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CONSTRUCT DEEP NEURAL NETWORKS BASED ON DIRECT
SAMPLING METHODS FOR SOLVING ELECTRICAL IMPEDANCE
TOMOGRAPHY*
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Abstract. This work investigates the electrical impedance tomography problem when only
limited boundary measurements are available, which is known to be challenging due to the extreme
ill-posedness. Based on the direct sampling method (DSM) introduced in [Y. T. Chow, K. Ito, and
J. Zou, Inverse Problems, 30 (2016), 095003], we propose deep direct sampling methods (DDSMs) to
locate inhomogeneous inclusions in which two types of deep neural networks (DNNs) are constructed
to approximate the index function (functional): fully connected neural networks and convolutional
neural networks. The proposed DDSMs are easy to be implemented, capable of incorporating multiple
Cauchy data pairs to achieve high-quality reconstruction and highly robust with respect to large
noise. Additionally, the implementation of DDSMs adopts offline-online decomposition, which helps
to reduce a lot of computational costs and makes DDSMs as efficient as the conventional DSM
proposed by Chow, Ito, and Zou. The numerical experiments are presented to demonstrate the
efficacy and show the potential benefits of combining DNN with DSM.
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1. Introduction. Electrical impedance tomography (EIT) is a very promising
technique for a noninvasive, radiation-free type of medical imaging. In short, by
alternating electrical current at a set of electrodes and measuring the corresponding
voltages on the boundary of an unknown medium (e.g., on the skin), it is possible
to reconstruct the internal electrical conductivity distribution image of the medium
[30, 10]. EIT has wide applications, such as biomedicine [66, 30] including monitoring
of ventilation distribution [61], geophysics [65], and industrial detection [39]. The
particular application considered in this work is to detect the inclusions buried in
a known homogeneous background, for example, measuring the resistivity of tissue
associated with malignancy, ischemia, and lung water [7, 23].

In order to describe the isotropic mathematical model for EIT, we consider a
bounded domain  C R", n = 2,3, with C'' boundary 92 occupied by some con-
ducting materials with the electrical conductivity described by a positive function
o(xz) € L*(Q). Let the background homogeneous material have the conductivity oo,
and then the support of o — o indicates the inhomogeneous inclusions denoted by D.
Suppose that N different electrical currents are injected to the boundary 0f2; then
the resulting electrical potential should satisfy the following N governing equations
with the same coefficient but different boundary conditions:
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(1.1a) V- (oVu,)=0 in €
(1.1b) U?—Z:gw on 09, w=12,...,N,

where g,,(z) € H=/2(9Q) are current density such that

(1.2) /BQ guw(s)ds = 0.

For the simplicity of notation, we write the surface potential over 9Q as f,, := u,|oq-
Mathematically, our inverse problem associated with EIT is to recover o(x) in €2,
specifically the shape and the position of the inclusions, based on the Neumann bound-
ary value (current data) and the observed Dirichlet boundary value (voltage data).
These data typically refer to a collection of the Cauchy data pairs {(gw, fu)}¥_;.
Let’s temporarily write © = wu, and g = g, for general discussion. Then the
Neumann-to-Dirichlet (NtD) map associated to (1.1) is defined by

(1.3) Ay : H12(0Q) — HY2(8Q), Asg = ulsq.

Theoretically, the conductivity distribution o as a positive L°° function can be re-
covered from a full knowledge of the NtD map A, [4]. However, in practice, the full
knowledge of the NtD map needs a matrix approximation requiring a large number
of Cauchy data pairs, for example, N = 64 in (1.1) [16], but may be unfeasible in
real-world problems. Nevertheless the stability and accuracy of the approximation
also need to be resolved. In addition, in many practical situations, the conductivity
coefficient o is not as rough as L°°. In fact the piecewise constant conductivity widely
appears, and some researches [3, 33, 2, 11] have shown how one or few boundary mea-
surement(s), i.e., the Cauchy data pairs, can reconstruct the inclusions. So from both
the practical and theoretical point of view, the full knowledge of the NtD map not be
very necessary, which justifies the limited Cauchy data assumption aforementioned.

It is known that a high-quality reconstruction for the EIT problem is challenging
due to its severe ill-posedness. Various numerical algorithms have been developed
which can be categorized into two families. The first one is based on optimization
algorithm which typically constructs a sequences of coefficient distributions converging
to the true one. Methods in this family include the finite-element-based methods
[48, 60, 38] and finite-difference-based methods [54], shape optimization methods [27,
12, 18, 36], and so on. For these methods, in general a good initial condition and
a significant number of iterations are needed to ensure convergence which also rely
on suitable regularization techniques such as Tikhonov regularization [60, 38], total
variation regularization [18], and L' regularization [37]. Alternatively, a second family
of methods, i.e., the direct methods, has been developed including the sampling and
factorization methods [40, 16], the multiple signal classification algorithms [3, 2], and
the topological sensitivity approaches [2, 6]. These methods are noniterative in nature
and thus tend to be much more efficient than optimization-type methods. Besides the
classical approaches, recently, deep neural networks (DNNs) also have shown great
potential for solving the EIT problem [1, 22, 29|, for example, combining fast direct
reconstruction procedures with convolutional neural networks (CNNs) [43, 29, 59],
the radial basis function neural network [51, 63], the multilayer neural network [41],
and the Bayesian neural network [42] and improving the neural network training with
particle swarm optimization [45, 46].

Recently, the authors in [16, 15, 17, 14, 34, 35] developed a so-called direct sam-
pling method (DSM) to solve not only EIT but also a large group of inclusion iden-
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tification problems which are shown to be easy to implement, computationally eco-
nomical, highly robust, and very effective. The principal ingredient of DSMs is to
construct an index function that attains extreme values for sampling points belonging
to the inclusions and thus provides the estimate of the shape. In particular, the index
function for EIT is derived exquisitely in [16] showing reasonably nice indication for
the inclusions. However, we also note the DSM in [16] has the potential to be further
improved in several aspects. First, it is mainly focused on the case of a single Cauchy
data pair which may hinder its application to the more complicated case due to the
limited accuracy. In engineering practice [30], the number of experimental measure-
ment data is indeed limited but mostly more than one. Second, the explicit index
function in [16] relies on the domain geometry and is obtained for some basic shapes
such as circle, square, and open ball. Indeed, the derivation of suitable explicit index
functions may become very complicated for multiple Cauchy data pairs or more com-
plex domain shapes. Furthermore, even with a single Cauchy data pair, the optimality
may not be guaranteed for the index functions derived in [16]. We believe it may not
be easy to overcome these obstacles by conventional mathematical approaches.

Alternatively, to address these hurdles numerically, in this work we propose using
DNNs to replace the classical intricate derivation to construct index functions, and
the resulting methods, which we call deep direct sampling methods (DDSMs), have
a few remarkable features. First, the DDSMs are capable of naturally both incorpo-
rating multiple Cauchy data pairs and fitting for any shaped €2, and thus they can
break the accuracy limits and result in high-quality reconstruction for both location
and shape. Second, the DDSMs also inherit the robustness feature of the conventional
DSM with respect to large noise. More specifically, these algorithms can smooth the
noise appearing in the Cauchy data and handle noise as large as 20%. In addition,
the proposed methods are able to handle only a few data points (electrodes) available
on the boundary without much hindering the accuracy. Moreover, the application
of DDSMs almost do not rely on the conductivity magnitude in the sense that they
can successfully reconstruct inclusion shapes which have much different conductivity
magnitude than those used in training. Furthermore, although the training process
costs more computational budget than the conventional DSM since it requires solving
an optimization problem, it only needs to be operated once in the offline phase. The
online computation involved in reconstruction/prediction is only the fast evaluation of
the DNN-based index function which is as efficient as the DSM. The offline-online de-
composition structure makes the proposed DDSMs have more optimal index function
without degrading the efficiency, where the optimality is benefited from the DNNs
and the efficiency is kept from the DSM. Therefore, we think the DDSMs combine
the advantages of both optimization methods and direct methods.

In particular, we develop two types of DDSMs: fully connected neural network
based DDSM (FNN-DDSM) and CNN-based DDSM (CNN-DDSM). Suggested by
the conventional DSM, both the networks take the mathematical format of input
data which are the solutions of a back projection of boundary data, i.e., an elliptic
equation with the known background coefficient and the boundary condition given by
a certain difference of the Cauchy data pairs. It is noted that the choices of input and
output for DNNs are in general crucial for their performance. For the FNN-DDSM, we
consider the index function as a pointwise indicator that classifies the points in the
domain into two categories, inside the inclusions and outside the inclusions, which
can be naturally treated as a classification problem. A softmax layer is then used
to normalize the output of the network to a probability distribution over predicted
output classes. We highlight that the probabilistic meaning of the output of FNN-
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DDSM computationally hinted the connection within the EIT problem, the DSM,
and the probability problem. For CNN-DDSM, we recast the index function into a
functional mapping data images to EIT images, so it can be viewed as a semantic
image segmentation problem that aims to extract the contour (detect the edge of
inclusions) from the image. It can be also considered as a further generalization of
the structure of the DSM in [16] since it uses more neighbor information of each point
to predict their location.

The remainder of this paper is organized as follows. The mathematical back-
ground of the DSM [16] is prepared in section 2. Section 3 is devoted to the develop-
ment of our novel DDSMs consisting of FNN-DDSM and CNN-DDSM. Our numerical
results are presented in section 5. Some concluding remarks and are given in section
6. The acknowledgments are provided at the end of this paper.

2. Review of DSMs. This section summarizes some necessary theoretical back-
ground of the DSM [16] for solving the aforementioned EIT problem which also serves
as the mathematical foundation of the proposed neural networks. The key idea is to
derive a certain index function indicating the inclusion shape and locations, which
should ideally satisfy

wo={ b o2ty

Since the work in [16] mainly focuses on the case of only a single Cauchy data
pair available, we here just let (g, f) be the pair of Cauchy data measured over the
surface 0Q with f = A,g and the NtD map A, defined in (1.3). Without loss of
generality, we assume the background medium has og = 1. A fundamental ingredient
in the derivation of DSM is the duality product (-, )~ a0 defined as

(X, )00 :/F(—Am)w(;sds = ((—200) X, ) 12(90) VX € H*(09),Y$ € L*(09),
where v > 0 and Aygq is the surface Laplacian operator. Let | - |y denote a certain
seminorm in H?Y(92). An essential component to derive the index function is a family
of probing functions {7, a}zeq,dern C H*(09) satisfying some conditions of which
the critical one for us is represented below.
(C) The probing functions are almost orthogonal with each other. That is,
for all z,y € Q,d;,d, € R", the function

(2.2) Kd;mdy (m7y) = —<77x,dm7ny7dy>’Y7aﬂ
|77:c,dz ly

achieves maximum when x = y and behaves like a sharply peaked Gaussian-

—le—y|?
like distribution, i.e., it is close to a kernel function e 7~ with small a.

We emphasize that the condition (C) is particularly helpful for us to choose suitable
activation functions in the design of networks. The construction of suitable probing
functions can be challenging in general. The probing functions introduced in [16] are
based on the dipole potential [20, 25], and they satisfy

(23) nw,d(g) = ww,d(&)a g S a(27
where w, g is the solution of the following problem:

awz,d

2.4 —Aw, g = —d-V6, in Q
(2.4) Wy d Vé, in o

=0 on 09, / Wg,ads =0
0
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with given z € Q,d € R™ and 6,(§) being the delta function for each . With the
probing functions, the index function can be then defined as

<7713,dxvf - Aoog>'y,BQ

= , e d, €R".
I[f = Aoogllz2o0)ne.d, [y

(2.5) I(x,dy) -

With the definition of duality product (-,-), a0 in (2), the surface Laplacian operator
only performs on the probing function 7, 4 that is itself infinitely smooth over the
measurement surface. So the index function in (2.5) is well defined even for very
irregular data f — A, g containing very rough noise, for example, those data only in
L?(09). As mentioned in [16], due to this feature the noise appearing in data can be
directly smoothed by the duality product over the measurement surface, and it is the
reason of the high robustness of the DSM against noise. We believe it is also one of
the reasons that our DDSMs are highly stable with respect to noise as observed in
section 5.

Note that (2.5) is not computable yet since the probing direction d,, € R™ remains
unknown. In order to find an appropriate direction d,, an alternative characterization
of the index function is considered in [16]. Define ¢ as the solution to the standard
elliptic equation with the boundary condition (—Apq)?(f — Asy9):

% _ (—200)"(f —Asyg) on 09, bds = 0.

26) —-A¢p=0 in Q,
(2.6) B ”

We highlight that the function ¢ in (2.6) is particularly important for designing
our DNNs and processing given boundary data to the input (images) of the DNNs.
Through (2.6), the index function in (2.5) can be equivalently rewritten as

2.7 I(x,dy) = ,
@) (@ de) = R, oo e v

reN,d, € R".

It is easy to see that the above index function reaches its maximum value at d, =
Vé(z)
|V¢(w)‘ . . . . . . .

observed in the experiments in [16], such choice of d, is crucial since, for example, the

existing inclusions might be accidentally removed if d, is wrongly chosen orthogonal
to V(x) at a point € Q. Thus Z(z,d,) = Z(x, V¢(z)) which is the guideline for us
to construct DNNs.

Notice that computing the index function (2.7) with d, = V¢(z) is only up to
solving the probing functions from (2.3) and (2.5), and this is challenging since the
probing functions vary with respect to « € Q. Instead of directly solving (2.3) and
(2.5) that may slow down the DSM, the authors in [16] derive the explicit forms of
the probing functions with very delicate mathematical skills for some special domain:

e () is a circular domain:

for each = € Q) which is the appropriate choice of the probing direction d,. As

1(§—x)-d

Tz =€

(2.8) N,d(§) = £ €N

e () is an open ball:

Sl i
M2,a(€) = Vil -zt D) ¢ € 0Q.

(2.9)
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The simple and explicit probing functions 7, 4(£) in (2.8)-(2.9) are then put into (2.7),
and thus the index function Z(x, V¢ (z)) can be computed efficiently without solving
any PDEs. So it is essentially different from optimization-based iterative methods
which require repeatedly solving forward problems and adjoint problems for many
times.

3. DDSMs. The whole design procedure of the index function of the DSM is
delicate and intellectual. Despite these features and the successful application, the
accuracy and further application of the DSM are limited mainly by the following
two aspects. First, the derivation above is mainly focused on a single Cauchy data
pair. When multiple pairs of Cauchy data are applied on {2 with any geometry, it is
unclear so far how to systematically develop an index function incorporating all data
by canonical mathematical derivation, though some basic operations can be applied
such as average or maximum of each individual index function. Second, the design
of Z(x,d,) is not necessarily optimal. For example, the tuning parameter v and
norm | - |y need to be chosen empirically, and the format itself may not be the best
approximation to the true index function. So it motivates us to use DNN models
to learn the index functions through a large number of data since DNNs are able to
mimic the human learning process based on physical data.

Therefore, to make DSMs applicable to more general situations of EIT problems
and ameliorate the quality of reconstruction, in this section we propose DDSMs. The
major difficulty is on suitable design of DNN architectures. We build up the archi-
tectures based on two different perspectives to understand the mathematical form of
the index function (2.7), which are the topics of the next two subsections. The first
algorithm, FNN-DDSM, is from the perspective of approximating the index function
Z(z,d;) in (2.7) by training it from coordinates x and values of V¢ (1 < w < N),
which can be treated as a binary classification problem aiming to categorize the coor-
dinates into two groups—inside of the inclusions and outside of the inclusions . The
second one, CNN-DDSM, is from the angle of functional or operator approximation,
where the goal is to train the mapping from Cauchy difference functions {¢“}N_; to
the inclusion distribution. This can be viewed as an image segmentation problem if
the input (z,¢',...,¢") is considered as a (N + 2)-channel image. FNN-DDSM and
CNN-DDSM are intrinsically different both in their network architectures and their
mathematical foundations, yet our numerical experiments show that they both work
very well, enhancing accuracy and stability without sacrificing efficiency.

For simplicity we mainly discuss our methods for the two-dimensional §2, and they
can be naturally extended to the three-dimensional case. To avoid repetition, we first
prepare some notations which will be frequently used in the following discussion.

e MNp,: the discretization of domain € that consists of a group of discrete points,
ie., N = {a% = (2, 25)}£ |, where K is the total number of points.

e ¢¥ with 1 < w < N: the solutions of (2.6) with the boundary value from
the wth pair of Cauchy data, i.e., f, — Ay, g,. Since these functions are so
critical in both the DSM and the proposed DDSMs, we shall call them Cauchy
difference functions.

If the training data samples are involved in the context, we further define the following
notations.

e S: the number of inclusion samples (coefficient distribution samples) in the
training sets.

e 7° with 1 < s < S: the true index function associated with the sth inclusion
sample.
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° gi)(S*W) with 1 < s < S and 1 < w < N: the Cauchy difference functions
associated with the wth pair of Cauchy data generated by the sth inclusion
sample.

3.1. FNN-DDSM. We first discuss the construction of FNN-DDSM. The deriva-
tion of Z(z,d,) in (2.7) suggests the existence of a nonlinear mapping from z, d, to
the location of x, i.e., whether it is inside or outside of the inclusions. Furthermore,
inspired by the choice of d,, we assume that the direction d, is a function of V¢ (z)
for all the Cauchy pairs. Therefore, we assume that the new index function takes the
form

(3.1) I(x) = Fenn(x, Vol (z), ..., VoV (2), ze€Q,

where Fpny is trained by a fully connocted neural network (FNN) described in de-
tails below. Mathematically speaking, Frnn is a nonlinear high-dimensional function
mapping a data point in R2V*2 to the index of the associated point in 2. Notice that
the design of (3.1) is directly motivated by the form of (2.7) with multiple Cauchy
data pairs. But at this moment we do not assume Fpnn takes any a priori format
such as (2.7) and only make the assumptions on its input. So we believe the proposed
new index function is more general than the index function (2.7) even with N = 1.
Since the value of the index function (3.1) shows the possibility of the input coordi-
nate z falling in the inclusions, where the larger value means that the point x is more
possible to be in the inclusions, approximating this index function can be treated as
training a binary classifier that aims to categorizes the input points into two groups—
inside of the inclusions and outside of the inclusion. This point-categorization nature
motivates training an FNN as a classifier and the employment of a cross entropy loss
function discussed below.

Now we proceed to describe the structure of the proposed FNN. Given an inclusion
sample and the associated Cauchy difference functions ¢*, we let the input of the FNN,
denoted by zj, € R* N+ (depicted in Figure 1(a)), contain the coordinates of x in
the first two components and the value of V¢“(z) in the next 2N components, i.e.,

(3.2a) [Zin]1 = 71,

(3.2b) [Zin]2 = 2,

(3.2¢) Zins, N4z = [000 (@1, 29) ... DN (z1,29)]
(3.2d) [Zinnis. anie = [0y8 (@1, 0) ... OydN(z1,39)]

If the length of the input zj, is smaller than the width of the input layer, to handle
this discrepancy we can pad z;, by a zero vector. The corresponding input linear
layer is defined as

(33) win(zin) = Winzin + bina

where Wi, is the weight matrix associated with the synapses connecting the input layer
neurons to the neurons in the current layer and by, is the bias. In the architecture
that we use, except input layer and output layer, each layer is associated with a
block, and each block is constructed by stacking several layers including two linear
transformations, two activation functions, and a residual connection. In particular,
suppose z; is the input of the ith block then the ith block can be expressed as

(34) n(zi) = QO(WLQ @(Wi,lzi + bi,l) + b¢72) + z;,
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where Wj 1, W;2,b;1,b; 2 are weight matrices and bias vectors. The output linear
layer is

(35) wout(zout) = WoutZout + bout,

where Woyut, bout also denote weight matrices and bias vectors for this layer. Let ©
denote the collection of the unknown parameters in these matrices and vectors to be
learned in training. The complete FNN with M blocks can now be represented as

(36) yout(zin) =Ko 1pout OTp ©-+-0T1 0 1pin(zin)a

where x is the softmax layer. The entire structure including blocks and residual
connections is shown in Figure 1.

In each block, we use the clipped rectified-linear (ReLu) activation function
(z) = min{max{0, z},0.1} to mimic the distribution of coefficients. Since the soft-
max layer normalizes the output of a network to a probability distribution over pre-
dicted output classes, the output ¥, (2in) € R**? consists of two components within
[0,1] with the unit sum, i.e.,

(37) [yout(zin)]lv [yout(zin)]Q € [07 1]) [yout(zin)]l + [yout(ziﬂ)}2 =1,

where [y,.;(2in)]1 indicates the probability of the point = (z1,2) locating inside
the inclusion. Namely, the larger [y, (2in)]1 (closer to 1), the more possible that the
point is inside the inclusion, and vice versa. Otherwise, it means that (z1, z2) is more
likely to be outside of the inclusions.

It is remarked that the value of the index function (2.7) of the conventional DSM
is not exactly O or 1 either. It naturally motivates some researchers to think that

Input Hidden Hidden Hidden Hidden Output
layer layer layer layer layer layer

[ 1 ] . o !
2 \
Dy (21, 22)

: Pinside
0p (w1, 2)
B = 0,0 ()| T
0y¢" (z1,22)
ay(f)w(fl;l,fty) Poutsidc

[0, 6% (21, 2)] ' ' /

Input: zip Output: Your = [Prside  Poutside)

Residual
connection

Fully connected layer Fully connected layer
. . —> . . «++ — Output layer
+ activation + activation

(b)

Input layer

FiGc. 1. The structure of FNN. Pj,s4e indicates the probability of a point x = (x1,x2) being
inside the inclusions. Pyyisige ndicates the probability of a point x = (z1,x2) being outside the
inclusions.
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the DSM is more like evaluating the chance of each mesh point situated within the
inclusions. This feature is essentially different from some conventional optimization
methods such as the shape optimization from [18, 12] that gives the sharp interface of
inclusions. But notice that there is no rigorous theoretical analysis on the relationship
between the DSM and probability. From this point of view, we think the proposed
FNN in a certain sense hints at a connection between the DSM for EIT problems and
probability due to the clear probabilistic meaning of its output y,(zin). In addition,
due to the offline optimization stage of the DDSMs, the estimate of the probabilistic
distribution is also much more accurate.

It is well known that the cross entropy is a suitable loss function for classification
problems, since it minimizes the distance between two probability distributions—
predicted and actual. In order to employ it to evaluate the proposed FNN, based
on the notations introduced at the beginning of this section, we first consider the
following loss function:

(3.8) Lioss(©) = ;i ( ZIS ) log ([yout (zi(rsl’k))}l)
+ (1= () log ([youe (2] ) ) 7

where Z°(x*) denotes the sth true index function evaluated at the kth point z* and
zi(jk) denotes the input formed by the kth point 2* and the sth Cauchy difference
function, i.e., the ¢ in (3.2) being ¢(>). However, we note that there are in general
a large amount of inclusion samples and discrete points to capture the geometrical
details of inclusions. To reduce the computational burden and achieve faster itera-
tions, we only use a random subset of inclusion samples and discrete points at each
iteration. We employ stochastic gradient descent (SGD) [19] to update the weight
matrices and bias vectors according to the following formula:

(39) @(j+1) = @(J) - Oéve)gloss(@(j))7

where « indicates the learning rate and j is the number of iteration. Gj,s(0©) is defined
as

(3.10) Gloss (© |S | Z ( Z 7°(z") log <|:yout( (s, k))}l)

kEK

+ (1= (") 1og ([youe (2] ) ) ,

where S, K, are random subsets of the integer sets {1,2,...,5} and {1,2,..., K},
respectively. More precisely, for each iteration, we randomly choose |S,.| samples in
all S inclusion samples and | K| points from all K discrete points. The gradient of
Gloss is computed by backpropagation [52].

In addtion, we note that the index function (2.6) in the original DSM can be
viewed as a fractional function of z = [z1,20] € R? with z; = 9,,6(x) and z, =
Oz, 0(x). So the index function in the FNN-DDSM might not be able to exactly
recover the fractional function due to the composite linear transformation and the
activation function. However, by Theorem 2 in [58], there indeed exists an FNN
with some proper parameters which is arbitrarily close to the original index function
(2.6). We believe it may be one of the reasons that the reconstruction results of the
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FNN-DDSM with a single measurement have similar behavior to the index function
in the conventional DSM. More discussions and results about this are provided in
section 5.

Implementation issues. We emphasize the proposed DDSMs are very easy
to implement based on the current sophisticated DNN packages. One only needs to
prepare the data including the true index functions and Cauchy difference functions
for the inclusion samples, and these data are only needed at some discrete points
Ny, of Q. In principle these points do not need to be determined or fixed a priori,
and instead they can be completely randomly chosen during each iteration. But this
approach gives an extra computation burden to evaluate V¢*(z) since the functions
¢“ are in general numerically solved without an analytical formula. Therefore, for
simplicity’s sake, we propose directly using the discretization points involved in the
computation of ¢ as N}, for training since the values of V¢*(z) at these points can
be predetermined and thus do not need be computed during training. For example,
if the popular finite element method is used to compute ¢*, then the underlying
mesh points can be used as the discretization points for training. Furthermore, we
mention that the number of these points is related to the resolution of the inclusion
geometry. In general, the more complicated geometry requires more points to resolve,
but it also makes the training more difficult. We notice that FNN-DDSM requires
the computation of each discretization point which can be accelerated by parallel
techniques.

3.2. CNN-DDSM. In this subsection, we present the CNN-DDSM which is
essentially different from the FNN-DDSM in both the computation and mathematical
foundation. Our motivation consists of multiple levels. First, while being structure
agnostic makes FNN broadly applicable, such networks do tend to require a larger
number of parameters exacerbated by the fully connected structure. Second and
more importantly, the gradient operator used in (3.1) can be considered as a special
convolutional operator utilizing the neighboring pixels for the operation in the context
of image process. More specifically, if we define A as the source image, the finite
difference approximation for horizontal derivative and the vertical derivative are given
by

10 1 1(1 0
(3.11) G, = 7 {_1 O} x A and G,, = 7 [O _1] *x A,
where * denotes the convolution operation. If we consider (¢!(x),...,¢" (z)) as an

image with N features (channels) and treat x as pixels, then (3.1) can be understood as
the convolution in (3.11) operating on these images. Moreover, from the discretization
perspective, gradient or (3.11) only involves the information of the direct neighbor
points of a point z to predict the index value at this point. We note that the true
situation may be much more complicated than this, i.e., it may involve more neighbor
terms and the operation may be more complicated than gradients (weights may not be
those in (3.11)). Thus, it is reasonable to increase the matrix size in (3.11) and treat
their special weights as unknown parameters to be learned. All these considerations
motivate us to hybridize CNN and DSM, and our CNN-DDSM naturally arises.

Mathematically speaking, different from FNN-DDSM, in CNN-DDSM the key is
to understand the conventional DSM (2.7) from a novel perspective that the desired
index functions can be viewed as a functional or operator from Cauchy difference
functions {¢*}N_; to the inclusion distribution instead of a function from spatial
variables to the indexes 0 or 1, i.e.,
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(3.12) T = Fonn(z,¢',...,0N) [Hl(Q)fNH

— L*(9).

By (3.12), we only assume the index functionals rely on the entire set of Cauchy
difference functions rather than their values at a specific point, which is certainly
more relaxed than the assumption of FNN-DDSM. This structure actually agrees with
the theory discussed in next section. Based on the previous discussion, we can use
CNN to approximate (3.12). Additionally, from image processing perspectives, if we
consider Z as the dense prediction of a (N +2)-channel image (z, ¢, ..., ¢"), then the
nonlinear functional Fonn can be also treated as semantic image segmentation process
[13, 31] that is partitioning a digital image into multiple segments (set of pixels) based
on two characteristics: inside or outside the inclusions. It suggests a relationship
between DSM for EIT problems and semantic image segmentation problems which is
illustrated in Table 1 for readers from different background.

In order to describe the structure of the CNN-DDSM, for simplicity we first as-
sume () has a rectangular shape and leave the general situation to the later discussion
about the implementation details. Then we suppose 2 is discretized by an n; X no
Cartesian grid, where nq and ng are for the x; and x5 direction, respectively. Based
on the previous explanation, the input to the CNN is not a vector but a 3D matrix.
In particular, let’s focus on an inclusion sample with N Cauchy difference functions
{¢“}N_, solved with {(gw, f.)}_,. Then the input denoted by z;, € R ¥y *(N+2)
is a stack of NV + 2 matrices in R™ *"2, where the first two slices are formed by spatial
coordinates x1 and xo, respectively, and the remaining N slices correspond to the
numerical solutions ¢'(z), ¢%(z), ..., "V (z) evaluated at the Cartesian grid points;
its pictorial elucidation is provided in Figure 2.

The proposed CNN architecture is composed of convolution networks and trans-
posed convolution networks, where the detailed configuration is illustrated in Figure
2. The convolution part consists of several blocks, and each block includes convolution
layers, activation layers, and max-pooling layers. In particular, the max-pooling layers
mainly help in extracting the sharpest features of the input image and reducing the
input image size by computing the maximum over each nonoverlapping rectangular
region. The ith block in the convolution part can be expressed as

TABLE 1
Relationship between DSM for EIT problems and image segmentation problems.

DSM for EIT Image segmentation
T Mesh point in 2 Pixel
¢ (x) Cauchy difference functions Image features (channels)
T Index of inclusion distribution Dense prediction
Convolution network Transposed Convolution network

x-coordinate

y-coordinate|

FIG. 2. The structure of CNN. The input is a 3D matriz in R"1%72X(N+2) " gnd the output is
a matriz in R™M1X"2,
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(313) Tic(zconv) = M(C(Q(Wconv *Z; + bconv)))»

where * denotes the convolution operation, Wcq,, refers to the convolution filter for
the 2D convolutional layer, b.on, denotes the bias, z; is the input image, M is the
max-pooling layer, ¢ denotes the activation, and g is batch normalization [32] layer
that aims to accelerate the training and reduce the sensitivity of the network initial-
ization. The transposed convolution part also contains several blocks each including a
transposed convolution to extrapolate the output of the convolution part to an image
with large size (higher resolution). A typical example of the ith block is

(314) Tf(ztrans) = C(C(T(Zz, Wirans, btrans)))>

where 7 refers to the transposed convolution operator, Wians and birans are the corre-
sponding transposed convolutional filter and the bias, C is a concatenation layer, and
other notations are as the same as (3.13). Again O denotes the set of all the unknown
parameters including the convolutional and transposed convolutional filters and the
biases to be learned in training. Notice that convolution and batch normalization
layers are also inserted into (3.14) at some blocks. Our experience and condition (C)
have suggested choosing sigmoid function as the activation function,

(3.15) ¢(z) !

T 1te=
We think one explanation is that the function (2.2) behaves like a sharply peaked
le—y|?
behavior e~ «* ~ with small @ [16], namely, it decays rapidly when x moves away from

y, that is also the behavior of derivative of the chosen sigmoid function. In addition,
the shape of sigmoid function is similar to the Heaviside function that mimics the
discontinuity of the inclusion distribution.

Then, the full CNN model can be represented as

(3.16) Yout (Zin) = TItMt 0---0T} O Thr, © 0 T (Zin),

where the output y, . (zin) is a 71 X 1o matrix which is supposed to approximate an
inclusion distribution.

To measure the accuracy of the CNN model (3.16), we employ the mean squared
error (MSE) as the loss function

S
(3.17) L100(0) = 5 3 (Bons(#) ~ T) (Wous(28) ~ 7).

s=1

where Z° is the true distribution (index function) corresponding to the sth inclusion
sample and 2§, is the input image (3D matrix) also corresponding to the sth inclusion
sample, namely, the Cauchy difference functions ¢~ = ¢(>«). Similarly, to overcome
the infeasibility of gradient descent algorithm when training data size is huge, we
apply SGD to find the minimization of the loss function (3.17):

(3.18) 0D — 00) — 4V G10m(©)

where « indicates the learning rate and j is the number of iteration. Gjos(0©) is defined
as

B19) Gonl®) = 57 X (Woun(h) = T Wow(2h) ~ T)).
r sES,.

where S, is a subset of {1,2,...,5} randomly chosen for each iteration.
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Implementation issues. Different from FNN-DDSM, the discretization points
of Q have to be chosen and fixed a priori. In order to perform convolution, they
have to be Cartesian grid points which are natural for rectangular domain. For a
domain with general shape, we only need to immerse it into a rectangle such that
the Cartesian grid can be generated on the whole rectangle. If Cauchy difference
functions ¢“ are computed by finite element methods on a general triangulation of €2,
then the values ¢“ at the mesh points cannot be directly used for CNN computation,
though they are already available. Instead we need to recompute their values at the
newly generated Cartesian grid points. Since CNN-DDSM is approximating the index
functional (3.12), the computation may not be pointwise parallelized. But many other
parallelization techniques for CNN [62, 44, 64] can be used to resolve this problem if
large number discretization points are needed.

4. Existence of the index function. In this section, we provide some the-
oretical justification on the existence of a functional Z from the Cauchy difference
functions ¢*, w = 1,2,..., to the inclusion distribution given that all the Cauchy
pairs {f,,g.} are known, i.e., the case of full data. Then this theoretical result can
serve as the mathematical foundation of the proposed neural networks. From the
theory, we can also observe some other nice properties of the index functions which
will be validated in the numerical experiments in the next section.

The main technique we shall use is the characterization approach developed in
[8, 9]. Let’s first introduce some notations and fundamental results. Define the spaces

(4.1) HEY?(00) = {v € H*'/2(09) : /SQ uds = o} .

Using (2.3) and (2.4) and imposing the normalization condition [,,uds = 0, we
immediately have that A, is defined from Ho_l/Q(GQ) to Hé/z (092). From the well
known results in [8, 24], we know A, : H51/2(8Q) — Hé/z(aﬂ) is compact, self-
adjoint, and positive, and so is Ay—_s, if 0 > 0¢. Therefore, by the spectral theorem,

there exists a countably infinite orthogonal basis {v,}o%, of H, 1 %(8Q) that form
the eigenvectors of A,_,,, namely,

(4.2) Ay — Apy) V0 = Ay,

where A\, > 0 are the corresponding eigenvalues with A, — 0 as w — oco. Now we can
show the following theorem.

THEOREM 4.1. Let {g,}°%, be a fized orthonormal basis of H~/2(082). Given
an arbitrary o such that o > og or o < og, let {gu, Aogw i, be the Cauchy data
pairs and let {¢¥}S2, be the corresponding Cauchy difference functions with v = 0.
Then the inclusion distribution o can be purely determined from {¢“}22 ;.

Proof. Let’s first assume the applied data g, are just the eigenfunctions v,,, and
denote ¢% as the corresponding Cauchy functions. Then, since o > 09, using Theorem
3.1 in [8] or Theorem A of [9], we have x € D if and only if the probing function
Ned € R((Ay — Agy)'/?), where R(-) denotes the range of an operator, that is, by the
Picard criterion [21], further equivalent to the convergence of following series:

(4.3) S(zi{vu}ily) = i W < o0,

w=1
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where (-, -)gq denotes the standard L? inner product on 9Q. Since A, > 0, using (4.2)
we have

1
(4.4) (Na,ds V) = — Ne,d(Ae — Aoy )00 ds.
a0

Aw
By the definition of the Cauchy difference functions in (2.6) with v = 0, the definition

of probing functions in (2.3) and (2.4), and using Green’s identity, we obtain from
(4.4) that

mavaton = [ malas= L [ 0 2,

Nz,dy Vw )02 = o o0 Ne,d on )\ o0 z,d on

(4.5) = 1( ¢>:;a“’””’dds+ / Wy g NP2 dx — / ¢3wa,ddx>
Ao \Joa on Q Q

1 w _ i w
——E/Qd-v&o(ﬁvdx— )\wd Voo (x).

Putting (4.5) into the series (4.3), we arrive at

o0

(46) Sl {6212, = Z Vel (VR@ S (62)(d- Ve (@)

3
1 HU“’HLQ(BQ)

where the coefficients can be computed, for example, as c,(¢,) = 55 = =15 ,
w v L2(8ﬂ)
and the direction d is an arbitrary fixed unit vector. Since {g,,}>2; also forms an or-
thonormal basis of H~/2(9) and A, _, is a compact self-adjoint operator, the eigen-
pairs of A,_,, can be completely determined from the full data set {gu,As g}

namely, there exist coefficients r{ depending on {g.,, Asgw }oq such that

o]
w=1>

(4.7) vo =Y rgn and  6F = rion
k=1 k=1

which are then put into (4.6) to obtain the expression of S(z;{¢*}22,) in terms of
{¢“}22,. We emphasize that since {g,}°2, are fixed applied data and independent
of o, then S(x,{¢,}>2;) can be understood as purely determined by the value of
{#“}22; and z for various o. 0

In the derivation above, one of the keys is Green’s identity in (4.5) extending the
boundary data from boundary to domain interior that relies on the Cauchy difference
function (2.6) introduced by the original DSM [16]. Note that we need to let v = 0
in order to apply Green’s identity which is another reason we choose different v from
[16]. Theorem 4.1 and its proof immediately yield an index function Z defined as

(4.8) Z(z) =1 if S(z;{¢“}or,) <oo; otherwise Z(x)=0.

Since {g,,}52; are fixed, for neural networks, one only needs to input ¢“, while g,
becomes some intrinsic structure of Z not needing to be explicitly specified in training
just as some other intrinsic properties like the domain geometry. Numerically and
practically, one may choose the Fourier modes defined on 0f2 as the fixed data func-
tions g, [8, 16] which are indeed the eigenfunctions of the radially symmetric o [53].
This is also our choice for numerical experiments in the next section.



B692 RUCHI GUO AND JIAHUA JIANG

By carefully inspecting the series in (4.6), it is not guaranteed that S(x) purely
depends on V¢*(x) and z, since the coefficients ¢, also rely on ¢* according to (4.7).
This may explain the reason why CNN-DDSM provides a better reconstruction with
only one pair of Cauchy data compared with the results of the FNN-DDSM and the
DSM in [16]. To our best knowledge, theoretically it still remains unknown whether
{V¢¥(x)}>2, is sufficient to determine the location of the point x, which is certainly
an important and interesting mathematical question. But we think the formula in
(4.6) still justifies the expectation that the information of {V¢®* (x)}22; may indicate
the location of x to a certain extent.

We believe Theorem 4.1 together with its proof provide some mathematical sup-
port to use the data functions from (2.6) as the input of the neural networks. It is
rather different from the deep learning approaches in the literature [1, 43, 59] that
generally put the data collected at the boundary into the neural network directly.
As another perspective to understand this procedure, the index function to be ap-
proximated is defined on specially constructed higher-dimensional manifolds instead
of just the original boundary data. In many applications, the structure of the data
manifolds are unknown. But in the proposed algorithm, the data manifolds can be, in
a certain sense, described by the elliptic equations corresponding to the background
conductivity. We think the delicate choice of input data manifold really helps the
neural networks better approximate the nonlinear structure of the index functions.
However, we also note that the approximation theory of neural networks for functions
defined on manifolds is so far less known compared with those on Euclidian spaces
[5, 50]. Recently, there are some results established in [49, 55, 56, 57] generally based
on some specially constructed networks with ReLU activations.

Furthermore, we notice that the index function relies on the series in (4.6) which
does not need any knowledge of conductivity values. So it is interesting to question
whether a suitable approximation of this index function may still have the same
nice feature. Our numerical experiments in the section 5.4 suggest that the index
function learned from the boundary data generated by some fixed conductivity value
is competent in reconstructing the inclusions with different conductivity values. It is
particularly useful in practical situations since the users don’t need to have a prior
knowledge of the media conductivity values.

5. Numerical expeiments. In this section, we present numerical experiments
to demonstrate that our newly proposed DDSMs are effective and robust for the
reconstruction of inhomogeneous inclusions in the EIT problem.

5.1. Problem setting and data generation. Let the modeling domain be
Q = (-1,1) x (—1,1) which contains two media with the different conductivity: 10
(inclusion) and 1 (background). The magnitude of conductivity may not be necessarily
known (precisely) in our algorithm; see the discussion of the results in Figure 18. Let
U(a,b) be uniform distribution in [a,b]. To verify the efficacy of DDSMs for general
inclusion distribution, we explore the following three typical scenarios:
Scenario 1: the inclusions are generated by three random circles with the radius
sampled from 2/(0.2,0.4).
Scenario 2: the inclusions are generated by five random circles with the radius
sampled from ¢/(0.2,0.3).
Scenario 3: the inclusions are generated by four random ellipses with the length of
the semiminor axis and semimajor axis sampled from ¢/(0.1,0.2) and ¢4(0.2,0.4),
respectively, and the rotation angle sampled from U(0, 27).
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It is reasonable to require that the inclusions do not touch the boundary [22], so we
assume the circles/ellipses have at least distance 0.1 to the boundary. More precisely,
they are uniformly sampled in the square (—0.9,0.9) x (—0.9,0.9). This sampling
strategy has been widely used in solving EIT with deep learning [1, 22, 43, 59]. How-
ever, as the major difference from this literature, to make the shape of the inclusions
more general and various, we do not require that these circles and ellipses are dis-
joint from each other, that is, they are free to touch each other. This mechanism
will generate much more complicated shapes than basic geometric components, which
makes the reconstruction more arduous. Let the circles or ellipses be represented by
ci(x1,22) =0,i=1,2,..., N, where ¢;(x1,z2) are the related level-set functions and
N, denotes the number of circles/ellipses in each configuration. Then the level-set
function of their union can be defined as

(5.1) c(xy,x9) = Z_fmin {ci(z1,22)}-

The homogenous background with the conductivity 1 fills the subdomain QN{(z1, z2) :
c(xz1,22) > 0}, and the inhomogeneous inclusions with the conductivity 10 fills the
subdomain Q N {(z1,22) : ¢(x1,z2) < 0}. For training set, Scenarios 1 and 2 both
have 11200 samples, and Scenario 3 has 14400 samples. For testing set, we use 2000
samples for all the three scenarios. For learning rate «, we set o = 0.0001 for FNN-
DDSM and a = 0.00025 for CNN-DDSM for all the cases. For the inserted current
data g, on the boundary, we follow the idea in [16], but here we use multiple terms,

(5.2) 9w () = cos(wh(x)), €N, w=1,2,...,N,

where 6(x) is the polar angle of z, and N is mainly chosen to be 1,10, or 20 to get
three different training sets for each scenario. Some other choices of small N will
also be discussed in the last paragraph in subsection 5.2. We have also tried larger
N, for example, N = 40, but no significant improvement is observed compared with
N = 20, and no overfitting phenomena happen either, so we herein focus on relatively
smaller N. In order to generate the synthetic data, i.e., u,|aq, we need to repeatedly
solve the modeling equations (1.1)—(1.2) with different distributions of discontinuous
conductivity coefficients. Here we employ the immersed finite element method [26, 28],
which does not require the mesh to resolve the conductivity discontinuity, to efficiently
solve all the equations on the same 200 x 200 Cartesian mesh. Standard finite element
methods can also be used on the mesh generated by (5.1). Then we collect all the
values of u, at the mesh points on boundary and use them to generate ¢“, w =
1,2,..., N, on mesh points by solving (2.6) for each inclusion sample, where for most
results (subsections 5.5-5.4) we choose v = 0; the nonzero v will be explored in
subsection 5.5. The algorithm can be also applied to the case of only very limited
boundary data points available; see the discussion of results in Figure 21. For the
prediction stage, since the number of discretization points is not large (A}, = 200?),
no parallelization strategies are applied in the DDSMs in this work.

According to the practical experience [43], only very limited number of real data
samples can be obtained in the experimental environments. [43] suggests training
the DNNs with simulation data rather than experimental data since the simulation
model is not subject to the objective factors. However, as far as we know there are
no general rules or empirical suggestions about whether or what types of noise should
be added into the training data. On one hand, as mentioned in [47], the noise used in
training must be similar to the physiological noise presented in human data varying
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across patients and hardware systems and usually unknown in practice. On the other
hand, the conventional DSM [16] is developed in such a manner that the noise on
the boundary is smoothed out in the duality product (2.2), and thus it can handle
relatively large noise in reconstruction. Therefore, due to the insufficient knowledge
about the noise and inspired by the robustness feature of the DSM, we here do not
include noise in the training set and instead add very large noise in the test set which
is similar to the strategy in [43]. This is intentionally to test the robustness of the
proposed DNNs with respect to noise if it is not presented in the training set. Then
we shall see below that our DNNs can actually handle very large noise in the test set
even without any denoising procedure. The noising Cauchy data in the test set are
generated by

(5.3) u’ = (146G, )u,, w=1,2,...,N,

for each inclusion sample, where G, are Gaussian random variables with zero mean
and unity variation, and 6 = 0,10%,20% controls the signal-to-noise ratio. These
noising data will be used to compute the noising image features ¢° used for both
FNN-DDSM and CNN-DDSM.

5.2. Basic numerical results. In this subsection, we present and discuss the
training and test results of both the FNN-DDSM and CNN-DDSM for all three sce-
nario mentioned above. We first show the evolution of loss function values versus
training iterations in Figures 3 and 4 in which the z-axis is in log-scale to capture
the very quick convergence at the beginning. For both DNNSs, the training errors of
the single Cauchy data pair are larger than those of 10 and 20 pairs, while the errors
of 20 pairs are almost comparable with those of 10 pairs. For FNN-DDSM, the error
of the single pair stagnates after the first thousand of iterations. The gap of CNN-
DDSM between the errors of the single pair and the errors of multiple pairs is clearly
much smaller than the one of FNN-DDSM. This also reflects that with a single pair of

07 0.7 /g 08
N\ —N=20 —N=20 —N=20
06\ —N=10. 06\ —N=10- 07E\ —N=10
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Fic. 3. Ewolution of cross entropy loss values versus training iterations of the FNN-DDSM
(from left to right) for Scenario 1 (3 circles), Scenario 2 (5 circles) and Scenario 3 (4 ellipses).
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F1G. 4. Evolution of MSE loss values versus training iterations of the CNN-DDSM (from left
to right) for Scenario 1 (3 circles), Scenario 2 (5 circles) and Scenario 3 (4 ellipses).
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Cauchy data, the CNN-DDSM performs better than the FNN-DDSM, which can be
noticed in the second column of Figures 7-12. Although a single pair of Cauchy data
is sufficient for CNN-DDSM to generate a satisfying reconstruction for some simple
shaped inclusions, multiple measurements are needed for more complicated cases and
more accurate reconstruction.

Figures 5 and 6 show the reconstruction at certain iterations during the training
progress in Scenario 1. It is very clear that both FNN-DDSM and CNN-DDSM will
reconstruct the inclusions starting from the boundary to the center, which matches the
nature of the EIT problem in that only boundary data are available, and in general the
closer to the boundary the easier the reconstruction. From the perspective of learning
manner, the inclusions near the boundary can dominate the behavior of the boundary
data which are relatively easier to be recognized and learned by DNNs during training,
while the center inclusions have very minor effect on the boundary data which are
more difficult to be recognized. Similar behavior can be also observed in prediction
performance which we will discuss later. Many conventional approaches for EIT such
as [38] have shown that inclusions near the center and far away from the boundary

Fic. 5. Some intermediate results in the training progress of the FNN-DDSM for Scenario 1
at iterations: 2000, 5000, 10000, 25000, 50000, 75000, and 100000 (ordered from left to right and
from top to bottom).

Fic. 6. Some intermediate results during the training progress of CNN-DDSM for Scenario 1
at iterations: 2000, 5000, 10000, 25000, 50000, 75000, and 100000 (ordered from left to right and
from top to bottom).
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are indeed very difficult to detect since the boundary data are very unsensitive to
their shape and location. But our DDSMs have some promising results for addressing
this issue, which will be discussed in section 5.3. For the time cost of the prediction
stage without applying any parallelization techniques, CNN-DDSM takes around 0.2
seconds for one prediction regardless of the number of Cauchy data pairs, while FNN-
DDSM takes 0.5 ~ 1 seconds per prediction depending on the number of Cauchy data
pairs. This may be due to the facts that CNN is more sparsely connected and less
computation is needed compared with FINN.

Now we present and discuss the reconstruction obtained by DDSMs for all three
scenarios. For each one, we choose three inclusion samples in the test set and show the
reconstruction in Figures 7-12. We plot the reconstruction generated by N = 1,10, 20
pairs of Cauchy data, and for N = 20 we include the noise § = 10% and 20% to test
the numerical stability. Based on these figures, we can clearly see that both FNN-
DDSM and CNN-DDSM with multiple but limited boundary Cauchy data can yield
quite accurate reconstruction for all these inclusions having different geometry and
topology. In particular, for some complicated geometry with concavity changes such
as Case 3 of Scenario 1(Figures 7-8), Cases 2 and 3 of Scenario 2 (Figures 9-10) and
Cases 2 and 3 of Scenario 3 (Figures 11-12), both CNN-DDSM and FNN-DDSM can
accurately capture the shape and the position of the inclusions. We highlight that our
DDSMs show great potential to handle the case that the inclusions are not star-shaped
such as Case 3 of Scenario 1 (Figures 7-8) and Cases 2 and 3 of Scenario 2 (Figures
9-10), which is very hard to achieve in general. Furthermore, we observe that the
DDSMs are highly reliable with respect to the noise (up to 20%) with 20 pairs. In
some cases, even the 20% noise has no obvious effect on the reconstruction. For other
more challenging cases such as Case 2 of Scenario 2 (Figures 9-10), the reconstruction
with the 20% noise can be still used as reasonable predictions of the true inclusions.
We emphasize that such a large noise can totally destroy the reconstruction for many
conventional approaches. So we believe the proposed DDSMs inherit and enhance the
robustness feature of the DSM [16], which is a considerable merit for solving the EIT
problem that is extremely ill-posed and sensitive to noise.

True
coefficients

N=1,0=0 N=10,6=0 N=20,6=0

F1G. 7. FNN-DDSM reconstruction for 3 cases in Scenario 1 (3 circles) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).
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True N=20,
coefficients ’

N=10,6=0 N=20,6=0 5= 10%

F1G. 8. CNN-DDSM reconstruction for 3 cases in Scenario 1 (3 circles) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).

Moreover, comparing the reconstruction from the FNN-DDSM and CNN-DDSM,
we notice that the CNN-DDSM is a bit better than the FNN-DDSM which can be
seen from the following two points. First, with the single Cauchy data pair, the
reconstructions of the FNN-DDSM are too rough and barely convey any information,
while the reconstructions of the CNN-DDSM are able to contain the main features
of the true coefficients. In particular, for the relatively simple case that the basic
circular and elliptic components are disjoint, the CNN-DDSM can yield much better
reconstruction such as Case 1 in each scenario. Second, the comparison between Cases
2 and 3 of Scenario 2 (Figures 9-10) and Case 3 of Scenario 3 (Figures 11-12) shows
that the CNN-DDSM can yield slightly better reconstruction at those portions near
the domain center away from the boundary. All these gains of the CNN-DDSM are
within our expectation since, as mentioned before, to predict the location of a point,
the CNN architecture incorporates the information of more neighbor points near this
point which may better reflect or approximate the format of the true high-dimensional
index function. However, we feel that the FNN-DDSM seems more stable with respect
to noise which can be seen from Case 3 of each scenario, since, we think, it only uses
the information at the single point to predict its location and thus involves relatively
less noise. Another attractive feature of the FNN-DDSM is that its output value has
clear probabilistic interpretation. So we can directly read from the plots to conclude
which portion is almost certainly inside (red) or outside (blue) the inclusion and which
portion can be hardly determined due to lack of information.

To end this subsection, we note that the FNN-DDSM does not perform very well
with just N = 1. So it would be interesting to study the minimum number N of
the Cauchy data pairs that can give reasonable reconstruction. For this purpose, we
further train the networks with N = 2,3,4 and plot the evolution loss values versus
training iterations on the left of Figure 13. Indeed the loss values are decreased a lot
by increasing N. Moreover, as we can observe from the three reconstruction images
on the right of Figure 13, the results certainly become more accurate as N increases,
and N = 4 almost yields the accurate reconstruction.
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F1G. 9. FNN-DDSM reconstruction for 3 cases in Scenario 2 (5 circles) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).
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F1G. 10. CNN-DDSM reconstruction for 3 cases in Scenario 2 (5 circles) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).

5.3. Sensitivity to data. The results in the previous subsection have shown
the effectiveness and robustness of the proposed DDSMs. In this subsection, we
investigate the sensitivity of the DDSMs with respect to the Cauchy data on the
boundary. We modify the true coefficients in Case 1 of Scenario 2 and Scenario 3
(first subplot in the first row in Figures 9-12) by artificially moving one of the circles
and ellipses to somewhere near the domain center away from the boundary and blocked
by the surrounding circles or ellipses to get the subplots in the first three columns of
Figures 16 and 17. For the purpose of comparison, we also consider another situation
in which this center circle/ellipse is completely removed as shown in the other columns
of Figures 16 and 17. We denote these two different coefficient distribution by o7 and
o3 and compute the corresponding Dirichlet data uf ,|aq and u3 ,|sq according to
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F1G. 11. FNN-DDSM reconstruction for 3 cases in Scenario 3 (4 ellipses) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).
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F1G. 12. CNN-DDSM reconstruction for 3 cases in Scenario 3 (4 ellipses) with different Cauchy
data number and noise level: Case 1 (top), Case 2 (middle), and Case 3 (bottom).
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Fic. 13. Ewolution of cross entropy loss values versus training iterations of the FNN-DDSM
N =1,2,3,4 (left) and the reconstruction results for N = 2,3,4 for Scenario 1.
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the Neumann data in (5.2). Let s = ¢ indicate the case of circles and s = e indicate
the case of ellipses. We plot uf |aq, u3 ,|oe and uf ,|oq — us ,|oq versus the polar
angle 6 € [0.27] in Figures 14 and 15. We observe that with the same Neumann data
gw, the two Dirichlet data uf ,|aq, u3 ,|oa are very close with each other, although
their coefficient distributions of, 03 are very different. We can see that the relative
difference between ui ,|so and u3 ,[sq,

(5.4)
[ufw—u30llL2

l[ui

uj o, — U 2
(o) <6% forw=1,2,...,5 and It Sullrzn) < 2%

S for w>5,
|L2(BQ) Hul,w”LQ(BQ)

is in the same magnitude of regular noise level. It means that the small inclusions
near the domain center have very subtle effect on the boundary Cauchy data, which
makes them easily hidden in the domain and very difficult to detect. In fact, such
differences are small enough to be considered as just noise in the data for many
conventional approaches. Fortunately, Figure 16 shows that both the FNN-DDSM
and CNN-DDSM are able to sense such small changes in the data and reflect it in
a correct manner in the prediction. In Figure 17, the CNN-DDSM still captures
the center inclusion quite well, but FNN-DDSM barely gives this information. These
phenomena agree with our observation from the previous results that the CNN-DDSM
is more sensitive to the center inclusions. Although the reconstruction of the center
inclusions is not as accurate as the surrounding inclusions near the boundary, we think
it is still satisfactory to a certain extent given that the difference between the Cauchy
data of the two different coefficient distributions is very small. Furthermore, we note
that this kind of sensitivity to data is also stable with respect to the noise, namely,
we can observe the reconstructed center inclusions even with 20% noise for circles and

FIG. 14. Plots of u§ loq, us ,laa and u$  |oo — us ,loq versus the polar angle 0 (of points
on the boundary).

F1G. 15. Plots of u$ |oq, us ,laa and u§  |oo — us§ ,loq versus the polar angle 0 (of points
on the boundary).
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Fic. 16. FNN-DDSM (the top three rows) and CNN-DDSM (the bottom three rows) recon-
struction for random circles: one circle is located closed to the center of domain and blocked from
the boundary by other 4 circles (left), and this central circle is removed (right).

10% noise for ellipses. More interestingly, it seems sometimes that the noise actually
enhances the reconstruction of the center inclusions instead of undermining it. For
example, in Figure 16 for FNN, the center inclusion reconstructed with 10% or 20%
noise is certainly more clear than with no noise.

Due to the severe instability of the EIT problem, a small perturbation of the data
may yield a completely wrong reconstruction. In our opinion, a good algorithm should
be, on one hand, sensitive to the true (correct) data perturbation, i.e., recognize the
inclusion information hidden in the Cauchy data as much as possible, and, on the other
hand, insensitive to the noise interruption, i.e., the reconstruction is not affected too
much by noise. According to the numerical experiments, we believe the proposed
DDSMs have this kind of feature.
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FiG. 17. FNN-DDSM (the top three rows) and CNN-DDSM (the bottom three rows) recon-
struction for random ellipses: one ellipse is located closed to the center of domain and blocked from
the boundary by other 3 ellipses (left), and this center ellipse is removed (right).

5.4. Application to more general cases. In this section, we apply the neural
networks trained above to some more general situations. First of all, we consider the
case that the values of 0 may not be known or may be known inaccurately in advance.
As discussed in section 4, the index functions defined from the data manifold {x, ¢}
to the inclusion distribution should be independent of the values o. Note that this is
also true for the original DSM [16]. We highlight that the index function learned from
vast data actually inherits this nice property. To show this, we focus on the second
case in the scenario with 5 circles shown in Figures 9 and 10 and apply the networks to
the case that g = 1 but 0 = 2,5,20 in the left inclusion denoted by o; and o = 100
in the right inclusion denoted by of'. Note that it is different from o = 10 inside
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FiG. 18. FNN-DDSM (the left three columns) and CNN-DDSM (the right three columns)
reconstruction for the second case in the first scenario: oo = 1, o = 50 in the left inclusion and
o = 100 in the right inclusion.

all the inclusions set to generate data for training. Here we set afr = 2 very close
to the background conductivity oo = 1 such that the boundary data may be very
insensitive to the inclusion shapes, and we intentionally want to test our algorithm
for this extreme case. The reconstructed distributions are presented in Figure 18,
and the result for the circular inclusion with o) = 100 is always good. As for the
inclusion on the right with o; = 5,20, the results are also quite satisfactory and
comparable with those in Figures 9 and 10. For the extreme case that o; = 2, the
algorithm still gives the reasonable reconstruction. We believe the results validate
our expectation that the index function is independent of conductivity values to a
certain extent. We emphasize it can be a very useful property in practice, since the
reconstruction of the inclusion shape does not rely on the correct knowledge of media
property. We observe that DDSMs are capable to make a very rough guess about
the conductivity value and still obtain quite accurate reconstruction of the inclusion
shape. If more accurate reconstruction of the conductivity values is requested, based
on the reconstructed inclusion shapes, one may only need to apply an optimization
algorithm [18] with fixed shape and several unknowns for the conductivity.

We remark that the inclusion shapes are never known exactly in practice and
the a priori knowledge of the shapes may not be always correct. It is important for
a DNN-based algorithm to have stable performance on a large variety of inclusion
shapes no matter whether they are within the training set-up (library). Therefore, in
the second group of experiments, we study the performance of the DDSMs on some
typical inclusion shapes which are out of the scope of the training sample library. It
is more challenging than predicting the inclusions just in the test set since it requires
that the DNNs truly learn and fit the nonlinear mapping from the Cauchy data to the
coefficient distribution instead of just a certain projection of the mapping on some
low-dimensional data manifold.

For this purpose, we focus on the FNN-DDSM and CNN-DDSM trained by the
data of 4 ellipses and show the reconstruction on some typical inclusion shapes: a
triangle, two rectangular bars, and a rectangular annulus in Figures 19 and 20, where
the shape features are far away from the features of the training data in which each
inclusion is a union of ellipses. Some similar ones were also used in [16, 15] for the
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F1G. 19. FNN-DDSM reconstruction for 3 special inclusion shapes: one triangle (top), two long
rectangular bars (middle), and a rectangular annulus (top).
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FiGc. 20. CNN-DDSM reconstruction for 3 special inclusion shapes: one triangle (top), two
long rectangular bars (middle), and a rectangular annulus (top).

conventional DSM. For the triangle shown in the first row in Figures 19 and 20, we
can clearly see that the CNN-DDSM reconstructs the triangular shape, while the
FNN-DDSM is only able to capture the three angles even with zero noise and 20 pairs
of Cauchy data. It might be due to the facts that FNN-DDSM only includes the
information of z and {V¢*}Y_; and this information is not enough to capture the
structure of the true index function. The reconstructions by CNN-DDSM with zero
noise are all quite satisfactory. Even with 10% noise the reconstruction still provides
some rough information about the triangular shape. The case of two rectangular bars
is provided in the second row in Figures 19 and 20. For the CNN-DDSM, except
the reconstruction by only a single Cauchy data pair, all the other reconstructions
recover the shape and position very well. The FNN-DDSN with 10 pairs of Cauchy
data and no noise also results in a good performance, but the reconstructions with
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other settings are relatively worse. As mentioned in [16], the most challenging case is
the rectangular annulus since there is a hole in the inclusion which is hardly detected
by the boundary data shown in the last row in Figures 19 and 20. For the CNN-
DDSM, the reconstruction becomes much more accurate as the number of Cauchy
data pairs increases. Even with 20% noise, we can still obtain an annulus at the right
location although its shape deteriorates. Contrary to the CNN-DDSM, the FNN-
DDSM captures the feature of the annulus accurately with a single Cauchy data pair
but loses two edges in other settings.

To summarize our findings for predicting inclusions different from the training
samples, the CNN-DDSM performs quite satisfactorily and much better than the
FNN-DDSM, which might be due to the more general structure of its index function.
We believe that the behavior of DDSMs can be improved if inclusions with more kinds
of shapes such as the triangles and rectangles are added to the training set (users’
library) for training. Another interesting observation is that the reconstruction is not
symmetric even if the inclusion is symmetric, which is related to the nonlinearity and
nonsmoothness of the optimization problem in the neural network.

Finally, we notice that in the previous experiments, the boundary data points we
employed are all the mesh points on boundary, i.e., the total 800 data points for a
200 x 200 mesh. Note that this is not a practical assumption since there may be rather
limited electrodes placed on the boundary to emit and receive data. So in this group
of experiments, we consider the case that only a few data points are available on the
boundary. Here, instead of retraining the networks by the reduced boundary data, we
still use the networks trained above by the data available at every mesh point, which
is very beneficial in practice. The main reason is that the electrodes may be placed at
different locations around the boundary at different situations that yield various data
point locations. In such cases, we interpolate the data collected at the electrodes to
generate boundary data functions which can be used to further generate the Cauchy
difference functions ¢. According to our extensive numerical experiments, as long as
the number of electrodes is sufficient to capture the wave shapes of Fourier modes
on the boundary, the obtained reconstruction can be comparable to those obtained
by full data at mesh points. To illustrate the behavior, we herein also focus on the
second case in the scenario of 5 circles of Figures 9 and 10 and consider the following
two situations: 20 data points with N = 10 and 8 data points with NV = 1 which are
all equally placed around the boundary, as shown in the first row of Figure 21. As we
can observe from the figures, even if the boundary data are limited, the reconstructed
inclusion distribution is still satisfactory to a certain extent and almost comparable
to those in Figures 9 and 10.

5.5. The choice of ~. In this subsection, we discuss the choice of v in (2.6) to
generate the Cauchy difference functions ¢. Note that for the original DSM [16], the
empirical choice is v = 2 which is used together with the norm |- [y = | - |gs/2(a0)
for probing functions in (2.7). For all the numerical experiments presented above, we
choose v = 0, and based on our experience there are two main reasons for this choice:
(i) Since there are only (potentially few) discrete data points on the boundary, com-
puting the graph Laplacian operator (—Apq)? will be costly and, more importantly,
hard to achieve a good accuracy. (ii) Computing (—Apq)?, v > 0, with only discrete
data points will make the data functions ¢ and the reconstructed results more sensi-
tive to noise. Both the accuracy and noise issues will become very severe for the case
that only a few data points are available on the boundary, for example, those in Fig-
ure 21. However, as discussed in [16], using certain positive v can indeed significantly
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FiG. 21. FNN-DDSM (the top three rows) and CNN-DDSM (the bottom three rows) recon-
struction for random ellipses: one ellipse is located closed to the center of domain and blocked from
the boundary by other 3 ellipses (left), and this center ellipse is removed (right).
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Fic. 22. Left: evolution of cross entropy loss values versus training iterations of the FNN-
DDSM with v =0,1,2 and N = 1. Right three: the reconstruction results for Case 1 in Scenario 2
(no noise).

Fic. 23. Left: evolution of cross entropy loss values versus training iterations of the FNN-
DDSM with v =0,1,2 and N = 2. Right three: the reconstruction results for Case 1 in Scenario 2
(no noise).

enhance the sensitivity of inclusion distribution to the boundary data. To see this,
we apply v = 1,2 to generate ¢ which are then used to train the networks.

First of all, notice that the performance of FNN with v = 0 and small numbers
of N is not very satisfactory as shown by Figure 13. But using a little higher v can
significantly improve the performance as shown by Figures 22 and 23 where the values
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F1G. 24. CNN-DDSM reconstruction for the case that one ellipse is located closed to the center
of domain and blocked from the boundary by other 3 ellipses: v =1 (the left 3 columns) and v = 2
(the right 3 columns).
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F1G. 25. CONN-DDSM reconstruction for 2 special inclusion shapes: one triangle (the left 3
columns) and one annulus (the right 3 columns) with v =1 (top) and v = 2 (bottom).

of loss functions are decreased a lot and much better reconstructions are obtained. We
also note that this improvement will deteriorate as IV and ~y increase. In addition, for
~v = 2 there is a clear checkerboard phenomenon around the inclusion boundary which,
we expect, may be due to the inaccuracy of (—Agq)” for higher v. Comparing the
results in Figure 22 and those in [16] we highlight that FNN-DDSM provides quite
comparable reconstructions with the original DSM for the case of a single Cauchy
data pair and nonzero . So it is interesting to note that, in this case, the index
functions derived by mathematical intuition in the original DSM and obtained by the
FNN-DDSM might be close to each other.

Second, the center inclusions in the examples of Figures 16 and 17 cannot be
reconstructed very accurately since the boundary data are extremely unsensitive to
the center inclusions as shown in Figures 14 and 15. Still, using larger v can enhance
this kind of sensitivity and thus improve the reconstruction. To avoid redundancy, we
only show the results of CNN for ellipses in Figure 24. We can clearly observe that the
reconstruction of the center inclusions is much more accurate. In this example, we also
show the results with noise at the same time, and we note that they are indeed much
more sensitive to the noise which is the price paid for more accurate reconstruction.
In particular, for v = 2, even 1% noise can totally destroy the reconstruction.

At last, we show larger « can also yield better reconstruction for the out-of-scope
inclusions such as those in Figures 19 and 20. Again, to avoid redundancy, we only
show the results of CNN for the triangle and the rectangular annulus in Figure 25
which are indeed much better than those in Figure 20. Especially for the rectangular
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annulus, the reconstruction is quite accurate. However, the tradeoff is still the high
sensitivity to the noise for which we omit the numerical results. In addition, we also
notice that the reconstruction with v = 2 may not be always more accurate than the
one with v = 1, for example, the rectangular annulus with N = 1. We think it may
be due to the fact that computing (—/Agq)? is less accurate than —Apg with finite
difference techniques.

6. Concluding remarks. In this work, based on the DSM invented in [16] we
propose two approaches to construct DNNs for solving EIT problems and the DNN-
based DSM, called DDSMs. Our basic idea is to use a large amount of inclusion
samples together with boundary measurements to learn the index function in the
DSM of which the construction is unknown by classical mathematical derivation for
multiple Cauchy data pairs and general-shaped domain. The first DNN we have
proposed is an FNN directly approximating the index function pointwise by taking
the spatial variable z and the gradient of Cauchy difference functions V¢*(x) as the
input, which is called FNN-DDSM. A remarkable feature is that its output has a
very clear probabilistic meaning, i.e., the chance of x inside or outside the inclusions,
and we hope it can motivate research on the relationship between probability and
the DSM. The second one is a CNN approximating a so-called index functional from
a stack of Cauchy difference functions to the inclusion distribution, which is called
CNN-DDSM. It is worth mentioning that the CNN-DDSM is a further generalization
of the conventional DSM [16] since it relaxes the assumption that the location of each
point x only lies on the data at this point. Additionally, it has a strong connection
to the image segmentation problems. The proposed two DDSMs inherit the features
of both classical optimization-type methods (accuracy) and the DSM [16] (efficiency)
based on their offline-online decomposition structure, that is, the costly optimization
procedure only needs to be done once and in offline phase, and the prediction is done
by fast direct evaluation and in online phase. Another difference between the DDSMs
and the DSM is that the index function (functional) in DDSMs is implicit and optimal
in a certain sense with fixed design of neural network and given data set, while the
index function in the DSM is an explicit theoretically developed function.

We have also carried out extensive numerical experiments to show that the pro-
posed DDSMs are effective, accurate, and robust even for very complicated geometry.
In particular, the DDSMs are highly stable with respect to large noise which, we
believe, is due to the noise smoothing procedure in the generation of the Cauchy dif-
ference functions (2.7). Comparing these two methods on the testing set within the
scope of geometry set-up of the training set, we conclude that the predictions of these
two DDSMs are almost comparable. But the CNN-DDSM is slightly more sensitive
to the center inclusion than FNN-DDSM, while the FNN-DDSM seems more stable
with respect to noise. When applying them to the inclusions in which the geometry
is out of the scope of the training set, the performance of the CNN-DDSM is much
better than the FNN-DDSM, which may be due to the fact that the CNN-DDSM uses
more neighborhood information to predict the location of each point. The observa-
tions from the numerical experiments suggest that our DDSMs have great potential
to improve if more types of inclusions are included in the training set and that the
index function (functional) in DDSMs is a better approximation of the ideal index
function in (2.1), especially the index functional in CNN-DDSM, compared with the
DSM.

Acknowledgments. The authors would like to express their sincere gratitude
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(1]
(2]

(3]

(4]
[5]
[6]

7]

(8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]
[16]
(17]

(18]

(19]
20]
(21]
(22]
23]

[24]

(25]

[26]

DEEP DIRECT SAMPLING METHODS FOR EIT B709

REFERENCES

A. ADLER AND R. GUARDO, A mneural network image reconstruction technique for electrical
impedance tomography, IEEE Trans. Med. Imaging, 13 (1994), pp. 594-600.

H. AMMARI AND H. KANG, Reconstruction of small inhomogeneities from boundary measure-
ments, Springer, Cham, 2004.

H. AMMARI AND H. KANG, Polarization and Moment Tensors: With Applications to Inverse
Problems and Effective Medium Theory, Springer Science & Business Media, New York,
2007.

K. AsTALA AND L. PAIVARINTA, Calderén’s inverse conductivity problem in the plane, Ann. of
Math., 163 (2006), pp. 265-299.

A. R. BARRON, Universal approximation bounds for superpositions of a sigmoidal function,
IEEE Trans. Inform. Theory, 39 (1993), pp. 930-945, https://doi.org/10.1109/18.256500.

M. BONNET, Higher-order topological sensitivity for 2-D potential problems. Application to fast
identification of inclusions, Int J Solids Structures, 46 (2009), pp. 2275-2292.

B. H. BrRown, J. A. Tipy, K. BosToN, A. D. BLACKETT, R. H. SMALLWOOD, AND F. SHARP,
Relation between tissue structure and imposed electrical current flow in cervical neoplasia,
Lancet, 355 (2000), pp. 892-895.

M. BRUHL, Explicit characterization of inclusions in electrical impedance tomography, SIAM
J. Math. Anal., 32 (2001), pp. 1327-1341, https://doi.org/10.1137/S003614100036656X.

M. BRUHL AND M. HANKE, Numerical implementation of two noniterative methods for locating
inclusions by impedance tomography, Inverse Problems, 16 (2000), pp. 1029-1042, https:
//doi.org/10.1088,/0266-5611/16,/4/310.

A. CALDERON, On an inverse boundary value problem, Seminar on Numerical Analysis and Its
Applications to Continuum Physics, Sociedade Rio de Brasileira de Mathematica, Janiero,
1980.

D. Cep1o-FENGYA, S. MoskKow, AND M. VOGELIUS, Identification of conductivity imperfections
of small diameter by boundary measurements. Continuous dependence and computational
reconstruction, Inverse Problems, 14 (1998), p. 553.

T. F. CHAN AND X.-C. Tal, Level set and total variation regularization for elliptic inverse
problems with discontinuous coefficients, J. Comput. Phys., 193 (2004), pp. 40-66.

L.-C. CHEN, G. PAPANDREOU, I. KOKKINOS, K. MURPHY, AND A. L. YUILLE, DeepLab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and fully
connected crfs, IEEE Trans. Pattern Anal. Mach. Intell., 40 (2017), pp. 834-848.

Y. T. CHow, F. HAN, AND J. Zou, A Direct Sampling Method for Simultaneously Recovering
Inhomogeneous Inclusions of Different Nature, preprint, arXiv:2005.05499 [math. NA],
2020.

Y. T. CHow, K. ITo, K. Liu, AND J. Zou, Direct sampling method for diffusive optical tomog-
raphy, STAM J. Sci. Comput., 37 (2015), pp. A1658-A1684.

Y. T. CHow, K. ITo, AND J. Zou, A direct sampling method for electrical impedance tomog-
raphy, Inverse Problems, 30 (2014), 095003.

Y. T. CHow, K. ITO, AND J. ZOoU, A time-dependent direct sampling method for recovering
moving potentials in a heat equation, SIAM J. Sci. Comput., 40 (2018), pp. A2720-A2748.

E. T. CHUNG, T. F. CHAN, AND X.-C. Tal, Electrical impedance tomography using level set
representation and total variational regularization, J. Comput. Phys., 205 (2005), pp. 357
372.

D. P. KINGMA AND J. BA, Adam: A Method for Stochastic Optimization, arXiv preprint,
arXiv:1412.6980 [cs. LG], 2014.

A. EL BapiA AND T. HA-DUONG, An inverse source problem in potential analysis, Inverse
Problems, 16 (2000), p. 651.

H. W. EncL, M. HANKE, AND A. NEUBAUER, Regularization of Inverse Problems, Springer,
Cham, 1996.

Y. FAN AND L. YING, Solving electrical impedance tomography with deep learning, J. Comput.
Phys., 404 (2020), 109119.

1. FrRERICHS, G. HAHN, T. SCHRODER, AND G. HEILIGE, Flectrical impedance tomography in
monitoring experimental lung injury, Intensive Care med., 24 (1998), pp. 829-836.

D. G. GISSER, D. IsAACSON, AND J. C. NEWELL, Electric current computed tomography and
eigenvalues, STAM J. Appl. Math., 50 (1990), pp. 1623-1634, https://doi.org/10.1137/
0150096.

D. GRIFFITHS, Introduction to Electrodynamics, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ,
hall, 2007.

R. Guo AND T. LIN, A group of immersed finite element spaces for elliptic interface problems,
IMA J. Numer. Anal., 39 (2017), pp. 482-511.


https://doi.org/10.1109/18.256500
https://doi.org/10.1137/S003614100036656X
https://doi.org/10.1088/0266-5611/16/4/310
https://doi.org/10.1088/0266-5611/16/4/310
https://arxiv.org/abs/2005.05499
https://arxiv.org/abs/1412.6980
https://doi.org/10.1137/0150096
https://doi.org/10.1137/0150096

B710

27]

[28] R

[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]

(37)

(38]
39]
(40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
(50]

(51]

~ A ~ <

B.

RUCHI GUO AND JIAHUA JIANG

. Guo, T. LN, AND Y. LIN, A fized mesh method with immersed finite elements for solving
interface inverse problems, J. Sci. Comput., 79 (2018), pp. 148-175.

. Guo, T. LIN, AND Q. ZHUANG, Improved error estimation for the partially penalized im-
mersed finite element methods for elliptic interface problems, Int. J. Numer. Anal. Model.,
16 (2018), pp. 575-589.

. J. HAMILTON AND A. HAUPTMANN, Deep D-bar: Real-time electrical impedance tomography

imaging with deep neural networks, IEEE Trans. Med. Imaging, 37 (2018), pp. 2367-2377.
. S. HOLDER, Electrical Impedance Tomography: Methods, History and Applications, CRC
Press, Boca Raton, FL, 2004.

. Hong, H. NoH, AND B. HAN, Decoupled deep neural network for semi-supervised semantic

segmentation, in Advances in Neural Information Processing Systems, 2015, pp. 1495-1503.

. IorrE AND C. SzZEGEDY, Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift, arXiv preprint, arXiv:1502.03167 [cs LG], 2015.

. IsaAkOV AND J. POWELL, On the inverse conductivity problem with one measurement, Inverse
Problems, 6 (1990), p. 311.

. Ito, B. JIN, AND J. Zou, A direct sampling method to an inverse medium scattering problem,
Inverse Problems, 28 (2012), 025003.

. Ito, B. JIN, AND J. Zou, A direct sampling method for inverse electromagnetic medium
scattering, Inverse Problems, 29 (2013), 095018.

. Ito, K. KUNISCH, AND Z. L1, Level-set function approach to an inverse interface problem,
Inverse Problems, 17 (2001), p. 1225.

. JIN, T. KHAN, AND P. MAAsS, A reconstruction algorithm for electrical impedance tomog-
raphy based on sparsity regularization, Internat. J. Numer. Methods Engrg., 89 (2012),
pp. 337-353.

JIN, Y. XU, AND J. Zou, A convergent adaptive finite element method for electrical imped-
ance tomography, IMA J. Numer. Anal., 37 (2017), pp. 1520-1550.

. JORDANA, M. GASULLA, AND R. PALLAS-ARENY, Electrical resistance tomography to detect

leaks from buried pipes, Measurement Sci. Tech., 12 (2001), p. 1061.
. KirscH AND N. GRINBERG, The Factorization Method for Inverse Problems, Oxford Uni-
versity Press, Oxford, UK, 2008.
Kr.osowskl AND T. RYMARCZYK, Using neural networks and deep learning algorithms
in electrical impedance tomography, Informatyka, Automatyka, Pomiary w Gospodarce
i Ochronie Srodowiska, 7 (2017) pp. 99-102.

. LAMPINEN, A. VEHTARI, AND K. LEINONEN, Using Bayesian neural network to solve the

inverse problem in electrical impedance tomography, in Proceedings of 11th Scandinavian
Conference on Image Analysis SCIA’99, 1999.

. L1, Y. ZHou, J. WANG, Q. WANG, Y. Lu, X. DUAN, Y. SUN, J. ZHANG, AND Z. L1u, A nowvel
deep neural network method for electrical impedance tomography, Trans. Inst. Measurement
Control, 41 (2019), pp. 4035-4049, https://doi.org/10.1177/0142331219845037.

. LIDY AND A. SCHINDLER, Parallel convolutional neural networks for music genre and mood
classification, in Proceedings of MIREX2016, 2016.

. MARTIN AND C. T. CHOI, Electrical impedance tomography: A reconstruction method based

on neural networks and particle swarm optimization, in 1st Global Conference on Biomed-
ical Engineering & 9th Asian-Pacific Conference on Medical and Biological Engineering,
Springer, Cham, 2015, pp. 177-179.

. MARTIN AND C. T. CHoOI, Nonlinear electrical impedance tomography reconstruction using

artificial neural networks and particle swarm optimization, IEEE Trans. Magn., 52 (2015),
pp. 1-4.

. MARTIN AND C. T. M. CHOI, A nowvel post-processing scheme for two-dimensional electrical

impedance tomography based on artificial neural networks, PLOS One, 12 (2017), pp. 1-27,
https://doi.org/10.1371/journal.pone.0188993.

. MARTIN AND J. IDIER, A FEM-based nonlinear map estimator in electrical impedance tomog-
raphy, in Proceedings of the International Conference on Image Processing, IEEE, 1997,
pp. 684-687.

. MHASKAR, A direct approach for function approximation on data defined manifolds, Neural
Networks, 132 (2020), pp. 253-268.

H. N. MHASKAR, Neural networks for optimal approximation of smooth and analytic functions,

Neural Comput., 8 (1996), pp. 164-177, https://doi.org/10.1162/neco.1996.8.1.164.

M. MICHALIKOVA, R. ABED, M. PRAUZEK, AND J. KOZIOREK, Image reconstruction in electrical

impedance tomography using neural network, in Proceedings of the 2014 Cairo International
Biomedical Engineering Conference (CIBEC), IEEE, 2014, pp. 39-42.


https://arxiv.org/abs/1502.03167
https://doi.org/10.1177/0142331219845037
https://doi.org/10.1371/journal.pone.0188993
https://doi.org/10.1162/neco.1996.8.1.164

[52]

(53]

[54]
1551
156]
[57]

(58]

[59]

[60]

[61]

(62]

[63]

[64]

(65]

[66]

DEEP DIRECT SAMPLING METHODS FOR EIT B711

A. MILLER, B. BLOTT, AND T. HAMES, Neural networks for electrical impedance tomography
tmage characterisation, Clinical Phys. Physiol. Measurement, 13 (1992), p. 119.

M. K. Pibcock, M. KuzuoGLu, AND K. LEBLEBICIOGLU, Analytic and semi-analytic solutions
in electrical impedance tomography. i. Two-dimensional problems, Physiol. Measurement,
16 (1995), pp. 77-90, https://doi.org/10.1088/0967-3334,/16/2,/001.

L. RONDI AND F. SANTOSA, Enhanced electrical impedance tomography via the Mumford—Shah
functional, ESAIM Control Optim. Calc. Var., 6 (2001), pp. 517-538.

L. K. SAuL AND S. T. RowEls, Think globally, fit locally: Unsupervised learning of low dimen-
sional manifolds, J. Mach. Learn. Res., 4 (2003), pp. 119-155.

J. SCcHMIDT-HIEBER, Deep ReLY Network Approzimation of Functions on a Manifold, preprint,
arXiv:1908.00695 [stat. ML], 2020.

U. SHAHAM, A. CLONINGER, AND R. R. COIFMAN, Provable approxzimation properties for deep
neural networks, Appl. Comput. Harmon. Anal., 44 (2018), pp. 537-557.

J. W. SIEGEL AND J. XU, Approzimation rates for meural networks with general activation
functions, Neural Networks, 128 (2020), pp. 313-321, https://doi.org/https://doi.org/10.
1016/j.neunet.2020.05.019.

C. TAN, S. Lv, F. DoNG, AND M. TAKEIL, Image reconstruction based on convolutional neural
network for electrical resistance tomography, IEEE Sensors J., 19 (2018), pp. 196-204.

P. J. VAUHKONEN, M. VAUHKONEN, T. SAVOLAINEN, AND J. P. KA1P10, Three-dimensional elec-
trical itmpedance tomography based on the complete electrode model, IEEE. Trans. Biomed.
Eng., 46 (1999), pp. 1150-1160.

J. A. VicTtoriNo, J. B. Borces, V. N. Oxkamoto, G. F. J. Maros, M. R. Tucar,
M. P. R. CaraMEzZ, H. TANAKA, F. S. SipmMaANN, D. C. B. SANTOS, C. S. V. BAsBASs,
C. R. R. CarvaLHO, AND M. B. P. AMmATO, Imbalances in regional lung ventilation: A
validation study on electrical impedance tomography, Am. J. Respir. Crit. Care Med., 169
(2004), pp. 791-800.

J. WaNaG, Y. YaNG, J. Mao, Z. Huang, C. HUuANG, AND W. Xu, CNN-RNN: A unified
framework for multi-label image classification, in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 2285-2294.

P. WanG, H.-L. Li, L.-L. XIE, AND Y.-C. SUN, The implementation of FEM and RBF neural
network in EIT, in Proceedings of the 2009 Second International Conference on Intelligent
Networks and Intelligent Systems, IEEE, 2009, pp. 66—69.

H. Yao, X. ZHANG, X. ZHOU, AND S. Liu, Parallel structure deep neural network using CNN
and RNN with an attention mechanism for breast cancer histology image classification,
Cancers, 11 (2019), p. 1901.

M. S. ZHDANOV AND G. V. KELLER, The geoelectrical methods in geophysical exploration,
Methods Geochem. Geophys., 31 (1994), pp. I-IX.

Y. Zou AND Z. Guo, A review of electrical impedance techniques for breast cancer detection,
Med. engrg. phys., 25 (2003), pp. 79-90.


https://doi.org/10.1088/0967-3334/16/2/001
https://arxiv.org/abs/1908.00695
https://doi.org/https://doi.org/10.1016/j.neunet.2020.05.019
https://doi.org/https://doi.org/10.1016/j.neunet.2020.05.019

	Introduction
	Review of DSMs
	DDSMs
	FNN-DDSM
	CNN-DDSM

	Existence of the index function
	Numerical expeiments
	Problem setting and data generation
	Basic numerical results
	Sensitivity to data
	Application to more general cases
	The choice of 

	Concluding remarks
	References

