
Techniques for Managing Polyhedral Dataflow
Graphs

No Author Given

No Institute Given

Abstract. Scientific applications, especially legacy applications, contain
a wealth of scientific knowledge. As hardware changes, applications need
to be ported to new architectures and extended to include scientific ad-
vances. As a result, it is common to encounter problems like performance
bottlenecks and dead code. A visual representation of the dataflow can
help performance experts identify and debug such problems. The Com-
putation API of the sparse polyhedral framework (SPF) provides a single
entry point for tools to generate and manipulate polyhedral data flow
graphs, and transform applications. However, when viewing graphs gen-
erated for scientific applications there are several barriers. The graphs
are large, and manipulating their layout to respect execution order is
difficult. This paper presents a case study that uses the Computation
API to represent a scientific application, GeoAc, in the SPF. Generated
polyhedral data flow graphs were explored for optimization opportuni-
ties and limitations were addressed using several graph simplifications to
improve their usability.

Keywords: Sparse Polyhedral Framework · Computation API · Poly-
hedral Dataflow Graph.

1 Introduction

Scientific applications, especially legacy applications, contain a wealth of scien-
tific knowledge. However, older codes need to be ported to new architectures
and new generations of computational scientists need to extend them to keep
making scientific progress. As applications age and are passed from programmer
to programmer, problems creep in: logic and memory bugs, performance bottle-
necks, and dead code are just a few of the possibilities. A visual representation
of the code will speed up the learning process for new programmers and can
help identify existing issues with the code. Additionally, the right abstraction
will allow performance optimizations to be performed by manipulating the visual
representation rather than rewriting code manually.

Polyhedral dataflow graphs [6] highlight the dataflow, data access patterns,
and execution schedule for applications visually. Originally developed to identify
temporary storage reduction opportunities [12], they have proven to be useful
for learning code bases and identifying opportunities for parallelism. Previous
efforts used manual drawings of the graphs and then automated graph gener-
ation, running only on very small examples. Applying these techniques to real

2 No Author Given

scientific applications remains a significant challenge. This paper uses a scientific
application, GeoAc, to explore the limitations of polyhedral dataflow graphs and
proposes several techniques to ensure correctness and improve their usability.

Fig. 1: Optimization Pipeline Overview [13].

Polyhedral Dataflow graphs are part of the Sparse Polyhedral Framework
(SPF) and are generated automatically from the SPF intermediate representa-
tion (IR) [13]. They are referred to as polyhedral because statements are repre-
sented as a combination of statements and iteration spaces that are expressed
using the polyhedral model. The polyhedral model is a mathematical representa-
tion of the source code. Transformations to the execution schedule can be applied
using relations. The relations are applied to the iteration spaces, expressed as
sets. The resulting code may have a different execution order or different control
flow. Importantly, the transformations can be composed. This means that an
arbitrarily long series of transformations can be applied to the same code base.

Figure 1 shows the anticipated workflow for human-in-the-loop optimization
using polyhedral dataflow graphs (shown as PDFG in figure 1). Once an applica-
tion is converted to the SPF intermediate representation, a performance expert
examines the resulting graphs, indicates a series of transformations as graph op-
erations, and repeats the process until they are satisfied. Code generation then
produces the newly optimized code.

Previous work demonstrated the concept of polyhedral dataflow graphs using
manually constructed graphs that represented the execution scheduling using
the layout position of nodes and dataflow using edges between nodes. Notably,
both dataspaces and statements are represented as nodes in the graph. Due
to the limitations of this format, the execution schedule does not guide the
layout of the graphs as it did in the manually produced graphs. The result is a
very large graph. The goal of polyhedral dataflow graphs is to reveal dataflow
optimizations and parallelism opportunities; to make this happen the graphs
need to be manipulated to be smaller and communicate key information clearly.

Figure 10 shows a high-level view of the entire graph generated for a key
function of GeoAc. The graph is not readable as it contains 4616 statement
nodes and several thousand more dataspace nodes. This serves as the starting
point for this work once correctness was established.

Techniques for Managing Polyhedral Dataflow Graphs 3

This paper documents the steps taken to process the graphs into more in-
formative and manageable representations. While working with the graphs, we
also identified operations needed for correctness. The contributions of this work
include:

– A method to transform sections of code to single static assignment without
requiring a control flow graph.

– Proposed alterations to single static assignment to accommodate parameters
to the computation that are pointer or reference types.

– Suggested changes to arrays used to pack related variables together.

– Changes to the visualization of graphs to increase usability.

2 Background

This case study uses a portion of a scientific application to explore the capabili-
ties of the Sparse Polyhedral Model and supporting tools. This section describes
the application, GeoAc, and reviews important components of the Sparse Poly-
hedral Model.

2.1 GeoAc

Many earthquakes cause sudden mass displacements at the earth’s surface. When
this type of earthquake occurs under the ocean, is of strong enough magnitude,
and meets certain other criteria, a tsunami is generated. Ground or sea-surface
displacements push on the atmosphere, which in turn generates an atmospheric
disturbance. This disturbance propagates upward as an acoustic wave eventually
inducing a local change in the electron density of the ionosphere. Global Naviga-
tion Satellite Systems (GNSS) monitor ionospheric disturbances induced by such
phenomena. Such satellite-based remote sensing methods are used to estimate
the earth’s surface deformation and predict the arrival time of a tsunami.

IonoSeis is a software package that combines multiple existing codebases into
a single package to model GNSS-derived electron perturbations in the ionosphere
due to the interaction of the neutral atmosphere and charged particles in the
ionosphere. One of the pieces of IonoSeis is a ray-tracing package called WASP3D
which is an older tool that does not meet the needs of the workflow. GeoAc [3]
is a newer ray-tracing package developed at Los Alamos National Laboratory
that better models the physics, and is the proposed replacement for WASP3D.
The software is written in C++ and models the propagation of acoustic waves
through the atmosphere using a fourth-order Runge–Kutta method (RK4).

A performance analysis indicates that the RK4 function is the most expensive
operation in GeoAc and is therefore chosen for further analysis. In this case
study, we consider the practical implications of viewing the full RK4 function as
a Polyhedral Dataflow Graph.

4 No Author Given

2.2 SPF and the Computation API

The Sparse Polyhedral Framework extends the polyhedral model by supporting
non-affine iteration spaces and transforming irregular computations using un-
interpreted functions [8]. Uninterpreted functions are symbolic constants that
represent data structures such as the index arrays in sparse data formats. Sym-
bolic constants are constant values that do not change during the course of a
computation. The SPF can represent computations with indirect memory ac-
cesses, relations with affine constraints, and constraints involving uninterpreted
function symbols. The SPF represents run-time reordering transformations us-
ing integer tuple sets [18,19]. Run-time data reordering techniques attempt to
improve the spatial and temporal data locality in a loop by reordering the data
based on the order in which it was referenced in the loop [17].

The Computation API [13] is an object-oriented API that provides a precise
specification of how to combine the individual components of the SPF to create
an intermediate representation (IR). This IR can produce polyhedral dataflow
graphs [6] and translates graph operations defined for polyhedral dataflow
graphs into relations used by the Inspector/Executor Generator Library (IEGen-
Lib) [18]. It can also be passed to Omega [14] for code generation.

IEGenLib is a C++ library with data structures and routines that represent,
parse, and visit integer tuple sets and relations with affine constraints and un-
interpreted function symbol equality constraints [18]. The Computation API is
implemented as a C++ class in IEGenLib and contains all of the components re-
quired to express a Computation or a series of Computations. Dense and sparse
matrix vector multiplication, shown in Figures 2 and 4, are used as examples to
represent the computations in the SPF.

2.3 Polyhedral Dataflow Graphs

Polyhedral Dataflow graphs [6] represent both the dataflow and execution sched-
ule of a computation. Initially, the graphs were manually drawn using the polyhe-
dral representation as a guide. The current version of the graph is automatically
generated. The SPF Computation IR is visited and a dot format graph is created.

Figures 3, 5 show the corresponding polyhedral dataflow graphs that are gen-
erated using the IR created in Figures 2 and 4. Multiple node types connected
by edges comprise the graphs. These node type are variations of statement or
dataspace nodes. Node types include: statements, data spaces, read-only pa-
rameters, parameters, active-out data spaces, read-only-active-out parameters,
and active-out parameters A statement node is represented as a rectangle with
rounded edges. It has an execution schedule, a statement number, and potentially
a debug string. We generate the execution schedule by applying the scheduling
function to the iteration space. For example, the statement node in Figure 5
executes the statement referred to using macro S0 with the execution schedule
{[0, a1, 0.a3.0] : a1 ≥ 0∧a3 ≥ 0∧−a1+N−1 ≥ 0∧−a3+M−1 ≥ 0}. This is gen-
erated by applying the scheduling function {[i, k, j]− > [0, i, 0, k, 0, j, 0]} to the
iteration space {[i, k, j] : 0 ≤ i < N∧rowptr(i) ≤ k < rowptr(i+1)∧j = col(k)}.

Techniques for Managing Polyhedral Dataflow Graphs 5

Dense Matrix vector multiply

1 /* Dense vector multiply

2 for (i = 0; i < N; i++) {

3 for (j=0; j<M; j++) {

4 y[i] += A[i][j] * x[j];

5 }}*/

6 Computation* denseComp = new Computation();

7 denseComp->addDataSpace("y");

8 denseComp->addDataSpace("A");

9 denseComp->addDataSpace("x");

10 Stmt* denseS0 = new Stmt(

11 "y(i) += A(i,j) * x(j);", // Source code

12 "{[i,j]: 0 <= i < N && 0 <= j < M}", // Iteration domain

13 "{[i,j] ->[0,i,0,j,0]}", // Scheduling Function

14 { {"y", "{[i,j]->[i]}"}, {"A", "{[i,j]->[i,j]}"},

15 {"x", "{[i,j]->[j]}"} }, // Data reads

16 { {"y", "{[i,j]->[i]}"} }); // Data writes

17 denseComp->addStmt(denseSO);

Fig. 2: Dense Matrix Vector Multiply.

Code generation uses execution schedules to lexicographically order the state-
ments.

Dataspace nodes are drawn as rectangles with sharp corners. The represen-
tation splits dataspace nodes into the types listed above. In static single assign-
ment form, every dataspace should have only one edge pointing into it. A form
of liveness analysis will be used to minimize the amount of memory used during
execution.

All edges represent reads and writes to dataspaces by statement nodes. The
labels on edges refer to the access parameters. All scalar values are read and
written using 0 as an access parameter. Arrays can be read and written using
any combination of constants or iterators from the iteration space.

3 Case Study: Expressing GeoAc and Examining
Polyhedral Data Flow Graphs

This case study uses a manual implementation of the SPF IR. The implemen-
tation was written based on the GeoAc code base and testing of the generated
code demonstrated correctness of the implementation. The planned use of the
Computation API is through a tool that is currently under development that
traverses the Clang AST and produces the IR. Figure 1 shows the anticipated
workflow. Legacy applications will be parsed by Clang, the AST traversed to
produce a Computation IR, and the IR outputted either as a graph to be ma-

6 No Author Given

Fig. 3: Polyhedral Data Flow Graph for Dense matrix vector multiply. Rounded
rectangles represent statements, square rectangles represent data spaces and

shaded square rectangles represent nested loops.

nipulated or as C code. This case study drove the development of the API and
demonstrated several shortcomings of current polyhedral data flow graphs.

This section overviews the challenges overcome to create accurate dataflow
graphs using a polyhedral representation. The first challenge was to create an
approximation to single static assignment in the absence of a control flow graph.
Special handling of structs, pass-by-reference or pointer parameters, and some
arrays was required. The size of the graphs make them almost impossible to
view. To circumvent this we minimize all statements that are not within loops
and propose future analysis to further simplify the graphs. The polyhedral model
and the SPF require constraints to be affine based on constants. Scientific codes
often use data in control flow. We expanded our representation to handle data
in constraints in limited circumstances. Finally, we implemented a debugging
interface that can be used to map graph nodes to a location in the generated
code.

3.1 Approximate Single Static Assignment

The Computation API and polyhedral dataflow graphs support intrinsic types,
pointers, and references. User defined types (structs and classes) are not sup-
ported. These restrictions allow memory allocation to be delayed until after code
generation. The memory allocation is preprended to the source code. Macros
map between the actual memory and the dataspace names used in the represen-
tation. Scientific codes commonly make extensive use of user defined types. All
structs and classes must be flattened. All GeoAc structs were converted to a set
of dataspaces: one corresponding to each member type. This alteration was done
before using the computation API. The consequence is that any tool generating
calls to the API is responsible for object flattening.

Other changes required are made within the intermediate representation, as
it is built. The computation is converted to SSA form as it is built. As each
statement is added, the reads and writes are inspected and stored. If the datas-
pace written to by a statement was also written to by a previous statement, the

Techniques for Managing Polyhedral Dataflow Graphs 7

Sparse matrix vector multiply

1 /*Sparse vector multiply

2 for (i = 0; i < N; i++) {

3 for (k=rowptr[i]; k<rowptr[i+1]; k++) {

4 j = col[k];

5 y[i] += A[k] * x[j];

6 }}*/

7 Computation* sparseComp = new Computation();

8 sparseComp->addDataSpace("y");

9 sparseComp->addDataSpace("A");

10 sparseComp->addDataSpace("x");

11 Stmt* sparseS0 = new Stmt(

12 "y(i) += A(k) * x(j)", // Source code

13 // iteration domain

14 "{[i,k,j]: 0<=i<N && rowptr(i)<=k<rowptr(i+1) && j=col(k)}",

15 "{[i,k,j]->[0,i,0,k,0,j,0]}", // Scheduling Function

16 { {"y", "{[i,k,j]->[i]}"},{"A", "{[i,k,j]->[k]}"},

17 {"x", "{[i,k,j]->[j]}"}}, // Data reads

18 { {"y", "{[i,k,j]->[i]}"} } // Data writes

19);

20 sparseComp->addStmt(sparseS0);

Fig. 4: Sparse Matrix Vector Multiply.

dataspace of the previous statement gets a revision number. Affected reads are
updated as well. Importantly, the IR does not keep a control flow graph and φ
or join nodes must be added to ensure proper versioning.

To generate φ nodes in the absence of a control flow graph we use the con-
straints on iteration spaces. We use a dominance frontier method [5] adapted
for use with the polyhedral model rather than a control flow graph. Suppose
foo is a dataspace that requires a φ node as in Figure 6. We must locate three
statements:

1. read statement - the statement that reads from foo

2. first write - the most recent write to foo under any constraints

3. guaranteed write - The most recent write to foo whose constraints also
apply to the read statement.

We begin with the read statement and move backwards through our state-
ments, identifying the first and guaranteed writes. We construct a phi node if
the first and guaranteed writes are distinct statements. We extract all conditions
which apply to the first write but not to the read statement. The phi node takes
the general form: foo = conditions ? first write : guaranteed write. Due to SSA,
guaranteed write is versioned while first write is unversioned. The addition of

8 No Author Given

Fig. 5: Polyhedral Data Flow Graph for Sparse matrix vector multiply.
Rounded rectangles represent statements, square rectangles represent data

spaces and shaded square rectangles represent nested loops.

Phi Node Example

1 foo = 0; // SSA: foo_0 = 0; (guaranteed write)

2 if (i - 1 >= N) {

3 foo = 1; // SSA: foo_1 = 1; (first write)

4 }

5 // SSA: add phi node foo = -N + i - 1 >= 0 ? foo_1 : foo_0;

6 bar = foo; // read statement

Fig. 6: Phi Node Example.

the φ node provides a new write to foo and versions the first write. This means
all three statements write to different versions of foo.

Parameters that are pointer or reference types have to be handled differently.
Any parameters of those types can be rewritten multiple times. As part of SSA,
the final write to a data space remains unversioned — only previous writes
are versioned. Thus at the end of their dataflow, these parameters retain their
original names and are then correctly recognized as active-out data spaces. It
is important to consider the execution schedule when examining these nodes in
the dataflow graphs as this could allow for illegal schedule transformations to be
applied.

One coding pattern observed in scientific applications is packing individual,
but related scalar variables, into constant sized arrays. The code then accesses
the variables using constants or iterators — the latter often occurring in loops
with small domains. Often, this domain is the number of dimensions being sim-
ulated. In our SSA form, arrays are versioned as a whole, meaning that writing
to a single index of an array versions the entire array. If a loop writes to the
elements of an array the array is only versioned once for the entire loop. When
dealing with arrays that are a small number of packed variables this causes extra

Techniques for Managing Polyhedral Dataflow Graphs 9

Fig. 7: Graph generated from Phi Node Example. foo is written to once as
foo 0 (S0) and then again as foo 1 if −N + j − 1 >= 0 (S1). foo then chooses
between these values based on this condition (S2) and is subsequently read by
bar (S3). Rounded rectangles represent statements, square rectangles represent

data spaces and red square rectangles represent returned dataspaces.

versioning and complicates the view of the dataflow. Our solution is to detect
arrays that are only accessed using literals and replace them with individual vari-
ables. Array accesses using variables whose values can be determined at compile
time are also replaced.

3.2 Data Dependant Control Flow

Each statement in the Computation IR stores constraints on its execution in
its iteration space. The SPF requires that those constraints each be affine or
be affine expressions using constant uninterpreted functions. However, scientific
applications often define control flow using data. An example of this is a Riemann
solve where the computation used depends on the value at that iteration [2]. We
support constraints on data by requiring that they are constant for the duration
of the loop nest and treating them as uninterpreted functions. Transformations
can be performed in the presence of these constraints, but cannot use them.
This is a feature we will explore in the future. One limitation of this approach is
that IEGenLib will not support 6= constraints as this would create a non-convex
iteration space.

3.3 Debugging Information

While examining the graphs it is necessary to understand the connection be-
tween the nodes in the graph and the original source code. However, there is a
disconnect between statement nodes on the graph and statement objects from
the Computation API due to function inlining and φ nodes. This is important
because object in the Computation API directly correlate to lines in the original
source code. Function inlining causes the same statement object to generate in
the graph multiple times each as a different node. Programmatic addition of
φ statements and array access statements further changes the graph statement
order from the API statement order. To overcome this limitation we added a
debugging interface that allows us to tag a statement object with a string. This
string shows up on all statement nodes generated from that object, as shown in
Figure 8. Each statement node directly maps to a line in the generated code.

10 No Author Given

With a debug statement, we can connect a statement object to a set of lines in
the generated code. Eventually, this interface will be used by automated tools
to provide filename and line number information from the original input code
parsed by Clang.

Fig. 8: An example graph that includes a debug statement at S4 (highlighted
green for easy identification). In the scalable vector graphic (SVG) format, the

user-defined debug string is searchable for easy node identification.

3.4 Layout Considerations and Limitations

Polyhedral dataflow graphs are generated using the dot format. Dot provides
little control over the layout of the graph because it depends almost entirely
on the connectivity of the components. This makes the layout almost entirely
dependant on dataflow rather than execution order. The original graphs were
laid out by hand and execution order determined the placement of the nodes.

Due to its large size, displaying the graph left-to-right instead of the typical
top-to-bottom made viewing simpler. Statement and data space nodes can be
reduced to points to further simplify the graph and better expose loop-subgraphs.

Producer-consumer fusion eliminates unnecessary dataflow thereby reducing
temporary storage requirements [6]. A producer-consumer relationship exists
between some statements S0 and S1 through a dataspace D0 if:

– S0 only writes to D0
– D0 is only written to by S0
– D0 is only read by S1

This is shown in Figure 9a. To remove this unnecessary dataflow, S0 and D0 are
removed from the graph. S0’s reads are assigned to S1 and D0 is removed as a
read from S1. An example result is shown in Figure 9b. The reads and writes
must be constant accesses (as opposed to iterator access for arrays). Producer-
consumer relationships are unnecessary for correct dataflow as they contain only
a single path for the data to flow. Removing them improves readability.

Colors are used to indicate different types of dataspaces. This is important
information because data spaces that are pointer or reference types must be
treated differently than normal dataspaces. Colors also assist with debugging and
ensuring graph correctness. Filling versus outlining nodes provides an additional
layer of distinction between node types — especially similar node types.

Techniques for Managing Polyhedral Dataflow Graphs 11

(a) A dataflow graph with a producer-consumer relationship between S0 and S1.

(b) The dataflow graph after producer-consumer fusion.

Fig. 9: Producer-consumer fusion example. R’s represent reads and W’s
represent writes.

The size of the graphs presents challenges beyond viewing the graph. A com-
bination of size and graph complexity causes tools that render the dot input as
an SVG file to fail. Portions of the graphs have to be created separately to work
around this. This and the desire to use the graphs interactively will drive our
future work, including identifying a different format to express the graphs.

4 Related Work

Polyhedral dataflow graphs are a compiler intermediate representation that ex-
poses optimization opportunities such as loop transformation and temporary
storage reductions. To implement polyhedral data flow graphs, the framework
introduces a specification language called Polyhedral Dataflow Language. This
specification language can be written directly, derived from existing codes, or
lifted from another intermediate representation.

Existing work demonstrates the benefit of polyhedral data flow optimizations.
Olschanowsky et al. demonstrated this benefit on a computational fluid dynamic
benchmark [12]. Davis et al. automated the experiments from the previous work
using modified macro dataflow graphs [6]. Strout et al. extended the polyhedral
model for sparse computations allowing indirect array accesses [18]. This research
distinguishes itself by being applied to a full application in a different domain.

Tools such as Polly [7], Pluto [4], Loopy [11], PolyMage [10] and Halide [15,16,9]
use the polyhedral model to transform regular codes. PolyMage and Halide are

12 No Author Given

two domain specific languages and compilers for optimizing parallelism, locality,
and recomputation in image processing pipelines. Halide separates the definition
of algorithms from the concerns of optimization making them simpler, more mod-
ular and more portable. This lets us play around with different optimizations
with a guarantee not to change the result. PolyMage’s optimization strategy
relies primarily on the transformation and code generation capabilities of the
polyhedral compiler framework and performs complex fusion, tiling, and storage
optimization automatically.

The isl (integer set library) is a thread-safe C library for manipulating sets
and relations of integer tuples bounded by affine constraints [20]. This library
is used in the polyhedral model for program analysis and transformations and
forms the basis for affine transformations used in all the tools discussed previ-
ously in this section. Stateful dataFlow multigraphs (SDFGs) are a data-centric
IR that enables separating code definition from its optimization [1]. Polyhedral
dataflow graphs differ from SDFGs because of their dependence on the polyhe-
dral model. The graphs are not the intermediate representation, but a view of
that representation. Any graph operations performed to transform the graph are
translated to relations and applied to the underlying polyhedral representation.

5 Conclusion

This paper presents a case study that uses the Computation API to represent
a scientific application, GeoAc, in the sparse polyhedral framework. Polyhedral
dataflow graphs were generated from the SPF IR and measures were taken to
make the graphs more readable and informative. The computation is converted
to SSA form as it is built to simplify and enable optimizations like redundancy
elimination. In the absence of control flow, constraints on the iteration space
were used to generate phi nodes for dataspace versioning. The large size of the
generated graph is made more manageable by minimizing non-loop statements
to keep the graphs simple and easy to read. Function inlining by the Computa-
tion API makes it difficult to map the source code to the generated code. This
limitation is overcome by adding a debugging interface that can tag statement
objects created from the source code with a string that is then searchable in the
graph. Polyhedral dataflow graphs are generated using the dot format, making
the layout of the graph dependant on the dataflow rather than execution order.
The graph is displayed left to right and different colors are used to distinguish
various graphical elements.

Techniques for Managing Polyhedral Dataflow Graphs 13

Fig. 10: Full dataflow graph.

14 No Author Given

References

1. Ben-Nun, T., de Fine Licht, J., Ziogas, A.N., Schneider, T., Hoefler, T.:
Stateful dataflow multigraphs: A data-centric model for performance portabil-
ity on heterogeneous architectures. In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis.
SC ’19, Association for Computing Machinery, New York, NY, USA (2019).
https://doi.org/10.1145/3295500.3356173

2. Benabderrahmane, M.W., Pouchet, L.N., Cohen, A., Bastoul, C.: The polyhedral
model is more widely applicable than you think. In: Proceedings of the 19th Joint
European Conference on Theory and Practice of Software, International Confer-
ence on Compiler Construction. p. 283–303. CC’10/ETAPS’10, Springer-Verlag,
Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11970-516

3. Blom, P.: Geoac: Numerical tools to model acoustic propagation in the geometric
limit. https://github.com/LANL-Seismoacoustics/GeoAc (2014)

4. Bondhugula, U., Ramanujam, J., Sadayappan, P.: PLuTo: A Practical and Fully
Automatic Polyhedral Program Optimization System. PLDI 2008 - 29th ACM
SIGPLAN Conference on Programming Language Design and Implementation pp.
1–15 (2008)

5. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Zadeck, F.K.: An effi-
cient method of computing static single assignment form. In: Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages. p. 25–35. POPL ’89, Association for Computing Machinery, New York,
NY, USA (1989). https://doi.org/10.1145/75277.75280, https://doi.org/10.1145/
75277.75280

6. Davis, E.C., Strout, M.M., Olschanowsky, C.: Transforming loop chains via macro
dataflow graphs. In: Proceedings of the 2018 International Symposium on Code
Generation and Optimization. pp. 265–277. ACM (2018)

7. Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A., Pouchet, L.N.:
Polly - Polyhedral optimization in LLVM. Proceedings of the First International
Workshop on Polyhedral Compilation Techniques (IMPACT ’11) p. None (2011),
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-07.pdf

8. LaMielle, A., Strout, M.M.: Enabling code generation within the sparse polyhedral
framework. Technical report, Technical Report CS-10-102 (2010)

9. Mullapudi, R.T., Adams, A., Sharlet, D., Ragan-Kelley, J., Fatahalian, K.: Au-
tomatically scheduling halide image processing pipelines. ACM Transactions on
Graphics (TOG) 35(4), 83 (2016)

10. Mullapudi, R.T., Vasista, V., Bondhugula, U.: Polymage: Automatic optimization
for image processing pipelines. In: ACM SIGARCH Computer Architecture News.
vol. 43, pp. 429–443. ACM (2015)

11. Namjoshi, K.S., Singhania, N.: Loopy: Programmable and formally verified loop
transformations. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9837
LNCS(July), 383–402 (2016). https://doi.org/10.1007/978-3-662-53413-719

12. Olschanowsky, C., Strout, M.M., Guzik, S., Loffeld, J., Hittinger, J.: A study on
balancing parallelism, data locality, and recomputation in existing pde solvers.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 793–804. IEEE Press, IEEE Press, 3 Park
Ave, New York, NY, USA (2014)

https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1007/978-3-642-11970-5_16
https://github.com/LANL-Seismoacoustics/GeoAc
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
https://doi.org/10.1145/75277.75280
http://perso.ens-lyon.fr/christophe.alias/impact2011/impact-07.pdf
https://doi.org/10.1007/978-3-662-53413-7_19

Techniques for Managing Polyhedral Dataflow Graphs 15

13. Popoola, T., Shankar, R., Rift, A., Singh, S., Davis, E., Strout, M., Olschanowsky,
C.: An object-oriented interface to the sparse polyhedral library. In: 2021 Ninth
Workshop on Data-Flow Execution Models for Extreme Scale Computing (Ac-
cepted)

14. Pugh, W., Wonnacott, D.: Eliminating false data dependences using the
omega test. In: Proceedings of the ACM SIGPLAN 1992 Conference
on Programming Language Design and Implementation. p. 140–151. PLDI
’92, Association for Computing Machinery, New York, NY, USA (1992).
https://doi.org/10.1145/143095.143129

15. Ragan-Kelley, J., Adams, A., Paris, S., Levoy, M., Amarasinghe, S., Durand, F.:
Decoupling algorithms from schedules for easy optimization of image processing
pipelines (2012)

16. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.:
Halide: a language and compiler for optimizing parallelism, locality, and recom-
putation in image processing pipelines. ACM SIGPLAN Notices 48(6), 519–530
(2013)

17. Strout, M.M., Carter, L., Ferrante, J.: Compile-time composition of run-time
data and iteration reorderings. SIGPLAN Not. 38(5), 91–102 (May 2003).
https://doi.org/10.1145/780822.781142

18. Strout, M.M., Georg, G., Olschanowsky, C.: Set and relation manipulation for
the sparse polyhedral framework. In: International Workshop on Languages and
Compilers for Parallel Computing. pp. 61–75. Springer (2012)

19. Strout, M.M., LaMielle, A., Carter, L., Ferrante, J., Kreaseck, B., Olschanowsky,
C.: An approach for code generation in the sparse polyhedral framework. Parallel
Computing 53, 32–57 (2016)

20. Verdoolaege, S.: isl: An integer set library for the polyhedral model. In: Interna-
tional Congress on Mathematical Software. pp. 299–302. Springer (2010)

https://doi.org/10.1145/143095.143129
https://doi.org/10.1145/780822.781142

	Techniques for Managing Polyhedral Dataflow Graphs

