is defined as

Wmn = Wm — Wy. Here, r,,, are matrix elements of
.0 . a o s
the position operator given by r2 = v%  /(iwms), and
a — a i
AL =vd  — v . where v denote the velocity ma-

trix elements. The curly brackets impose symmetriza-
tion with respect to the Cartesian coordinates such that
{4 B} = 3(AL, B, + Br AL,

To evaluate the matrix elements and band energies,
we have calculated the ground-state properties using the
density functional theory (DFT). While these calcula-
tions can provide a satisfactory description for the occu-
pied states, treating unoccupied states, which might be
occupied during optical transitions, lacks many-body ef-
fects. As a result, the theoretical calculation of optical
responses fails to exactly evaluate the energies at which
the photons will be absorbed [6-8]. There are two main
approaches to remedy this mismatch between theoretical
and experimental results: (i) the many-body GW formal-
ism [9-11], and (ii) the scissors approximation [4, 5, 12—
14].

The GW corrections are computed using a many-body
self-energy. This self-energy corrects the energy gaps
between occupied and unoccupied bands and thus im-
proves the agreement between theoretical and experimen-
tal measurements [15]. Despite these advantages, con-
verging the well-established GW self-consistent loop is
computationally demanding.

300 - - - - —
intra, without SOC
inter, without SOC g
intra, with SOC
inter, with SOC J

[x**1(pm/V)
=
(S
o

’_-__—‘ N
ot _
04 06 08 10 12 14
w(eV)
Figure S2.  Intraband (solid lines) and interband (dashed

lines) contributions of x*¥* of RhSi in the absence (blue) and
presence (green) of the spin-orbit coupling. The Fermi energy
is set to Ey = —0.15eV. The parameters and colors of shaded
areas are the same as Fig. 1(c) in the main text.

In this work we tackle the problem of inaccurate band
gaps between occupied and unoccupied states using a
scissors shift (A). Within the scissors approximation,
the position and velocity matrix elements are modified
as

Unm
Trnm = , B12
i[wnm + %(5’1’11n0c _ 6}1nnoc)] ( )
A
m + 2 (§unoc _ gunoc
5nm = Unmw * h( - o )7 (Blg)
Wnm

where 0"°¢ is the Kronecker delta for unoccupied state n.
We illustrate the influence of A on shifting the absorption
energy in the nonlinear response x*¥# in Fig. S1. The
results are calculated for the pristine RhSi system (Ey =
0). The figure shows that by adjusting the energy gaps
with A, optical transitions can be modified.

C. INTRABAND AND INTERBAND
CONTRIBUTIONS IN SECOND-HARMONIC
GENERATION OF RHSI

The intraband and interband contributions accounted
in x*Y* read

leriia (UJ) ngi intra (W) + XTgi,intra (w>7 (014)
Xirnlltzr (W) ng}zl inter (OJ) + Xalvgﬁ,inter (OJ), (C15)

where and x7¥°
X2ph inter? leh inter’ X2ph intra’ leh,intra

given by Egs. (7, 8, 9, 10), respectively. Fig. S2 presents

X and xihe for RhSi with Ey = —0.15 eV, see also

inter

Fig. 1(c) for the total SHG yield. For w < 0.9 eV the in-
terband and intraband contributions exhibit comparable
responses in the green, purple, and orange energy win-
dows. Combined with the observation that two-photon

are



transitions are dominant in RhSi, e.g., see Fig. 4 in
the main text, the leading components responsible for
X% in these regions are X507 ;.. and X505 .- FOr
w € [1.05,1.33] eV, the intraband contributions dominate
compared with interband responses, and thus in this re-
gion the two-photon intraband transitions are responsible

for the observed nonlinear SHG response.

D. LOW-ENERGY SINGLE-PARTICLE
SECOND-HARMONIC GENERATION IN RHSI:
k-p MODEL

To study the SHG at low energies near the I' point
(shaded green region in Fig. 1) we use a three-band k - p
model with up-to-second order terms in momentum. This
model was originally presented in Ref. [16] for CoSi, a ma-
terial that crystallizes in the same space group (SG198)
as RhSi. Here we give an overview of the construction of
this model and the relevance of the different terms. For
a more detailed explanation on the symmetries involved
we refer the reader to Ref. [16].

It is illustrative to start by considering a higher-
symmetry point group, O, to later on break the symme-
try down to T, the physical point group at I'; by including
the necessary terms.

We will work the Gell-Mann matrices A, which form
a basis for the operators acting on the subspace of the
three basis states for the threefold crossing at I’

0 -0 00 —i
=1, M=[i 00|, =[000],
0 0O i0 o0
(D16)
00 O 010
As=100 -], =100}, (D17)
0i 0 000
001 000
Ms=1000], x=|001], (D18)
100 010
100 5 0 0
=0 -10), x=|0 Z 0 [. (D)
2
0 0 0 0 0_%

The point group O is generated by C rotations around
(110), Cy rotations around (100), and Cj rotations
around (111). This allows four different combinations of
the Gell-Mann matrices that transform as the irreducible
representations (irreps) of O,

A1 = Mo, (D20)

4

Ty = (—Xa, A5, — A7), (D21)

Ty = (A1, A, Xg), (D22)
1 3 3 1

E = (—5)\3—}— §A87—g)\3,—§)\8), (D23)

where Aq1,T7,T5, E label the different irreps consid-
ered. We find for the same point group O four momentum
irreps up to second order in momentum,

Ka, = k; +kj + k2, (D24)

KT1 = (km kyv kz)a (D25)

K, = (kyk., kok,, kyky), (D26)
2 2 2 2 2

We can now build the most general symmetry-allowed
Hamiltonian up to second order with point group symme-
try O by making scalar combinations of the momentum
irreps with the Gell-Mann matrices, which reads

Ho =
ak? + % (k? = 3k2) vk, + bkyk.
ak? + % (k* — 3k2)
—ivk, + bk,

—ivk, + bkyk.
ik, + bk,k.

ik + bk k,
ak? + % (k? — 3k2)
(D28)

—ivky + bk )

where k = /k2 + k2 + k2, and a, v, b, and c are the

parameters corresponding to the terms coming from Ay,
Ty, Ts, and FE, respectively.

Finally, we need to consider the point group 7T', ob-
tained by breaking the Cy rotations around (100) in the
point group O. This leads to a new momentum irrep
Ky = (—(2k2 — k2 —k2)/v/3,k2 — k2), allowing for a new
term in the k - p Hamiltonian, which reads

o (B 0 0
‘ 2 2
Hr =Ho+ — 0 ks — k2 0 (D29)
V3 o 0 K-k

In previous calculations using this model (c.f. Ref [16])
the effect of d proved to be negligible in other optical re-
sponses like the circular photo-galvanic effect. Neverthe-
less, in this work, it is crucial to include the symmetry
breaking term with a finite d parameter since the SHG
response is forbidden for the point group O, but generi-
cally finite for the point group T [16, 17].

The eigenvectors and eigenvalues of the k- p model do
not depend on d up to second order in k [16, 17], and
thus we cannot use their analytical expressions to fit the
value of d. To obtain the low-energy model parameters,
we fit the existing four-band tight-binding model con-
structed for space group 198 [18, 19] to the DFT bands
shown in Fig. 7?7, and obtain the k - p parameters by
fitting the k - p model to the tight-binding model. The
resulting values for the parameters are (a,b,c,d,vp) =
(—0.0438344,—0.01,0.131377,0.1874,0.385). These pa-
rameters set the threefold node at E = 0. Finally,
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(a) Band structure of the k - p model along the I' — X and I' — M directions with parameters (a,b,c,d,vr) =

(—0.0438344, —0.01,0.131377,0.1874,0.385). The threefold node is placed at Er = 0 eV, and the Fermi level is placed at
E; = —0.14 eV. The vertical dashed arrows indicate the most relevant one-photon activation energies. (b) Nonlinear sus-
ceptibility (solid lines) of the k - p model shown in (a) for different values of disorder §. The energy regions where the most
relevant transitions are activated are indicated in shaded grey. The vertical dashed lines indicate the two-photon activation
frequencies (blue) and the one-photon activation frequencies (ocher). (c) Nonlinear susceptibility for different values of Ef
shown in different shades of green with a disorder 6 = 0.005 eV.

to test the different values of E; and compare with
the DFT calculation we add a term to the Hamiltonian
H = Hpr — Eflgys.

The nonlinear susceptibility of the k- p model features
a two-peak structure at low energies. The energy regions
where these peaks appear are delimited by the activa-
tion frequencies of the transitions from the lowest to the
middle band and from the lowest to the upper band (see
Fig. S3(a)). The first peak is dominated by the two-
photon transitions from the lowest to the middle band
(see Fig. S3(b), vertical dashed blue lines and shaded
grey region). The lower, second peak in Fig. S3(b) ap-
pears in the energy region (shaded gray) delimited by
one-photon transitions from the lower to the middle band
(vertical ocher lines) and the two-photon transitions from
the middle to the upper band (vertical blue lines).

As the disorder broadening ¢ is increased, the features
of the nonlinear response are smoothed, and the two-
peak structure is no longer distinguishable at 6 = 0.05 eV
(Fig. S3(b)) for Ey = 0.14 V. For higher §, the nonlin-
ear response features a single, wider and smoother peak,
similar to the one obtained in the DFT calculation with
A =0 eV (see Fig. S1 (a), dark blue curve).

The activation frequencies, and thus the position and
width of the peaks, depend on the Fermi level. As the
threefold node at I' is separated from the Fermi level, the
activation frequencies and the difference between them
become larger. As a result, the peak positions are shifted
towards higher energies. The peaks also become wider,
because the energy regions delimited by the activation
frequencies are spread over a larger range of energies (see
Fig. S3(c)). For large values of E the one-photon transi-
tions are suppressed due to the Pauli blocking at low en-
ergies, and the two-photon response becomes dominant.

1200
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Figure S4. Comparison between x“¥* obtained within the

k - p model (blue line) at E; = —0.27 eV and DFT calcula-
tions (dashed green line) at £y = —0.14 eV. Both curves are
calculated with A =0 eV and 6 = 0.1 eV.

E. COMPARING LOW-ENERGY
SECOND-HARMONIC GENERATION USING
FIRST PRINCIPLES AND k-p CALCULATIONS

To benchmark our DFT calculation we compare this
calculation to our results obtained using the low-energy
model around the I' point, described in Sec. . Fig. S4
shows the nonlinear susceptibility of RhSi obtained for
Ef = —0.14 eV using DFT and Ey = —0.27 eV using the
k - p results, both computed without many-body effects,
ie, A=0¢eV.

Fig. S4 shows that the second-harmonic generation ob-
tained from DFT and the k - p calculations are similar.
The broader peak in DFT compared to that of the k- p



model can be attributed to extra electronic transitions seen in Fig. S1, the scissors correction suppresses this
in DFT, which are not captured by the k- p model. As peak and leads to a better description of the experimen-
tal SHG data in RhSi (Fig. 1).

F. LOW-ENERGY SINGLE-PARTICLE SECOND-HARMONIC GENERATION IN
TWO-LINEAR-BAND WEYL SYSTEMS: k£ -p MODEL

Here, we present SHG response for a Weyl system with linear bands close to one of its nodes. We start by the
linear Hamiltonian

H =vio.k =h.o, (F30)

, where vf is the Fermi velocity, o = (¢!, 0%, 0®) denote Pauli matrices and k = (ky, ky, k.) stand for the momentum.

h = (hg, hy, h,), with h; = vek;, Vi € {z,y, 2}, are obtained by SU(2) decomposition of #. The eigensystem of the

T
. . . . . . . k. F\/kZ+kI+k2
Hamiltonian includes two eigenvalues €1 o = turk, associated with eigenvectors |11 2) = [ ———F2—=,1

ko tiky
To analytically evaluate Eq. (5), we first express A% and 7, = —10pm/Whm 10 terms of b as
h("-}nm =&n — Em, (F31)
Vit = (n|Ok, HIm) = Ok, hp) o0, = P .aThm (F32)
Afrlm% = Ugn - Uf;lm = hﬁ,a [Jgn - Ufmm]V (FBS)

where m,n = {1,2} are band indices. Here Pauli matrices with nonzero h in the eigenspace of H, with matrix V,
yield

b ke (\/R2HRZ TR +k. ) —ikoky+k2

[ —
_ /k2+k2+k2 ky+tiky) /K2 +k2+k2
Volelv = A . (ke b )RR 2 , (F34)
ke (/R2HK2+k2—k ) +ikaky — K L

(ko tiky)y/k2+k2+k2 VE2+k2+k2

ky i(ke(/R2HE2 K2+ ) +h2+ikaky)
V-1lg2V — ( ~/kg+kg+)kg . (kgtiky)\/k2+k2+k2 7 (F35)
ik (/K2 +k2+k2—k. ) —ik2+kaky ky
(kg tiky)\/k2+k2+k2 k2 HR24K2

_ ke _ ke -1
\/IngrkZJrkﬁ \/k§+Z§+k§

R — PRz
k2 +R24kK2 k2 +k2+k2

Using commutation and anti-commutation relations of Pauli matrices, we then can rewrite various terms in Eq. (5)
as

ViodV = (F36)

b ¢ el B v
a b ,.c U?Lm{vmlvln} h hah Unm{amlaln}
_ _ m 1 Tmi%in ) F37
Tnm{rmlrln} Wi Wim a,al’B,blly,c @i Win ’ ( )
a Ab c a B _ 5B c
rfrlzm{A?nlrlcn} _ Unm{w;nnvmn} _ ha,ahﬁ,bh'y,c o'nm{(O—Ww('r:2 Unn)omn} ) (F38)
nm nm

Substituting h and matrix elements of Pauli matrices, given in Eqs. (34, 35, 36), into various terms in Eq. (5) and
performing momentum-integration results in x*¥*(2w;w,w) = 0.

[1] Baozhu Lu, Jason D Tran, and Darius H Torchinsky, “Fast reflective optic-based rotational anisotropy nonlinear harmonic
generation spectrometer,” Review of Scientific Instruments 90, 053102 (2019).


https://aip.scitation.org/doi/abs/10.1063/1.5080965

[2] Dylan Rees, Kaustuv Manna, Baozhu Lu, Takahiro Morimoto, Horst Borrmann, Claudia Felser, JE Moore, Darius H
Torchinsky, and J Orenstein, “Helicity-dependent photocurrents in the chiral Weyl semimetal RhSi,” Science advances 6,
eaba0509 (2020).

[3] Shreyas Patankar, Liang Wu, Baozhu Lu, Manita Rai, Jason D. Tran, T. Morimoto, Daniel E. Parker, Adolfo G. Grushin,
N. L. Nair, J. G. Analytis, J. E. Moore, J. Orenstein, and D. H. Torchinsky, “Resonance-enhanced optical nonlinearity in
the Weyl semimetal TaAs,” Phys. Rev. B 98, 165113 (2018).

[4] James L. P. Hughes and J. E. Sipe, “Calculation of second-order optical response in semiconductors,” Phys. Rev. B 53,
10751-10763 (1996).

[5] F. Nastos, B. Olejnik, K. Schwarz, and J. E. Sipe, “Scissors implementation within length-gauge formulations of the
frequency-dependent nonlinear optical response of semiconductors,” Phys. Rev. B 72, 045223 (2005).

[6] C. S. Wang and B. M. Klein, “First-principles electronic structure of Si, Ge, GaP, GaAs, ZnS, and ZnSe. II. optical
properties,” Phys. Rev. B 24, 3417-3429 (1981).

(2) »

[7] S. Bergfeld and W. Daum, “Second-harmonic generation in GaAs: Experiment versus theoretical predictions of xay-,
Phys. Rev. Lett. 90, 036801 (2003).

[8] Yang Chi, Huai-Guo Xue, and Sheng-Ping Guo, “Designing sulfide borate as a novel type of second-order nonlinear-optical
material,” Inorg. Chem. 59 (2020), 10.1021/acs.inorgchem.9b03426.

[9] Mark S. Hybertsen and Steven G. Louie, “First-principles theory of quasiparticles: Calculation of band gaps in semicon-
ductors and insulators,” Phys. Rev. Lett. 55, 1418-1421 (1985).

[10] F Aryasetiawan and O Gunnarsson, “TheGWmethod,” Reports on Progress in Physics 61, 237-312 (1998).

[11] Hong Jiang, Ricardo I. Gémez-Abal, Xin-Zheng Li, Christian Meisenbichler, Claudia Ambrosch-Draxl, and Matthias Schef-
fler, “Fhi-gap: A GW code based on the all-electron augmented plane wave method,” Computer Physics Communications
184, 348 — 366 (2013).

[12] Zachary H. Levine and Douglas C. Allan, “Linear optical response in silicon and germanium including self-energy effects,”
Phys. Rev. Lett. 63, 1719-1722 (1989).

[13] Banasree Sadhukhan, Yang Zhang, Rajyavardhan Ray, and Jeroen van den Brink, “First-principles calculation of shift
current in chalcopyrite semiconductor ZnSnP2,” Phys. Rev. Materials 4, 064602 (2020).

[14] Wenshen Song, Guang-Yu Guo, Su Huang, Lan Yang, and Li Yang, “First-principles studies of second-order nonlinear
optical properties of organic-inorganic hybrid halide perovskites,” Phys. Rev. Applied 13, 014052 (2020).

[15] Vyacheslav S. Zhandun and Andrey Nemtsev, “Ab initio study of the magnetic, optical and electronic properties of spinel
C0304 within DFT and GW approaches,” Journal of Magnetism and Magnetic Materials 499, 166306 (2020).

[16] Zhuoliang Ni, K. Wang, Y. Zhang, O. Pozo, B. Xu, X. Han, K. Manna, J. Paglione, C. Felser, A. G. Grushin, and et al.,
“Giant topological longitudinal circular photo-galvanic effect in the chiral multifold semimetal CoSi,” Nature Communi-
cations 12 (2021), 10.1038/s41467-020-20408-5.

[17] Oscar Pozo and Fernando de Juan, “Computing observables without eigenstates: Applications to bloch hamiltonians,”
Phys. Rev. B 102, 115138 (2020).

[18] Guoging Chang, Su-Yang Xu, Benjamin J. Wieder, Daniel S. Sanchez, Shin-Ming Huang, Ilya Belopolski, Tay-Rong Chang,
Songtian Zhang, Arun Bansil, Hsin Lin, and M. Zahid Hasan, “Unconventional chiral fermions and large topological Fermi
arcs in RhSi,” Phys. Rev. Lett. 119, 206401 (2017).

[19] Felix Flicker, Fernando de Juan, Barry Bradlyn, Takahiro Morimoto, Maia G. Vergniory, and Adolfo G. Grushin, “Chiral
optical response of multifold fermions,” Phys. Rev. B 98, 155145 (2018).


https://advances.sciencemag.org/content/6/29/eaba0509
https://advances.sciencemag.org/content/6/29/eaba0509
http://dx.doi.org/10.1103/PhysRevB.98.165113
http://dx.doi.org/10.1103/PhysRevB.53.10751
http://dx.doi.org/10.1103/PhysRevB.53.10751
http://dx.doi.org/10.1103/PhysRevB.72.045223
http://dx.doi.org/10.1103/PhysRevB.24.3417
http://dx.doi.org/ 10.1103/PhysRevLett.90.036801
http://dx.doi.org/ 10.1021/acs.inorgchem.9b03426
http://dx.doi.org/10.1103/PhysRevLett.55.1418
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/https://doi.org/10.1016/j.cpc.2012.09.018
http://dx.doi.org/10.1103/PhysRevLett.63.1719
http://dx.doi.org/ 10.1103/PhysRevMaterials.4.064602
http://dx.doi.org/10.1103/PhysRevApplied.13.014052
http://dx.doi.org/ https://doi.org/10.1016/j.jmmm.2019.166306
http://dx.doi.org/ 10.1038/s41467-020-20408-5
http://dx.doi.org/ 10.1038/s41467-020-20408-5
http://dx.doi.org/10.1103/PhysRevB.102.115138
http://dx.doi.org/ 10.1103/PhysRevLett.119.206401
http://dx.doi.org/ 10.1103/PhysRevB.98.155145

	SHG_RhSi_Supp.pdf
	Supplementary Material: Suppression of second-harmonic generation from linear bands in the topological multifold semimetal RhSi
	Experimental Details
	Second-Harmonic Generation Response Function Within the Scissors Approximation
	Intraband and Interband Contributions in Second-Harmonic Generation of RhSi 
	Low-Energy Single-Particle Second-Harmonic Generation in RhSi: kp model 
	Comparing Low-Energy Second-Harmonic Generation using First Principles and kp Calculations 
	Low-Energy Single-Particle Second-Harmonic Generation in Two-linear-band Weyl Systems: k p model 
	References



