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1. Introduction

Maxwell interface problems widely appear in a large variety of science and en-
gineering applications. In this article, we propose a virtual element method (VEM)
to solve a two-dimensional (2D) H(curl;⌦)-elliptic interface problem that is origi-
nated from Maxwell equations. One distinct advantage of the proposed method is
its flexibility on the mesh generation to cater the interface. The mesh for compu-
tation is obtained from a background unfitted mesh by cutting interface elements
into triangles and quadrilaterals, and the optimal convergence order is guaranteed
independent of the mesh anisotropy.
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To describe the idea, we let ⌦ ✓ R2 be a bounded domain and let � ✓ ⌦ be a
smooth interface curve, as illustrated by the left plot in Figure 2.1. The interface
� cuts ⌦ into two subdomains ⌦± occupied by media with di↵erent magnetic and
electric properties. We consider the following H(curl;⌦)-elliptic interface problem
for the electric field u : ⌦ ! R2:

curl ↵ curl u+ �u = f in ⌦ = ⌦�
[ ⌦+

, (1.1a)

with f 2 L
2(⌦), subject to the Dirichlet boundary condition:

u · t = 0 on @⌦, (1.1b)

where the operator curl is for vector functions v = (v1, v2)| such that curl u =
@x1v2 � @x2v1 while curl is for scalar functions v such that curl v = (@x2v,�@x1v)

|

with “|” denoting the transpose herein. The coe�cients ↵ = ↵
± and � = �

± in ⌦±

are assumed to be positive piecewise constant functions of which the locations of
the discontinuity align with one another. Moreover, we consider the following jump
conditions at the interface �:

[u · t]� := u
+
· t� u

�
· t = 0, (1.1c)

[↵curl u]� := ↵
�curlu+

� ↵
+curlu� = 0, (1.1d)

where t denotes a tangential vector to �. The condition (1.1c) is due to the tan-
gential continuity of H(curl) functions and (1.1d) is from the fact that H(curl) is
isomorphic to H

1 in 2D. The interface model (1.1) arises from each time step in a
stable time-marching scheme for the eddy current computation of Maxwell equa-
tions [2, 4]. In this model, ↵ denotes the magnetic permeability and � ⇠ �/4t is
the scaling of the conductivity � by the time-marching step size 4t.

For Maxwell equations, H(curl)-conforming Nédélec finite element spaces are
widely used [17, 25, 37]. As for interface problems, the authors in [26] analyze the
standard finite element methods (FEMs) for H(curl)-elliptic equations. The semi-
discrete analysis for Maxwell interface problems with low regularity is provided
in [43]. In addition, due to the potentially low regularity, there are many works
focusing on developing a posteriori error estimators and adaptive FEM [8, 16, 22].

Numerical methods for solving interface problems based on unfitted meshes are
attractive since they circumvent the burden of generating high-quality interface-
fitted meshes which may be time-consuming for three dimensions (3D) or for moving
interface problems. There have been a lot of works in this field on solving H

1-elliptic
interface problems, see [7, 23, 33] and the reference therein. However, there are
much fewer works on solving Maxwell interface problems. Typical examples include
matched interface and boundary (MIB) formulation [44], adaptive FEMs [15], and
non-matching mesh methods [10, 11, 14]. Recently, a penalty method is developed
in [35] requiring higher regularity.

A main di�culty for solving H(curl) problems comes from low regularity of the
exact solution, even for our assumption u 2 H

1(curl;⌦) := {u 2 H
1(⌦), curlu 2

H
1(⌦)}. The expected optimal convergence rate highly relies on the conformity



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM˙Hcurl

Instructions for Typing Manuscripts (Paper’s Title) 3

of approximation spaces due to the O(h1/2) approximation order on boundary of
elements for functions in H

1(curl;⌦), see specifically [38, Lemma 5.52]. For ex-
ample, when solving Maxwell equations by discontinuous Galerkin (DG) meth-
ods [27, 28, 29], penalties are in general needed on boundary of elements due to
the non-conformity of DG spaces, and the standard argument directly applying the
trace inequalities may only yield suboptimal convergence rates. Instead, the analy-
sis approaches in [27, 28, 29] employ a H(curl)-conforming subspace of the broken
DG space to overcome this issue.

This essential di�culty will make the development of optimal convergent un-
fitted mesh methods for Maxwell interface problems especially challenging since
almost all the unfitted mesh methods aforementioned use non-conforming spaces
for approximation, and it is unclear whether conforming subspaces with su�cient
approximation capabilities exist such that the approaches in [27, 28, 29] can be
applied. Indeed, Hiptmair et al. in [10, 11] show that using Nitsche’s penalties on
interface edges can only yield suboptimal convergence rates in both computation
and analysis. Recently, this issue was further explored numerically in [41]. An al-
ternative approach is to use immersed finite element methods in a Petrov-Galerkin
formulation [24], where the standard conforming Nédélec space is used as the test
function space to remove the non-conformity errors. However, the resulted matrix
may not be symmetric anymore, which could cause troubles for fast solvers espe-
cially for 3D Maxwell equations.

Motivated by the works [9, 13], we believe that the virtual element method
(VEM) provides a new direction to solve Maxwell interface problems that can
achieve optimal convergence on (background) unfitted meshes. The VEM was first
introduced in [5] to solve H

1-elliptic equations where the H
1-virtual space consists

of shape functions constructed by solving local problems on elements with gen-
eral polygonal shapes. The H(curl)-conforming virtual space was then introduced
in [19, 20] to solve magnetostatic problems. As one attractive feature, the underling
virtual space for approximation is always conforming on an almost arbitrary polyg-
onal mesh of the computation domain. It is our key motivation to use it for solving
Maxwell interface problems on meshes that are generated from a background unfit-
ted mesh. However, di↵erent from [19, 20] that use a special mixed formulation [31],
in this work we shall employ the standard H(curl)-elliptic equation (1.1a) as the
model problem. Very recently, a similar VEM for Maxwell equations with the lowest
order and shape-regular meshes is analyzed in [21]. Compared with [21], our results
focus more on the discretization’s robustness to the shape of elements, while the
analysis only relies on mature simplicial finite element tools.

In our analysis, the key to achieve the optimal error bound regardless of element
shapes is a novel virtual element space that shares exactly the same degrees of free-
dom of the one invented in [19, 20], and thus preserves all its information including
the same projection and curl values for computation. This space is constructed as
a subspace of the standard Nédélec space on a further (virtual) triangulation of
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the polygonal mesh that satisfies a maximum angle condition [1]. Locally on each
polygonal element, the new virtual functions can be also considered as discrete
harmonic extensions according to the boundary conditions (degrees of freedom),
while the usual virtual functions in [19, 20] may be considered as continuous ex-
tensions. As the key advantage of using this new space, we are able to establish
local Poincaré-type inequalities and optimal approximation capabilities for a large
class of polygonal-shape elements all independent of element anisotropy which are
the crucial intermediate results toward the final optimal error bound. A related
work is [16] that constructs sub-meshes on interface elements of a background un-
fitted mesh for computation. One essential di↵erence between the proposed method
and [16] is that the virtual mesh and space are only used for analysis in our work,
while the computation procedure is the same as the usual VEM with the lowest
order. The convergence is guaranteed independent of the element shape provided
that the background mesh is shape-regular.

This article consists of 5 additional sections. In the next section, we introduce
the background unfitted mesh and the fitted mesh according to interface geometry.
In Section 3, we describe virtual spaces and projection operators. In Section 4,
we present the numerical scheme and derive the error equation. In Section 5, we
estimate the interpolation errors. In Section 6, we show that the convergence is of
optimal order. In the last section, some numerical examples are presented to verify
the theoretical estimates.

2. Preliminaries

In this section, we first describe an unfitted background triangular mesh and
then locally partition it into a fitted mesh used for computation. We then intro-
duce Sobolev spaces for H(curl)-interface problems. Although the triangular and
quadrilateral shape is the focus of this work, we highlight that most key results are
actually established and presented for more general polygonal element shapes.

Consider an interface-independent shape-regular triangular mesh of the domain
⌦. Note that this mesh could be simply taken as a highly-structured mesh due to
the interface independence. We shall call it a background mesh, and denoted it
by T

B

h
. Another example of T B

h
is a uniform Cartesian grid which is widely used

for unfitted mesh methods. The proposed analysis approach can be easily adapt to
this grid. If a triangular element in T

B

h
intersects the interface, then it is called

an interface element. The collection of interface elements is denoted as T
Bi

h
. The

remaining elements are called non-interface elements. For this background mesh,
we further make the following assumptions:

(A) Each interface element intersects with � at most two distinct points on two
di↵erent edges.

(B) Each interface element does not intersect with the boundary of ⌦.

By this assumption (A), on an interface element K 2 T
Bi

h
we define �K

h
as the line
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Fig. 2.1: Left: a background unfitted mesh. Right: interface elements in the unfitted
mesh are further partitioned into quadrilateral and triangular elements, shaded by
brown and yellow colors respectively.

connecting the two intersection points. Then all these connected small segments,
defined as �h, form a piecewise linear approximation of the true interface �. In
addition, by the assumption (A), each triangular interface element K is cut by �K

h

into a triangular and a quadrilateral subelement from which an interface fitted mesh
can be generated. We denote this fitted mesh by Th. The collections of quadrilateral
and triangular elements in Th resulted by the interface-cutting are denoted by T

q

h

and T
t

h
, respectively. Those elements all have one edge aligning with the interface

approximately, and thus are also called interface elements in Th. Clearly, there holds

[{K 2 T t

h
[ T

q

h
} = [{K 2 T Bi

h
}.

Note that Th and T
B

h
are only di↵erent on the interface elements. Furthermore, an

interface element K is assumed to be cut into K
�
h
and K

+
h
by �K

h
, and the mismatch

portion, with K
± := K \ ⌦± cut from the original interface, is denoted by Kint,

indicated by the shaded region in the left plot of Figure 2.2.
In addition, for each interface edge �K

h
, we assume there is a shape regular

triangle B
K

h
✓ ⌦ with the base �K

h
and a height O(hK). Here B

K

h
is not required

to align with the elements in the mesh. Further assume all the B
K

h
have finite

overlapping. Note that for the considered background regular triangular mesh, for
each interface element K, this BK

h
certainly exists and can be further shown to be

contained in K.
Moreover we assume the interface is well-resolved by the mesh, and it can be

quantitatively described in terms of the following lemma [23].

Lemma 2.1. Suppose the mesh is su�ciently fine such that h < h0 for some valve
value h0, on each interface element K 2 T

Bi

h
, there exist a constant C independent

of the interface location inside K and hK such that for every point x 2 � \K with
its orthogonal projection x

? onto �K

h
,

dist(x, x?)  Ch
2
K
. (2.1)
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Fig. 2.2: Left: an interface element K 2 T
B

h
is cut to a triangular element Kt and a

quadrilateral element Kq of which both are in Th. Right: the quadrilateral element
is further cut into two triangular elements Kq

1 and K
q

2 .

The explicit dependence of h0 on the curvature of the interface can be found
in [23]. An adaptively-generated background mesh can be found in [42] capturing
large curvature of interface curve. Now following [26, 34], we introduce the �-strip:

S� := {x 2 ⌦ : dist(x,�) < �}, and S
±
�

:= {x 2 ⌦± : dist(x,�) < �}. (2.2)

By the estimate (2.1), we have

[ {Kint : K 2 T
Bi

h
} ✓ S�, �  C�h

2 (2.3)

with the constant C� only depending on the interface. Furthermore, from [26, 34]
we can control the L2-norm in the �-strip by the width of the strip and thus obtain
first order convergence when � = O(h2).

Lemma 2.2. It holds for any z 2 H
1(⌦±) that

kzk
L2(S±

� )  C

p

�kzkH1(⌦±). (2.4)

We next introduce some major Sobolev spaces used throughout this article.
For each subdomain ! ✓ ⌦, we let H

s(!) and H
s(!), s � 0, be the standard

scalar and 2D vector Hilbert spaces on ! where specifically H
0(!) = L

2(!) and
H

0(!) = L
2(!). In addition, for s � 0, we let

H
s(curl;!) = {v 2 H

s(!) : curl v 2 H
s(!)}. (2.5)

Similarly, we introduce H
s(div;!) as the counterpart of Hs(curl;!) with the di-

vergence operator. If ! \� 6= ;, then !
± = ! \⌦±, and H

s(curl;!�
[!

+) denotes
the space of functions piecewisely defined in H

s(curl;!±). For these spaces, we can
define their subspaces H

s

0(!), H
s

0(!), and H
s

0(curl;!) with the zero trace on @!.
Also let (·, ·)! be the standard L

2 inner product on !.
When the interface is smooth, the solution to the problem is expected to have an

H
1(curl;⌦±) regularity ([18, 30]). The fundamental H1(curl;⌦)-extension operator
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established by Hiptmair, Li and Zou in [26] (Theorem 3.4 and Corollary 3.5) will
be used in analysis.

Theorem 2.1 (Theorem 3.4 and Corollary 3.5 in [26]). There exist two
bounded linear operators

E
±
curl : H

1(curl;⌦±) ! H
1(curl;⌦) (2.6)

such that for each u 2 H
1(curl;⌦±):

1. E
±
curlu = u a.e. in ⌦±.

2. kE
±
curlukH1(curl;⌦)  CEkukH1(curl;⌦±) with the constant CE only depend-

ing on ⌦ and �.

Using these two special extension operators, we can define u±
E
= E

±
curlu

± which
are the keys in the analysis later. Finally, throughout this article, for simplicity we
shall use . to denote a · · ·  C · · · with a generic constant independent of mesh
size and interface location relative to the mesh.

3. Virtual Element Spaces

In this section, we shall introduce a virtual element space using the lowest order
Nédélec element on a virtual triangulation which is obtained by refinement of the
background mesh.

3.1. Virtual Edge Element Spaces

In the proposed method, triangular elements and quadrilateral elements in Th

are treated di↵erently. To avoid confusion, in this section we shall usually useKt and
K

q to denote triangular and quadrilateral elements in T
t

h
and T

q

h
, respectively, while

K denotes an interface element in the background mesh T
B

h
or general elements in

Th if there is no need to distinguish their shape. In addition, for simplicity’s sake,
we always use hK as the diameter of elements K, Kq and K

t.
For any element or edge ! in Th, we let Pk(!) be the k-th degree polynomial

space defined on !. Given a triangle K, we shall consider the first family Nédélec
element of the lowest degree [39] as the underling approximation space:

NDh(K) = {a+ b(x2,�x1)
| : a 2 R2

, b 2 R}. (3.1)

Then (3.1) will be used on all the non-interface elements of T B

h
(or Th) as well as the

triangular interface elements Kt. But for Kq we need to employ a virtual element
space. Let us first discuss the definition on a general polygon P :

Ṽh(P ) = {vh 2 H(curl;P ) \H(div;P ) : vh · te 2 P0(e), 8e ⇢ @P,

div(vh) = 0, curl(vh) 2 P0(P )}. (3.2)

This is exactly the one introduced in [20, 19] with the lowest degree and NDh(P ) ⇢
Ṽh(P ). Similar to the ones for (3.1) defined on triangles, the local degrees of freedom
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(d.o.f.) for (3.2) are

vh

��
e
· te, e ⇢ @P. (3.3)

It has been shown in [20, 19] that the functions in (3.2) can be uniquely determined
by d.o.f. (3.3). For the present situation, Ṽh(Kq) (P = K

q) is the space used for
discretization on K

q.
As the shape of elements K

q could be very anisotropic, a robust norm equiv-
alence and interpolation error estimate is hard to establish in Ṽh(Kq). To address
this issue, we shall introduce an auxiliary triangulation of ⌦ (a virtual mesh), and
construct an auxiliary H(curl)-conforming space associated with this mesh. Given
an interface element K 2 T

Bi

h
, with an quadrilateral subelement K

q
2 T

q

h
, then

the local auxiliary mesh is formed by a Delaunay triangulation of Kq: connecting
the diagonal s.t. the sum of angles opposing to the diagonal is less than or equal
to ⇡; see the right plot in Figure 2.2 for an illustration. Although it may contain
anisotropic triangles, each triangle from this new partition satisfies the maximum
angle condition (Lemma 3.1), which is key to robust interpolation error estimates
(see Section 3.2). A similar result is proven in [13] for Cartesian grids.

Lemma 3.1. Let K be a shape regular triangle, i.e., there exist 0 < ✓min  ✓max <

⇡ such that every angle ✓ in K satisfies ✓min  ✓  ✓max, then every triangle in the
auxiliary Delaunay triangulation on K described above satisfies the maximum angle
condition, i.e, every ✓̃ in the auxiliary triangulation is bounded above by ✓̃max 

max{⇡ � ✓min, ✓max}.

Proof. Without loss of generality, we consider the triangle in the right plot of
Figure 2.2 for illustration where the left and right cutting points are D and E, re-
spectively. We shall bound angles of three triangles:Kt = �DEA3,K

q

1 = �A1A2D,

and K
q

2 = �DA2E. If the angle is one of (or part of) the angles of �A1A2A3, then
it is bounded by ✓max. If the triangle contains one of the angles of �A1A2A3, as
the sum of three angles is ⇡, we conclude other angles are bounded by ⇡� ✓min. So
we only focus on angles of the triangle �DA2E.

Now use the Delaunay property, \DEA2 + \DA1A2  ⇡, we get \DEA2 

⇡ � ✓min and \EDA2  \A3DA2  ⇡ � \A1A3A2  ⇡ � ✓min.
We thus have verified ✓̃max  max{⇡ � ✓min, ✓max}.

The discussion for the special case on a quadrilateral Kq is postponed to Section
5, and the results on a general polygon P are the focus in the rest of this section.
To be able to establish a robust analysis of the approximation capabilities of Vh(P )
below and the stability of the discretization, P is assumed to admit a triangulation
Th(P ) with no additional interior vertices added, i.e., the collection of edges Eh(P )
in Th(P ) are solely formed by the vertices on @P , and this triangulation satisfies

(P1) the maximum angle condition for each triangle in Th(P );
(P2) no-short-interior-edge condition: hP . |e| for every interior edge e;
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(P3) star-convexity: there exists x := (x̄1, x̄2) 2 P such that xy ✓ P , 8y 2 @P .

We then define an auxiliary VEM space

Vh(P ) = {vh 2 H(curl;P ) : vh|K 2 NDh(K), 8K 2 Th(P ),

curlvh 2 P0(P )}.
(3.4)

Indeed we can show the VEM space defined by (3.4) shares the same d.o.f. of (3.3).

Lemma 3.2. Let P be a simple polygon, then the d.o.f. vh·te, e ✓ @P are unisolvent
on the space Vh(P ).

Proof. Let us consider the following well-posed problem: for any given boundary
conditions vh · te, e 2 @P , find (vh,�h) satisfying

(
(curlvh, curlwh)P + (wh,r�h)P = 0, 8wh 2 NDh,0(Th(P )),

(vh,rph) = 0, 8ph 2 Sh,0(Th(P )).
(3.5)

where Sh,0(Th(P )) is the piecewise linear Lagrange finite element space. Since there
is no internal vertex, Sh,0(Th(P )) is a trivial space, and (3.5) reduces to

(curlvh, curlwh)P = 0, 8wh 2 NDh,0(Th(P )). (3.6)

The fact that curl vh is a piecewise constant on Th(P ) and integration by parts
show

X

e2Eh(P )

[curl vh]e

Z

e

wh · teds = 0, 8wh 2 NDh,0(Th(P )). (3.7)

Therefore, curl vh must be a single constant on all elements in Th(P ). Namely, the
solution space of (3.5) is Vh(P ), and the unisolvence follows from the homogeneous
boundary condition yielding the zero solution.

Remark 3.1. The proof of Lemma 3.2 basically shows that vh 2 Vh(P ) satis-
fies divh vh = 0 together with (3.6), where divh is the element-wise div operator.
Namely, the functions in the VEM space (3.8) can be treated as a discrete har-
monic extension of the boundary conditions vh · t on @P while the original vir-
tual space (3.2) is a continuous extension with a pointwise constraint div vh = 0.
Therefore functions in Ṽh(P ) may not be polynomials while Vh(P ) has piecewise
polynomial vectors for which the error estimates is relatively easy to establish.

By Lemma 3.1, it is clearly that K
q = K

q

1 [ K
q

2 induces such a triangulation
satisfying (P1)–(P3). Meanwhile, we would like to remark that the aforementioned
setting and the forthcoming analysis in this paper can be easily extended to the case
when T

B

h
is a uniform Cartesian grid, on which the interface elements consist either

trapezoids, or triangle-pentagon satisfying (P1)–(P3). In the subsequent analysis
involving K

q, the space Vh(Kq) (P = K
q) is replacing Ṽh(Kq)

Vh(K
q) = {vh 2 H(curl;Kq) : vh|Kq

i
2 NDh(K

q

i
), i = 1, 2,

curl(vh) 2 P0(K
q)}.

(3.8)



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM˙Hcurl

10 Authors’ Names

All these triangles on interface elements form a triangulation resolving the interface,
and the global H(curl)-conforming space is defined as

Vh = {vh 2 H0(curl;⌦) : vh 2 NDh(K) on K /2 T
q

h
,

and vh 2 Vh(K) on K 2 T
q

h
}.

(3.9)

As we assume the background mesh T
B

h
is shape regular, the maximum angle con-

dition holds uniformly for the auxiliary mesh Th

3.2. Projection and Interpolation Operators

For a general polygon P and Vh(P ), the constant curlvh in P can be computed
by d.o.f. as

curlvh =
1

|P |

Z

P

curl vh dx =
1

|P |

Z

@P

vh · t ds. (3.10)

With curlvh and vh ·t known, its L2-projection can be computed following [20, 19].
On any elements or edges ! ✓ ⌦ we define the local L2 projection ⇧! : L2(!) !
[P0(!)]2 such that

(⇧!vh,p)! = (vh,p)!, 8p 2 [P0(!)]
2 (3.11)

which is indeed computable according to the d.o.f. of (3.2) [19, Remark 3]. For
readers’ sake, we recall the procedure here: for each p = (p1, p2)| 2 [P0(P )]2, there
exists �h = �p2(x1 � x̄1) + p1(x2 � x̄2) 2 P1(P ), such that curl �h = p, where
(x̄1, x̄2) is the point in the star-convexity assumption (P3), Therefore

(⇧Kqvh,p)P = (vh,p)P = (vh, curl�h)P

= (curlvh,�h)P � (vh · t,�h)@P .
(3.12)

As vh · t is given as d.o.f., and curlvh is constant, we get

⇧Pvh = |P |
�1
�
(vh · t, x̄2 � x2)@P ,�(vh · t, x̄1 � x1)@P

�|
, (3.13)

in which the integration on @P is with respect to ds(x1, x2).
Due to the d.o.f. imposed on edges, we can define the interpolation

IP : H1(curl;P ) ! Vh(P ),

Z

e

IPu · t ds =

Z

e

u · t ds, 8e ✓ @P. (3.14)

We note that if P is a triangle, IP reduces exactly to the usual edge interpolation
operator, and the special one is for other general polygons such as quadrilateral
elements Kq where shape functions are from the virtual space Vh(P ) in (3.8). Using
integration by parts, we get

Z

P

curl IPu dx =

Z

P

curlu dx.

Namely curl IPu is the L
2-projection of curlu to the space of constants.

Moreover the interpolation IP : Ṽh(P ) ! Vh(P ) serves as a bijective mapping
which also preserves curl values and the L2 projection onto [P0(P )]2 as both Ṽh(P )



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM˙Hcurl

Instructions for Typing Manuscripts (Paper’s Title) 11

and Vh(P ) share the same d.o.f. . For the considered mesh Th, taking P = K 2 Th,
we have Ṽh and Vh lead to the same numerical scheme but the analysis based on
Vh can exploit more existing tools built for simplicial finite elements.

Finally, a global interpolant uI is formed by gluing these local interpolations
together, for which certain modification must be introduced on the interface edges
forming �h (see Section 5.2).

In the rest of this section, we present some estimates which show the convenience
in analysis of opting for the space Vh(P ). For a triangle with vertices ai, let ✓i be
the angle at vertex ai and ei be the edge opposite to ai, for i = 1, 2, 3.

Lemma 3.3. The following identity holds for any linear �h on a triangle T :

kr�hk
2
L2(T ) = RT

3X

i=1

cos ✓ikr�h · tik
2
L2(ei)

, (3.15)

where RT is the circumradius of T and ti is a unit tangential vector of ei.

Proof. Denote by �i := �h(ai) for i = 1, 2, 3. The cotangent formula [12] reads

kr�hk
2
L2(T ) =

1

2

3X

i=1

cot ✓i(�i�1 � �i+1)
2
.

Then the law of sines and |r�h · ti|
2 = (�i�1 � �i+1)2/|ei|2 finish the proof.

We now prove the following Poincaré-type inequality which is the key for the
analysis on anisotropic meshes.

Lemma 3.4. Let P be a simple polygon satisfying (P1)–(P3), then

kvhkL2(P ) . h
1/2
P

kvh · tkL2(@P ) + hP kcurlvhkL2(P ), vh 2 Vh(P ). (3.16)

Proof. Define an auxiliary function

wh =
curl vh

2


�(x2 � x̄2)
x1 � x̄1

�
,

where (x̄1, x̄2) is the point in the star-convexity condition in (P3). It is clearly that

kwhkL2(P ) . hP k curl vhkL2(P ). (3.17)

In addition, for every edge e 2 @P , (�(x2 � x̄2), x1 � x̄1)| · t|e yields the height le
of e in the triangle formed by e and (x̄1, x̄2), thus we have |wh · t|e = le| curl vh|/2.
Together with the star-convexity condition, we have

kwh · tkL2(e) . h
1/2
e

le| curl vh| . h
1/2
P

k curlvhkL2(P ). (3.18)

Note that curl(wh�vh) = 0, then by a standard argument of the conforming exact
sequence, there exists a continuous piecewise linear finite element function �h s.t.
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vh�wh = r�h. Applying Lemma 3.3, together with the maximum angle condition
in (P1), we get the estimate

kvh �whk
2
L2(P ) . hP

X

e2Eh(P )

k(vh �wh) · tek
2
e
. (3.19)

We then control the norm contribution from an interior edge e. Since P is simply
connected, any interior edge e divides P into two parts. Choose the part with less
boundary edges and denote it by Pe. Note that

R
@Pe

r�h · t ds = 0, consequently
by r�h · t being a constant on each edge on @Pe, we have an identity decomposing
@Pe = (@Pe \ @P ) [ e,

|e|r�h · te +
X

ei⇢@P\@Pe

|ei|r�h · tei = 0,

and thus

kr�h · tkL2(e) 

X

ei⇢@P\@Pe

✓
|ei|

|e|

◆1/2

kr�h · teikL2(ei).

Then from (3.19) and the condition (P2) we can get

kvh �whk
2
L2(P ) . hP

X

e⇢@P

⇣
kvh · tek

2
L2(e) + kwh · tek

2
L2(e)

⌘
,

with constant depending on the number of vertices of P but not the shape regularity
of P . Finally, the desired estimate (3.16) follows from the triangle inequality and
estimates (3.17)-(3.18).

4. A VEM Scheme and An Error Bound

In this section, we describe the proposed virtual element formulation and derive
an error bound. We start with the standard weak formulation: find u 2 H0(curl,⌦)
such that

a(u,v) := (↵ curlu, curlv)⌦ + (� u,v)⌦ = (f ,v)⌦, 8v 2 H0(curl,⌦). (4.1)

4.1. A Galerkin method

We emphasize that the local “virtual” element space (3.8) and the global
one (3.9) is right away a computable space, readily used for the discretization,
unlike (3.2). The d.o.f. on the diagonal edge can be determined by solving (3.6)
explicitly, and a set of modified harmonic bases on boundary edges can be obtained
and used in computation. As a result, the standard Galerkin formulation is com-
putable without referring to the VEM framework of a projection-stabilization split:
find uh 2 Vh such that

(↵h curl uh, curl vh)⌦ + (�h uh,vh)⌦ = (f ,vh)⌦, vh 2 Vh, (4.2)
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where ↵h and �h are the modification of ↵ and � according to the linearly approxi-
mated interface �h. No projection operator is required since all the shape functions
are computable.

However, this approach will introduce an extra partition which becomes ine�-
cient especially in 3D. Instead, we shall treat henceforth the interface part of Th as
a virtual mesh only appearing in analysis not computation, whereas this associates
the meaning of “virtual” in Vh. Its approximation capabilities will be discussed in
Section 5.1 based on the maximum angle condition.

4.2. A VEM scheme

Using the L
2-projection (3.11), we define a bilinear form

ah(u,v) := (↵h curlu, curlv)⌦ + (�h ⇧hu,⇧hv)⌦ +
X

K2T Bi
h

SK(u,v) (4.3)

where the operator ⇧h is taken as ⇧Kq if K = K
q
2 T

q

h
, and the identity operator

otherwise. The stabilization SK(uh,vh) is defined element-wisely only on K
q
2 T

q

h
,

i.e., the quadrilateral subelements of the interface elements K 2 T
Bi

h
:

SK(u,v) = �KhK (�h(u�⇧Kqu) · t, (v �⇧Kqv) · t)
@Kq (4.4)

with a parameter �K independent of the mesh size and specified later. Note that
the motivation of this stabilization term comes from the approximation of (�h(uh�

⇧huh),vh �⇧hvh)Kq and thus suggests the scaling hK in (4.4).
At last, the proposed VEM discretization is to find uh 2 Vh such that

ah(uh,vh) = (f ,⇧hvh)⌦, 8vh 2 Vh. (4.5)

4.3. An Error Bound

As mentioned in Section 3, some elements could be extremely anisotropic, and
the commonly used norm equivalence in the VEM framework may not be applicable.
Following the approach in [9], we shall work on an induced norm on Vh by the
bilinear form in (4.3) (Lemma 4.1) which is weaker than the original graph norm:

|||vh|||
2
h
: = k↵

1/2
h

curl vhk
2
L2(⌦) + k�

1/2
h

⇧hvhk
2
L2(⌦)

+
X

K2T Bi
h

hKk(vh �⇧Kqvh) · tk
2
L2(@Kq).

(4.6)

Lemma 4.1. |||·|||
h
defines a norm on Vh.

Proof. Suppose |||vh|||h = 0, then clearly vh = 0 on all triangular elements in Th.
So we only need to consider Kq

2 T
q

h
. Indeed, ⇧Kqv ⌘ 0 on K

q and (vh�⇧Kqvh)·t
vanishing on @K

q implies vh ·t = 0 on @K
q. Due to the unisolvence, we have vh = 0

on K
q which finishes the proof.
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In the following main theorem, we derive an error equation to (4.5) to demon-
strate how the VEM framework can in a novel manner overcome the di�culties of
the non-conformity issue aforementioned in the introduction for other DG-based
approaches. To reinstate the optimal rate of convergence, we need to further as-
sume that the source term f bears certain extra local regularity. First, the error is
decomposed and the error equation is for ⌘

h
:

u� uh = ⇠
h
+ ⌘

h
, where ⇠

h
= u� uI , and ⌘

h
= uI � uh, (4.7)

where uI 2 Vh is an arbitrary function in VEM space.

Theorem 4.1. Assume that f 2 L
2(⌦) is locally in H

1 around the interface,
namely f 2 H

1(Kq) on each K
q
2 T

q

h
, assume u 2 H

1(curl;⌦�
[ ⌦+) is the

solution to (4.1) and let uI 2 Vh be an arbitrary function in VEM space, then for
⌘
h
= uh � uI 2 Vh:

|||⌘
h
|||
h
.
⇣ X

Kq2T q
h

hK |f |H1(Kq) +
X

Kq2T q
h

h
1/2
K

k(u�⇧huI) · tkL2(@Kq)

+ k↵ curlu� ↵h curluIkL2(⌦±) + k�u� �h⇧huIkL2(⌦)

⌘
.

(4.8)

Proof. We have

ah(uh,⌘h
)� ah(uI ,⌘h

) = (f ,⇧h⌘h
� ⌘

h
)⌦| {z }

(I)

+(f ,⌘
h
)⌦ � ah(uI ,⌘h

)| {z }
(II)

. (4.9)

For (I), on all the triangular elements in Th, ⇧h reduce to identity operators, so
⇧h⌘h

� ⌘
h
simply vanishes. On a quadrilateral element Kq

2 T
q

h
, by the definition

under (4.3), ⇧h⌘h
= ⇧Kq⌘

h
, which is the L

2-projection of ⌘
h
on K

q. Therefore

(f ,⇧Kq⌘
h
� ⌘

h
)Kq = (f �⇧Kqf ,⇧Kq⌘

h
� ⌘

h
)Kq

. hK |f |H1(Kq)k⇧Kq⌘
h
� ⌘

h
kL2(Kq).

(4.10)

For the term (II) in (4.9), using ↵ curl curlu+ �u = f , we have

(II) = (↵ curl curlu,⌘
h
)⌦ � (↵h curl uI , curl⌘h

)⌦| {z }
(IIa)

+(� u,⌘
h
)⌦ � (�h ⇧huI ,⇧h⌘h

)⌦| {z }
(IIb)

�

X

K2T Bi
h

SK(uI ,⌘h
)

| {z }
(IIc)

. (4.11)

For (IIa), since ⌘
h
is in the conforming auxiliary space Vh in (3.9), using the integra-

tion by parts, the continuity condition of the original PDE, and the curl condition
in (3.8) we immediately have

(IIa) = (↵ curl u, curl ⌘
h
)⌦ � (↵h curluI , curl⌘h

)⌦

 k↵ curl u� ↵h curl uIkL2(⌦)k curl⌘h
kL2(⌦).

(4.12)
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For (IIb), on a triangular element Kt, we note that

(�h ⇧huI ,⇧h⌘h
)Kt = (�h uI ,⌘h

)Kt . (4.13)

On a quadrilateral element Kq, by (3.11) we have

(�h ⇧KquI ,⇧Kq⌘
h
)Kq = (�h ⇧KquI ,⌘h

)Kq . (4.14)

Combining (4.13) and (4.14), we have

(IIb) = (�u� �h⇧huI ,⌘h
)⌦  k�u� �h⇧uIkL2(⌦)k⌘h

kL2(⌦). (4.15)

In addition, for the stabilization term (IIc), by (⌘
h
� ⇧Kq⌘

h
) · te 2 P0(e) on each

e ✓ @K
q and the definition of the interpolant in (3.14), we have

SK(uI ,⌘h
) = hK

Z

@Kq

(uI �⇧KquI) · t (⌘h
�⇧Kq⌘

h
) · t ds

= hK

Z

@Kq

(u�⇧KquI) · t (⌘h
�⇧Kq⌘

h
) · t ds

 hKk(u�⇧KquI) · tkL2(@Kq)k(⌘h
�⇧Kq⌘

h
) · tkL2(@Kq).

(4.16)

Finally, putting the estimates in (4.10)-(4.16) to (4.9) yields the following bound

|||⌘
h
|||
2
h
.
⇣ X

Kq2T q
h

hK |f |H1(Kq) +
X

Kq2T q
h

h
1/2
K

k(u�⇧huI) · tkL2(@Kq)

+k↵ curl u� ↵h curl uIkL2(⌦) + k�u� �h⇧huIkL2(⌦)

⌘

·

⇣ X

Kq2T q
h

k⇧Kq⌘
h
� ⌘

h
kL2(Kq) + k curl ⌘

h
kL2(⌦) + k⌘

h
kL2(⌦)

⌘
.

(4.17)

To bound k⇧Kq⌘
h
� ⌘

h
kL2(Kq) on quadrilateral elements, using Lemma 3.4 yields

the following estimate

k⇧Kq⌘
h
� ⌘

h
kL2(Kq) . h

1/2
K

k(⇧Kq⌘
h
� ⌘

h
) · tkL2(Kq) + hKk curl ⌘

h
kL2(Kq).

Putting the estimate above into (4.17) and canceling one |||⌘
h
||| on both sides yield

the desired result.

5. Interpolation Error Estimates

In this section, we estimate the interpolation errors and projection errors of
virtual element spaces. Given any triangle T , the interpolation in (3.14) exactly
becomes the canonical edge interpolation [38]. If T is further assumed to be shape
regular, then the following standard optimal approximation capability holds:

ku� ITukH(curl;T ) . hT kukH1(curl;T ), u 2 H
1(curl;T ). (5.1)
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5.1. Estimates based on the Maximum Angle Condition

Due to the assumption of the interface being smooth, we note that certain
elements in T

t

h
may inevitably have high aspect ratio in the process of mesh re-

fining, which results that the commonly assumed shape regularity does not hold
anymore. Consequently, the standard results about the approximation results of
the edge interpolation (5.1) cannot be directly applied. However, since maximum
angles of triangles in the auxiliary triangulation around the interface are uniformly
bounded if the background mesh is shape regular, the interpolation error estimates
can nevertheless be established based on the maximum angle condition. The inter-
polation estimates based on the maximum angle condition have been long studied
for Lagrange elements [3, 32], Raviart-Thomas elements [1, 6, 36], and 3D Nédélec
elements [6].

Lemma 5.1 (the same argument as in [1]). Given any triangle T , let ✓T be
the maximum angle of T , then

ku� ITukH(curl;T ) .
hK

sin(✓T )
kukH1(curl;T ), u 2 H

1(curl;T ). (5.2)

The results above can be directly applied to estimate the interpolation errors of
the virtual space Vh(Kq) on K

q
2 T

q

h
. Again we present in a more general setting.

Lemma 5.2. Let P be a simple polygon satisfying (P1)–(P2) and let IPu be the
edge interpolation to Vh(P ) defined in (3.14). Then

ku� IPukH(curl;P ) . hP kukH1(curl;Conv(P )), u 2 H
1(curl; Conv(P )). (5.3)

Proof. The estimate for the semi-curl norm is standard since curl IPu is the L
2

projection of curlu on P . Then

k curlu� curl IPukL2(P ) = k curlu�⇧P curlukL2(P )

 k curlu�⇧Conv(P ) curlukL2(P )

 k curlu�⇧Conv(P ) curlukL2(Conv(P ))


hP

⇡
kukH1(curl;Conv(P )),

where the last step is the Poincaré inequality over convex domains [40].
Let Ih be the edge interpolation to Vh(Th(P )), i.e., the standard edge finite

element space on mesh Th(P ). By the maximum angle condition in (P1) and Lemma
5.1, we have ku � IhukL2(P ) . hP kukH1(curl;P ). Then it su�ces to estimate the
di↵erence kIPu� IhukL2(K) on each triangle K 2 Th(P ). We apply Lemma 3.4 on
each K to get

kIPu� IhukL2(K) 

X

e⇢@K

h
1/2
K

k(IPu� Ihu) · tkL2(e) + hKk curl(IPu� Ihu)kL2(K).

As (IPu � Ihu) · t = 0 for e ⇢ @P , we only consider an interior edge e. Since P

is simple, any interior edge e divides P into two parts. Choose the part with less
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boundary edges and denoted by Pe, then we have the relation

|e|(IPu� Ihu) · te =

Z

Pe

curl(IPu� Ihu) dx,

which can be used to get

|e|
1/2

k(IPu� Ihu) · tkL2(e)  k curl(IPu� Ihu)kL2(Pe)|Pe|
1/2

.

Using the triangle inequality, together with the estimates for curl(u � IPu) and
curl(u� Ihu) , we conclude for any K 2 Th(P )

kIPu� IhukL2(K) . h
2
P
k curlukH1(Conv(P )). (5.4)

The desired result (5.3) then follows from the triangle inequality.

5.2. An Interface-aware Interpolation

In the interpolation error estimate, locally a norm k curlukH1(K) will be used.
When K is an interface element, in general curlu 62 H

1(K) but in H
1(K+

[K
�).

Instead we will use the fact curlu±
E

2 H
1(K) and define the interpolation by the

tangential components of either u
+
E

or u
�
E
, where which extension to use depends

on the measure of K
� and K

+. Note that, in the present situation, since both
the triangular elements in T

t

h
and the quadrilateral elements in T

q

h
may have high

aspect ratio, the modification in [26] may not be suitable on anisotropic meshes
with interface being present. Therefore, we shall employ a di↵erent interface-aware
interpolation.

In the following discussion, we only present the results for the elements in the
mesh Th due to the technical treatment for the interface. But we emphasize that
most of the results can be generalized based on the estimate of the interpolation
errors on general polygons above. We shall use K to denote an interface element in
T

B

h
that is cut into K

�
h

and K
+
h

by the edge �K

h
, and without loss of generality,

we assume K
�
h

2 T
t

h
and K

+
h

2 T
q

h
. Recall that Kint is the portion sandwiched

between � and �K

h
, and we further define K

±
int := K

±
h
\Kint which is equivalent to

K
±
h
\K

⌥, namely the mismatching subregions of K±
h

as shown in Figure 5.1. Let
EK be the collection of edges of K�

h
and K

+
h

but excluding the edge �K

h
. We define

a modified interpolation operator ĨK on K 2 T
Bi

h
such that

Z

e

ĨKu · t ds =

Z

e

u · t ds, 8e 2 EK , (5.5a)

Z

�K
h

ĨKu · t ds =

8
>><

>>:

Z

�K
h

u
+
E
· t ds, if |K+

h
|  |K

�
h
|,

Z

�K
h

u
�
E
· t ds, if |K�

h
| < |K

+
h
|.

(5.5b)

By such a definition, we can always keep the interpolation as the standard one
on the subelement with smaller size. So when estimation on the mismatch portion
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is needed, such as (5.15), the element size appearing on the denominator will be
always larger than |K|/2 such that the overall estimate can be controlled. This
consideration serves as our key motivation to make this modification. For simplicity,
we denote uI by the global interpolant such that

uI = IKu if K /2 T
Bi

h
and uI = ĨKu if K 2 T

Bi

h
.

In addition, we use I
K

±
h
u
±
E
to denote the canonical interpolation on K

±
h

for Sobolev

extensions u±
E
. We emphasize that the modified ĨK serves the purpose for the error

analysis and is not needed in actual computation.
The following two lemmas are presented for general polygons. So we temporarily

let K be an interface polygon, and the notation �K , �K

h
and Kint are all defined

in the same manner as their counterparts for triangular interface elements. For the
subelement with larger size, inevitably there is a mismatch on �K

h
, so these results

are essential. In the following discussion, with slightly abuse of the notations, we
denote h̃K = |�K

h
| which might be much smaller than hK (see Fig. 5.1 (left)), and

ku
±
E
kL2(K) := ku

�
E
kL2(K) + ku

+
E
kL2(K) with trivial generalization to other Sobolev

norms.

Fig. 5.1: Left: the triangular interface is the smaller one. Right: the quadrilateral
element is the smaller one.

The edge �K

h
is assumed to be part in ⌦+ and part in ⌦�. As a result, the line

integral
R
�K
h
u·t ds has part of the integrand being u

+
E
·t while the other being u

�
E
·t.

Their di↵erence appears one of the key terms to bound the error of the modified
interpolant (5.5), as one adheres to one extension in defining the interpolation.

Lemma 5.3. Let u 2 H
1(curl;⌦�

[ ⌦+). Given an interface polygon K, there
holds

�����

Z

�K
h

(u+
E
� u

�
E
) · t ds

����� . h̃
1/2
K

hKk curl u±
E
kL2(Kint). (5.6)
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Proof. Applying integration by parts on Kint and using the jump condition in
(1.1c), we obtain
�����

Z

�K
h

(u+
E
� u

�
E
) · t ds

����� =
����
Z

Kint

curl(u+
E
� u

�
E
) ds

���� . |Kint|
1/2

k curl u±
E
kL2(Kint)

which yields (5.6) since |Kint| . h̃Kh
2
K

by (2.1).

The result above can be used to derive the following trace inequality. Recall that
there exists a shape regular triangle BK

h
✓ ⌦ with the base �K

h
and a height O(hK)

by Assumption (B) for all interface elements.

Lemma 5.4. Let u 2 H
1(curl;⌦�

[⌦+). Given an interface polygon K with �K

h
,

there holds

k(u+
E
� u

�
E
) · tkL2(�K

h ) . h
1/2
K

ku
±
E
kH1(BK

h ) + hKk curl u±
E
kL2(Kint). (5.7)

Proof. Apply the L
2-projection on �K

h
to obtain

k(u�
E
� u

+
E
) · tkL2(�K

h )  k(u�
E
� u

+
E
) · t�⇧�K

h
((u�

E
� u

+
E
) · t)kL2(�K

h )| {z }
(I)

+ k⇧�K
h
((u�

E
� u

+
E
) · t)kL2(�K

h )| {z }
(II)

.

(5.8)

Since t is a constant vector and �K

h
with B

K

h
satisfies the height condition, by the

trace inequality [9, Lemma 6.3] and Poincaré inequality with average zero on a
boundary edge [9, Lemma 6.11], we have

(I) . l
�1/2

k(u�
E
� u

+
E
) · t�⇧�K

h
((u�

E
� u

+
E
) · t)kL2(BK

h )

+ (l1/2 + l
�1/2

h̃K)|(u�
E
� u

+
E
) · t|H1(BK

h )

. h
1/2
K

|(u�
E
� u

+
E
) · t|H1(BK

h ).

(5.9)

For (II), by Lemma 5.3, we have

(II) = h̃
1/2
K

���⇧�K
h
((u�

E
� u

+
E
) · t)

���

= h̃
�1/2
K

����
Z

ẽ

(u�
E
� u

+
E
) · t ds

���� . hKk curlu±
E
kL2(Kint).

(5.10)

Putting (5.9) and (5.10) back into (5.8) finishes the proof.

5.3. Estimate on Interface Elements

Now we proceed to estimate the interpolation errors u�uI on interface elements
for the modified interpolation.

Lemma 5.5. Let u 2 H
1(curl;⌦�

[⌦+). Given each interface element K 2 T
Bi

h
,

there holds

ku� uIkH(curl;K) .hKku
±
E
kH1(curl;K[B

K
h ) + ku

±
E
kH(curl;Kint). (5.11)
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Proof. Recall that K = K
�
h
[K

+
h
. Without loss of generality, we focus the proof

on K
�
h

as the estimate on the other part follows the result on K
�
h

using a similar
argument as the one in Lemma 5.2. By the triangle inequality, we have

ku� uIkH(curl;K�
h ) ku� u

�
E
k
H(curl;K�

h ) (I)

+ ku
�
E
� I

K
�
h
u
�
E
k
H(curl;K�

h ) (II)

+ kI
K

�
h
u
�
E
� uIkH(curl;K�

h ). (III)

The first term (I) can be bounded by

ku� u
�
E
k
H(curl;K�

h ) = ku
+
E
� u

�
E
k
H(curl;K�

int)
 ku

±
E
kH(curl;Kint), (5.12)

and the second term (II) directly follows from Lemma 5.1 since the triangular
element K

�
h

satisfies the maximum angle condition. The third term (III) simply
vanishes if |K�

h
|  |K

+
h
|, therefore the estimate for this term is only needed when

|K
�
h
| > |K

+
h
| and consequently |K

�
h
| � Ch

2
K
. For simplicity, we let wh = I

K
�
h
u
�
E
�

uI , and note that wh · t vanishes on the edges of K�
h

except �K

h
. Using integration

by parts and Lemma 5.3, we have

kcurlwhkL2(K�
h ) = |K

�
h
|
1/2

|curlwh| =
1

|K
�
h
|1/2

�����

Z

�K
h

wh · t ds

����� (5.13)

. 1

hK

�����

Z

�K
h

(u�
E
� u

+
E
) · t ds

����� . h
1/2
K

k curlu±
E
kL2(Kint). (5.14)

To estimate the L
2-norm, we use inequality (3.16) in Lemma 3.4 to conclude

kwhkL2(K�
h ) . h

1/2
K

kwh · tkL2(�K
h ) + hKk curlwhkL2(K�

h ). (5.15)

Lastly, using Lemma 5.4 and the bound of kcurlwhkL2(K�
h ) finishes the proof.

The estimates on non-interface elements in the background mesh T
B

h
are stan-

dard. These estimates together with the Sobolev inequality in Lemma 2.2 and The-
orem 2.1 on the extension yield the global interpolation estimate.

Theorem 5.1. Let u 2 H
1(curl;⌦�

[ ⌦+), then there holds

ku� uIkH(curl;⌦) . hkukH1(curl;⌦�[⌦+). (5.16)

Proof. For non-interface elements, the estimate is standard as well. For interface
element K, we then use Lemma 5.5:

X

K2T Bi
h

ku� uIk
2
H(curl;K) .

X

K2T Bi
h

h
2
K
ku

±
E
k
2
H1(curl;K[B

K
h ) + ku

±
E
k
2
H(curl;Kint)

,

.h
2
ku

±
E
k
2
H1(curl;⌦�[⌦+) + ku

±
E
k
2
H(curl;[

K2T Bi
h

Kint)
,

in which the second step we use the fact �h is uniform Lipschitz so that the over-
lapping portions of triangles B

K

h
for every interface element K are bounded. The

desired estimate follows from Theorem 2.1 and estimate (2.4).
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5.4. Estimate on the stabilization

In this subsection, we move back to the mesh Th consisting of triangular and
quadrilateral elements cut from the background triangular mesh. On the quadrilat-
eral K+

h
, a stabilization term is present. In this section such terms appearing in the

error bound are estimated, including

k(u� uI) · tkL2(@K), k⇧Kq (u� uI) · tkL2(@K), k(u�⇧KquI) · tkL2(@K).

The main di�culty is on the second term above. Note that the common and natural
approach to estimate the edge terms is to apply the trace inequality, which indeed
works for the edges A1D and A2E due to the corresponding O(hK) height within
the triangle. However, the major di�culty arises for edges like A1A2 and �K

h
= DE,

due to a possibly degenerating height. The core idea of our approach is to employ a
constructive proof, without relying on the trace inequality, to control the edge terms
by using ⇧Kq (u� uI) · t being a constant for lifting and applying the definition of
projection (3.12). In the coming proofs, ⇠

h
:= u� uI for simplicity.

Lemma 5.6. Let u 2 H
1(curl;⌦�

[⌦+). Given each interface element K 2 T
Bi

h
,

there holds

k(u� uI) · tkL2(@K+
h ) . h

1/2
K

ku
±
E
kH1(K) + hKk curl u±

E
kL2(Kint). (5.17)

Proof. First, we have on each edge e 6= �K

h
✓ @K

+
h
,
R
e
⇠
h
ds = 0, and thus

k⇠
h
· tkL2(e) . h

1/2
e

|u · t|H1/2(e)  Ch
1/2
K

ku
+
E
kH1(K), (5.18)

where we have used the fact that e is one part of an edge of the regular element K
such that the trace inequality can be applied on this edge and K. On �K

h
, by the

triangle inequality, we have

k⇠
h
· tkL2(�K

h ) k(u� u
+
E
) · tkL2(�K

h )

+k(u+
E
� I

K
+
h
u
+
E
) · tkL2(�K

h ) + k(I
K

+
h
u
+
E
� uI) · tkL2(�K

h ).
(5.19)

For the first term in (5.19), note that

k(u� u
+
E
) · tkL2(�K

h )  k(u�
E
� u

+
E
) · tkL2(�K

h ) (5.20)

of which the estimate follows from Lemma 5.4. The second term in (5.19) follows
from the argument similar to (5.18). The third term in (5.19) simply vanishes when
|K

+
h
| < |K

�
h
|. If |K+

h
| � |K

�
h
|, then the estimate follows from Lemma 5.3.

Lemma 5.7. Let u 2 H
1(curl;⌦�

[⌦+). Given each interface element K 2 T
Bi

h
,

there holds

k⇧
K

+
h
(u� uI) · tkL2(@K+

h ) . h
1/2
K

ku
±
E
kH1(curl;K) + h

�1/2
K

ku
±
E
kH(curl;Kint). (5.21)

Proof. For simplicity, we assume A1 is at the origin, K is contained in the first
quadrant, and the edge A1A2 aligns with the x-axis having a tangential vector



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM˙Hcurl

22 Authors’ Names

(1, 0)|. Let e be an edge of K+
h

with the unit tangential vector te. If e = A1D or
A2E, since the height within K

+
h
with respect to these two edges cannot degenerate,

a simple scaling directly leads to

k⇧
K

+
h
⇠
h
· tkL2(e) . h

�1/2
K

k⇧
K

+
h
⇠
h
k
L2(K+

h )  h
�1/2
K

k⇠
h
k
L2(K+

h ),

and then the estimate follows from Lemma 5.5. For e = A1A2 or DE, if both
|A1D| � �|A1A3| and |A2E| � �|A2A3|, with a constant � 2 (0, 1) bounded away
from 0, the trace inequality-based argument above can be still applied.

The major di�culty is how to deal with edges e = A1A2 or DE when K
+
h

becomes degenerate. Without loss of generality, we assume |A1D|  |A1A3|/2 or
|A2E|  |A2A3|/2 (see Figure 5.1 (right) for an illustration). In such a case, |DE| &
hK independent of the interface location thanks to the law of sines as either |A3D| �

|A1A3|/2 or |A3E| � |A3A2|/2. Now let D = (r1, r2) and E = (s1, s2), we have

chK max{r2, s2}  |K
+
h
|  ChK max{r2, s2}. (5.22)

Next, pe
h
2 P1(K

+
h
) is sought such that curl pe

h
= te. Since ⇧

K
+
h
⇠
h
is a constant,

and by (3.12), we have

k⇧
K

+
h
⇠
h
· tekL2(e) =

h
1/2
e

|K
+
h
|

���(⇧
K

+
h
⇠
h
, curl pe

h
)
K

+
h

���


h
1/2
e

|K
+
h
|

���(curl ⇠h, peh)K+
h

���
| {z }

(I)

+
h
1/2
e

|K
+
h
|

���(⇠h · t, p
e

h
)
L2(@K+

h )

���
| {z }

(II)

.

(5.23)

If e = A1A2, then te = (1, 0)|, and p
e

h
= y which implies kp

e

h
k
L1(K+

h ) 

max{r2, s2}. If e = DE, then

te =
(r1 � s1, r2 � s2)

|DE|
, and p

e

h
=

(r1 � s1)x2 � (r2 � s2)x1

|DE|
.

Note that |(r1 � s1)x2| . hK max{r2, s2} and |(r2 � s2)x1| . hK max{r2, s2}, as a
result, the following estimate always holds

kp
e

h
k
L1(K+

h ) . max{r2, s2}. (5.24)

Now we proceed to estimate (I) and (II) individually. For (I), by (5.22) and (5.24)
there holds

kp
e

h
k
L2(K+

h ) . max{r2, s2}|K
+
h
|
1/2 . |K

+
h
|
3/2

h
�1
K

.

Therefore,

(I) . |K
+
h
|
1/2

h
�1/2
K

k curl ⇠
h
k
L2(K+

h ) . h
1/2
K

k curl ⇠
h
k
L2(K+

h ) (5.25)

of which the estimate follows from Lemma 5.5. For (II), on each e
0
✓ @K

+
h

using
(5.22) and (5.24) again, we have

kp
e

h
kL2(e0) . max{r2, s2}h

1/2
e0 . |K

+
h
|h

�1/2
K

.
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Lastly, we arrive at

(II) 
h
1/2
e

|K
+
h
|
k⇠

h
· tk

L2(@K+
h )kp

e

h
k
L2(@K+

h ) . k⇠
h
· tk

L2(@K+
h ) (5.26)

of which the estimate follows from Lemma 5.6. Putting (5.25) and (5.26) into (5.23)
finishes the proof.

Lemma 5.8. Let u 2 H
1(curl;⌦�

[⌦+). Given each interface element K 2 T
Bi

h
,

there holds

k(u�⇧
K

+
h
uI) · tkL2(@K+

h ) .h
1/2
K

ku
±
E
kH1(curl;K) + h

�1/2
K

kcurlu±
E
kL2(Kint). (5.27)

Proof. Let us decompose the error into

k(u�⇧
K

+
h
uI) · tkL2(@K+

h )

k(u�⇧
K

+
h
u
+
E
) · tk

L2(@K+
h ) + k(⇧

K
+
h
u
+
E
�⇧

K
+
h
uI) · tkL2(@K+

h ).
(5.28)

Here the estimate of the second term is similar to the one in Lemma 5.7. Therefore,
we only need to estimate the first term in (5.28) which is further decomposed into

k(u�⇧
K

+
h
u
+
E
) · tk

L2(@K+
h )

k(u� u
+
E
) · tk

L2(@K+
h )| {z }

(I)

+ k(u+
E
�⇧

K
+
h
u
+
E
) · tk

L2(@K+
h )| {z }

(II)

. (5.29)

Note that (I) is only non-zero on �K

h
of which the estimate follows form Lemma

5.4. For (II), if e ✓ @K
+
h

is A1D or A2E, i.e., it has an O(hK) height within K
+
h
.

Then we apply the trace inequality [9, Lemma 6.3] and the approximation result of
the L

2 projection to obtain

(II) . h
�1/2
K

ku
+
E
�⇧

K
+
h
u
+
E
k
L2(K+

h ) . h
1/2
K

ku
+
E
k
H1(K+

h ).

If e ✓ @K
+
h
is A1A2 or DE where the corresponding height may become degenerate,

we first apply the trace inequality on the whole shape-regular element K, and then
apply the Poincaré inequality [9, Lemma 5.3], to obtain

(II) . h
�1/2
K

ku
+
E
�⇧

K
+
h
u
+
E
kL2(K) . h

1/2
K

ku
+
E
kH1(K).

Combining the estimates above finishes the proof.

6. Convergence Analysis

In this section, based on the previous results, we estimate the convergence order
of the solution errors. In particular, we need to estimate each term in the error
bound (6.2). Our main task is to estimate those terms on quadrilateral elements.
In the following discussion, we still keep our notation that K

+
h

2 T
q

h
will be the

quadrilateral subelement associated with each interface element K 2 T
Bi

h
.

Theorem 6.1 (An a priori convergence result for VEM). Under the same
assumption of Theorem 4.1, let u 2 H

1(curl;⌦�
[⌦+) and let the background mesh
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T
B

h
satisfy the assumptions (A) and (B), then the solution uh to the VEM scheme

(4.5) admits the error estimates

ku� uhkH(curl;⌦) . hkukH1(curl;⌦+[⌦�) + h

X

Kq2T q
h

|f |H1(Kq). (6.1)

Proof. First of all, by the triangle inequality, we have

ku� uhkH(curl;⌦)  ku� uIkH(curl;⌦) + kuI � uhkH(curl;⌦).

Recall ⌘
h
= uI � uh. We use Lemma 3.4 to obtain

X

K2Th

k⌘
h
k
2
K



X

K2Th

k⇧h⌘h
k
2
K
+ k(I �⇧h)⌘h

k
2
K

.
X

K2Th

k⇧h⌘h
k
2
K
+ hKk(I �⇧h)⌘h

· tk
2
@K

+ h
2
K
k curl⌘

h
k
2
K

. |||⌘
h
|||
2
h

Recall that in Theorem 4.1, we have obtained

|||⌘
h
|||
h
.
⇣ X

Kq2T q
h

hK |f |H1(Kq) +
X

Kq2T q
h

h
1/2
K

k(u�⇧huI) · tkL2(@Kq)

+ k↵ curlu� ↵h curluIkL2(⌦±) + k�u� �h⇧huIkL2(⌦)

⌘
.

(6.2)

Then the estimate follows from Lemma 5.8 and Theorem 5.1, and applying a simple
triangle inequality to the last term.

7. Numerical Examples

In this section, we present a group of numerical experiments to validate the
previous estimates. Let the computation domain be ⌦ = (�1, 1) ⇥ (�1, 1), and
background mesh be generated by triangulating anN⇥N Cartesian mesh by cutting
each square into two triangles along its diagonal. We highlight that the proposed
method can be used on any other regular background triangular meshes. A circular
interface {� : x2 + y

2 = r
2
1} cuts ⌦ into the inside subdomain ⌦� and the outside

subdomain ⌦+. We consider the example in [24, 34] that the exact solution is

u =

8
>>>><

>>>>:

 
µ
� �

�k1(r21 � x
2
� y

2)y
�

µ
� �

�k1(r21 � x
2
� y

2)x
�

!
in ⌦�

,

 
µ
+
�
�k2(r22 � x

2
� y

2)(r21 � x
2
� y

2)y
�

µ
+
�
�k2(r22 � x

2
� y

2)(r21 � x
2
� y

2)x
�

!
in ⌦+

,

(7.1)

where the boundary conditions and the right hand side f are calculated accordingly.
We employ the parameters k2 = 20, k1 = k2(r22�r

2
1) with r1 = ⇡/5 and r2 = 1, and

fix ↵
� = �

� = 1 with varying ↵
+ = 10 or 100 and �

+ = 10 or 100. For simplicity,
we define the errors

e0 = ku� uhkL2(⌦) and e1 = k curl(u� uh)kL2(⌦). (7.2)
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The numerical results are presented in Tables 1-4 which clearly show the first order
convergence for both errors.

h e0 rate e1 rate

1/10 0.6257 NA 1.3893 NA

1/20 0.3258 0.94 0.6998 0.99

1/40 0.1661 0.97 0.3534 0.99

1/80 0.0843 0.98 0.1784 0.99

1/160 0.0424 0.99 0.0894 1.00

1/320 0.0213 1.00 0.0447 1.00

1/640 0.0107 0.99 0.0224 1.00

Table 1: Solution errors for ↵+ = 10 and
�
+ = 10.

h e0 rate e1 rate

1/10 0.6206 NA 1.3912 NA

1/20 0.3257 0.93 0.7000 0.99

1/40 0.1661 0.97 0.3534 0.99

1/80 0.0843 0.98 0.1784 0.99

1/160 0.0424 0.99 0.0894 1.00

1/320 0.0213 1.00 0.0447 1.00

1/640 0.0107 1.00 0.0224 1.00

Table 2: Solution errors for ↵+ = 10 and
�
+ = 100.

h e0 rate e1 rate

1/10 0.3266 NA 1.0795 NA

1/20 0.1761 0.89 0.5449 0.99

1/40 0.0926 0.93 0.2768 0.98

1/80 0.0482 0.94 0.1406 0.98

1/160 0.0246 0.97 0.0705 1.00

1/320 0.0124 0.99 0.0353 1.00

1/640 0.0062 0.99 0.0177 1.00

Table 3: Solution errors for ↵
+ = 100

and �
+ = 10.

h e0 rate e1 rate

1/10 0.1938 NA 0.8877 NA

1/20 0.1425 0.44 0.4358 1.03

1/40 0.0698 1.03 0.1976 1.14

1/80 0.0368 0.92 0.1027 0.95

1/160 0.0189 0.96 0.0503 1.03

1/320 0.0101 0.90 0.0264 0.93

1/640 0.0054 0.91 0.0140 0.92

Table 4: Solution errors for ↵
+ = 100

and �
+ = 100.
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32. M. Kř̀ıžek. On the maximum angle condition for linear tetrahedral elements.
SIAM J. Numer. Anal., 29(2):513–520, 1992. 16

33. R. J. LeVeque and Z. Li. The immersed interface method for elliptic equations
with discontinuous coe�cients and singular sources. SIAM J. Numer. Anal.,
31(4):1019–1044, 1994. 2

34. J. Li, J. M. Melenk, B. Wohlmuth, and J. Zou. Optimal a priori estimates for
higher order finite elements for elliptic interface problems. Appl. Numer. Math.,
60(1):19–37, 2010. 6, 24

35. H. Liu, L. Zhang, X. Zhang, and W. Zheng. Interface-penalty finite element
methods for interface problems in H

1, H(curl), and H(div). Comput. Methods



March 2, 2021 20:25 WSPC/INSTRUCTION FILE VEM˙Hcurl

28 REFERENCES

Appl. Mech. Engrg., 367, 2020. 2
36. L. D. Marini. An inexpensive method for the evaluation of the solution of

the lowest order Raviart–Thomas mixed method. SIAM J. Numer. Anal.,
22(3):493–496, 1985. 16

37. P. Monk. Analysis of a finite element method for maxwell’s equations. SIAM
J. Numer. Anal., 29(3):714–729, 1992. 2

38. P. Monk. Finite Element Methods for Maxwell’s Equations. Oxford University
Press, 2003. 3, 15

39. J. C. Nedelec. Mixed finite elements in R3. Numer. Math., 35(3):315–341, 1980.
7

40. L. E. Payne and H. F. Weinberger. An optimal Poincaré inequality for convex
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