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FINITE ELEMENTS FOR DIV DIV CONFORMING
SYMMETRIC TENSORS IN THREE DIMENSIONS

LONG CHEN AND XUEHAI HUANG

ABSTRACT. Finite element spaces on a tetrahedron are constructed for div div
-conforming symmetric tensors in three dimensions. The key tools of the con-
struction are the decomposition of polynomial tensor spaces and the charac-
terization of the trace operators. First, the divdiv Hilbert complex and its
corresponding polynomial complexes are presented. Several decompositions
of polynomial vector and tensor spaces are derived from the polynomial com-
plexes. Second, traces for the divdiv operator are characterized through a
Green’s identity. Besides the normal-normal component, another trace involv-
ing combination of first order derivatives of the tensor is continuous across the
face. Due to the smoothness of polynomials, the symmetric tensor element is
also continuous at vertices, and on the plane orthogonal to each edge. Besides,
a finite element for sym curl-conforming trace-free tensors is constructed follow-
ing the same approach. Putting all together, a finite element div div complex,
as well as the bubble functions complex, in three dimensions is established.

1. INTRODUCTION

In this paper, we shall construct finite element subspaces for the space
H (divdiv,Q;S) := {r € L*(;S) : divdivr € L}(Q)}, Q C R?,

which consists of symmetric tensors such that divdivr € L?(Q2) with the inner div
applied row-wisely to 7 resulting in a column vector for which the outer div operator
is applied. H(div div)-conforming finite elements can be applied to discretize the
linearized Einstein-Bianchi system [21, Section 4.11] and the mixed formulation of
the biharmonic equation [19].

Recently Christiansen and Hu [7] constructed a conforming discrete strain com-
plex on Clough-Tocher split in two dimensions which is the rotation of a two-
dimensional divdiv complex. Chen and Huang [6] constructed two-dimensional
H (div div)-conforming finite elements and a finite element div div complex in two
dimensions. The construction in three dimensions is much harder. The essential
difficulty arises from the three-dimensional div div Hilbert complex

RT S H'(O;R3) dovegrad, H (symcurl, Q; T) symeurl, H (div div, ;S) divdiv, L3(Q) — 0,
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where RT = {ax+b:a € R,b e R3}, H'(Q;R?) and L?(Q) are standard Sobolev
spaces, and H (sym curl, ; T) is the space of traceless tensor o € L*(Q; T) such that
symcurlo € L?(Q;S) with the row-wise curl operator. In the three-dimensional
div div complex, the Sobolev space before H (div div, ;S) consists of tensor func-
tions, whereas it consists of vector functions in two dimensions. For the sake of
comparison, the div div Hilbert complex in two dimensions is

sym curl div div

RT S H'(O;R?) 220 H(divdiv, Q;S) % £2(Q) — 0.
Finite element spaces for H 1(Q;R2) are relatively mature. Then the design of a
div div conforming finite element in two dimensions is relatively easy; see [6] and
also Section [5.4
We start our construction from the following polynomial complexes

sym curl div div

(1) RT—>IPk+2(Q R3 )—>]P’k+1(Q T) == Pi(%8) == Pis() === 0

and reveal several decompositions of polynomial vector and tensor spaces from ().
We then present a Green’s identity

(divdivT,v) g = (T, V20)x — Z Z TN, V)

FeF(K)ec&(F)

— Z [(nTTn,0,v)r — (2divp(Tn) + 0,(nTTn),v)F],
FeF(K)

and give a characterization of two traces for 7 € H(divdiv, K;S)
nTrn € H Y2(0K), and 2divp(rn)+ 0,(nTrn) € H, *¥?(0K),

see Section [4.3] for detailed definitions of these negative Sobolev space for traces.

Based on the decomposition of polynomial tensors and the characterization of
traces, we are able to construct two types of H(div div)-conforming finite element
spaces on a tetrahedron. Here we present the BDM-type (full polynomial) space
below. Let K be a tetrahedron and let £ > 3 be an integer. The shape function
space is Pr(K;S). The set of edges of K is denoted by £(K), the set of faces
by F(K), and the set of vertices by V(K). For each edge, we choose two normal
vectors nq and ng. The degrees of freedom (DoF's) are given by

(2) 7(8) VdieV(K),

(3) (nitn;,q)e Y q€Pra(e ),eEE(K), i,j=12,
(4) (nTtn,q)p Vg€ Py 3(F),F e F(K),

(5) 2divp(tn) + Op(nTTn),q)r YV q €Pr_1(F),F € F(K),

(6) (T,9)k V6 VP 2(K)

(7) (1,6)k V¢ €sym(Pr_o(K;T) x @),

(8) (tn,n x xq)F, V q€ Pr_s(F1),

where F} € F(K) is an arbitrary but fixed face. The last degree of freedom (8]
will be regarded as an interior degree of freedom to the tetrahedron K. Namely
even a face I is chosen in different elements, the degree of freedom (8)) is double-
valued when defining the global finite element space. The RT-type (incomplete
polynomial) space can be obtained by further reducing the index of degrees of
freedom by 1 except the moment with V2P;,_5(K). To the best of our knowledge,
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these are the first H(div div)-conforming finite elements for symmetric tensors in
three dimensions. After our work, in [17], a new family of divdiv-conforming finite
elements is introduced for triangular and tetrahedral grids in a more unified way.
The constructed finite element spaces there are in H (divdiv, Q;S) N H(div, Q;S),
while ours is in H (divdiv, €;S) only which is more natural.

To help the understanding of our construction, we sketch a decomposition of
a finite element space associated to a generic differential operator d in Fig. [I],
where d* is the formal adjoint of d. The boundary degrees of freedom ({@)-(5l) are

ker(d)

img(d*
Nker(trd) (@)

trd

FIGURE 1. Decomposition of a generic finite element space

obviously motivated by the Green’s formula and the characterization of the trace
of H(divdiv,;S). The extra continuity (2)-(3]) is to ensure the cancellation of the
edge term when adding element-wise Green’s identity over a mesh. All together (2])-
([B) will determine the trace on the boundary of a tetrahedron, i.e., the bottom box
in Fig. [0

The interior moment of V2Pj,_(K) is to determine the image div div(Px(K;S)N
ker(tr)), which is isomorphism to img(V?) — the upper right block in Fig. [l To-
gether with sym(Py_o(K; T) x &), the volume moments can determine the polyno-
mial of degree only up to k — 1. We then use the vanished trace and the symmetry
of the tensor to figure out the remaining degrees of freedom. The DoF's (0)-(8) will
determine ker(div div) Nker(tr) — the upper left block in Fig. [1l

For the symmetric tensor space, it seems odd to have degrees of freedom not
symmetric, as a face is singled out in (8). In view of Fig. [l and the exactness of
the polynomial div div complex (), (@)-(8]) can be replaced by

(9) (1,6)k V¢ €symcurl By (symcurl, K; T),

where By 1 (sym curl, K; T) = Py (K; T)NHo(sym curl, K; T) is the so-called bub-
ble function space and will be characterized precisely in Section [5.21 Although (@)
is more symmetric, it is indeed not simpler than (@)-(8]) in implementation as the
formulation of sym curl B4 1 (sym curl, K; T) is much more complicated than poly-
nomials on a face.

With the help of the H(div div)-conforming finite elements for symmetric tensors
and two traces n X sym(T x n) x n and n - 7 x n of space H (symcurl, K;T), we
construct H (sym curl)-conforming finite elements for trace-free tensors. The space
of shape functions is Pyyq (K; T) with £ > max{k — 1,3}. The degrees of freedom
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are
T(0) VéeV(K),
(symcurl 7)(6) V€ V(K),

(n](symcurlT™)n;,q)e Vg€ Pis(e),ec&(K),ij=1,2,
(n]rt,q)e VqePi_i(e),ecl(K),i=1,2,
(n(curl ™)ng + 0:(tT1t),q)e V g € Py(e), e € E(K),

(nxsym(T X n) xn,¢)r Ve (VE)Pr1(F)®sym(z @ Pr_i(F;R?)),
(m-1Txn,qQ)r YqeVrPr 3(F)®a P, (F),F e F(K),
(T7 q)K v qc BZ+1(Symcurl7 KvT)

Combining previous finite elements for tensors and the vectorial Hermite ele-
ment in three dimensions, we arrive at a finite element divdiv complex in three
dimensions

C dev grad sym curl div di
RT S v, =225 50 2 0, =0

and the associated finite element bubble div div complex. Recently another finite el-
ement div div complex in three dimensions is devised in [16], where the H (sym curl)-
conforming finite elements for trace-free tensors and H'-conforming finite elements
for vectors employed in [16] are smoother than ours. Two-dimensional finite ele-
ment div div complexes can be found in [4,6l[17]. And the rotated version, discrete
strain complexes, can be found in [7].

The rest of this paper is organized as follows. We present some operations for
vectors and tensors in Section 2l Two polynomial complexes related to the div div
complex and direct sum decompositions of polynomial spaces are shown in Sec-
tion[8l We derive the Green’s identity and characterize the trace of H (div div, 2;S)
on polyhedrons in Section [4] and then construct the conforming finite elements for
H (div div, £2;S) in three dimensions in Section [fl In Section [6l we construct con-
forming finite elements for H (sym curl, ©; T). With previous devised finite elements
for tensors, we form a finite element divdiv complex in three dimensions in Sec-
tion [7

2. MATRIX AND VECTOR OPERATIONS

In this section, we shall survey operations for vectors and tensors. In particular,
we shall distinguish operators applied to columns and rows of a matrix.

2.1. Matrix-vector products. The matrix-vector product Ab can be interpreted
as the inner product of b with the row vectors of A. We thus define the dot
operator A -b:= Ab. Similarly we can define the row-wise cross product from the
right A x b. Here rigorously speaking when a column vector b is treated as a row
vector, notation bT should be used. In most places, however, we will sacrifice this
precision for the ease of notation. When the vector is on the left of the matrix, the
operation is defined column-wise. For example, b- A := bT A. For dot products,
we will still mainly use the conventional notation, e.g. b- A - ¢ = bT Ac. But for
the cross products, we emphasize again the cross product of a vector from the left
is column-wise and from the right is row-wise. The transpose rule still works, i.e.
bx A= —(AT x b)T. Here again, we mix the usage of column vector b and row
vector bT.
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The ordering of performing the row and column products does not matter which
leads to the associative rule of the triple products

bxAxec:=(bxA)xe=bx(Axc).

Similar rules hold for b+ A - ¢ and b- A x ¢ and thus parentheses can be safely
skipped when no differentiation is involved.

For two column vectors u, v, the tensor product © ® v := wv7T is a matrix which
is also known as the dyadic product uv := wvT with more clean notation (one T
is skipped). The row-wise product and column-wise product of wv with another
vector will be applied to the neighboring vector

(10) z- (uv) = (z-u)v’, (uv) z=u(v- x),

(11) z X (uv) = (z xuw)v, (uv)xx=u(vxx).

2.2. Differentiation. We treat Hamilton operator V = (9;,92,03)T as a column
vector. For a vector function u = (u1, ug, us)7, curlu = V X u, and divu =V - u
are standard differential operations. Define Vu := VuT = (9ju;), which can be
understood as the dyadic product of Hamilton operator V and column vector w.

Applying matrix-vector operations to the Hamilton operator V, we get column-
wise differentiation V- A,V x A, and row-wise differentiation A -V, A x V. Con-
ventionally, the differentiation is applied to the function after the V symbol. So a
more conventional notation is

A-V:=(V-AT)T, AxV:i=—(VxA".

By moving the differential operator to the right, the notation is simplified and the
transpose rule for matrix-vector products can be formally used. Again the right
most column vector V is treated as a row vector VT to make the notation cleaner.

In the literature, differential operators are usually applied row-wisely to tensors.
To distinguish with V notation, we define operators in letters as

gradu := uVT = (0;u;) = (Vu)T,
curlA:=—-AxV=(VxA"T,
divA:=A-V=(V-AT)T.

Note that for vector functions, the differentiation written in letters are equivalent

to V notation while for tensors they are slightly different. The double divergence
operator can be written as

divdivA:=V-A-V.

As the column and row operations are independent, the ordering of operations is
not important and parentheses can be skipped.

2.3. Matrix decompositions. Denote the space of all 3 x 3 matrices by M, all
symmetric 3 x 3 matrices by S, all skew-symmetric 3 x 3 matrices by K, and all
trace-free 3 x 3 matrices by T. For any matrix B € M, we can decompose it into
symmetric and skew-symmetric parts as

B = sym(B) + skw(B) := %(B +BT7) + %(B — BT).

Licensed to Univ of Calif, Irvine. Prepared on Thu Jun 2 14:01:25 EDT 2022 for download from IP 128.195.75.73.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1112 LONG CHEN AND XUEHAI HUANG

We can also decompose it into a direct sum of a trace-free matrix and a scalar
matrix as

(12) B =devB + %tr(B)I = (B - %tr(B)I) + %tr(B)I.
Define the sym curl operator for a matrix A
symcurl A := %(V x AT+ (Vx AT)T) = %(V x AT — A x V).

We define an isomorphism between R3 and the space of skew-symmetric matrices
K as follows: for a vector w = (w1, ws,ws)T € R3,

0 —Ws w2
mskww (= | w3 0 —w1
—W9 w1 0

Obviously mskw : R? — K is a bijection. We define vskw : M — R3 by vskw :=
mskw ! o skw.
We will use the following identities for smooth enough vector or matrix functions

1
skw(grad u) = 5 (mskw curl u),

) skw(curl A) = % mskw [div(AT) — grad(tr(A))],
14) divmskw u = — curl u,

) curl(ul) = — mskw grad(u),
16) tr(T x ¢) = —2x - vskw T,

which can be verified by a direct calculation. More identities involving the matrix
operation and differentiation are summarized in [1].

2.4. Projections to a plane. Given a plane F' with normal vector n, for a vector
v € R3, we have the orthogonal decomposition

v=IL,v+1pv:=(v-n)n+ (n X v) X n.

The vector IIHv := m x v is also on the plane F and is a rotation of Ilpv by 90°
counter-clockwise with respect to n. We treat Hamilton operator V = (91, 02, 03)T
as a column vector and define

Vi i=nxV, Vp:=IyV=(nxV)xn.
For a scalar function v,
gradp v := Vpv = IIp(Vv),
curlp v i= VEv = n x Vo

are the surface gradient and surface curl, respectively. For a vector function v,
V- v is the surface divergence

divpv:=Vp-v=Vp- (llpv).

By the cyclic invariance of the mix product and the fact n is constant, the surface
rot operator is

rotpv :=Vi-v=(nxV) - v=n-(Vxwv),

Licensed to Univ of Calif, Irvine. Prepared on Thu Jun 2 14:01:25 EDT 2022 for download from IP 128.195.75.73.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE ELEMENTS FOR DIV DIV SYMMETRIC TENSORS 1113

which is the normal component of V x v. The tangential trace of V x v is
(17) nx (Vxwv)=V(n-v)—0o,v.

By definition,

(18) rotpv = —divp(n x v), divpv =rotp(n x v).

Note that the three-dimensional curl operator restricted to a two-dimensional plane
F results in two operators: curlp maps a scalar to a vector, which is a rotation of
grady, and rotp maps a vector to a scalar which can be thought of as a rotated
version of divp. The surface differentiations satisfy the property divg curly = 0
and rotp gradp = 0 and when F is simply connected, ker(divg) = img(curlp) and
ker(rotr) = img(grad ).

Differentiation for two-dimensional tensors can be defined similarly.

3. DIVDIV COMPLEX AND POLYNOMIAL COMPLEXES

In this section, we shall consider the divdiv complex and establish two related
polynomial complexes. We assume 2 C R? is a bounded and Lipschitz domain,
which is topologically trivial in the sense that it is homeomorphic to a ball. Without
loss of generality, we also assume 0 = (0,0,0) € Q.

Recall that a Hilbert complex is a sequence of Hilbert spaces connected by a
sequence of linear operators satisfying the property: the composition of two con-
secutive operators vanishes. As all complexes considered in this paper are Hilbert
complexes, we will abbreviate a Hilbert complex as a complex. If the range of each
map is the kernel of the succeeding map, then a complex is called exact. As Q is
topologically trivial, the following de Rham Complex of €2 is exact
(19) 0— HYQ) 224 H(cwl Q) <% H(div; Q) 9% L2(Q) — 0,
where H (curl,Q) := {v € L*(Q;R3) : curlv € L*(Q;R3)}, H(div,Q) := {v €
L*(Q;R3) : dive € L*(Q)}.

3.1. The divdiv complex. The divdiv complex in three dimensions reads as [L,[19]

(20) RT S H'(;R?) doverad, H (sym curl, Q; T) Symeud, H (divdiv, 2;S) 29 12(0) - 0,

where RT := {ax +b:a € R,b € R3} is the space of shape functions of the lowest
order Raviart-Thomas element [22]. For completeness, we prove the exactness of
the complex (20) following [19].

Theorem 3.1. Assume € is a bounded and topologically trivial Lipschitz domain
in R3. Then ([20Q) is an exact complex.

Proof. We verify that the composition of consecutive operators vanishes from left
to right. Take a function v = ax + b € RT, then gradv = aI and devI = 0. For
any v € C?(Q;R3), it holds from (I5) that

1 1
sym curl dev grad v = sym curl (grad'v — g(div v)I) = —gsym curl((divwo)I)
1
= 3 sym mskw(grad(divw)) = 0.
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By the density argument, we get sym curldev grad H 1(Q;R3) = 0. For any T €
C3(;T),

divdivsymcurl T = %V A(Vx1T—17xV)-V=0.
Again by the density argument, divdivsym curl H (sym curl, Q; T) = 0. Thus (20)
is a complex.

We then verify the exactness of (20) from the right to the left.

(1) divdiv H (divdiv, ;S) = L?(Q).

Recursively applying the exactness of de Rham complex (I9)), we can prove
div div H(div div, Q; M) = L?(Q2) without the symmetry requirement, where the
space H (divdiv, ;M) = {7 € L*(Q;M) : divdivr € L*(Q)}.

Any skew-symmetric 7 can be written as 7 = mskw v for v = vskw(7). Assume
v € C%(Q;R3); it follows from (14) that

(21) div divr = div div mskw v = — div(curl v) = 0.
Since divdiv T = 0 for any smooth skew-symmetric tensor field 7, we obtain
div div H (div div, €;S) = div div H (div div, ;M) = L*(Q).

(2) H(div div, ©; S)Nker(div div) = sym curl H (sym curl, ; T), i.e. ifdivdive =0
and o € H(divdiv,;S), then there exists a 7 € H(symcurl,;T), s.t. o =
sym curl 7.

Since div(div o) = 0, by the exactness of the de Rham complex and identity (14]),
there exists v € L*(€; R?) such that

div o = curlv = — div(mskw v).

Namely div(o + mskwwv) = 0. By the existence of regular potentials (cf. [10]),
there exists 7 € H'(Q; M) such that

curl 7 = o + mskw v.

By the symmetry of o, we have
o =symcurl 7 = symcurl(dev 7) + %sym curl ((tr 7)1I).
From (18] we get
symcurl ((tr 7)I) = — sym(mskw grad(tr 7)) = 0,

which indicates & = sym curl 7 with 7 = dev7 € H*(Q; T).

(3) H(symcurl, Q; T) Nker(sym curl) = dev grad H'(;R?), i.e. if symcurlT = 0

and T € H(symcurl, Q; T), then there exists a v € H'(Q;R?), s.t. 7 = devgradw.
Since sym(curlT) = 0 and tr 7 = 0, we have from (13]) that

curl 7 = skw(curl 7) = %mskw [div(7T) — grad(tr(7))] = %mskw(div(TT)).
Then by ([14)),
curl(div(rT)) = — div(mskw div(7T)) = —2div(curl ) = 0.

Thus there exists w € L?() satisfying div(7T) = 2 grad w, which together with (L5])
implies
curl 7 = mskw grad w = — curl(wl).
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Namely curl(7 + wI) = 0. Hence there exists v € H'(;R?) such that 7 =
—wlI 4 grad v. Noting that 7T is trace-free, we achieve

7 =dev T = devgrad v.
(4) H*(Q;R?) Nker(devgrad) = RT, i.e. if devgradv = 0 and v € H(Q;R?),
then v € RT.
Notice that

1

(22) gradv = §(
Apply curl on both sides of ([22) and use ([13) to get

— mskw grad(divv) = curl((divw)I) = 3 curl(grad v) = 0.

divw)I.

Hence divwv is a constant, which combined with (22) implies that v is a linear
function. Assume v = Az + b with A € M and b € R3; then (22) becomes
A = £ tr(A)I, and consequently v € RT.

Thus the complex (20) is exact. O

The div div complex (20) is the so-called domain complex. By [I, Theorem 2],
there exist bounded regular potentials. For example, for 7 € H(divdiv, ;S) and
divdiv T = 0, there exists a regular potential o € Hl(Q; T) s.t. symcurle = 7.

3.2. A polynomial divdiv complex. Given a bounded domain G C R?® and
a non-negative integer m, let P,,(G) stand for the set of all polynomials in G
with the total degree no more than m, and P,,(G;X) with X being M, S, K,
T or R? denotes the tensor or vector version. Recall that dimPy(G) = (k;rg),
dimM = 9,dimS = 6,dimK = 3, and dim T = 8. For a linear operator T defined

on a finite dimensional linear space V', we have the relation

(23) dim V' = dimker(T") + dim img(7T),
which can be used to count dimimg(T") provided the space ker(T) is identified and
vice versa.

The polynomial de Rham complex is

grad div

(24) R S Py (Q) 225 PL(R3) 25 Py (0 R?) 2% Py _o(Q) — 0.

As Q is topologically trivial, complex (24) is also exact, i.e., the range of each map
is the kernel of the succeeding map.

Lemma 3.2. The polynomial div div complex

dev grad div div

(25) RT = Pyia(Q;R?) Ppy1 (€ T) symeu, Pr(€;S) —— Pr_2(2) = 0

15 exact.

Proof. Clearly (23] is a complex due to Theorem [B.1] We then verify the exactness.
(1) Pry2(Q;R?) Nker(dev grad) = RT. By the exactness of the complex (20),
RT C Py io(Q R?) Nker(dev grad) € H'(2; R?) Nker(dev grad) = RT.

(2) Pr41(Q; T) N ker(sym curl) = dev grad Py 2(Q;R3), ie. if symcurlT = 0 and
T € Py 1 (Q;T), then there exists a v € Ppyo(Q;R3), s.t. 7 = devgradw.

As symcurlT™ = 0, there exists v € Hl(Q;R?’) satisfying 7 = dev grad v, i.e.
7 = gradv — 3(divw)I. Then we get from (I5) that

mskw(grad div v) = — curl((divv)I) = 3 curl(T — grad v) = 3curl T,
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1116 LONG CHEN AND XUEHAI HUANG

which implies graddive = 3vskw(curlT) € Pr(;R?). Hence divev € Pri1(Q).
And thus gradv = 7 + $(divo)I € Ppi1(;M). As a result v € Pryo (5 R?).

(3) divdivP,(Q;S) = Pr_2(2). Recursively applying the exactness of de Rham
complex (24), we can prove div div P (Q;M) = Pr_2(€2). Then from (21I)) we have
that

div div P (2;S) = div div Py (Q; M) = Pr_o ().

(4) Pr(€%S) Nker(divdiv) = sym curl Pr11(€; T).
Obviously sym curl P1(9; T) C (P (£2;S) Nker(divdiv)). As divdiv : Pr(€%;S)
— Pr_2(Q) is surjective by step (3), using (23]), we have

dim Py (€2 S) Nker(divdiv) = dim P (£2;S) — dim Py, _5(€?)
_e(FH3) (k1
B 3 3
1
(26) = 8(5k3 + 36k2 + 67k + 36).

Thanks to results in steps (1) and (2), we can count the dimension of sym curl
Prot1 (5 T)

dim sym curl Py 41 (2 T) = dim Py 1(Q; T) — dim dev grad Py 2(Q; R?)
= dim P41 (Q; T) — (dim Py, 2(Q; R?) — dim RT)
k+4 k+5
=8 -3 4
(3 (5
1
(27) = 6(5k3 + 36k* + 67k + 36).

We conclude that Py (€2;S) N ker(divdiv) = symcurl P41 (€ T) as the dimensions

match, cf. (26) and (271).

Therefore the complex (25) is exact. O

3.3. A Koszul complex. The Koszul complex corresponding to the de Rham
complex (24) is

(28) 0= Pr_s(Q) 2 Pr_y (%GR3 25 Pr(R3) 5 Pryt () — 0,

where the operators are appended to the right of the polynomial, i.e. vax, v X @, or
v - x. The following complex is a generalization of the Koszul complex (28]) to the
div div complex (28), where operator wgy : C1(Q;R3) — RT is defined as

1
mrrv = v(0,0,0) + g(div v)(0,0,0)x,

and other operators are appended to the right of the polynomial, i.e., pxaT, T X @,
or 7-x. The Koszul operator xaT can also be obtained using the Poincaré operator
constructed in [8], but others are simpler than those in [g].

Lemma 3.3. The following polynomial sequence
(29) 0S5 Py a(Q) 225 Pu(S) 25 Pryy (0 T) -5 Pryo(QR3) T2 RT — 0

is an exact complex.
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Proof. In the sequence (29) only the mapping Py (Q;S) =% Py1(Q; T) is less obvi-
ous, which can be justified by the identity (16]).
To verify (29) is a complex, we use the product rule (10)-(11):

preT xx =pr(r xx)T =0, (rxz) - x=0.

To verify wrpp(7-x) =0 for 7 € Pr11(; T), we use the formula
(30) div(t-x) =div(sT) - ¢ + tr 7 = 7 div(7T),

and therefore evaluating at 0 is zero.
We then verify the exactness of (29).
(1) TFRTPk+2(Q;R3) = RT.
It is straightforward to verify
(31) wrrv =v Vv € RT.
Namely 7t is a projector. Consequently, the operator wpr : Pryo(QR3) — RT
is surjective as RT C P1(;R3).
(2) Per2(Q; R Nker(wrr) = Pry1 (4 T) -z, d.e. if mrrv = 0 and v € Py i2(Q;R3),
then there exists a T € Pry1 (S T), s.t. v=7".
Since v(0,0,0) = 0, by the fundamental theorem of calculus,

v = (/01 erad v(t) dt) z.

Using the decomposition [I2)), we conclude that there exist 71 € Pr41(2; T) and
q € Pr+1(22) such that v = 71x + gx. Again by (30), we have

wrr(qx) = WRTY — TR (T12) =0,

which indicates (div(¢x))(0,0,0) = 0. As div(qz) = (x - V)q + 3¢, we conclude
q(0,0,0) = 0. Again using the fundamental theorem of calculus to conclude that
there exists g, € Px(Q;R?) such that ¢ = q]@. Taking T = 71 + 3zq] — Lqlal €
Pr1(T), we get
TC =T+ xq]T =TT+ qxT = V.

(3) Pr(4;S) Nker((-) x @) = Pr_2(Q)xaT, i.e. if T xx =0 and 7 € P,(£2;S), then
there exists a ¢ € Pr_2(Q), s.t. T = qxaT.

Thanks to 7 x = 0, there exists v € P,_1(Q;R3) such that 7 = vaT. By the
symmetry of 7, it follows

(zv) xx=(ve")Txz=7Tx2=0,

which indicates v x & = 0. Then there exists ¢ € Py_2(Q2) satisfying v = gx. Hence
T =qxxT.
(4) Prg1 (4 T) Nker((+) - &) = Pr(S) x x.
It follows from steps (1) and (2) that
dim(Pr41 (4 T) Nker((+) - @) = dim P11 (4 T) — dim(Pg1(Q; T)x)
= dim Py 1(Q; T) — dim (P 2(2%; R?) Nker(wgr))
= dim Py 1(Q;T) — dim Py o (Q; R?) + 4

1
(32) = 6(5k3 + 36k + 67k + 36).
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And by step (3),
dim(Pr(;S) x ) = dim P (2; S) — dim(Px(Q;S) Nker((-) x x))
= dim P (Q;S) — dim(Py_o(Q)xxT)
1
= 6(5k3 + 36k* + 67k + 36),

which together with ([82)) implies P11 (€2; T) Nker((-) - ) = P(;S) x @,
Therefore the complex (29) is exact. O

3.4. Decomposition of polynomial tensors. Those two complexes (25]) and ([29))
can be combined into one double-direction complex

c dev grad sym curl div div
RT = Pri2 (4 R) =—=Pppa (4 T) == Pr(€%S) == Pr—2(2) == 0.
™ . x xzxT

Unlike the Koszul complex for vector functions, we do not have the identity prop-
erty applied to homogenous polynomials. Fortunately decomposition of polynomial
spaces using Koszul and differential operators still holds.

Let H () := Py (92) /Pr_1(€2) be the space of homogeneous polynomials of degree
k. Then by Euler’s formula

(33) x-Vg=kq VqeH(Q).
Due to (B3], we have

(34) P (2) Nker(z - V) = Po(Q),
(35) Py(2) Nker(z -V +¢) = {0}

for any positive number /.
It follows from (B1) and the complex ([29]) that

Prio(QR?) = Pp (4 Tz @ RT.
We then move to the space Pyy1(£2;T).
Lemma 3.4. We have the decomposition
(36) Pri1(T) = (P(S) x @) © dev grad Py42 (2 R?).
Proof. Let us count the dimension.
k+4
dim P11 (4 T) = 8( _i'),_ ),
while by the exactness of the Koszul complex (29))
dim Py (;S) x € = dim P (' S) — zxTP;_2(0)
_fk3) (k1
S\ 3 3 )
dim dev grad Py, 2(Q; R?) = dim Py 2(Q; R?) — ker(dev grad)
k+5
=3 —4.
(3")

By a direct computation, the dimension of space on the left hand side is the sum-
mation of the dimension of the two spaces on the right hand side in ([B6). So we
only need to prove that the sum in (86 is a direct sum.
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Take T = dev grad q for some q € Py, 2(2;R?), and also assume 7 € P, (Q;S) x x
We have T - & = (devgradq) - « = 0, that is

(37) (eradq) - @ — %(div q).

Since div((grad q) - ) = (1 + x - grad) div q, applying the divergence operator div
on both sides of (37) gives

1
(14 x-grad)divg = 5(3 + x - grad) div q.

Hence (x - grad) div ¢ = 0, which together with (84]) indicates divg € Py(€2). Due
to (87), (grad q) - z is a linear function. It follows from (33) that g € P;(2;R?) and
7 = devgrad g € Po(€2; T), which together with -« = 0 implies 7 = 0. a

Finally we present a decomposition of space Py (€;S). Let
Cr(2;S) == symeurl Ppyq(T), CT(%S) i=xzTP;_o(Q).
Their dimensions are
(38)  dim Ci(%S) = %(51@3 + 36k + 67k + 36), dimCP(S) = é(ki" — k).

The calculation of dim C(©;S) is easy and dim Cj($;S) is detailed in (7).

Lemma 3.5. We have
(i) divdiv(zxTq) = (k+ 4)(k + 3)q for any q € Hi(Q).
(i) divdiv: CP(%S) — Pyr_2(R) is a bijection.
(i) Px(€:S) = Cp(4S) & CP(;S).
Proof. Since div(zaTq) = (div(xq) + ¢)x and div(xzq) = (z - V)q + 3¢, we get
(39) divdiv(zzTq) =div(((z - V+4)g)z) = (- V +3)(x -V +4)q.

Hence property (i) follows from (B3]). Property (ii) is obtained by writing P,_2(Q) =
EBk 2 H,(Q2). Now we prove property (iii). First the dimension of space on the left

hand side is the summation of the dimension of the two spaces on the right hand

side in (iii). Assume q € Py_o(f2) satisfies xxTq € Ci(£;S), which means
divdiv(zxTq) = 0.

Thus ¢ = 0 from (B9) and (B3] and consequently property (iii) holds. O

For the simplification of the degrees of freedom, we need another decomposition
of the symmetric tensor polynomial space, which can be derived from the polyno-
mial Hessian complex

hess

C
(40)  P1(2) == Pry2(Q) =—=P(%:S) S B (O T) = By (5 RY) === 0,

sym(Txx) dev(vaT) 2

where mv = v(0,0,0) + x7(Vv)(0,0,0). A proof of the exactness of (40) is similar
to that of Lemma[3.3]and can be found in [5]. Based on (40), we have the following
decomposition of symmetric polynomial tensors.

Lemma 3.6. It holds
(41) Pr(€%S) = V2P, 2(Q) @ sym(Pr_1(Q; T) x x).
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Proof. Obviously the space on the right is contained in the space on the left. We
then count the dimensions of spaces on both sides:
k+3

dim Py, (; S) = 6( 5

) =(k+3)(k+2)(k+1),

dim v2pk+2(Q) == dlmPkJrQ(Q) —dim ]Pl (Q) = (k + 5) — 4,

3
dimsym(Py,_1 (4 T) x &) = dimPj,_; (4 T) — dim Py _»(Q; R?)
k+2 E+1\ 1
(42) :8< _;: )-3( ‘; )zg(k+1)k(5k+19).

Then by a direct calculation,
dim V2P 2(Q) + dim sym(Py_1(Q; T) x x) = dimP(Q;S) = k* + 6k + 11k + 6.
We only need to prove that the sum is direct.

For any 7 = V2q with ¢ € Py, 2(9) satisfying 7 € sym(Py._1(Q; T) x ), it follows
(x-V)(z-V)g—q) =xT(V3q)x = 0. Applying (34) and [B3), we get ¢ € P1(Q2)
and V2¢ = 0. Thus the decomposition (41]) holds. ]

Similarly for a two-dimensional domain F' C R?, we have the following div div
polynomial complex and its Koszul complex

sym curl divp div
(43) RT% Pjoy1(F;R?) L_T>FPk(F;S) == Py_o(F) ==0,
TR .z zxT

where mr7v = v(0,0) + 3(divw)(0,0)z, 1 = (22, —21)T is the rotation of =
(z1,22)7. A two-dimensional Hessian polynomial complex and its Koszul complex

are
C Vi“ rotp

(44) Pi(F) == Ppi2(F) == P(F;S) =—= Py_1(F) =0,
1 zTrx sym(z—vT) =)

where mv = v(0,0) + xT(Vv)(0,0). Verification of the exactness of these two
complexes can be found in [6] which leads to the decompositions

Py (F;S) = symcurlp Py 1 (F;R?) @ xxTPy_o(F),
Py(F;S) = ViPy1o(F) @ sym(z Py (F; R?)).

4. GREEN’S IDENTITIES AND TRACES

We first present a Green’s identity based on which we can characterize two traces
of H(divdiv,Q;S) on polyhedrons and give a sufficient continuity condition for a
piecewise smooth function to be in H (div div, Q;S).

4.1. Notation. Let {7, }r>0 be a regular family of polyhedral meshes of Q. Our
finite element spaces are constructed for tetrahedrons but some results, e.g., traces
and Green’s formula etc., hold for general polyhedrons. For each element K € Tj,
denote by n g the unit outward normal vector to 9K, which will be abbreviated as n
for simplicity. Let Fp,, Fi, En, E;, Vi, and V), be the union of all faces, interior faces,
edges, interior edges, vertices and interior vertices of the partition 7}, respectively.
For any F' € F},, fix a unit normal vector nr and two unit tangent vectors tp
and tpo, which will be abbreviated as t; and ¢, without causing any confusions.
For any e € &, fix a unit tangent vector t. and two unit normal vectors n.; and
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T 2, which will be abbreviated as n; and ny without causing any confusions. For
K being a polyhedron, denote by F(K), £(K) and V(K) the set of all faces, edges
and vertices of K, respectively. For any F € Fp,, let £(F) be the set of all edges of
F. And for each e € £(F'), denote by ng. the unit vector being parallel to F' and
outward normal to JF. Furthermore, set

FUK)=F(K)NF,, E(F):=EF)NE,.
4.2. Green’s identities. We first derive a Green’s identity for smooth functions

on polyhedrons.

Lemma 4.1 (Green’s identity for div div operator in 3D). Let K be a polyhedron,
and let T € C*(K;S) and v € H*(K). Then we have

(divdivT,v) g = (T, VZ0)g — Z Z (NE.TN,v),
FEF(K) e€E(F)

(45) = Y ((Itn,0,0)p — (2dive(Tne) + O (nTTn), 0)F] .
FeF(K)

Proof. We start from the standard integration by parts
(divdivT,v) g = —(divT, Vo) g + Z (nTdivT,v)p

FEF(K)
= (T,VQU)K — Z (tn,Vu)p + Z (nTdivT,v)p.
FeF(K) FEF(K)

We then decompose Vv = 0,vn + Vv and apply the Stokes theorem to get
(tn,Vo)p = (Tn,0pvn + Vo) p
=(nTrn,0,v)p — (divp(Tn),v)r + Z (N TN, V)e.
c€E(F)
Now we rewrite the term
(nTdivr,v)r = (div(tn),v)r = (divp(tn),v)r + (On(nTTn),v) .

Thus the Green’s identity (43]) follows by merging all terms. O

When the domain is smooth in the sense that £(K) is an empty set, the term
ZFE}-(K) ZSGS(F) (n})eTn, v)e disappears. When v is continuous on edge e, this
term will define a jump of the tensor .

A similar Green’s identity in two dimensions is included here for later usage. To
avoid confusion with the three-dimensional version, n. is used to emphasize it is a
normal vector of edge e of polygon F' and differential operators with subscript F'
are used.

Lemma 4.2 (Green’s identity for div div operator in 2D). Let F be a polygon, and
let T € C3(F;S) and v € H*(F). Then we have

(divp dive 7,0)p = (T, VE0)F — Z Z sign, 5(tTTn.)(0)v(d)
e€E(K) d€0e

- Z [(nITne, 0nv)e — (20:(tTTN.) + On(nITN,), V)],
ecE(K)
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where
. 1, if 0 is the end point of e,
sign, 5 := T ,
' —1, if 0 is the start point of e.

Here the trace 20;(t71n.) + Op(nltn.) = 0:(t71Tn.) + nl divr is called the

effective transverse shear force respectively for 7 being a moment and n]7n. is the
normal bending moment in the context of elastic mechanics [11].

4.3. Traces and continuity across the boundary. The Green’s identity (43])
motivates the definition of two trace operators for function = € H (divdiv, K;S):
tri(7) =nTrn,
tro(7) = 2divp(mn) + 0, (nTrn) = divp(tn) + nT divr.

We first recall the trace of the space H(divdiv, K;S) on the boundary of poly-
hedron K (cf. [12] Lemma 3.2] and [20,23]). Let HS({2 (F) be the closure of C3°(F)
with respect to the norm ||-|| gr1/2(9 k), which includes all functions in H'/2(F) whose
continuation to the whole boundary K by zero belongs to H'/2(0K). Define the
following trace spaces

HYS(OK) = {8,v|ox - v € HX(K) N HY(K)}

= {g € L*(OK) : g|r € Hy}*(F) YV F € F(K)}

with norm
; = inf
19l 7272 016/ L S [[v]|2:
Inv=g
and

H%z(@K) = {v|or 1 v € H*(K),dnv|ox = 0,9 = 0 for each edge e € £(K)}
with norm
= inf  ||v]e.

vEH2(K)
Opv=0,v=g

Let Hy ?(0K) := (H./3(9K)) for tr1, and H, **(0K) = (H})*(9K))’ for tr,.
Lemma 4.3 (Lemma 3.2 in [12]). For any T € H(divdiv, K;S), it holds

HnTTnHH;UZ(aK) + ||2diVF(Tn) + 871(77’1-7-")”]{;3/2(5]() 5 ||T||H(divdiv,K)-

HgHHi/OZ(BK)

Conwversely, for any g, € H;1/2(8K) and g; € H;S/Q(aK), there exists some
T € H(divdiv, K;S) such that

n'tnlox = gn, 2divp(Tn)+ 0,(nTTn) = g,

”T”H(divdiv,K) S Hg”HH;1/2(8K) + ”gtHHt_s/Q(@K)'
The hidden constants depend only the shape of the domain K.

Notice that the term (nf ,7n,v)e in the Green’s identity (43) is not covered
by Lemma [4.3] Indeed, the full characterization of the trace of H(divdiv, K;S) is
defined by (divdivr,v) — (‘r, VQU) » Which cannot be equivalently decoupled [12,
Lemma 3.2]. It is possible, however, to face-wisely localize the trace if imposing
additional smoothness.

We present a sufficient continuity condition for piecewise smooth functions to be
in H(divdiv, ;S).

Licensed to Univ of Calif, Irvine. Prepared on Thu Jun 2 14:01:25 EDT 2022 for download from IP 128.195.75.73.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



FINITE ELEMENTS FOR DIV DIV SYMMETRIC TENSORS 1123

Lemma 4.4 (cf. Proposition 3.6 in [12]). Let T € L*(Q;S) such that
(i) 7|k € H(divdiv, K;S) for each polyhedron K € Ty;
(ii) (2divp(Tnp) + On,.(nTTn))|r € L3(F) is single-valued for each F € Fj ;
(ili) (nTTn)|p € L3(F) is single-valued for each F € F;;
(iv) (n]Tn;)|c € L?(e) is single-valued for each e € &}, i,j = 1,2,
then T € H(divdiv,;S).
Proof. For any v € C§°(Q2), we get from the Green’s identity (43) that

(r,V?0) = Z (divdiv T, v) g + Z Z Z (Nf TN, )

KeTn KeTn FEF(K) ee€i(F)
+ Z Z [(mTTn,0,v)p — (2divp(Tn) + 0, (nTTn),v)p].
KET, FEFi(K)

Since the terms in (ii)-(iv) are single-valued and each interior face is repeated twice
in the summation with opposite orientation, it follows

(divdivT,v) = Z (divdivT,v) k.

KEeT
Thus we have T € H (divdiv,2;S) by the definition of derivatives of the distribu-
tion, and (divdivT)|x = divdiv(r|x) for each K € Tj,. O

For any piecewise smooth 7 € H (div div, ©; S), the single-valued term (n]7n;)|.
in Lemma [4.4(iv) implies that there is some compatible condition for 7 at each
vertex § € Vi. Indeed, for any § € Vi and F € F} with § being a vertex of F, let
ny; =t; X np and ny = t3 X np, where t; and t, are the unit tangential vectors of
two edges of F' sharing §. Then by (iv) we have

[nimni]r(0) =[niTne]r(d)=[nErnr]r(d)=[n]rnr]r(8)=[n]Tnr]r(5)=0,
where [-] 7 is the jump across F. Hence this suggests the tensor value at vertex as
the degree of freedom when defining the finite element.

Continuity of (n]7Tn;)|. is a sufficient but not necessary condition for functions

in H (divdiv, Q;S). Sufficient and necessary conditions are presented in [12, Propo-
sition 3.6].

5. DIVDIV CONFORMING FINITE ELEMENTS

In this section we construct conforming finite element space for H (div div, ;)
and prove the unisolvence.

5.1. Finite element spaces for symmetric tensors. Let K be a tetrahedron.
Take the space of shape functions

20 x(K) = Co(K;S) @ CP(K;S)
with k > 3 and ¢ > max{k — 1,3}. Recall that
Ce(K;S) = symcurl Ppiq (K;T), CP(K;S)=zxTP)_o(K).
By Lemma [3.5] we have
]Pmin{é,k} (Ka S) c Ei,k(K) c IP)Inax{f,k} (Ka S) and Ek,k(K) =P (Kv S)

The most interesting cases are £ = k — 1 and ¢ = k, which are analogous to
RT (incomplete polynomial) and BDM (complete polynomial) H (div)-conforming
elements for the vector functions, respectively.
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For each edge, we choose two normal vectors nn; and ny. The degrees of freedom
are given by

(46) T(0) VoeV(K),

(47) (n]tn;,q)e YV qePisle),ecé(K), i,j=1,2,
(48) (nTtn,q)r YV qeP3(F), FeF(K),

(49) (2divp(tn) + 0,(nTTn),q)r V qeP,_1(F), F € F(K),

(50) (T,6)x Vs € VP oK),

(51) (7,9)x Vs €sym(Pr(K;T) x @),

(52) (tn,nxxq)r, YV q€Peo(Fh),

where F; € F(K) is an arbitrary but fixed face. The DoF (52)) is regarded as interior
to the tetrahedron K, that is (52) will be double-valued if F' € F} is selected in
different elements.

Before we prove the unisolvence, we give a characterization of the space of shape
functions restricted to edges and faces, and derive some consequences of vanishing
degrees of freedom.

Lemma 5.1. For any T € 3, (K), we have
nltn;l. € Py(e), nTrn|p € Py(F), 2divp(tn)+d,(nTrn)|r € Pi_i(F)
for each edge e € E(K), each face F € F(K) and i,j =1,2.

Proof. Take any 7 = xxTq € C?(K; S) with ¢ € Py_2(K). Since n]x is constant
on each edge of K and nTx is constant on each face of K,

nltn;l. = (nZTa:)(nJT:c)q €Pr_s(e), mTrn|p = (nTz)’q € Pp_o(F),

and
2divp(tn) + 0 (nTrn) = (divp(tn) + nTdivT)|p
=nTz(divp(zq) + div(zq) + ¢) € Pr_a(F).
Thus we conclude the results from the requirement ¢ > k — 1. O

Lemma 5.2. For any T € Xy ;,(K) with the degrees of freedom (48)-(E1) vanishing,

we have
(53) nltn;l.=0 Veel(K), i,j=1,2,
(54) nTrn|lp =0 V F e F(K),
(55) (2divp(tn) + 0,(nTTn))|F =0 V F € F(K),
divdivrT =0,
(56) (T,6)k =0 VY se€Pryi(K;S).

Proof. According to Lemmal5.1], we acquire (53)-(58) from the vanishing degrees of
freedom (M6)-([49) directly. The scalar function nTrn|r is the standard Lagrange
element and the vanishing function value 7(J) at vertices is used to ensure (B4)).
Noting that divdivT € Py_o(K), we get from the Green’s identity (45), (B3)-
(BE) and the vanishing degrees of freedom (B0) that divdivT = 0. Applying the
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Green’s identity ([43)) and (G3)-(55), it follows
(1,V*)g =0 VYve H*(K),
which together with (5I]) and the decomposition (1)) yields (B6). O

With previous preparations, we prove the unisolvence as follows. For any T €
¥y x(K) satisfying divdiv T = 0, since divdiv : C¥(K;S) — P_2(K) is a bijection
by Lemma B.5] we have 7 € Cy(K;S) C Py(K;S). By (B6) the volume moments
can only determine the polynomial of degree up to ¢ — 1.

We then use the vanished trace. Similar to the RT and BDM elements [2], the
vanishing normal-normal trace (B4]) implies the normal-normal part of 7 is zero.
To determine the normal-tangential terms, further degrees of freedom are needed.

Unlike the traditional approach by transforming back to the reference element,
we will choose an intrinsic coordinate. For ease of presentation, denote the four
faces in F(K) by F;, which is opposite to the ith vertex of K, and by n; the outward
unit normal vector of F; for i = 1,2,3,4. Let t; be the unit tangential vector of
the edge from vertex 4 to vertex i; see Fig.[2l The set of three vectors {¢1,ts,t3}
forms a basis of R? although they may not be orthogonal in general. Consequently
{tit;}ijzl forms a basis of the second order tensor and tIn; # 0 for i = 1,2,3.
Let A\;(x) be the ith barycentric coordinate with respect to the tetrahedron K for

FIGURE 2. Local coordinate formed by three edge vectors

i=1,2,3,4. Then \;|r, =0 and V\; = —¢;n; for some ¢; > 0.
Theorem 5.3. The degrees of freedom [Q)-(B2)) are unisolvent for 3y 5 (K).

Proof. We first count the number of DoFs (46])-(52)). Calculation of DoF (51 can
be found in (42). The number of DoFs (46)-(52) is

24 +18(0 — 1) +2[(( — 1)(£ — 2) + (£ + 1)4]
+ %(k?’ —k)—4+ %e(e —1)(50+14) + %e(e -1)
:é(wi” + 3602 + 67¢ + 36) + %(k?’ — k),
which is the same as dim Xy, (K), cf. (38)).
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1126 LONG CHEN AND XUEHAI HUANG

Take any 7 € 3 5 (K) and suppose all the degrees of freedom (H@)-(52) vanish.
We are going to prove the function 7 = 0. Using the local coordinate sketched in
Fig. @l we can expand 7 as

nlTn;
(tini)(tin;)

i

3
T = Z Tijtit; with Tij =
ij=1
Then T is represented as a matrix (7;;). As 7T is symmetric, 7;; = 7;;. By (64), it
follows

Tii

_ T | — C_
F; = (t;rni)gniTnlei _Oa 1= 17273~

Thus there exists g;—1 € Py_1(K) satisfying 7;; = Ajge—1 for ¢ = 1,2,3. Taking
¢ = qe—1n;n] in (B6) will produce

(57) =0, i=1,23.

Namely the diagonal of 7 is zero. So far, in the chosen coordinate, n]7rn4 = 0 has
no simple formulation and will be used later on.

On the other hand, from (53) we have IIp, (7n1) € Ho(divg,, F1). Asnltn, =
(tIny1)?m11 = 0in K, cf. (57), it follows 0, (n]Tny)|r, = 0. Therefore (55) becomes

2diVF1 (Tn1)|pl =0.

Hence there exists gr—a € Py_o(F1) such that (ny X (7m1))|r, = Vi, (b qe—2),
where b, is the cubic bubble function on face F;. Together with (52)) and the fact
divp, (xPr_o(F1)) = Py_o(Fy), we get (ny x (7n1))|r, = 0. Thus (7ny)|rp = 0.
Then there exists q,_; € Py_1(K;R?) such that 71 = A\1q,_,, combined with (56,
yields 7m1 = 0. That is the first row of 7 is zero, i.e. 711 = T2 = 7913 = 0.

By the symmetry, now 7 = 2753 sym(¢2t}). Multiplying 7 by n4 from both sides
and restricting to Fy, we have

1 nlmrny
7'23|F4 = 5( 4 =0.

DERIDENES
The denominator is non-zero as to, t3 are non-tangential vectors of face Fy. Again
there exists qo—1 € Py_1(K) satisfying 703 = Asqe—1. Taking ¢ = sym(2t])qr—1
in (B6) gives 793 = 0. We thus have 7 = 0 and consequently the uni-solvence. [

Due to ([@9), it is arduous to figure out the explicit basis functions of 3 ;(K),
which are dual to the degrees of freedom (6)-(52). Alternatively we can hybridize
the degrees of freedom (M9), and use the basis functions of the standard Lagrange
element [6].

5.2. Polynomial bubble function spaces. Let
By x(divdiv, K;S) := {7 € X/ ;(K) : all degrees of freedom (46)-([49) vanish}.
Together with vanishing (50)), we can conclude that divdiv ™ = 0. In view of Fig.[ll
and Lemma[5.2] the last two sets of DoF's (&1l)-(52) can be replaced by
(1,6)k V¢ €By(divdiv, K;S) Nker(div div).

Next we give characterization of By ;(div div, K;S) N ker(div div).

By the exactness of div div complex (20), if divdiv T = 0 and tr(7) = 0, it is pos-
sible that 7 = sym curl o for some o € By (symcurl, K;T) := Hy(symcurl, K; T)
MPpy1(K;T). We will give an explicit characterization of Byyq(sym curl, K; T),
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show By i (div div, K;S) N ker(divdiv) = sym curl By (sym curl, K; T), and conse-
quently get a set of computable and symmetric DoFs.
We begin with a characterization of the trace of functions in H (sym curl, K; T).

Lemma 5.4 (Green’s identity for sym curl operator). Let K be a polyhedron, and
let € H' (K;M) and o € H'(K;S). Then we have

(symcurlT,0) g = (1, curlo) g — Z (symIlp(r x n)lp, pollp)p
FeF(K)

- Z (n-Txn,n-ollp)p.
FeF(K)
Proof. As o is symmetric,
(symcurlT, o) = (curlT,0)k = (T, cwrlo)k — (T X N, 0)oK.
On each face, we expand the boundary term
(T X TL,O’)F = (HF(T X TL)HF,HFO'HF)F + (n ST XN,Mm- O'HF)F.
Then we use the fact IIpollp is symmetric to arrive at the desired identity. O
Based on the Green’s identity, we introduce the following trace operators for

H (sym curl) space

(1) tri(7) :=psym(T x n)lg,

(2) tr{ (T) :=n x sym(T x n) x n,

(3) tra(T) i=mn -7 X n.
Both try(7) and tri (7) are symmetric tensors on each face and try(7) is a vector
function. Obviously try(7) = 0 if and only if tr{-(7) = 0 as tri(7) is just a rotation

of try (7). Using the trace operators, H (sym curl) polynomial bubble function space
can be defined as

Byyi(symeurl, K;T) := {7 € Ppy1(K;T) : (n-7 xn)|p =0,
(nxsym(T xn)xn)|lp=0 VFeF(K)}.
We shall give an explicit characterization of By (sym curl, K;T).
Lemma 5.5. Let 7 € Byyq(symcurl, K;T). It holds
(58) Tl =0 Veec&(K).

Proof. 1t is straightforward to verify (G8) on the reference tetrahedron for which
e = (1,0,0) and two normal vectors of the face containing e are n; = (1,0,0) and
ny = (0,0,1). To avoid complicated transformation of trace operators, we provide
a proof using an intrinsic basis of T on K.

Take any edge e € £(K) with the tangential vector ¢. Let n; and ns be the unit
outward normal vectors of two faces sharing edge e. Set s; :=t x n; for i = 1,2.
By a direction computation, we get on edge e for i = 1,2 that

nltt=(n;, -7 xn;)- s =0,
nlts;=—(n;-Txn;)-t=0,

tTrt —s]Ts; =2t -sym(T x n;) -8, =2s; - (n; X sym(T xn;) X n;) -t =0,

tTrs; = —t-sym(T xn;) - t=s;  (n; xsym(7T x n;) xn;)-s; =0.
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1128 LONG CHEN AND XUEHAI HUANG

Both span{si, s2} and span{ni,ns} form the same normal vector space of edge e;
then the last identity implies

tTrn; = 0.
Then it is sufficient to prove the eight trace-free tensors
(59) nitT, notT, nysl, nosl, tnl, tnl, t17T —sis], t1T — 598
are linearly independent. Assume there exist ¢; € R for i = 1,...,8 such that
natT 4 conat™ + c3nys] + canasd + cstn] + cgtnl
+er(EtT — s187) + cs(EtT — s287) = 0.
Multiplying the last equation by ¢ from the right and left respectively, we obtain
cny +cong + (cr +cg)t =0, cznd + cgnl + (e7 + ¢s)tT = 0.

Hence ¢1 = co = ¢5 = ¢g = ¢7 + cg = 0, which yields

€3M18] + canasd + cr(s28d — s187) = 0.
Multiplying the last equation by 7y from the right, it follows

(82 -m1)(camng + c782) = 0.

As aresult ¢4 = ¢; =0, and then ¢3 = 0. O

We write Py (K;T) as Pypy1(K) ® T and use the barycentric coordinate repre-
sentation of a polynomial. That is a polynomial p € Py;q(K) which has a unique
representation in terms of

4
(60) P=ATASASNY, D ey =L+ 1,0, €N.

i=1
Lemma [5.5] implies that p must contain a face bubble bp = X\;A; A, where (4, j, k)
are three vertices of F'. Otherwise, if p = )\f"")\?‘j ,a5+ o = £+1, then p is not zero
on the edge (4, j).

We consider the subspace bpP,_o(K)®T and identify its intersection with ker(tr).
Due to the face bubble bp, the polynomial is zero on the other faces. So we only
need to consider the trace on face F'. Without loss of generality, we can choose the
coordinate s.t. mnp = (0,0,1). Choose the canonical basis of T associated to this
coordinate. Then a direct calculation to find out ker(tr) N'T consists of

0 01 0 0 O 1 0 0
0 0 0,0 O 1)J,and (O 1 O
0 0 0 0 00 0 0 -2

Switching to an intrinsic basis, we obtain the following explicit characterization of
Byy1(symcurl, K; T).

Lemma 5.6. For each face F, we choose two unit tangent vectors ti,ts s.t.
(t1,t2,mp) forms an orthonormal basis of R®. Then

(61) B£+1(Sym curl, K? T) = Span{prwszp € P£72(K)’ Fe f(K)a i = 1; 2> 3}a
where the three trace-free tensors are:

Ui =tinl, ¥F =tenl, Ui =tt] +tet] —2npnl.
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Proof. Using the formulae (10)-(LI]), by the direct calculation, we can easily show
z/Jf € ker(trp) N'T for each face F and ¢ = 1,2,3, where trp denotes the trace
operators (try, try) restricted to F. As dimker(trp) N'T = 3, we conclude that

ker(trp) N (bpPy_o(K) ® T) = span{pbpf ,p € Py_o(K),i = 1,2,3}.
By Lemma [5.5] we know that
ker(tr) N (Pey1 ® T) = Up ker(trp) N (bpPr—2(K) @ T)
and thus (61)) follows. O

We only give a generating set of the bubble function space as the 12 constant
matrices {¢f, 5 ¢l F € F(K)} are not linearly independent. Next we find out
a basis from this generating set.

Lemma 5.7. Let (i, j, k) be three vertices of face ' and Py—2(F) = {A\{" AJ* A%, an
+agtaz = 0-2,0,€N,i=1,2,3}. Define B i1 := bpPy_o(F)@span{yf o 1}
and By p+1 = bPr—3(K) @ span{y’,vf F € F(K)}. Then

(62) Bg+1(sym curl, K; T) = @Fe}"(K)BF‘7£+1 D BK74+1,

and consequently

dim By (symcurl, K;T) = ;Z(ﬁ —1)(20+5) = %(4@3 + 662 — 10¢).
Proof. The 12 constant matrices {¢pf", 5 41" F € F(K)} are not linearly indepen-
dent as dimT = 8. Among them, {f, ¢ F € F(K)} forms a basis of T which
can be proved as verifying the linear independence of (59) in Lemmal[5.5]or see [15].
For each pbp, with p € P;_5(K), we can group into either bxP,_35(K) or
bpPy_o(F') depending on if the polynomial p|p is zero or not, respectively. That is,
for one fixed face F:

bFPg,Q(K) = bF]P)g,Q(F) [S2) bKIP)gfg(K).

The sum is direct in view of the barycentric representation (60]) of a polynomial.
Then coupled with {1}, we get the basis (62)) of the bubble function space.
The dimension of By (symcurl, K; T) is

1
4-3-dimP,_o(F) + 8dimPy_3(K) = g(463 + 6% — 100),
as required. ([l

We then verify symcurl Byyq(symcurl, K;T) C By (divdiv, K;S) by verifying
all boundary DoF's vanish.

Lemma 5.8. Let 7 € Byyi(symecurl, K;T). Assume edge e € E(K) is shared by
faces F; and F;. It holds n] (symcurl 7)n;|. = 0.

Proof. For the ease of notation, let o = sym curl 7. Suppose
3
= > arbeyf
FeF(K) I=1
with qp; € Pr_2(K). By bp|. =0, we get

3
nlonl. =
i jle = qr,

FeF(K) I=1

e(n] sym curl(bF¢f)nj) le-
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1130 LONG CHEN AND XUEHAI HUANG

Since Aj|le = Ajle =0, we can see that (n; X ng - Vbr)|e = (n; x ng - Vbg)|. = 0.
Thus for [ =1, 2,

2(n] sym curl(bpypf )n;)|e

=—(n; - (bptinp) x V-n;j)|lc — (n; - (bpting) X V- n;)|.

=n;-ti(np xn; - Vbp)lc+n;-t)(nrp X n; - Vbp)|.

=0.

Next consider [ = 3. When F # F}, the face bubble by has a factor Aj;, which
implies (n; x Vbg)|e = 0. Thus
(n] curl(bpys )n;)|e = —(ni - (bpps) X V-ny)le = (ni - ¢35 - (n; x Vbr))| = 0.

When F' = F}, the face bubble by has a factor A;. By the fact that (i,t2,n;)
forms an orthonormal basis of R3,

n; - ta(te xnj - V) =n; - (i X t)(t - V) = —(t1- V) (ny xn; - )
=-—n;-ti(n; x VX - t1),
which implies
n;-ti(n; X V- t1) +n; - ta(n; x VA - t3) = 0.

As a result,

(n] curl(bppdn;)|e = ni - ti(n; x Vb - t1)|e + n; - ta(n; x Vbg - t2)]e = 0.
Similarly (n] curl(bpy )n;)|. = 0 holds. Hence (n] sym curl(bpi3 )n;)|e = 0.

Therefore n]on;|. = 0. O

Next we show the two traces tro(7) is in H(divp) and tri(7) in H(divy divg).

Lemma 5.9. When o = symcurl 7 with T € H2(K;M), we can erpress the trace
in terms of the differential operators on surface F' of K

(63) nTon =divp(n-7 xn),
(64) Vi-(nxo-n)+nTdive = —rotprotp(n x sym(r x n) x n)
= diVF diVF(HF sym(T X n)HF)
Proof. By
1 1_, 1 N

TLTG"n:§n~(v><(TT)—TXV)'TL:§VF~(TT)~7L+§7L~T~VF

and the fact V- (77)-m=mn-7- V5, we get
nTon=mn-7- Vg =rotp(n - 7llx).

Then the identity (63) holds from (1S).
Next we prove (64). Employing (1) with v =77 - n,

1 1
=§V}%~(n><(V><(TT~n)))—|—§V}%~(n><T)~VI%

1 1
:EV}%.(V(n-TT-n)—én(TT-n))+§Vf-(nxr)-V}%

1 1
= —§V1% (Op(rT - m)) + 5V§ (nxT) Vi,
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On the other side, we have

1 1
n~diva:n~a~V:§n~(V><(TT))~V=§V#-(TT)-V
1 1 1
= EV;-(TT)-(nanJrVF): iv;(an(rT-n))+§v#-(TT)-vF

= %Vf (On(rT - m)) — %V}; (T xn)- V.
The sum of the last two identities gives
Vi -(nxo-n)+n-dive = Vi -sym(n x 71lp) - V£.
Therefore (64) follows from sym(n x 7IIr) = —n X sym(T X n) X n. O

Note that V£ - (n x o -mn) + nT divo is an equivalent formulation of the second
trace of o. Lemma [5.9] implies the following trace complexes

C dev grad sym curl div di
RT v T c sy
l j l j ,
C —curlg divp
R vn n-Txn—-sn-oc-n——>0
and
C dev grad sym curl div di
RT v ivdiv
l C l/ — sym curl l/ divp dive l
RTr IIrv 1y sym(T x n)llp tra(o) 0

Those trace complexes will guide the design of edge and face degrees of freedom to
ensure the required continuity.

5.3. The bubble complex. Combining Lemmas 5.8 and [5.9] gives the following
result.

Lemma 5.10. It holds
(65) symcurl Byyq (symcurl, K; T) C (B x(div div, K;S) Nker(div div)).

Proof. For T € Byyq(symecurl, K;T), by construction, n -7 xn = 0 and n X
sym(tT xn) xn =0 on JK. Let 0 = symcurl 7. Then by Lemma [5.9] DoFs (48])-
(49) vanish. By Lemma [5.8] ([@7) vanishes. As 7 contains a face bubble, o will
have an edge bubble function which means o(4) = 0 for all § € V(K). Therefore
sym curl Byyq (sym curl, K; T)C B, 1 (div div, K;S). The property div div(sym curl 7)
= 0 is from the divdiv complex. |

Indeed the “C” in (65) can be changed to “=". This will be clear after we
present a bubble complex. In the sequel, we denote by Pé_ll (K) the L?-orthogonal
complement space of Py (K) in P,_2(K) with respect to the inner product (-, ) k.

Lemma 5.11. For each K € Ty, it holds

(66) div div By i (div div, K;S) = Py, (K).
Consequently
(67) dim(By ; (div div, K;S) N ker(div div)) = %K(Z —1)(5¢+17).
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Proof. From the integration by parts, it is obviously true that
div div By, (div div, K;S) C Pr_y ;4 (K).
On the other side, for any v € P%ﬁz’l(K), due to the fact that divdiv H2(K;S) =
L*(K) N P{(K) [10], where P{-(K) is a subspace of L?(K) being orthogonal to
P, (K) with respect to the L2-inner product (-,-)x, there exists 7 € Hg(K;S) such
that
divdivT = v.
Then take T € By i (divdiv, K;S) with the rest DoF's
(T-T,9)k =0 Ve VP, oK)@symPr_o(K;T) x ),
(r—T)n,nxxq)p =0 VqePrs(F).

Applying the Green’s identity (45]), we get

(divdiv(t = 7),¢)k =0 V q € Pr_2(K).

This implies divdiv T = divdiv7 = v. Namely (66]) holds.
An immediate result of (G6]) is

dim(By x (div div, K; S) N ker(div div)) = dim By x(div div, K;S) — dimPy_o(K) + 4
1 1
= EE(E —1)(5¢0+14) + 55(6 -1)

_ %z(z ~ (50 + 17).

Define
Byyo(grad, K;R3) i= {v € Pryo(K;R?) : wlgx = 0} = bxPy_o(K;R?).
Now we are in the position to present the so-called bubble complex.

Theorem 5.12. The bubble function spaces for the divdiv complex

sym curl

dev grad Byt (symcurl, K; T) ——— By x(divdiv, K;S)

0 — Byyo(grad, K;R?)

(68) div div

]P)Ii—2,1(K) —0
form an exact sequence.

Proof. Take any v € By, o(grad, K;R3) with v|sgxr = 0. We have on each face
F e F(K),

(69) n - (devgradv) x n =n- (gradv) x n=—(n x V)(v-n) =0,

and
n x sym((devgradv) x n) x n =n x sym((gradv) x n) x n
= —n xsym(vVE) x n
(70) = —n x sym((Ilpv)VE) x n = 0.

Hence dev grad B, o (grad, K;R?) C B,y (sym curl, K; T) N ker(sym curl). Thanks
to Lemma [5.10l and (66)), we conclude that (68)) is a complex.
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We then verify the exactness from left to right.
(1) Byyq(symeurl, K;T) N ker(symecurl) = devgrad By o(grad, K;R?), i.e. if
symcurl =0 and T €Bey i (symecurl, K;T), then there exists a v € Byyo(grad, K;R?),
s.t. T = devgradwv.

Firstly, by the exactness of the polynomial divdiv complex (25), there exists
v € Ppyo(K;R3) such that 7 = devgradv. As RT = ker(dev grad), we can further
impose constraint [, v-n = 0 for each F' € F(K). By (69), we get v-n |p€ Po(F).
Hence v - n|p = 0, which indicates v(d) = 0 for each vertex 6 € V(K). By (Z0Q)), we
obtain sym((Ilpv)V#) = 0, i.e. Ilpv € Po(F;R?) + (IIpx)Po(F). This combined
with v(8) = 0 for each vertex § € V(F') means IIpv = 0, and then v|p = 0 for each
F € F(K). Thus v € Byyo(grad, K;R3).
(2) symcurl Byyq (symcurl, K; T) = By 1 (div div, K;S) N ker(div div).

By step (1), we acquire

dim sym curl By, 1 (sym curl, K; T)
= dim By (symcurl, K; T) — dim B, »(grad, K; R?)
= dim By (symcurl, K;T) — dim Py_o(K; R?)
(71) _ %e(e —1)(5¢ 4 17),
which together with (67]) indicates
dim sym curl Byyq (sym curl, K; T) = dim(By 5 (div div, K; S) N ker(div div)).
Together with (63) implies sym curl By (symcurl, K;T) = By (divdiv, K;S) N

ker(div div).
(3) div div By i (divdiv, K;S) = Pé‘_QJ(K). This is (66) proved in Lemma [5.11]
Therefore complex (68) is exact. O

As a result of complex (68]), we can replace the degrees of freedom (&1l)-([52) by
(72) (1.6)k V¢ €symcurl Bpiq(symcurl, K;T).
The dimension of (2] is counted in (T1l), which also matches the sum of (&I)-(52).

Below we summarize the unisolvence for space 3, ;(K) with different DoF's.

Corollary 5.13. The degrees of freedom {G)-(BQ) and (T2) are unisolvent for
Zok(K).
Notice that although Byyq(symcurl, K;T) is in a symmetric form, cf. (62)), the

degree of freedom (72) is indeed not simpler than (5I)-(52) in computation as
sym curl By (sym curl, K; T) is much more complicated than polynomials on a face.

5.4. Two-dimensional divdiv conforming finite elements. Recently we have
constructed divdiv conforming finite elements in two dimensions in [6]. Here we
briefly review the results and compare to the three-dimensional case.

Let F be a triangle. Take the space of shape functions

(73) 20k (F) = Co(F;S) ® CY(F;S)
with k > 3 and £ > max{k — 1,3} and
Co(F;S) = symeurly Ppiq (F;R?), CP(F;S) = zxTPy_o(F).

Here the polynomial space for H (sym curl, F'; R?) is the vector space not a tensor
space, which simplifies the construction significantly.
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The degrees of freedom are given by

(74) T(6) VdseV(F),

(75) (nlTne,q)e ¥ qePr_s(e),ec&(F),
(76) O tTTn,.) +nldivpT,9)e YV q€Py_q(e),e € E(F),
(77) (1.6)p Vs €VLP,_o(F),

(78) (1,9)r Vs €sym(xtPy_o(F;R?)).

Here to avoid confusion with the three-dimensional version, we use n. to emphasize
it is a normal vector of edge vector e.

The unisolvence is again better understood with the help of Fig. [II By the
vanishing degrees of freedom (74))-(7@), the trace vanishes. Then together with the
vanishing DoF (1), divdivT = 0. The DoF (78)) is to identify the intersection of
the bubble space and the kernel of div div. Define

By k(divp dive, F) := {7 € 3, 1 (F) : all degrees of freedom (74)-(76]) vanish}.

It turns out the space By x(divp dive, F)) Nker(divp divy) is much simpler in two
dimensions.
The key is the following formula on the trace trs.

Lemma 5.14. When 7 = symcurly v, we have
(79) O(tTTn.) + nl divp 7 = 0, (tTOv).
Proof. Since divg curlp v = 0, we have

nldivpT = %nl divp(curlp v)T = %nl curlpdivp v = %@ divpv.
As divp v = trace(V pv) is invariant to the rotation, we can write it as

divpv =tTVrvt + nIVpon, =t70,v + nlo,v.

Then

O(tTTn,) +nldivp T = %&[tTatv —nl0,v + divp v] = 0:(tT0v),
i.e. (9) holds. O
Lemma 5.15. The following bubble complex

sym curlp divp divp 1

0 = bpPy_o(F;R?) By, (divp dive, F) 25 P, (F) — 0

18 exact.
Proof. The fact that divp divp : By g(dive dive, F') — }P’klim(F) is surjective can
be proved similarly to Lemma [5.11]

For 7 € By ;. (divp dive, F') Nker(divp divg), from the complex ([43)), we can find
v € Ppyi(F) s.t. symceurlpv = 7. We will prove v|sr = 0.

Since RT = ker(sym curlg), we can further impose constraint [ v-n, = 0 for
each e € E(F). The fact (nlTn.)|sr = 0 implies

O (niv)lor = (nl1ne)lor = 0.

Hence nJv|sr = 0. This also means v(§) = 0 for each 6 € V(F).

By Lemma [5.14] since

O (tTTn,) + nl divp 7 = 0;(tT0pv)
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and (0;(t"tn.) + nl divp 7)|sr = 0, we acquire
O (tTv)|or = 0.
That is tTv|, € Py(e) on each edge e € E(F). Noting that v(§) = 0 for each
0 € V(F), we get tTw|sr = 0 and consequently v|sr = 0, i.e.,
v ="bpiy_y, forsome ¢y o € Py_o(F;R?).

We now prove the unisolvence as follows.
Theorem 5.16. The degrees of freedom ([[4)-(T8)) are unisolvent for Xy 1, (F) (T3).

Proof. We first count the number of DoF's ([74)-([78) and the dimension of the space,
i.e., dim 3 4 (K). Both of them are

1
€2+5£+3+§k(k—1).

Then suppose all the degrees of freedom (74)-(Z8) applied to 7 vanish. We are
going to prove the function 7 = 0.

By the vanishing degrees of freedom (74))-(Z6), the two traces are vanished. To-
gether with (77), the Green’s identity implies divg dive 7 = 0. Then

T =symcurlp(bpthy—_2), for some 1y_o € ]P’Z,Q(F;R2).
We then use the fact rotp : sym(ztPy_o(F;R?)) — P,_o(F;R?) is bijection, cf.
the complex [{@4)), to find ¢;_o s.t. rotp(sym(ztde_2)) = 1y_o. Finally we finish
the unisolvence proof by choosing ¢ = sym(z*¢,_5) in (78). The fact
(1,6)r = (symcurlp(bpiy o), sym(z"¢r2))r = (brthr—2,¢0—2)r =0
will imply ¥y_2 = 0 and consequently 7 = 0. O
As finite element spaces for H' are relatively mature and the bubble function
space of Py 1 (F; R)NHS(F; R?) = bpPy_o(F;R?), the design of div div conforming

finite elements in two dimensions is relatively easy. By rotation, we can construct
finite elements for the strain space H (rotp rotp, F';S); see [6l, Section 3.4].

6. FINITE ELEMENTS FOR SYM CURL-CONFORMING TRACE-FREE TENSORS
In this section we construct conforming finite element spaces for H (sym curl, Q; T).

6.1. A finite element space. Let K be a tetrahedron. For each edge e, we set
a direction vector t and then choose two orthonormal vectors n; and ms being
orthogonal to e such that no =t x nq and n; = ny x t. Take the space of shape
functions as Py1(K; T). The degrees of freedom Nyyq(K) are given by

(80) 7(8) VéeV(K),

(81) (symcurlT)(d) V€ V(K),

(82) (n](symcurlT)n;,q)e V q€Prs(e),e€&(K),i,j=1,2,

(83) (nlrt,q)e VqePi_i(e),ec&(K),i=1,2,

(84) (nl(curlT)ny + 0:(tTTt),q)e V q € Pyle),e € E(K),

(85) (nxsym(T X 1) xn,6)r V€ (V) P (F) ®sym(z @ Pr_i(F;R?)),
(86) m-Txn,qr VqeVePis(F)®x P, (F),Fe F(K),
(87) (r,@)x ¥V q € Beyi(symeurl, K; T).
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The degrees of freedom (81l), (82)), and (BT) are motivated by (6], (7)), and (72)),

respectively, as symcurl T € H(divdiv, K;S). Recall that tro(7) € H(divp) and
tr1(7) € H(divp divg), cf. Lemmal[5.9l Let np. =t x n be the norm vector of e
sitting on the face F. For divp elements on face F', the normal trace becomes

(n-Txn) np.=n"7t,

which motivates ([83]). Together with ([B6l), n - 7 x n can be determined. For the
divp divg element, the normal-normal trace becomes

(88) ng (Ilpsym(T x n)llp)np, = np sym(t x n)ng = np 7t,

which can be also determined by (83]). Notice that for each edge e, there are two
nr. inside one tetrahedron. In (83), the two normal vectors ni,m, are chosen
independent of elements and (83]) can determine the projection of vector 7t to the
plane orthogonal to edge e including n}’eTt.

The other trace of a divp divy element will be determined by (82) and (84),
which is less obvious. Lemma [6.1]is borrowed from [16, Lemma 9 and Remark 8§].

Lemma 6.1. Let F € F(K) with a normal vector ng. For an edge e € E(F), we
fix a direction vector t for e and choose two orthonormal vectors my and ny being
orthogonal to e such that ng =t xny and ny = ng xt. Let np, =t x np. For
any sufficiently smooth tensor T, we have

ng (carlT)ng = (np - ni)(np - ne) [ng(symcurl 7)ny — ni (sym curl 7)ny]
(89) —2(np - ny)*n] (symcurl T)ny + nl(curl 7)n;.
For tri(7) = Hpsym(T x np)lr, we have
(90) (AT tr1(T)npe) + nf dive(tr (1)) = nk (cwrlT)np + 0,(t7Tt).
Consequently it can be determined by DoFs (82)) and (84).

Proof. On the plane orthogonal to e, the vectors n; and ny form an orthonormal
basis. We expand np = c¢yni + cong in this coordinate, with ¢; = np - n; for
i=1,2. Then np. =t X np = cyna — canq. Then in this coordinate
n;ﬂ’e(curlT)np = (c1ng — cany)T(curl ) (e1mq + cams)
= cica(nd(curl T)ng — nj (curl 7)n,)
+ Anl(curl T)ny — can] (curl 7)ny.

Thus we acquire (89) from the fact ¢ + 3 = 1.
On the other hand, by the fact Vp = t0; + np 0

NFEe’
QAT tri(T)npe) + nf  dive(tr (7))
=20,(tT tr1(T)npe) + Onp, (Nf t11(T)TF )
=20;(t" sym(T X np)npe) + Onp, (N, sYM(T X np)np,)

=0 (tTTt - n.ll;',eTnF#) + 8”1:‘,9, (n%,e’rt)a

we obtain

and
np (culT)np = (np x V) - (n} 1) = (np x V) - (nL, 7t + np TR nE,)
= Oy, (NE Tt) — O(Nf TREE).

Therefore (O0) is true. O
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The trace 9;(t7 tr1(T)np,.) + nk  dive(tri(7)) depends on F. For one edge e
in a tetrahedron K, there are two such traces. Lemma [6.1] shows that these two
traces are linearly dependent and only one DoF (84) is needed.

Lemma 6.2. Let F € F(K) and 7 € Poy1(K;T). If all the degrees of freedom (80)-
B6) vanish, thenn -7 xn =0 and n x sym(T x n) x n =0 on face F.

Proof. Tt follows from (63)), (83) and the first part of (86l that
(nT(symcuwrlT)n,q)p = (divp(n-7xn),q)p =0 VY qe€Pr_3(F).

This combined with (&1))-(82)) yields nT(sym curl 7)n|r = 0, i.e. divp(n-Txn|p) =
0. Thanks to the unisolvence of BDM element, we achieve n-7 x n|r = 0 from (83)
and the second part of (86l).

Let o = psym(7 x np)llp for simplicity. Thanks to (88), we get from (83
that n}, .onp. =0 on each edge e € £(F). By (89)-(Q0), it follows from (&I)-(82)
and (84) that (9,(tTonpe) +nl., divp o)|. = 0, which together with (83]) and the
unisolvence of divdiv element in two dimensions, i.e. Theorem [B.16] implies that
O"F =0. O

We are in the position to prove the unisolvence.
Theorem 6.3. The degrees of freedom (RQ)-(&7) are unisolvent for Ppyq (K;T).

Proof. 1t is easy to see that
1
#Npi1(K)=56+6(60—2)+4 <2€(£ +1)+ §(£ —1)(£-2)— 4)

1 4
+ 5(463 + 6% — 100) = 5(z+4)(z+3)(4+ 2)
= dim Py, (K;T).

Take any T € Py41(K; T) and suppose all the degrees of freedom (80)-(87)) vanish.
Then by Lemma [6.2] 7 € B,y 1(symcurl, K;T). Then taking ¢ = 7 in (87), we
conclude 7 = 0. g

6.2. Lagrange-type degrees of freedom. The DoF Ny, is designed to form
a finite element divdiv complex. If the exactness of the sequence is not the con-
cern, we can construct simpler degrees of freedom. Below is the Lagrange-type
H (sym curl)-conforming finite elements for trace-free tensors. Take the space of
shape functions as Ppy1(K;T). The degrees of freedom are given by

(91) T(0) VéeV(K),

(92) (1,9)e VqePi_1(e;T), e € &E(K),
(93) (n xsym(T xn) xn,q)r YV qecP,oF;S),FeF(K),
(94) (n-Txn,q)r YqcP,o(F;R?*,FcF(K),
(95) (1.@)k YV q €Bypi(symcurl, K;T).

It is straightforward to verify the unisolvence of (91I)-([93]) due to the characteriza-
tion of trace operators and bubble functions.
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We can also take another set of degrees of freedom
7(0) VdeV(K),
(n]tt,q)e VqgePii(e),ec&(K),i=1,2,
(96) (n x sym(T xn) xn,q)r YV qecP(F;S),F e F(K),
(n'Txnvq)F vqeVF]P)Z(F)@mJ—PZ—l(F)aFE‘F(K)a
(Taq)K v qc B£+1(SymcurlaK;T)a

where )

Py(F;S) := {q € P¢(F;S) : (t]qt2)(6) = 0 for each § € V(K)}
with ¢; and ¢, being the unit tangential vectors of two edges of F' sharing 6. The
degree of freedom (06)) is motivated by the Hellan-Herrmann-Johnson mixed method
for the Kirchhoff plate bending problems [13|[14l[I8] in two dimensions.

7. A FINITE ELEMENT div div COMPLEX IN THREE DIMENSIONS

In this section, we collect finite element spaces defined before to form a finite
element divdiv complex. We assume 7}, is a triangulation of a topological trivial
domain 2.

7.1. A finite element divdiv complex. We start from the vectorial Hermite
element space in three dimensions [9]

Vi ={v, € Hl(Q;Rg) |k € Popo(K;R?) for each K € Ty,
Vv (0) is single-valued at each vertex d € V,}.
The local degrees of freedom for Vi (K) := V| g are
v(9),Vu(d) VéeV(K),
(v,9)e ¥V q€Po(e;R?), e € E(K),
(v,@)r VqeP,1(F;R%),F e F(K),
(v,q)k YV q€Pro(K;R?).
The unisolvence for V', (K) is trivial. And
dim Vj, = 124V, + 3(£ — 1)#En + g(é + 1)0#F + %(63 — O)#Th.
Let
EE ={rn € L*(Q;T) Th|k € Pop1 (K T) for each K € Ty, all the
degrees of freedom (BQO)-(86) are single-valued},
then

dim B} = 14#V), + (60 — 2)#E, + (2@(@ +1)+ %(e — 1) —-2)— 4) # T

1
+ g(4133 + 602 — 100)#T,.

Clearly Lemma [6.2 ensures 3} ¢ H (sym curl, Q; T). Let
E% = {1 € L*(%;S) ik € 3y 1 (K) for each K € T, all the
degrees of freedom (46)-([9) are single-valued},
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then
dim 25 = 64V, 4+ 3(0 — D)#EL + (2 — 0+ 1)#F,

+ (%e(z -1+ %(z —1)0(5¢ + 14) + %(kﬁ —k) — 4) #Th.

The proof of Lemma [5.2] ensures E% C H(divdiv,Q;S). Let
Qn =Pr_o(Th) = {qn € L*(Q) : qn|x € Pr_2(K) for each K € T;,}
be the discontinuous polynomial space. Obviously
1
dim Q), = g(k3 — k)#Th.
Lemma 7.1. It holds
div divZ5 = Q.

Proof. Apparently div div Ei C Qy,. Then we focus on Qj, C divdiv Ei.
Take any v, € Qp,. By the fact divdiv H*(;S) = L?(Q) [10], there exists
T € H?(Q;S) such that
divdiv T = vy,.
Let I,7 € 3} be determined by
N(IpT) = N(1)

for all DoFs N from (46)) to (52)). Note that for functions in H?(K), the integrals on
edge and pointwise value are well-defined. Since ¢ > 3, it follows from the Green’s
identity (43 that

(divdiv(T — InT),q)r =0 VqePi(K), K €T
Hence (vy, —divdiv I} 7)|x = divdiv(t — I, 7)|x € ]P’,J;_M(K). Applying (G6)), there
exists T € E,Sl such that 7|k € By x(divdiv, K;S) for each K € T, and
vy, — divdiv I = divdiv 7.
Therefore v, = divdiv(l,T + T4), where Iy T+ 13 € Ei, as required. O

Theorem 7.2. Assume € is a bounded and topologically trivial Lipschitz domain
in R3. The finite element divdiv complex

(97) RT—C—> Vh dev grad E'I]-IL' sym curl Ei div div Qh 50

s exact.

Proof. For any sufficient vector function v and e € £(K), we have from ¢t = n; x ng
that
nl (curl(dev grad v)))n, + 0,(t7 (dev grad v)t)

= —%nl ccurl(ng dive) + Oy (v - t) — %&(div v)
1 1
= g(’nl X ’I’LQ) . V(le’U) + 8“('0 . t) - gat(le’U) = (9“(1) . t)

Hence by (69)-([Z0) it is easy to see that dev grad V', € 3. It holds from Lemmal6.2]
and the degrees of freedom (81))-(82]) that

(98) symcurl ) ¢ X7,

Thus we get from Lemma [T.T] that (97 is a complex.
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We then verify the exactness.
(1) Vi, Nker(devgrad) = RT. By the exactness of the complex (20),

RT C V), Nker(devgrad) € H'(Q; R?) Nker(dev grad) = RT.

(2) X} Nker(symcurl) = devgrad V, i.e. if symcurlT = 0 and 7 € X, then
there exists a v € V,, s.t. T = devgradwv.

Since symcurl T = 0, by the divdiv complex ([20) and the polynomial divdiv
complex (23), there exists v € H'(Q;R?) such that 7 = devgradv and v|x €
Py o(K;R3) for each K € T;,. To show v € Vj, it suffices to prove divw is
single-valued at each vertex in Vj, since v € H*(Q;R?) and devgradv = 7 is
single-valued at each vertex in V. To this end, take a tetrahedron K € Ty, a
vertex 0 € V(K) and an edge e € £(K) such that ¢ is an endpoint of e. By the fact
gradv = devgradv + %(div v)I, we get

(divo|x)(6) = 3(de(v - £))(8) — 3tTT(d)t,

where £ is the unit tangential vector of e. This implies div v is single-valued at each
vertex in V,. And then X} Nker(sym curl) C dev grad V,.
(3) divdiv X} = Q. This is Lemma [7.1]
(4) 2% Nker(div div) = sym curl £7.
We verify this identity by dimension count. By Lemma [7.1],
dim(Z5 N ker(div div)) = dim 2% — dim Q,
= 64V, +3(0 — 1)#Ep + (2 — L+ 1)#F,

(99) 4 (é(z D504+ 1T) — 4) e

As a result of step (2),

dim sym curl Eg = dim E}E — dimdevgrad V;, = dim 2}{ —dimVy +4
=24V + (304 V)#E, + (> — L = 3)#Fy,

+ %(6 — D)U(5C+ 1T)#Ty, + 4.

Applying the Euler’s formula #Vy, — #E&, + #Fn — #7Tn = 1, we get from (99)) that
dimsym curl £} = dim(X5 N ker(div div)). Then the result follows from (98).
Therefore the finite element divdiv complex (Q7)) is exact. O

For the completeness, we present a two-dimensional finite element div div com-
plex but restricted to one element. A global version of (100) as well as a commuta-
tive diagram involving quasi-interpolation operators from Sobolev spaces to finite
element spaces can be found in [6].

Let Vi1 (F) := Py 1 (F;R?) with £ > 2 be the vectorial Hermite element [3,9].

Lemma 7.3. For any triangle F, the polynomial complex

sym curl g

(100) RT S V41 (F) Seu(F) W By o(F) =0

s exact.
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