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ABSTRACT. We consider a planar dynamical system generated by two stable
linear vector fields with distinct fixed points and random switching between
them. We characterize singularities of the invariant density in terms of the
switching rates and contraction rates. We prove boundedness away from those
singularities. We also discuss some motivating biological examples.

1. INTRODUCTION

This paper describes the formation of singularities and regularity properties in
the stationary densities for the dynamics created by random switching between two
linear ordinary differential equations (ODEs) in the two-dimensional plane. A full
characterization of stationary density singularities for randomly switched ODEs in
one dimension is provided in [3], yet singularity formation is poorly understood in
higher dimensions, even at the level of motivational examples.

Here, we study a deceptively simple two-dimensional example in the hope that
it will begin to illuminate a path forward. We have not sought generality; but
rather, picked a simple switching system between two linear equations to explore
how geometry of contraction and random switching interact to produce singularities
in the longtime distribution of the system. Despite this apparent simplicity, the
structure of the stationary density can be quite rich. Depending on the relationships
between the switching rates and the contraction rates, the stationary density may be
bounded, have isolated singularites, or have one-dimensional curves of singularities.
Though we have studied a particular system, our methods are fairly general and
hopefully can be extended to an interesting class of examples.

There has been a resurgence in the study of such switched ODE systems in recent
years under the names hybrid systems [19], piecewise deterministic Markov processes
(PDMP) [8, 16], and random evolutions [10]. Some of this renewed interest stems
from applications in ecology and cellular biology [15, 6]. On the more theoretical
side, it was shown in [1, 5, 4] that a combination of a condition of Hérmander type
and an accessibility condition guarantees that an invariant distribution, if it exists,
is unique and absolutely continuous with respect to the Lebesgue measure.

One could expect that, similarly to the well-known results for hypoelliptic dif-
fusions based on pseudo-differential calculus or Malliavin calculus, the same Hor-
mander condition would guarantee C'>° smoothness of the invariant density if the
driving vector fields are smooth and a hypoellipticity condition is met. As already
alluded to, the picture is more involved and invariant densities of switching systems
often have singularities. In [3], emergence of singularities of invariant densities for
one-dimensional switching systems due to contraction near stable critical points
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was studied, and a classification of singularities was given. It was also shown that
away from critical points of the driving vector fields, the invariant densities are C'*.

In higher dimensions, the situation is even more complex generically. Some of
the flows generated by the driving vector fields may exhibit long-term contraction
with or without convergence to a stable critical point, e.g., there may be more
sophisticated low-dimensional attractors. Density singularities created by some
of the vector fields may be propagated in new directions by other vector fields.
Additional complexity emerges due to the presence of manifolds of hypoellipticity
points.

We started an exploration of higher dimensions in [2], where we considered a
class of switching systems on the two-dimensional torus that is devoid of these
obstacles (the contraction is subexponential and all points are elliptic). For this
class, we showed that the invariant densities belong to C*° and that there are no
singularities.

For generic switching systems, characterizing singularities of the invariant densi-
ties and proving smoothness away from those singularities still seems to be a hard
problem. In the present paper, for the first time we consider switching systems
with a whole line of points of hypoellipticity and contractive flows associated to the
driving vector fields. In various regimes that we define in terms of the parameters
of the model, i.e., contraction rates and switching rates, we describe points and
lines of singularities of the invariant density and prove boundedness of the density
away from those singularities.

Let us describe the system more precisely now. We consider the PDMP given
by Poissonian random switching between the linear vector fields

(1) wi(wy,T2) = (—004 _05) <i; : z> , 1=0,1,

where a > 3 > 0. Given a starting point € R? and an initial vector field, say o,
we follow the flow of ug for an exponential time. Then a switch occurs, meaning that
the driving vector field ug is replaced with u;. Starting from the point in R? where
the switch occurred, we flow along u for another exponential time, then switch back
to ug, etc. We assume that the times between consecutive switches are independent.
Switches from ug to u; happen at a constant rate \g > 0, and switches from u to
up happen at a constant rate A\; > 0. The resulting dynamics are strongly affected
by the globally asymptotically stable equilibrium points (0,0) and (1, 1) of the two
vector fields: A typical switching trajectory obtained from intermittent switching
between uy and u; enters in finite time the region I" bounded by the trajectory of wug
starting from (1, 1) and the trajectory of u; starting from (0, 0), and then remains in
T for all future times (see Figure 1 below). Since the setting is essentially compact,
the semigroup of the PDMP admits an invariant probability measure. As will be
established rigorously in Proposition 1, the invariant probability measure is unique
and has a density with respect to the product of Lebesgue measure on R? and
counting measure on {0,1}. The goal of this article is to investigate the marginals
po and p; of the density, corresponding to the driving vector fields ug and u;. In
this introduction and throughout the paper, we use the term invariant densities
for the marginals of the density associated with an absolutely continuous invariant
probability measure.



SINGULARITIES OF INVARIANT DENSITIES 3

The PDMP governed by uy and u; can be thought of as a two-dimensional ver-
sion of one of the simplest possible switching systems on the real line: If we switch
between vo(x) = —ax and vy () = a(1—=x) for a > 0, the resulting switching trajec-
tory is alternately attracted by 0 and 1. As in the more complex two-dimensional
system in (1), this simple one-dimensional system gives rise to a unique and abso-
lutely continuous invariant probability measure. Unlike the invariant densities in
the 2D system, however, the invariant densities in the 1D system can be computed
explicitly by solving the corresponding Kolmogorov forward equations, see e.g. [9].
They are densities of beta distributions:

po(x) :coxﬁal_l(l — a:)%,

(2)

pr(@) =era ™ (1 - ) &,

where ¢y, ¢y are constants. In particular, pg and p; are smooth in the interior of
[0,1], and develop singularities at the critical points 0 and 1 if the switching rates
are small compared to the rate of contraction a. While it is possible to write down
the Kolmogorov forward equations for the invariant densities of (1), we cannot find
explicit solutions to the equations. Besides, it is a priori not clear whether the
invariant densities of (1) are sufficiently regular to be classical solutions on some
meaningful set, say in the interior of I'. Notice, however, that the marginals of the
invariant densities with respect to the coordinates x; and x5 are explicitly given by
the formulae in (2) for « = a and a = 5. We conjecture that the invariant densities
for (1) are C'* in the interior of the set I'. At the boundary of I', singularities may
form due to exponential contraction and thus accumulation of probabilistic mass
near the critical points, and the subsequent propagation of mass along trajectories
of ug and u.

We give two results on singularities of the invariant densities for slow switching.
The first one describes the singularities near the attracting critical points of ug and
u1. The basic mechanism leading to these singularities is mass accumulation due to
the fact that, under small to moderate switching rates, there are long time intervals
during which the system is exposed to contraction towards (0,0) and (1,1). The
second result holds only for small switching rates, and describes how a singularity
at the critical point of u; is spread along the trajectory of ug passing through this
critical point. These results on singularity formation are complemented by several
boundedness results, a first step towards proving regularity of the invariant densities
in the interior of I'. For instance, we show that the invariant densities are bounded
on any compact set contained in the interior of I', even if switches are rare.

There are two main difficulties in dealing with the switching system in (1). The
main obstacle to showing smoothness of the invariant densities is arguably the
exponential contraction in the vicinity of critical points. Another less obvious
difficulty stems from the fact that the vector fields ug and u; are aligned with
each other along the diagonal line segment connecting (0,0) and (1,1). This partial
breakdown of transversality makes the smoothing effect of switches close to the
diagonal less pronounced. On the other hand, switches close to the diagonal but
far from the critical points at least do not spoil the densities, which seems to
make them a technical nuisance rather than an essential obstacle to establishing
smoothness.

The paper is organized as follows. In Section 2, we discuss two systems emerging
in applications that can be reduced to (1). We state our results on singularities of
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FIGURE 1. The support I' of the invariant densities is the region
bounded by the forward ug trajectory starting at (1,1) and the
forward w; trajectory starting at (0,0). The red path shows a
single stochastic realization of (z1(t), z2(t)).

the invariant density in Section 3. In Section 4, we prove existence and uniqueness of
the invariant distribution, as well as a basic description of its support. Furthermore,
we exhibit the line of hypoellipticity points, which is an obstacle to establishing
boundedness of the invariant density. In Section 5, we recall some basic integral
equations satisfied by the invariant density. In Section 6, we prove one of our main
results (Theorem 1), which describes the singularities of the invariant density. In
Section 7, we perform a change of variables in the integral equations from Section 5
that prepares the proof of our main boundedness result (Theorem 2). The latter is
given in Section 8, where most of the technical work is carried out.

2. APPLICATIONS

Generically, our results concern any two-dimensional randomly switching ODE
of the form

d
(3> a (i;) =A <i;> + b()]].]t:() + blnlt:h b07b1 c R27

where I; € {0, 1} is a Markov jump process and A € R?*? has two distinct, negative
eigenvalues. In particular, (3) reduces to (1) after the coordinate change

1 1
Y1 o X1 T 0 ~a 0 1
)=o)+ (§ S (F )one ()

where G is an invertible (2 X 2) matrix such that

1 (—a O
A:Gl(o _5>G.

In addition to being one of the simplest nontrivial two-dimensional PDMP examples
in which to study invariant densities, models of the form (3) arise naturally in
diverse applications. We now give two such applications.
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2.1. Stochastic gene expression. Much of the recent interest in PDMPs stems
from their application to gene expression [12, 17, 6]. Models in this context typically
begin with a continuous-time Markov chain on a discrete state space that tracks
gene products (an integer number of mRNA and/or protein molecules) as well
as some discrete (often binary) environmental state, such as whether a gene is
active or inactive. Assuming that the number of gene products is large, one often
approximates the amount of gene product by a continuous variable that evolves by
a deterministic ODE between stochastic switches in the environmental state. That
is, the stochasticity stemming from the finite number of gene products is averaged
out, while the stochastic environmental state is retained.

To illustrate this concretely, we briefly describe the so-called “standard model”
of gene expression [17]. Let I; € {0,1} be the state of a gene, with I =0 (I; = 1)
corresponding to an active (inactive) gene, and suppose I; leaves state ¢ € {0,1} at
rate \; > 0. When the gene is active, it produces mRNA molecules at rate o > 0.
Each mRNA molecule degrades at rate § > 0 and produces a protein molecule at
rate 8 > 0. Protein molecules degrade at rate v > 0. Letting X; € {0,1,2,...}
and Y; € {0,1,2,...} denote the respective mRNA and protein copy numbers, the
Markov transitions are summarized by

Ao Iia XiB
(4) Li: 0=1,; Xy X=X+1, Y,: Y =Y+1.

A1 o vy
This three-component Markov chain (Xy, Yy, I;) € {0,1,2,...}2x{0,1} and various
simplifications have been very well studied using a variety of mathematical tech-
niques [17, 6]. Indeed, depending on the parameter regime, this Markov chain has
been reduced to an ODE, a PDMP, a stochastic differential equation (SDE) driven
by white noise, an SDE driven by Lévy noise, and a Lévy-type process [11].

For our purposes, suppose that the characteristic number of mRNA and protein

molecules is large,

B
Y
In this parameter regime, one can approximate the rescaled mRNA and protein
concentrations, x(t) := X;/X* and y(t) := Y;/Y™, by the two-dimensional PDMP
[18],

X* . a )\0

= —— X 1.
6 Ao+ A1 >

>1, Y*:=

%m(t) = %It —ox(t),
Su(t) = y(a(t) = y(t)),

in which the only source of stochasticity remaining is I;. Of course, (5) is of the
form (3) if v # 4.

(5)

2.2. PDEs with randomly switching boundary conditions. While most of
the interest in PDMPs has focused on switching ODEs, a number of biological
applications have recently prompted the study of PDEs with randomly switching
boundary conditions (for example, see [15, 14, 7, 13]). Perhaps the simplest such
example is the one-dimensional diffusion equation,

2 e(a,t) = Zye(x,t), x€(0,1),
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with an absorbing boundary condition at x = 0 and a randomly switching boundary
condition at x = 1,

c¢(0,t) =0, ¢(1,t) =14,

where I; € {0, 1} is a continuous-time Markov jump process. Writing the solution
in terms of the L2[0, 1]-orthonormal basis, {v/2sin(n7z)}2,,

c(z,t) = Z en(t)V2sin(nr),

it follows that any pair of coeflicients, say ¢ (t) and ¢, (t), satisfy the two-dimensional
switching ODEs,

(6)

4 (t) = —Br(c(t) — L),
%Cm(t) —Bm(em(t) — Itby),

where $, = n?7? and b, = (=1)"t1y/2/(nx). Of course, (6) is of the form (3) if

3. PROBLEM SETTING AND MAIN RESULTS

We consider random switching between the linear vector fields ug and u; on R?,

given by
- 0 -1 )
UZ(I) :Ui(l'l,IQ) = < Oa _6) (i;_z) ) 120717

where a@ > 8 > 0. The vector fields ug and u; have an attracting critical point at
(0,0) and (1,1), respectively. For any (z1,22) € R?, the initial-value problem

(0) =m0, (20)= ()

has the unique solution

. (it (g —i)e
(7) (ﬁi(xth) - (Z + (1‘2 _ i)e—ﬁt , te R.
It is easy to see that

(8) @i(xhl‘g): <1) —@6(1—3}‘1,1—3)2), JZERQ, teR.

For notational convenience, we also define the inverse flows
Ul(z) = () Y(z) = ®; " (x), i€{0,1}, teR, z € R%

As we will be switching intermittently between ug and uq, it is also convenient to
define the cumulative flows

tn tn—1 tn—2 ty —

pltrtn) _ Orod o d " ol od n=0 mod 2,
‘ =\ Ht . t t -

¢ Prod® " od P00, n=1 mod 2

and
\I/z('tl ,,,,, tn) _ ((I)(_tl,...,tn))fll

For i € {0,1}, we call the set {®!(x): t > 0} the forward u; trajectory starting at
x and we call {®!(z) : ¢t < 0} the backward u; trajectory starting at x. The set
{®!(z): t € R} is simply called the u; trajectory through z.
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Let I = (I;)¢>0 be a continuous-time Markov chain on {0,1} with jump rate g
from 0 to 1 and A; from 1 to 0. Then, we define a stochastic process X = (Xt)tzo
on R? via

(9) 5 X = ur (Xy).

The two-component process (X, I) is a Markov process on R? x {0, 1}, whose Markov
semigroup we denote by (P?);>0. We call a probability measure p on R? x {0,1}
an invariant probability measure of (P*);>o if u = pP?* for all ¢ > 0.

The forward ug trajectory starting at (1, 1) and the forward u; trajectory starting
at (0,0) together with the critical points (0,0) and (1, 1) mark the boundary of the
set o

F:{(xl,xg)eRQ:OSmggl, Ty legl—(l—xg)%}.

We denote the interior of I' by I'°. Notice that I" and I'° are symmetric about the
point (3, 3), i.e. (z1,22) €T (€ I'°) if and only if (1 — 21,1 —x3) €T (€ T°).

Proposition 1. The Markov semigroup (P*);>o admits a unique invariant proba-
bility measure p. It is absolutely continuous with respect to the product of Lebesgue
measure on R? and counting measure on {0,1}. Moreover, the marginals p;(-) =

(- x{i}), i € {0,1}, have support I

Recall that the support of y; is the collection of all points x € R? such that
w;(U) > 0 for every neighborhood U of . We prove Proposition 1 in Section 4.
Since the marginal p;, i € {0, 1}, is absolutely continuous with respect to Lebesgue
measure, it has a density p; € L'(R?), which we call an invariant density. Below,
we state our results on boundedness as well as the occurrence of singularities for
the invariant density pg. Exploiting the symmetries of the switching system, one
can easily formulate corresponding results for p;. Whether and where singularities
of pp occur depends critically on the switching rates A¢g and A\;. In some sense
this is not surprising because small switching rates translate into few switches and
thus an accumulation of probabilistic mass at the critical points (0,0) and (1,1).
Interestingly, if both Ag and A; are very small, the singularity created at the critical
point of one of the vector fields is propagated along the forward trajectory of the
other vector field that starts at the critical point. As L! functions, po and p; are
only defined up to a set of Lebesgue measure zero, so when we state, e.g., that pg
is bounded on a set S, we mean that there is a representative of py that is bounded
on S. Proposition 1 implies that pg and p; vanish outside of I', which is why we
can restrict ourselves to I'° instead of considering all of R2.

For i € {0,1}, let OT'; denote the forward u; trajectory starting at (1 — 14,1 —4),

and set

Iy =T\ {9}
Observe that 9T';, ¢ € {0, 1}, are the curves that make up the right and left part of
the boundary of T', minus the critical points (0,0) and (1, 1). The following theorem
describes for which switching rates and in which regions singularities occur.

Theorem 1. The following statements hold.
(1) For Ao < a+f, the invariant density pgy is unbounded in every neighborhood

of (0,0).

(2) For \1 < 8 and x € 9T, po is unbounded in every neighborhood of x. Since
being unbounded in every neighborhood of a point is a closed condition, pg
is also unbounded in every neighborhood of (0,0) and (1,1).
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FIGURE 2. In the (Ag, A1)-quadrant, the dashed lines delineate
four regions whose labels indicate the following: I: pgy is bounded
everywhere on I'°; II: pg is unbounded in every neighborhood of
(0,0), and bounded on every compact subset of I'g; III: for every
x € 0Ty, po is unbounded in every neighborhood of x; IV: clas-
sification is unclear. For switching rates on the dashed lines, the
classification is unclear as well.

Theorem 2. The following statements hold.

(1) For \o > a+ 8 and Ay > B, the invariant density po is bounded on T°°.

(2) Let Ao, A1 > B and let K C Ty be compact. Then, pg is bounded on K.

(8) Let K C T be a compact set such that K N 0Ty = 0. Then, py is bounded
on K for any switching rates Ao, A1 > 0.

Remark 1. Theorems 1 and 2 do not address whether pg stays bounded along 9Ty
if A\g < 8 and A\; > f (see Figure 2). Based on simulations (see the bottom right
panel in Figure 3), we conjecture that pg is bounded in this case, i.e. we conjecture
that Region IT in Figure 2 contains all (Ag, A1) such that A\g < a+ 8 and \; > .
The critical cases not covered by Theorems 1 and 2 (e.g., is pg bounded on I'® if
Ao = a+ 8 and \; = 7) are also open. These correspond to the dashed lines in
Figure 2.

We prove Theorem 1 in Section 6. The proof of Theorem 2 is given in Section 8.
Theorems 1 and 2 combined provide the following picture: For fast switching away
from ug (Mg > a + 8) and for at least intermediate switching away from wu; (A1 >
B), the invariant density pg is globally bounded (see Region I in Figure 2). For
intermediate switching away from wug (8 < Ag < a+ ) and for at least intermediate
switching away from wu; (A1 > ), po has a singularity at (0,0), the critical point
of ug, but remains bounded away from (0,0) (Region II in Figure 2). And in the
regime of slow switching away from w; (A1 < ), po has singularities along the
entire left boundary curve of the support, including (0,0) (Region III in Figure 2).
This happens regardless of how quickly on average we switch away from ug. Away
from the left boundary curve, pg is always bounded. The mechanism leading to the
blow-up of py along 0I'g can be roughly described as follows: Due to exponential
contraction of the flow of uy, probabilistic mass accumulates at the sink (1,1).
This mass is subsequently propagated under the flow of uy and thus gives rise to
singularities along the forward wg trajectory starting at (1,1). These results are
illustrated using stochastic simulations in Figure 3.
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FIGURE 3. The four panels show the empirical probability density
on a logarithmic scale obtained from stochastic simulations for dif-
ferent choices of the switching rates Ag and A;. The contraction
rates are « = 2 and 8 = 1 in all panels. The top left panel corre-
sponds to Region I in Figure 2 with \yg = 4 and A\; = 2. The top
right panel corresponds to Region II in Figure 2 with Ay = A\ = 2.
The bottom left panel corresponds to Region III in Figure 2 with
Mo = 2 and A\; = 1072, The bottom right panel corresponds to
Region 1V in Figure 2 with A\g = 0.5 and A\; = 2.

4. THE SUPPORT OF THE INVARIANT MEASURE

In this section, we prove Proposition 1. Given two points x,y € R2, we say that
x is reachable from y if there exist i € {0,1}, n € N, and (¢1,...,t,) € R? such
that

7= @Etl,...,t")(y).

For y € R?, let L(y) denote the set of points 2 € R? that are reachable from y. A
nonempty set S C R? is called positive invariant if L(y) C S for every y € S. This
is equivalent to saying that

dl(xr)e S, i€{0,1},t>0, x €S

Lemma 1. The following statements hold.

(1) The sets T and T° are positive invariant.
(2) We have I'° C L(z) for every x € R2.

ProoF: To simplify notation, we define

«
= —=>1.
7B
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Fix a point x € T. If z = (0,0), the forward ug trajectory starting at x consists
only of z and is therefore contained in I'. If x # (0,0) and if y is any point on the
forward ug trajectory starting at x, we have

v v
_ — Y2 Y2

<oy < 0= =) = () - (2 o) <1-0-mp,

To obtain the last inequality, we used that

d

1 (27 = (z—w)") =" (27_1 —(z— y2)7_1) >0, 2z2>ya,

and that ys/xe < 1. Since z125 "yg = 41, it follows that the forward wug trajectory
starting at x is contained in I'. As (1 —z1,1 — x9) € ', we also have
(10) Of(1— 21,1 —x3) €T, t>0.

Equations (8) and (10) imply that the forward u; trajectory starting at z is con-
tained in I' as well. The proof for I'° is analogous.

To prove the second statement, fix z € R? and y € I'°. Since the critical points
(0,0) and (1,1) are globally asymptotically stable, the set L(z) contains a point z
such that zo € (0,1). If 21 > 29, set

a(t) = ®(z), t>0.
We have
(11) (6761522)7 <e 2.

Set
b(t) =e 2z + (1 - (575'522)’y

Since lim;_, oo b(t) = 1 and since
V(t) = —azie” ™ + azee Pt (1 — e_mzz)’y_l >0

for t sufficiently large, we have b(t) < 1 for large ¢. This and (11) imply that
a(t) € I'° for large t. In particular, there is a € L(x) NT°. If 21 < zg, set
a(t) = ®H(1 — 21,1 — zp), t>0.
As1—2; > 1— z,, we have as before a(t) € I'° for large t. With (8) and symmetry
of I'° around (3, 3), this yields
ol (2) eT°

for large ¢, so as in the case z; > 2z there is a € L(x) NT°.
As L(a) C L(x), we may assume without loss of generality that z € I'°. Now, it
suffices to show that one of the following statements holds, as this means there are

s,t>0and i € {0,1} such that y = &\ (2).
(a) There is n € (0, min{xs, y2}] such that

g =1- 1 =y)(1 —y2) " (1 = )" — 21y 0" =0
(b) There is € [max{x2,y2},1) such that

h(n):=1—(1—21)1—22)"(1—1)" =31y, ' =0.
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It is easy to see that ¢(0), g(1), h(0), and h(1) are negative. Since g and h are
continuous, it is then enough to show that g(min{xs,y2}) > 0 or h(max{za,y2}) >
0. First, assume that zo < ys. If

I-y)1—y2) " <(I—a)(1—22)77,

we have
g(x2) =1—(1—y1)(1 —y2) (1 —22)" — 21 > 0.
And if
(I—z)(1—22) " < (1 —y1)(1 —y2)77,
we have

h(yg) =1- (]. — $1)(1 — 12)7’7(1 — yQ)’Y — U1 Z 0.
It remains to consider the case xo > ya. If 21257 < y1y, ', we have g(y2) > 0. And
if y1y5, 7 < 1257, we have h(zg) > 0. O

Since the semigroup (P!);>¢ is Feller and since I' is compact and positive in-
variant, (P');>0 admits an invariant probability measure. In fact, as we will show
below, the invariant probability measure is unique and absolutely continuous. For
x € R2, let

U(z) = (u1(z), uo(x))
be the (2 x 2) matrix whose first column is u (x) and whose second column is ug ().

As stated in the following easily verified lemma, ug and u; are transversal at every
point except for points on the line z; = x».

Lemma 2. Let z € R%. Then, detU(z) = afB(z1 —x3). In particular, det U(x) =0
if and only if 1 = xs.

In light of Lemmas 1 and 2, there are points (namely every point in I'° not
located on x; = x5) that are reachable from every starting point in R? and where
uop and uy are transversal. By Theorem 1 in [1] or by Theorem 4.5 in [5], the
invariant probability measure of (P');>¢ is unique and absolutely continuous with
respect to the product of Lebesgue measure on R? and counting measure on {0, 1}.

Alternatively, one can follow the reasoning in [15], which leverages the contractive
nature of the system. This is particularly simple in this case as the flows are
deterministically uniformly contracting. Fixing two initial condition z,y € R? and
i € {0,1}, we set Iy = ¢ and let X;(z) and X;(y) be the solution to (9) with the
same I; process (and hence the same jump times) but starting initially from z and
y respectively. If we define r; := X;(x) — X(y), observe that

(12) [7ell < [l = yll exp(—(a A B)),

where || - || denotes the Euclidean norm on R?. Now let f: R? x {0,1} — R be an
arbitrary test function which is 1-Lipschitz continuous, i.e. |f(x,)— f(y,7)| < ||z —
y|| + 1,25 for every z,y € R? and i, j € {0,1}. Since sup,~ || X¢(2)|| < oo for every
z € R?, the supremum of (P'f)(x,i) — (P'f)(y,1) = Ef (Xi(2), I) — Bf (Xi(y), 1)
over all such test functions is equal to the 1-Wasserstein distance between Pt(x,; - )
and P(y,4; - ). Denoting this distance by ||P!(z,4; - ) —P!(y,4; - )||w, and recalling
that ||05,; — 6y.:|lw, = ||z — y|| produces

”Pt(x,i; . ) — Pt(y,i; . )||W1 < ||§IZ _ 5y,i||W167(aA5)t.
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A simple coupling argument using the definition of the 1-Wasserstein distance as
the infimum over all couplings and the resulting convexity of the 1-Wasserstein
distance produces

(13) 11P* = vP!lw, < llp = vlw, e

for arbitrary initial probability measures p and v of bounded support. Observe in
addition that there is a bounded positive invariant subset B of R? (e.g., the set
[—1,2]2) with the following property: For every R > 0 there is C' > 0 such that
every switching trajectory starting from a point of distance less than R from the
origin enters the set B in a time less than C. As a result, every invariant probability
measure has bounded support, so the estimate in (13) proves in particular unique-
ness of the invariant probability measure. Additionally, this proves a spectral gap
for the Markov kernel P! in the 1-Wasserstein distance which is independent of the
switching rates. The estimate in (12) can also be used to show that the system has
a random attractor which consists of a single point and that all of the Lyapunov
exponents are negative. See [15] for more discussions in this direction.

To finish the proof of Proposition 1, it remains to show the statement about the
support of the marginals py and p;. Since I' is positive invariant and compact, the
support of ug and pq is contained in I'. And since I'° is an open subset of the set
of points y € T" that are reachable from every starting point in I', I'° is a subset of
the support of pg and 1, see e.g. [1, Lemma 6]. As the support of po and p; is a
closed set, it is necessarily equal to T'.

5. INTEGRAL EQUATIONS FOR INVARIANT DENSITIES AND CDF’S

Recall that for ¢ € {0,1}, ¥; denotes the inverse flow associated with the vector
field u;. Lemma 2 in [3] implies that

(14) pi(x) = et det VUl (2)py s (Ul(x)) dt, i€ {0,1}.
Ry

Written in terms of the cumulative distribution functions (CDF’s)
(15) Gi(z1,72) = /‘“ /’”2 pi(y1,y2) dyr dyz,  (x1,22) € R?,
the integral equations in (14) become
(16) Gi(z) = /R AM_ie MG (Wh(x)) dt, i€ {0,1}.

+

This is because for i € {0,1} and for any fixed x € R?, ¢t — ®!(zx) is monotone in
both components. Note that the integral on the right side of (16) can be rewritten
as
Ai—i
i
where T is an exponential random variable with intensity \;.

Next, we generalize the integral equations in (14) by considering the evolution
of (X, I) leading to the current state not just since the latest switch but over the
latest n switches, n € N. For i € {0,1}, n € N, t € R"}, and = € I'°, we define the
Jacobian

EG, (V] (z)),

JEH(z) = det V, Ui (z).
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Forie€ {0,1}, n € N, and z € I'°, let
(17) T (x) = {t e R} : U(z) e T°}.

For n € N and real-valued integrable functions h on I'°, we define the transfer
operator

(18) Q,h(z) = / No(n)e N8 gt () h(Wtz) db, = e T°,
T5 ()
where
D V. W = 2
(19) N(n) = Aii o A, n=0 mod 2,
/\1_1')\2'...)\1_1', n=1 mod 2

is an alternating product of A1_; and \; with exactly n factors, and where

(20) A — (Ais Ay, M) T n=0 mod 2,
’ (Nis Ay X)) T, n=1 mod?2

is a vector of length n whose components alternate between \; and A;_;. Then,

{ano, n=0 mod 2,
Po =

(21)
Qnp1, n=1 mod 2,

which can be deduced by iteratively plugging instances of (14) into one another
and using the fact that the pushforward of a function under the cumulative flow ®*
t’Vl

is the composition of pushforwards under the individual flows ®; ,<I>§"_’il, e

Remark 2. The formula in (21) can be generalized to switching systems with state
space U x S, where U is an open subset of R” and S is a finite index set corresponding
to a collection of smooth vector fields v on R™ that leave U positive invariant and
are integrable, i.e. for any z¢o € U the initial-value problem & = wu(z),z(0) =
zo has a unique solution, and this solution is defined for all ¢ € R. Suppose
the corresponding Markov semigroup admits an absolutely continuous invariant
measure p with invariant densities (p;)ies. For 4,57 € S, let A; be the rate of
switching away from vector field u; and let A;; be the rate of switching from u; to
u;. For n € N, i = (i1,...,i,) € S™ and for real-valued integrable functions h on
U, define

Qih(z) = / T2, 1ie == b @t (x) db, = €U,
i) ;2o
where ®F = <I>’l6 0...0 ‘bfi, Ti(z) = {t € R} : (®¥)"!(x) € U} and where ®f#h
denotes the pushforward of h under ®}. Then, we have for n € N and i,, € S that

Pin =D oo D Nigin Qs Pic-
in—17%n 10711
6. SINGULARITIES OF THE INVARIANT DENSITIES

In this section, we prove Theorem 1 on singularities of the invariant density pg
for slow switching. We first show that if Ay < a + 3, then pg is unbounded in any
neighborhood of (0, 0).
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PROOF OF THEOREM 1, PART (1): Recall that the cumulative distribution func-
tion Go was defined in (15). Assuming that the invariant density po is bounded by
a constant C' in some neighborhood of (0, 0), we conclude that

Go(e¥,é?) < CetP

for sufficiently small e. On the other hand, (16) implies that, for every € > 0,

(22) Go(e, €?) :/ e M G (e“te®, ePteP) dt
0

Z/ Alef’\OtGl(eo‘teo‘,eﬁteﬁ) dt.
In(1/¢)
For t > ln(%)7 we have efte” > 1 and thus, as the support T' of y; is contained in
[0,1]2, we have G (e®te®, e¥teP) = G (+00, +00). Hence, the integral in the second
line of (22) equals

> A
G1(+o0, +oo)/ e Mt dt = Gy (+oo, +oo)—16/\0.
In(1/e€) Ao
Since € is arbitrary, we conclude that Ay > « + . O

The idea behind the above proof is very general and can be used with minor
modifications to study existence and character of singularities in various other situ-
ations including high-dimensional ones. However, there is another interesting proof
specific to the concrete vector fields ug,u; we consider.

ANOTHER PROOF OF THEOREM 1, PART (1): Let e € (0,1). Since the point
(€%, %) € R? is on 9Ty, the left boundary curve of T, and since py is identically
zero outside of I, we have

Go(e*, €) = / / po(y1,y2) dyr dya = Go(e®, +00).

Since our system can be viewed as a product of non-iteracting components, the
marginal distribution

o0
EH// po(y1,y2) dyi dyz
E J—-x
coincides with the stationary distribution of the one-dimensional system given by
switching at rates A\p and A\; between the one-dimensional vector fields
vo(z) = —ax, vi(z) =—a(z—1).

By Proposition 3.12 in [9], this distribution is a beta distribution with parameters
(Mo/a, A\1/a+1), so assuming that the invariant density pg is bounded by a constant
C' in a neigborhood of (0,0), we obtain for small e

(23) cB(e%; Mo/, Mo+ 1) = Go(e*, €?) < Ce* TP,
where ¢ is a normalizing constant and where B(z;a, b) is the incomplete beta func-
tion

x
B(x;aJ;):/ tr= (1 —t)btae.
0

Now if A\g < a+ S, it is straightforward to check that
e @B N/, \/a+1) = 00, ase— 0.
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Thus, dividing (23) by ¢**# and taking ¢ — 0 completes the proof. d

Now we prove the second part of Theorem 1, which asserts that pg blows up
along the entire left boundary curve of I in case \; < 3.

PROOF OF THEOREM 1, PART (2): Let us introduce the functions
oV (t) =e, o@Dty =P, sPt)=1—-P)e P, teR, e>0,

so that {(¢M (1), ®(t))}s>0 is the forward ug trajectory starting at (1,1) — the
left boundary curve of T. Also, ®%(1,1 — ¢?) = (6 (¢), 62 (¢)).

For z > 0, we define t(z) = (¢")~(z) = —In(z)/a and the open interval
I(z) = (QSEQ)(t(z)), #?)(t(2))) C R. Also, for any set I C R, we introduce

R.(I) = {(xl,xg) cxy € W), a2y € Ie(acl)}.

Note that for all ¢ € R and all ¢1,t2 € R satisfying t; < ta, ®f : Re(t1,t2) —
R (t1 +t,to + t) is a diffeomorphism. Also, for any I, J C R,
(24) R.(I)NR(J)=R(INJ).

Suppose that there is ¢ > 0 such that the invariant density py is bounded by a
constant C' in a neighborhood of ®{(1,1). For e sufficiently small, the set R.(t,t +
€“) is contained in this neighborhood. Using the diffeomorphism property of ®f
mentioned above, it is easy to check that there is a number C’ > 0 such that for
small € the Lebesgue measure of R.(t,t + €*) is bounded by C’e“+#. Therefore,
po(Re(t,t +€*)) < CC'e* P for € small.

Now we derive a lower bound for po(Rc(t,t + ¢)). For small € > 0, ¢ (%) <
1— e~ Therefore, Rc(0,€e*) D ((1— %€, 1) x (1—€”,1))NT°. As y is supported
on I', this yields

oo o0 A
(25)  p(Re(0,€%)) > / / L (y1,2) dya dy1 > G1(+00, +00))\*?€’\1,
1-Gex J1—e

where the second inequality follows from the proof of part (1), with the roles of Ao
and A; reversed. Using (14), (24) and the observation that ®;° : R.(¢,t + €*) —
R (t — s,t — s+ €%) is a diffeomorphism, we have

o0
uO(Re(t,t—i—ea)):/ Ae 2% (Re(t — s, — 5+ €%)) ds
0
2/ Me 0% (Re(t — 8,6 — s+ €*) N R(0,€Y)) ds
0
:/ Ae 9 (Re((t — 5,8 — 5+ €)1 (0, %)) ds
0

t+e*
> / Me 2 (Re((t — s,t — s+ €*) N (0,€Y)) ds
t

t+e*
Zc/ p1(Re((t —s,t —s+€*)N(0,€Y))) ds =: cA(e).
t—e™

Here, ¢ > 0 is a constant that doesn’t depend on e. To complete the estimate
of po(Re(t,t + €*)) from below, we use the lower bound on p;(R.(0,€*)) derived
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(1,1)

Uy

(0,0) 1
FIcure 4. Illustration of the sets in (26).

n (25). We have

t+e*
Ale) :/ /]R2 14 (2 ,20)€R ((t—s,t—ste)n(0,ex))} M1(dT1,dx) ds
t

— e

t+e*
:/t . /Rz Loy e ((t—s t—ste)n(0,e)} Lasel (o)) H1(d21, dxs) ds

t+e*
= /2 ]l{t(wl)e(O,eD‘)}]l{xzele(acl)}/ Lit(ar)e(t—s,t—stex)} ds pa(dry, drs)
R

t—e>

=€ /]R2 Lit(z)e,e0) Lmserl. 1)y H1(de1, doo)

A
= €Uy (Rc(0,€%)) > G1(+00, +oo)/\—06‘x+)‘1.
1

In the next to last line we used that t(z1) € (t — s,t — s + ¢%) if and only if
s € (t—t(z),t—t(z1)+e*), and if t(z1) € (0,€*), one has (t—t(x1),t—t(x1)+€*) C
(t —e“,t+€%).

Combining the resulting lower bound for pg(R.(t,t+ €*)) with the upper bound
derived earlier, we see that for sufficiently small e,

A
¢G4 (400, —i—c>o))\—06°‘+>‘1 < CC'e B,
1

This is possible only if \; > . O

7. CHANGE OF VARIABLES

The fixed-point equations in (21) give integral equations describing the invariant
densities p;(z). These expressions were obtained by applying (14) multiple times.
This captures the effect of pushing forward the density until the time of the nth
switch. All of these expressions are written as integral operators where the integrals
are taken over the length of the first n exponential times.

The goal in this section is to take the expressions for the pushforwards of the
invariant densities in the case n = 2 as integrals over the switching times and change
variables so that they can be viewed as integral operators over the state space I'.
The precise version is given in Lemma 4 at the end of this section.
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It will be important to treat the points above, below and on the diagonal {z; =
x9} differently. To this end, let us introduce the sets

Ty ={zel°:x <2}, I,={zel°: x>},

26
(26) T, ={z €l°:x1 = xo}, ry=r,ur,,

which are illustrated in Figure 7. Recalling the definition of T7* from (17), we
define, for ¢ € {0,1} and « € T'°, the following sets of times when the first switch,
going backwards in time, occurred respectively to the right and to the left of the
diagonal:

Rix) = {(s.1) € T2(x) : Wi(x) € T},
Li :{ :

(x) = {(s,1) € T}(x) : Wi(x) € T}

Observe that Ry(z) = Lo((1,1) — ) and L;(x) = Ro((1,1) — z). The next lemma
provides the regularity needed to perform the desired change of variables.

Lemma 3. For any v € T'° and i € {0,1}, (s,t) — \Ilgs’t) (x) is a diffeomorphism

from R;(x) onto \I/f"(x) () and from L;(x) onto \I/fi'(x) (z).

PRrROOF: It suffices to prove the statement for ¢ = 0 because
U () = (1L1) = U (L) — ), (s,1) € TE(2).

We only show that (s,t) — \Il(()s’t)(x) is a diffeomorphism on Ry(z), as the proof for
Lo(x) is almost identical. We begin by showing that (s,t) — \Ilés’t)(x) is injective
on Ry(x). To obtain a contradiction, suppose that this is not the case. Then,
there exist two distinct vectors (s1,t1), (s2,t2) € Ro(x) such that \Ilésl’tl)(x) =
\I/gsz’t2) () =: y. This implies that the ug trajectory through x and the u; trajectory
through y intersect in two distinct points z(!) := ¥f' (z) and 2(2) := W2(z) that
both lie in I',.. For any two points x,y € I'°, the ug trajectory through x and the
u; trajectory through y intersect in at most two distinct points, so z(!) and z(?)
are the only points of intersection. Since z(), 2(3) € T, Lemma 2 implies that
det U(2(") > 0 for i € {0,1}. As a result, one trajectory crosses the other in the
same direction at both points of intersection, which is impossible.

It remains to show that det V(S)t)\lfés’t)(x) # 0 for (s,t) € Ro(x). From (7), we
derive

(s.t) B 1— e+ €a(s+t)$(}1
(27) Uy () = <1 — P 4 Blst)y, |

which yields

_ —ozeas—i—oleeo‘(SH) axie

(5.) a(s+t)
V(s,t) \IIO (.’Il) - 76655 + ﬂx265(8+t) ﬁxgeﬁ(sﬂ)

and
(28) det V(s’t)\llés’t) (z) = aBel D3 (216 — zyePt) > 0.
For the last inequality, we used that Wf(z) € T,. O

Let ¢ € {0,1} and = € I'°. We denote the inverse of (s,t) — \Ilg‘g’t)(x) as a map
from R;(z) onto g

%

(z) by x.'*, and the inverse of (s,t) \Ilgs’t)(:c) as a map
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from L;(z) onto U5 () by x“". With A;(2) and ) defined as in (19) and (20),
respectively, we also introduce the functions

fi(t,x) :)\i(2)6_<>\§2)7t>J;($), t e Rl(l‘) J Li<.’17),
K7 (2,y) =fi(X7" (), 2)|det Vyx [ (y)],  y € 00 (@),
Kz, y) =f:0¢7 (), 0)ldet Vo " ()], y € 8 (@),

We are now in a position to perform the desired change of variables on the
operator Qo which was defined in (18) and used in the fix point equations (21).

Lemma 4. For any i € {0,1} and x € T°,

2
(29) /R( )Ai(2)€ A8 T8 (2) pi (W) dt 2[11 pi(y) K7 (2,y) dy.
i\T

fi(l)(w)
In (29), one can replace R;(z) and K together with L;(z) and K.

PRrROOF: The formula follows after applying the change of variables y = ¥(z)
justified by Lemma 3. (|

8. BOUNDEDNESS

In this section, we prove Theorem 2 that describes under which conditions the
invariant density po stays bounded. The main difficulties in proving this result
stem from two sources: the exponential contraction in the vicinity of the critical
points (0,0) and (1,1), and the fact, exhibited in Lemma 2, that the vector fields
ug and wuy are collinear at every point on the line x; = x5. As we saw in Section 6,
exponential contraction is an essential problem that gives rise to singularities of
the invariant densities for slow switching. The lack of ellipticity along the diagonal
x1 = X2 creates technical challenges because switches close to the diagonal have a
less pronounced regularizing effect on the invariant densities. At the same time,
switches close to the diagonal do not actively spoil the densities as long as they
occur sufficiently far from the two critical points.

Throughout this section, we will use the following basic facts about the switching
system, at times without explicitly referring to them.

Lemma 5. For any x € I'°, the following statements hold.
(1) For anyi € {0,1} there is a unique 0;(z) € R such that det U(\Ilfi(z);v) =0.
We have \I/fi(m)(x) erIe.
(2) We have
d
pn det U(Wiz) = af ((i — 22)Be” — (i — 21)ae®), i€ {0,1},
and
d ¢ d ¢
7 det U (¥iz) |i=0 > Bdet U(z), 7 det U (¥iz) ;=0 < avdet U(z).
In particular, if ©1 = xo and if € > 0, there is a unique t,(e) > 0 such that
det U(T59z) = e



SINGULARITIES OF INVARIANT DENSITIES 19

(8) Suppose now that x1 = x2, and let y € T'° such that x1 < y1 = y2. Then,
25Ok - [T @) >0, e>0.
Here, [2]g = 2o for z = (21, 22) € R2.
We omit the proof of this lemma. To illustrate our main strategy for establishing
Theorem 2, we first show that py is bounded on the part of I" that lies below the
diagonal x7; = x5. This statement has a comparatively simple proof as we do not

need to address the lack of ellipticity and as there is no danger of entering regions
with strong exponential contraction.

Proposition 2. Let K C I' be a compact set such that ©1 > xo for all v € K.
Then, pg is bounded on K for every Ag, A1 > 0.

PrOOF: Using (21) for n = 2 and the fact that z € T, implies T2 (z) = Ro(z), we
have
(30) polz) = / Mo(2)e= N (1) po (UEx) dt, = €T,
Ro(w)
Lemma 4 then yields

(31) i) = | o, PO @0)

Since pg is integrable, it is enough to show that there is ¢ > 0 such that

Ki(z,y)<c¢, z€KNT,, ye vl ().
Let x € KNT,,y € \1150(@ (z), and set t = (s,t) = xy"(y). Since U§(x) € T, the
matrix U(Pfx) is invertible. In [2], proof of Theorem 2, the formula
VU5 (@) = — V(o0 TS () U(Tha) "LV, T ()

was established. It shows how the effect of variations in the initial point on the
final point after two switches (the lefthand side) can be translated into an equivalent
variation in the switching times, with the translation given by the two rightmost
terms on the righthand side. If we set z = W) (x), the formula above yields

TS (@) = det Vo 1y UE (2) det U(2) ™" det V, Uh ().
Hence, since det V,xo* (y) = (det V(&t)w(()s’t)(:z:))’l,
s e(a"rﬁ_)‘o)t
af(z1 — 22)

By definition, ¢ is the time it takes to move backward along the ug trajectory from
x to z. As z € I'° and thus 25 < 1, we have

t< f% In(z2) < 22}% <; ln(xg)) < 00,

K{(z,y) = Ao (2)6—0\&2)@ det U(z) " det V, Ul (z) = Ao(2)e™ ™

where one should note that K is compact and only contains points x = (x1,x2)
such that xo > 0. As z lies on the backward wug trajectory starting at x, we also
have

1 1 1
< < sup < 00.
21 — 22 T — T2 zeK T1 — X2

This completes the proof. O
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5 (1,1)

T

(0,0) 7

F1GURE 5. The dashed lines bound a strip around the diagonal,
a region where switches have a less pronounced smoothing effect.

8.1. Switches close to I';,,. If y € \Ilé%(x) () is chosen in such a way that z,

the point where the switch from u; to ug occurs (cf. proof of Proposition 2), is
close to the diagonal T',,, the term (z; — 29) 7! is very large, and so is K{j(z,y). For
x € IyUT,,, the point z can become arbitrarily close to I',, which prevents Kjj(x,-)
from being bounded on \Ilé% O(w)(x). The proof of Proposition 2 can therefore not be
extended to the case of x € Iy UT,, in a straightforward way. In this subsection,
we describe an approach for dealing with this difficulty.

For any n € N, x € I'°; and € > 0, let

M (z) = {t eTH(x) : ’det U(\I/ét”’j"”’t”)x)‘ <e0<j<n— 1},

S (z) = {t €T (@)t (tsy. . tns1) € ME_ 4 (2),

det U(\Izg“"“t"“)x)‘ > e} .

The condition (t3,...,tn+1) € MS_;(x) is void for n = 1. Observe that for t €
M¢(x), all points \Ilét”’j""’t")(x),() < j < n —1, lie within a strip around the
diagonal z1 = xo whose width decreases linearly in e (see Figure 5). For t €
S¢(x), the points \If(()t"“_j"”’t"“)(x),o < j < n —2, lie inside of the strip, while
\Dgtz""’t"“)(x) lies outside of it.

For h € L}(T'°), we define

ASh(z) = / No(n -+ e~ 8 7 (o) h(Wha) dt,
Sg ()

B h(z) = / No(m)e 6" Tt (@) h(Tka) dt.
M (2)

To avoid distinguishing between the cases of even n and odd n, we introduce the
shorthand

. 0, n=0 mod 2,
1 =
" 1, n=1 mod 2.

Lemma 6. Forne N, z €I°, and e > 0,

Po (.’L‘) = Z AlefpikJrl (l‘) + B:Lpin (‘T)
k=1
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PRrROOF: The proof is by induction. The formula in (21) gives
(32) pol) = / et Tt (@) py (W) dt.
g ()
Statement (2) in Lemma 5 implies that for y € R?, ¢t € R, and i € {0,1},

d
—det U(Ply) =
g detU(Wiy) =0

t= 1 1n(a(y1—z:)>.

B—a  \By2—1)
This shows that the set T () is, up to a set of Lebesgue measure zero, the disjoint
union of Mf{(z) and the set of ¢ € R4 such that (s,t) € S{(x) for some s €
R,. Notice that the set T (x) does not depend on €, and that the decomposition
Th(z) = Mf(z) U{t € Ry : 3s € R, such that (s,t) € S§(z)}, up to a set of
Lebesgue measure zero, is valid for every choice of € > 0. The right side of (32) can
thus be written as

(33) /3 st ))xlefAOtJé(z)pl(\I/f)z) dt + Bip1(x).
t:ds s.t. (s,t)EST(x

if and only if

In complete analogy to (32), we have
(34) pw = [ doe (i) do
1y

If we plug this identity into the first summand in (33), we obtain the desired formula
in the base case n = 1.

In the induction step, assume the formula holds for some n € N. With the
notation t = (to,...,ty+1), We can write

(35) Bipi, (v)
:/ / Ao+ L)e N0 @0 09 G, w0y dny dt.
o (x) /T (Tha)

The set
{(t1,t) e R 1t € M (), t € T} (Uha)}
is, again up to a set of Lebesgue measure zero, the disjoint union of M} ;(x) and

the set of (t1,t) € R’} such that (o, t1,t) € S5, (z) for some ¢y € R, Therefore,
the right side of (35) becomes

By 1pin () + / Xo(n +1)e~¢

t:3to s.t. (to,t)€SS (7))

/\én,+1}

£ JS (x)pin+l (\:[181') dtv

where we have set t = (t1,...,¢,41). It remains to show that the integral term
above equals A5, 1p;,,,. This follows from plugging (32) or (34) into said integral
term. g

Next, we show that for large n, the contribution of Bfp;, in the formula from
Lemma 6 is small.

Lemma 7. We have lim,_, ||B5|lop = 0, where || - ||op is the operator norm for
operators on L*(I'°).
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PROOF: For fixed n € N and h € L}(I'°), we have

(30) IBhlls < [ daGm)e™ 579 g5(0) (o) o .
My
where
Mg = {(x,t) eI° xR} : t € My(x)}.
Let us set
Mg =] M(x).
xel°

Since ﬁfl C I'° x M, the right side of (36) is bounded by

No(n)e= P60 / JE(@)|h(UE)| dx dt.

o

€
Mg

With the change of variables y = W§(x), the expression above becomes

[ / No(n)e= "9 .
MG

n

Thus,

IBillon < [ Aol dt =y,
M
As My, C Ry x My, we have

n?

s
bosr < [ Aiaetmtdt [ Xg(n)e=N0 gt = Zintry,

ns
R, Me Ai,

SO bzﬁ is bounded. To show that lim,,_,. b, = 0, it then suffices to show that

there are ¢ € (0,1) and N € N such that

ban+3 < cbapy1, n > N.
We claim that there are 71,79, T > 0 such that for n sufficiently large,
(B7) Mg, 3 C((Ry x ((0,71]U[r2,00))) U((0,T) x (71,72))) X M1,

The idea behind this claim is the following: If the time between two consecutive
switches that both happen close to the diagonal T',, is neither very short nor very
long, i.e. if it falls within (7y,72), then, at the time of the second switch, the
switching trajectory cannot end up close to the critical point of the vector field
to which the second switch is made. As a result, the time spent in I'° after the
second switch, following the time-reversed flow, is bounded by T. To prove the
claim in (37), we first notice that for all 7 > 0

det U(®7(0,0)) # 0.
Let us pick one such 7. Since the map
(z,t) = det U(®}z)

is jointly continuous, there are é > 0, 72 > 71 > 0 and a neighborhood V of (0,0)
such that
|det U(®ix)| > ¢, t€(r,m), z€V.
Then, set
T=1+sup{t>0:3zxeVeNTI°st. Ui(z)ec T}
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This defines a finite quantity because zye%* > 1 for t > —% In(z2), and
SUPgcyenre — 11’1(332) < oo. Let (tl, Ce ,t2n+3) S M2€n+3' Then, (tl, - ,t2n+3) S
M3, 3(x) for some 2 € I'°, and in particular (Z3,...,t2,43) € M5, (x). Suppose
that to € (71, 72) and set

We claim that z € V°. If z was an element of V', we would have
¢ < |det U(D22)] = |det U (W3 t243) gy
On the other hand, as (ts,...,t2n43) € M3, (), we have
|det U(T{ert9) )| < e < e

for e sufficiently small, a contradiction.
From 2 € V¢ it follows that U§(z) ¢ I'° for ¢ > T. Hence, t; < T, and the
inclusion in (37) is proved. As a result,

bany3 < cbani,

where
T T2
c:/ e~ Mt dt+/ Aoe Ao ds/ Ae M dt < 1.
(0,71]U[72,00) 0 T
This completes the proof of the lemma. O

Corollary 1. For ¢ > 0 sufficiently small, we have lim, oo BSpi, (£) = 0 for
Lebesgue almost every x € I'°.

PROOF: Recall from the proof of Lemma 6 that
By.pi, (x)

Bt pu s (2) + / Aol + 1)e=O8 8 Tt (Wha) dt.

t:3to s.t. (to,t)€SE, 4 (x)

Thus, (BSpi, )n>1 is a pointwise monotone decreasing sequence of nonnegative func-
tions. To prove the corollary, it is therefore enough to show that (B¢ p;, )n>1 con-
verges to 0 in L!(I'°), which follows immediately from Lemma 7. d

The next lemma is a counterpart to the change of variables - formula in Lemma 4.
For i € {0,1}, x € T°, and € > 0, let

R(z) ={(s,t) € T?(z) : det U(¥lz) > €},
L§(x) ={(s,t) € T(z) : det U(Vix) < —¢}.

In addition, we define
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Lemma 8. Let x € I'° and € > 0. Then,

1piy(2) = Ij().
For k > 1, we have

€ o (k= 1) e
(38) Akpik+1(x) — /M ( ))\O(k — 1)e<( +8)1-\§ >I%+1(\I/8x) dt,
1 xT

where 1= (1,1,...,1)T.
PROOF: Observe that
. @ 4
(39) o) = [ @O s wp, e as

+ / No(2)e N T (1) s, (W)
L ()

and that Lemma 4 continues to hold if one replaces Ro(z) with R§(z) and Lo(x)
with L§(z). The change of variables—formula in Lemma 4 then yields that the right

side of (39) equals Z§(x).
For k > 1, write Ajp;, ,, (v) as

(40) / dts...dtgy1 Mo(k — 1)e_<’\<(3k_1)’(’53""”5’““)T>
Mg _, (2)

AD (tast)T)
(/6 (\Il<t3 ,,,,, tk+1):v) at1 dby )\ik“@)e kﬂ v Jt( )pik+1(\118x)

i1 T 0
At
+ o) dty dta N, ,,(2)e iy (trot2) J( )pik+1(\118x)>,
L§k+1(‘1l0 )
where t = (t1,...,tp41) . Since

Jg(x) :J(tlh)(\p(t& otkgt) )Jétswwtkﬁ—l)( ) = J(tlatQ)( (ts,-trt1) z)e (a+8) ThE3t;

Tht1 ik41 0

we obtain the desired formula after applying Lemma 4 to the integrals in the second
and third line of (40). O

Lemma 9. Fori€ {0,1}, e >0, and x € I'°, we have

Ire >\0>\17 A > a+p,
( ) >\0)\1 e(O/"rB Ai )7—1(7') )\7, <« + ﬁa

where
7i(z) = sup{t > 0: ¥i(x) € T°}.
The estimate continues to hold if one replaces I, “(x) with Ife(x)
PROOF: Setting (s,t) = x."“(y) and z = Ui(x), we have
plot B2t
K7 (2,y) = M(2)e™ N 00 D det U(2) ™| det V, W (x) = Ai(z)e—hf'ﬁi'dew(z)' :

Since |det U(z)| > € for y € \IIR (x)( ), the desired estimate follows. O
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Forn e N, e> 0, z € I'°, and Ay, A1 > 0, set
M;’)\O’)\I(I) :/ e*(A(()")’t) dt.
M (x)

Lemma 10. For any Ao, A1 > 0, there is a function f(€) such that lim¢jo f(e) =0
and

MM (@) < fleMG ™M (z), neN, z el

PrOOF: For ¢ > 0 and i € {0, 1}, let

, 1
s = {ac el :|detU(x)| <e, (—1)'x1 > 3 —i}.

Forn e N, z € I'°, and € > 0, we have

. NO)
Mgt = [T S

(i,5)€{0,1}2
where
Iit)j :/ dto e_Ai”tQ/ dty 67/\i"+1t1.
ta€Ry: U2V (x)ers treRy: W28 (g)yepe

For t € M¢(x) and (i,5) € {0,1}%, we now derive an upper bound on If;. For
reT§,t>0,and € < §(a — ), part (2) of Lemma 5 yields

% det U(Whz) <eP'B(—ala — B)z; — det U(z))

<?B(~Sla-B)+e) <(-F@— P +e).

2
Similarly,

d ‘ o

- “(a—B) — € +>0.

dtdetU(\Illx) >5(2(a B) e), zel{, t>0
Thus, we have for z € I'{ and

‘> 2e
= o =:Te
B(Gla=pB)—¢)

the estimate

(41) |det U (Vlx)| >|det U(Viz) — det U(x)| — |det U(z)]
>6(%(0&*B)*€)f*626.

We distinguish between two cases. Suppose first that j = 4,41. With (41), we

obtain for any t; € Ry such that \Ilét2’t)(x) € I'; the estimate

Te
/ e Mimrtt gt < / e Mimit gt < 1.
treR w128 (g)epe 0

Then,

o T,
Ij; < Te/ e it dty = —=.
0 Ai

in

If j = 4,, we first use the obvious estimate

1
(42) It <

-t
Bl =\ / to,t ¢ " dis.
int1 Jta€Ry 02 (2)eTs
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If {t; € Ry : U (z) € T¢} = 0, we have If; = 0. Otherwise,
= inf{t, € Ry : Y (2) € TS}
is a number in [0, c0) such that
UV (2) ¢ TS, ty <7

The estimate in (41) then implies

‘detU (\1/5{”’“ (x))’ >e, t>T.,

so for every t > 7., we have \I/éTH’t)(x) ¢ I'5. As a result, the right side of (42) is

less than
1 T4Te
/ e in®2 dty <

Gn 41

€
>‘in+1

A
It follows that

4,
€,20,A1 € €,20,
M5 (@) < m/\/‘n% M(x).

8.2. Proof of Theorem 2, part (1), for \; > a+ . In this subsection, we prove
part (1) of Theorem 2 in the case where A\; > a+ . Under this additional assump-
tion, we can give a simpler proof than in the general case treated in Subsection 8.3.
In light of Lemma 6 and Corollary 1, it is enough to show that there is ¢ > 0 such
that for small € > 0,

(43) ZAkp%l <e¢, wel”.

Let
m = max{(Xo — (a+§)) 7", (Ao — (@ +8) " (1 — (a+ )"}
It is easy to see that

M;Ao—(awxxl—(aw)(z)} <m

max

{M?Ao—(a-i-ﬁhh—(a-i-ﬁ) (2)

for all z € I'°. Lemma 10 implies
(44) M;,Ao*(aJrﬁ)’)q*(aJrﬂ)( )< f( ) 52 m — f( ) mf( )% ke N.

Combining (44) with Lemmas 8 and 9, we obtain

z:./él,gp,k+1 < /\O/\l <1+f mZ/\o ’5), xeTl°.

If € is so small that (Ag V A1)/ f(€) < 1, the series on the right converges. This
completes the proof.
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8.3. Proof of Theorem 2, part (1). Let \y > a+ 8 and \; € (8,a + 3] (recall
that the case A\; > a + ( has been taken care of in Subsection 8.2). For n € N,
€>0,ze€TI? and A\g, \; €R, set

(45) M\:{)\o,/h(x):/ 6_</\((Jn+1)7(n”(w8$)7t)> dt,
My ()

where one should recall that 7;(x) was defined in the statement of Lemma 9. We
have

(46) iA;pml (x) < % <1 + i Ao(k)ﬁ/l\;ko—(aw),xl—(a+6) (I))_

k=1 k=1
Now we need to estimate MS* M for Ay > 0 and Aj € (—a, 0].
Lemma 11. There are functions c(e) and f(€) such that lim. o f(€) =0 and
(47) MM (@) <cle)f(e)", nmeEN, 2 €T° X >0, A\ € (—a,0].

By Lemma 11, the right side of (46) is bounded by
2X0A -
(149 30 (0)F)

k=1

which does not depend on z and is finite for € so small that Ao f(€) < 1. To complete
the proof of Theorem 2, part (1), it remains to show Lemma 11. We will do this at
the end of this subsection.

For i € {0,1}, € > 0 and = € I'° such that |det U(z)| < ¢, let

7f(x) = sup{t > 0: |det U(V.x)| < e} Asup{t > 0: Ui(x) € T°}.

It is easy to see that 7{(z) = 7§((1,1) — z). For integers j > 2, i € {0,1}, and
€ > 0, we define

Vi) ={z eT®: |detU(z)| <e, 7i(2) € (j — 1,41}

In order to deal with short exit times for the strip of points € T'° such that
|det U(z)| < €, we also define

V(1) ={z eT?:|detU(x)| <€, 75(x) € (e, 1]},
VEO) ={z €T°: |detU(x)| <€, 7(x) € (O,EQ]}.

In the following lemma, we analyze the interplay of exit times 7§(z) and 75 (x).

B
@

Lemma 12. There exists a family of constants (m(j))eso0,jen with the following
properties.

(1) For e > 0 sufficiently small and for any j € N, one has 7f(x) < m(j) for
every i € {0,1} and x € V£_,(j).
(2) One has

oo
lim Y je”m(j) =0, vel0,a).
el0 4
j=1
PrOOF: We first define the constants (m*(j))eso0,jen and then verify the asserted
properties (1) and (2). In a first step, we show that there is ¢ > 0 such that for

every x € I'° with 27 < %,

(48) 5((1,1) —z) < cxy.
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For y € I'°, we have
(L—y)* > 11
and there is a unique t*(y) > 0, given by
t*(y) = sup{t > 0: Th(y) € T°},
such that
(1 _ eoét*(y)yl) g =1— B Wy,

For fixed y; € (0,1), one observes that ¢*(y) is an increasing function of ys: the
larger ys, the smaller is 1 — y5, and the larger is the absolute value of the derivative

d
7 (1—e’tyy) = —BePlys,

i.e. the longer it takes the decreasing term (1 — e’”yl)g to catch up with 1 — ePtys,.
Now, consider the function

a(zy,w2,t) =1 — (1 —x;) — ‘1 —ef(1 —x2)|% . (w1, 20,t) € R

Since % > 1, the function a is C* on R3. As a(0,0,0) = 0 and 9;a(0,0,0) = —a < 0,
the implicit function theorem implies that there is an open neighborhood U of (0, 0)
and a C! function b : U — R that is uniquely determined by 5(0,0) = 0 and

a(z1,22,b(z1,22)) =0, (x1,22) € U.

The reason for defining a in the first place is that the function b induced by a
satisfies

b(x) =t*((1,1) —z), zel°NU.
Thus, for « € I'° sufficiently close to (0,0), we have

7((1,1) —2) < (1, 1) —2) < b(zy, 1 — (1 —21)%).

The rightmost expression in the chain of inequalities above is a C'!' function of
for x1 close to 0, and yields 0 when evaluated at z; = 0. The mean-value theorem
then implies (48) for a suitable ¢ > 0 and for x € I'° with x; sufficiently close to
0. As 7§((1,1) — z) is bounded for z € T'° such that 21 < 1, we can extend (48) to
the set of such = by choosing a larger c.

Let ¢ be the unique real number greater than 1 such that g — qg
¢’ > 0 be a constant such that

=1, and let

1 IRCEST
@) >
e(aiﬁ)j71<ce , j7=>1
Then, define
o cmin {qe*a(jfl)7 Ec/%e(ﬁfa)(jfl)} , ] Z 2’
m (.]) = 8

2 _8 .
CaBa=m ¢ , 7 =1

Fix v € [0,«), and choose n > 0 such that « — 8 < v+ 1n < a. Let C > 0 be
so large that j +1 < Ce™ for all j € N. In addition, let v > 0 be so small that
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yv+n+B—a) <1. As e’T17%* < 1, we obtain for sufficiently small € the estimate
o0
> g me(4)
j=1

L= In(c™)] 00

2 B . :

<ce” (g—a + Ced = E elrtv=atB)i L og § ' e(n+v—a)y>
045(04 B 5) of Jj=1 j=|—1In(e7)]+1

2 5 20cy eYla=v=n)
< eV 1-2 _ 1 1—y(v+n+p—a)
= (aﬁ(a —5)° af n(e)e N qu —evtn—a )

and the right side converges to 0 as € | 0. This establishes property (2).

We now show property (1). For symmetry reasons, we can restrict ourselves to
the case i = 1, i.e. we will show that 7§ (z) < m®(j) for all z € V5 (j). Let x € V5 (j)
for some j > 2. Then we have 7§(x) > j — 1, which implies

sup{t > 0: |det U(¥{z)| < e} >j— 1.
Therefore,

af (eo‘(j_l)axl - eﬁ(j_l)xg) <e
and, setting y := e*U~Dz; and using that z; > xf,

(49) % >0 Vg — AUy,

SeU Vg, _ UDge —y &

Asy—y— yg is increasing for y > 1 and negative for y € (0, 1), the definition of
q implies e*U~Yz; < ¢ and thus
T < qe_a(j_1)7

provided that e < af. Since |det U(z)| < € and thus zy < 21 + 5, the right side
of the first line of (49) is also greater than

U= g, — BU-Dg, — BG-1)

af’

whence it follows that

e 14 e8G-D ¢ 14e-BUG-D
TS (BealD —eBG 1  afe@BGD _1

2 1 12 (- -D)

<€aiﬁe(a*ﬁ)(j*1) 1 < €c @e .

So far, we have shown that x1 < ¢='m¢(j). The asserted inequality 7 (z) < m*(j)
then follows from 7f(x) < cz1, which is equivalent to (48). It remains to consider
the case j = 1. Similarly to the case j > 2,

2e
aﬁ(e(a—ﬁ)ﬁ

5 <c 'me(1).

_1)

1 <

We can then conclude as in the case j > 2. O
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PROOF OF LEMMA 11: Fixn €N, Ay >0, A\; € (—,0] and z € T'°. Since

{weT:|detUa)| < e} = |J Vs () = J Vi),
j=0

Jj=0

and since the sets (VS

(50) M\;’)\(L)d (x) = Z / dt,, e—)\otn
(rosgm)ENn J tnERE VG (2)EVE (jn)

(4))jen, are disjoint for i € {0,1}, we have

dt e AMtn—1
(tn_1:tn) o n—1 e
tn_1ERy W, (2)eV (Gn-1)

,,,,,

)

where i,, = 0 for n even, and i,, = 1 for n odd. Fix (ji,...,Jn) € Njj and a sequence
of switching times (to, ..., t,) such that

\Il(gtk,“.,tn)(x) e Vii,kﬂ(jk)’ 2<k<n.

We would like to estimate the integral in the third line of (50). Set z := \IJ(()tZ""’t")(x)
and let ¢; € Ry such that \I!fjlﬂ(z) € V£ (j1). Since z € Vi _ (j2), we have

in—1
|det U(z)t| < €. Besides, as \I/fi“(z) € V£ (j1), we have \Ilfi+1(z) € I'° and
|[det U(P;!  (2))] < €. Hence,

Tn+1

(51) t < 75

Tn+1

(2) <jo+ 1

€

For jo > 1, we even have Tin“(z) < j2, but we work with this slightly worse

estimate to avoid distinguishing between the cases jo = 0 and jo > 1. Recall that
7;(x) was defined in Lemma 9. We claim that for every € > 0,

(52) d(e) := sup (ro(z) — 15(x)) < 0.
zel°:|det U(z)|<e

Let x € T'° such that |det U(z)| < €, and assume without loss of generality that
To(z) is strictly larger than 7§(z). Then,
0(x) = 76(x) = 70(y(x)),
where
y(x) = 0P (2) € {z €T° : detU(z) = €}.
Since 7y is continuous and since 7o(y) converges to 0 as y approaches either one
of the endpoints of the line segment {z € I'° : det U(z) = €}, the claim in (52)

follows. Together with (51), the fact that Wfiﬂ(z) € V¢ (j1), and the assumption
Ao > 0 > A1, one obtains

e—Al—intl—Ainﬂn(‘I’gl""’t”)w) < e Mlitiatd(O+2)
so the integral in the third line of (50) is bounded from above by
e~ MU1Hi2+d()+2) [0} ({tl eRy: Pl (z) € Ve (]1)}> 7

Tn+1

where Leb denotes the Lebesgue measure. Fix a time

t1 € {tl ERL VR (2) € Vii(.jl)}

Tn+1
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and define y := U’ (2). If j; > 1, Lemma 12 yields 7 (y) <m(jr), so

Tn41
(53) Leb ({tl ER, UM (2) € VE (jl)}) < me(jr).
If j; = 0, the expression on the lefthand side of (53) is bounded from above by

. B
sup  7f , (y) =j2 + € Lj—0.
yeVe  (ja)

in—1
For i, j € Ny, define
h(i,§) = €MD (M (i) Lzt + (J + € 1j—o) Lizo)-
The integral in the third line of (50) is thus less than
67/\1(j1+1+d(6))h(j1,j2).
A similar estimate without the factor e~ *1(1+1+d(€) applies to each of the other
integrals in (50), with the crucial exception of

1
(54) / e Mot df, < —.
tn ER UL (2)EVE (Gin) Ao
Then,
(55) Mo (x)
e—)qd(e) B 4 n—1 o e—)\ld(é)
ST Z e A1(ji+1) Hh(]l)jl-‘rl):)\i Z JA7
O (Grdn)ENG =1 O Ac{i..n}
where
n—1
Ja = Z e MUt H h(ji; ji+1)
(J1,--20n)€ENA =1
and

Na={(j1,.---,jn) eNg i >0iff € A}, AcC{l,...,n}.

Fix aset A C {1,...,n}. We want to estimate the term Jy4. If A =0,

n
(56) Ja=eMh(0,0" 7 = 5 (M)
Now assume A # (). We call a subset B of A a connected component if k <1 <m
for k,m € B and ! € {1,...,n} implies | € B and if no subset of A that strictly
contains B has this property. The set A can be written as the disjoint union of
its connected components, and the number of connected components of the set A
ranges from 1 to the cardinality of A. We call the number of indices between two
adjacent connected components B; and By the gap between By and Bs.

Let By, ..., By, be the connected components of a nonempty set A C {1,...,n},
written in increasing order, i.e. By contains the smallest index in A, Bs is adjacent
to By, etc. We denote the sizes of By, ..., B, by s1,. .., Sm, respectively, and write
By ={j, ... ,jil} for 1 <1< m. For 1 <l<m—1,let g, denote the gap between
B; and Bjy;. Let gg be the number of indices preceding B; and let g,, be the

- . -1
number of indices following By,. Then, 9 := (go — )" +>" (g1 — 1)+ (g — 1) T
is the number of instances in which two subsequent indices are both not in A.
Depending on whether go > 0 or g,,, > 0, there are four cases to consider. We only
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present the case gg, g, > 0, and thus omit the cases where gg = 0 or g,, = 0. We
have

(57)  Ja=e Mh(0,0 ﬁH(Zh 0,5)

ji=1
Zhh,h Z (Gt -1, 3%) (Jil,0)>-
jt=1 it =1
Forji,...,jil > 1,
S
. g . . . g G o
(0, G, 45) - - Gl -1, G2 )R 0) = et T e M Ot Dme ().
i=1
Thus, the right side of (57) can be written as
o] s;—1
67)\1 <€§ - ) )\lmH< —A18; (Z j e )\lJlm l)) (Z eAljme(j)> ' >
J1 l—1 Jj=1

It follows that

(58) Jy<e™M (eg e”\l)ﬂe*’\l(mHADb(e)lAl,
where
€)=Y je me(j)
=1
and where |A| = >°", s is the cardinality of A. Since A\; € (-, 0], Lemma 12

implies that lim. o b(e) = 0. If we set

fle)= (% e ) vl
we obtain
(59) Ja<e ™ (e foF)

because ¥ + |A| > %7+ and m+ |A| < 2n. This completes the estimate of J4 in the

case go,gn > 0. In each of the remaining three cases, one can show without much

effort that J4 is less than or equal to the expression on the right side of (58).
From (55), (56) and (59), we infer that

MePo () < cfe) f(e)"”

for
—Ald(e) 1
e(e) = & ehe ™M, fe) = 27N (ea v f(e)s) .
Ao

This completes the proof of Lemma 11 and thus of Theorem 2, part (1). O
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8.4. Proof of Theorem 2, part (2). The proof of part (2) is quite similar to the
proof of part (1) for Ay € (8, + 5]. Let K be a compact subset of Iy, and recall

that M was defined in (45). Following the proof of part (1), all we need to show is
the following lemma.

Lemma 13. There are functions c(e) and f(€) such that lim. o f(€) =0 and
(60) MM (z) < c(e)f(e)”, neN, ze KNT°, Ao, A1 € (—a,0].

PROOF: Fixn € N, A\p, \; € (—¢,0] and z € KNT°. As in the proof of Lemma 11,

we use the representation for /\//\lz’ko”\l () in (50). If we let A = Mg A Aq, the integral
in the third line of (50) is less than

e*>\(]’1+1+d(6))h(jl’ 2),

where
. 3
h(i,j) = e NG+D (me(i)lizl + (j ten ILj:O) L-:o) :
As in the proof of Lemma 11, there are similar estimates for the other integrals
in (50), but now the integral on the left side of (54) is less than

hic(jn) o= e M (m ()15, 51 + T 1, —0) -

Here, Tk is a positive integer that depends only on the compact set K, and whose
existence follows from the assumption (0,0) ¢ K. The proof can then essentially
be completed as the one of Lemma 11, with )%O replaced by hk (jn)- O

8.5. Proof of Theorem 2, part (3). The proof strategy is similar to the one from
the proof of part (1) for Ay > « + . Here, however, we need to make sure that
the compositions of backward trajectories do not become arbitrarily close to the
critical points of uy and w;. This is accomplished by letting the width of the strip
around the diagonal shrink to zero as we move backward in time. The procedure
only works because we require K to be a positive distance away from the boundary
curve O'g. For n € N, z € I'°, and € > 0, let

oMt (z) = {t e T (z) : ’det U(xpgt"*wt%)‘ <279, 0<j<n— 1} ,

oSi(2) = { (t1.t2,8) € T+ (2) s t € oM,y (@),

det U(\Ilgtz’t)x)‘ > 62_("_1)} .
For h € L}(I'°), define

oA h(x) :/ Xo(n+1e
oS5 (2)

—T) gt ) BBt dt,

oBEh(z) = / o(n)e= 30”8 gt (2)h(TEz) dt.
oMEg (x)

The letter o stands for “shrinking” (referring to the strip around the diagonal) and
is meant to help distinguish the notation from the one introduced at the beginning
of Subsection 8.1.

We need analogs of Lemmas 6 and 8, which we state in Lemma 14 below. The
proofs of these modified statements are almost identical to the proofs of the original
ones, and we omit them.

Lemma 14. For any x € T'° and € > 0, the following statements hold.



34 YURI BAKHTIN, TOBIAS HURTH, SEAN D. LAWLEY, JONATHAN C. MATTINGLY

(1) For any n € N,

po() =Y o Aipi, (2) + 0Bopi, (1) = > 0 Aipis,, (2).
k=1 k=1

(2) We have
o Aipi,(z) = L5 (),
and for any k > 1,
aAmm“u»=/a Mok — 1)el BN 072 (it it

Tht1
aM,i_l(x)

Next, we formulate an analog of Lemma 10. For n € N, ¢ > 0, z € I'°, and
Ao, M1 € R, set

oMM () :/ 0 g
o Mg ()

Lemma 15. For any Ao, A1 € R, there is a function f(e) such that lim. o f(e) =0
and
oMM (x) < f)o MMM (z), neN, z e KNT°.

Before proving Lemma 15, we carry out some preliminary work. For ¢ € (0, %),

let
Fro)={xel’:0<x2<1-4}.
Lemma 16. There is 6 > 0 such that for e > 0 sufficiently small,
Ui(r) €T(0), z€ KNI° neN, teoM(x).

PrOOF: We will at times use the notation [z]z for the second component of a point
x € R?. For § >0 and n € N, we set

8 N okt
S(8,n) := 20 — 522 +
k=1
to simplify notation. Due to symmetries and an induction argument, it is enough
to show that there is 6 > 0 such that for ¢ > 0 sufficiently small, the following
statements hold:

(1) For any x € KNT° and t € o M¢(x), one has
Uy (w) € T'(20);

(2) For any even positive integer n, y € I'(S(d,n)) such that |detU(y)| <
€2=(=1 "and ¢ > 0 such that ¥§(y) € T'° and |det U(¥hy)| < €27, one
has

Wh(y) € T(S(3,n+ 1),
First we specify 0. For z € R? and ¢ € R, consider the function
0(x) =22V (1 —x2).

According to Lemma 5, for any ¢ € {0,1} and x € I'°, there is a unique 6;(z) € R
such that det U(\I/fi(m)x) =0 and \I!fi(z) (x) € I'°. We define

(= sup ¢ (Wgo(w)x> ,
reKNI°
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which is strictly less than 1 because K is compact and does not intersect T'g. Then,
we set

1-¢ 1,
SRR E S

Let € > 0 be so small that the closure of
2(9,6) :={x el :|detU(z)| < &}
is contained in I'°. Set

wE(KﬁlFIg)ua(a,g)[ o (@) >

For any z € R? such that § < #; = x5 < 1, the formula in part (2) of Lemma 5
implies
d
o det U(U5z)|s=0 > af(a — [5)4,
S
so by a compactness argument there is » > 0 such that

(61) 3 a3 o > (- )0

for every & € R? such that § < x5 < 1 and |det U(x)| < r. Next, observe that since
ug and uq are bounded on the compact set I', there is C' > 0 such that

10095 (2)] = |ui(¥i(2))| < C

for every i € {0,1}, x € T'°, and t > 0 for which ¥!(x) € I'°.

We proceed to the proof of statements (1) and (2). We will assume that € is
sufficiently small with respect to 4, €, 9, and C for the estimates given above to
hold. First we prove statement (1), which plays the role of the base case in an
induction argument. Fix a point x € K NI'°. For any ¢t € o M{(x), one has

20 < w9 < [\116(33)]2,
because t — [P} (x)]2 is increasing. To show the estimate

1—26 > [¥§(2)]2,
assume without loss of generality that ¢ > p(z). Set c(s) = (c1(s),ca(s)) = ¥§(x)
for s € [fp(x),t]. Then,

t
(62) €>detU(c(t)) = detU(c(t)) — det U(c(Op(x))) = / % det U(c(s)) ds.
Bo(x)

For s € [fy(z),t], one has, again by part (2) of Lemma 5,
d
7 det U(c(s)) > af(a— B)e1(6p(x)) > af(a — B)Y.
Together with (62), this yields
- c
af(a—pB)Y

By the mean-value theorem, there is s* € (fy(x),t) such that
c2(t) — c2(fo(x)) = (t — bo(x))ch(s").

t— 90(1‘) <
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Then,
co(t) =ca(00(x)) + ca(t) — ca(bp(z))

<Ct (t—Bp(@))h(s%) < ¢+ ——C ¢

———— <1 =30+ ————= < 1-2¢,
af(a— ) af(a— )
which completes the proof of statement (1).

We proceed to the proof of statement (2). Let n be an even positive integer, let
y € T(S(d,n)) such that |det U(y)| < €2~V and let ¢t > 0 such that ¥} (y) € T°
and |det U(Ply)| < e27™. Then,

V()2 > yo > S(6,n) > S(5,n+1).

It remains to show
(63) W)l < 1—S@n+1).
As in the proof of statement (1), there is no loss of generality in assuming ¢ > 6y (y).
Set d(s) = (di(s),da(s)) = Ui(y) for s € [0o(y),t]. Since y € E(J,€), one has
d1(0o(y)) > ¥. Thus, we can essentially repeat the argument from the proof of
statement (1) to obtain

€27
t=0W) < S5 —pw
and —_
da(t) < dz(6o(y)) + m'

The next step consists in estimating d2(0y(y)) from above. Assume without loss of
generality that do(0o(y)) > y2. Then,

bo(y) g4

(64) 2-(n=D) 5 / 9 det U(d(s)) ds

0 ds
in analogy to (62). Next, we estimate d%det U(d(s)) from below. For fixed s €
[0,00(y)], we claim that

det U(d(s)) > —r,

where one should recall that r was introduced in relation to (61). Suppose the claim
doesn’t hold. Since det U(d(0)) > —r, there is s* € (0, s] such that det U(d(s*)) =
—r and det U(d(t)) > —r for every ¢ € [0,s*). Then,

—r =detU(d(s")) = detU(y) + det U(d(s")) — det U(d(0))

d

>— 27 (n71) —|—/ —detU(d(s)) ds > —e+ s*%(a —B8)6 > —r,
o ds 2

a contradiction. As a result, the integral on the righthand side of (64) is bounded

from below by

*

00(n) % (0 B)5
Hence,
€2 (n=2)
bo(y) < aBla— B

and we obtain the estimate

)
da(60(y)) = v2 + da(Bo(y)) — d2(0) < 1— S(6,n) + —

aBla—p3*
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This yields

<1-8(6,n+1).

4 1) e2 "C
afla—pB) ~

da(t) <1 -=8(4,n)+ (5 + 9

O

PrOOF OF LEMMA 15: Letn € N,z € KNI° € > 0, and A\g, \; € R. Let
= |Ao] V |A1|. As an immediate consequence of Lemma 16, there is § > 0,
independent of n and z, such that for € > 0 sufficiently small,

(65) gt () € T(8), 0<j<n, teoMS,, ().
Let t = (t1,t2,...,tnq1) € oM, (x) and set y := \Ilétz"""t"“)(x). As we saw in
the proof of Lemma 16,
e2™n 2= (n=2)
afla—B)0 " afla—F)o

where ¢ > 0 is a constant that does not depend on n. Hence,

ti=t1—0;,(y) +6:,(y) <

(n) Cce
JM;iOl M(z) < / dt e~ o ’t>/ dt; eMt < cee o MG ().
o M¢ (z) 0
As lim¢ o cee*® = 0, this completes the proof. O

PROOF OF THEOREM 2, PART (3): By Lemma 14, we need to show that

sup ZUAkplk+1( ) < oo.

a:EKﬁFO

Again by Lemma 14, we have for x € K NI

oo

€ (a (k— 1) o (k—1)
S oA, (1) = Tie +z ey el N Y )

k=1 My _ 1(95

By Lemma 9, the rlghthand side is less than

66) 220N (arp-ro)ro(a)
€

£ 20N g1y - 1) / MO BN (rupy (W52):)) gy
— € oMy _(x)

For any k > 2 and t € oM} _(z), we have |det U(¥§z)| < € and, on account of (65),
we also have WE(z) € T'(§). Therefore,

Tipsa (\PBI) <c

where c is a finite constant that does not depend on €. The expression in the second
line of (66) is thus bounded from above by

2X0A € o o
(67) (a+/3)c 01 Z2k 1)\0 —1>0'M )\0 (a+p), 1 —( +ﬁ)( )
k=2
By Lemma 15, for k > 2,

ME Ao—(a+B),A1— ((H-B)( ) < f(c)lcfQJM?)\o—(a-i‘ﬁ)v)\l—(Ot‘f‘ﬁ)(x) < f(G)kf2ée(a+ﬂ)é’
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where lim. o f(¢) = 0 and

é= sup sup{t>0:detU(¥liz) < el
rzeKNI°

Hence, the expression in (67) is bounded from above by

oo

platB)(er) 2hoMiC N
* * €f(6) ];(2.}0( )) )\0(]6),

which doesn’t depend on z and is finite for e sufficiently small. O
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