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Erratum to Groups with S? Bowditch boundary

Bena Tshishiku and Genevieve Walsh

Abstract. The purpose of this erratum is to correct the proof of Lemma 3.1 in [2].
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1. The result
The following statement appears in [2, Lemma 3.1].

Theorem 1.1. Let X be a compact metric space. Assume that there exists
a surjection ®: X — S? such that (i) there exists a countable dense subset
Z C 8? so that the restriction of m to 7= 1(S?\ Z) is injective, (ii) for each
w € Z, the space X,, obtained from X by collapsing each 7=1(z) to a point for
2 # w is homeomorphic to a closed disk D?, and (iii) for each z € Z, 77 1(2)
is an embedded circle. Then X is homeomorphic to the Sierpinski curve.

The proof in [2] is not complete, as pointed out to us by Lucas H. R.
Souza, whom we kindly thank. We also the referee for carefully reading the
erratum and for additional corrections.

About the error. The proof in [2] attempts to show that any two spaces
X, X’ as in the statement are homeomorphic by expressing X = lim X (k) as
an inverse limit, and similarly for X’, and constructing a homeomorphism
X — X' by showing that the associated inverse systems {X(k)} and
{X'(k)} are isomorphic. This is done inductively. The base case is a
theorem of Bennett [1], which says that any two countable dense subsets of
S? differ by a homeomorphism ¢ : $? — S2. Given this, we want to obtain
or » X(k) — X'(k) by a “blowup” of ¢. However, given the non-explicit
nature of Bennett’s result, it is not clear that one can construct ¢, in this
manner. In our argument, we attempt to obtain ¢, as an extension of a
map gbk_ly that is claimed to be uniformly continuous, but this assertion is
not justified.
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We also point out that the hypothesis (iii) in Theorem 1.1 is omitted in
[2, Lemma 3.1], where it is incorrectly asserted that (ii) implies (iii). One
can give an example of X satisfying (i) and (ii), and such that 7=1(2) is an
annulus for some z € Z. Such an X will not be a Sierpinski carpet as it is
not 1-dimensional.

The fix. We provide a different approach that is closer to Whyburn’s
classical result [3, Thm. 3] that characterizes the Sierpinski curve as the
unique locally-connected, 1-dimensional continuum in S? whose comple-
ment is a union of open disks whose boundaries are disjoint.

2. Setup for the proof

Let (X, 7, Z) be as in the Theorem 1.1. We call X (or more precisely the
tuple (X, 7, Z)) an S-space. The main step in the proof of Theorem 1.1 is to
show that any two S-spaces are homeomorphic. In this section we collect
some basic facts about S-spaces that we use to prove the Theorem 1.1 in
Section 3.

Given (X, 7, Z), we denote C = {n~1(2) : z € Z}. By assumption, each
C € C is an embedded circle in X. We call these circles peripheral.

Lemma 2.1 (Diameter of peripheral circles). Let X be a S-space. For any
d > 0, there are only finitely many peripheral circles with diameter > d.

Proof. Suppose for a contradiction that there are infinitely many C1y, Co, . ..
of diameter > d. Choose z;,y; € C; of distance > d. After passing to a
subsequences, we may assume that z; — x and y; — y with x # y.

If z,y belong to the same peripheral circle C = 7~ !(w), we consider
the quotient X,, (collapsing each 771(z) to a point for z # w) and observe
that x,y cannot be separated by open sets in X,,, which contradicts the
assumption that X,, = D?. Similarly, if 7(z) # m(y), we consider the
quotient of X by collapsing each C € C to a point, and observe that this
space is not Hausdorff; on the other hand this quotient is S? by assumption,
a contradiction. O

Lemma 2.2 (Quotients of S-spaces). Let X be an S-space, and let Cy C C
be a finite collection of k peripheral circles. The space X (Cp) obtained by
collapsing each C € C\ Cy to a point is homeomorphic to the compact surface
of genus 0 with k boundary components.

Proof. This is explained in [2] in the proof of Lemma 3.1 (this argument is
independent of the aforementioned error). O
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For an S-space X, we say that a finite, connected graph G — X is nicely
embedded if (i) each peripheral circle is either contained in or disjoint from
G, (ii) G contains finitely many peripheral circles, and (iii) denoting Cy C C
the peripheral circles contained in G, the image of GG in the quotient space
X (Co) (defined in Lemma 2.2) is the 1-skeleton of a triangulation of X (Cy).

Lemma 2.3 (Subdividing an S-space). Let X be an S-space.

(i) If S C X is an embedded circle disjoint from the peripheral circles, then
the closure of each component of X \ S C X is an S-space.

(i) More generally, if G C X is a nicely embedded graph, then G decomposes
X into a union of S-spaces, one for each component of X \ G.

Proof. (i) By assumption, 7(S) C S? is an embedded circle. By the Jordan
curve theorem, this circle separates S? into two closed disks Di, Dy with
common boundary 7(S). Then X \ S has two components with respective
closures X7 = 771(D;) and X5 = 7~ !(D3). Observe that the quotient map
X; — D;/0D; = S? induces an S-space structure on X;.

(ii) Let Cy C C be the collection of peripheral circles contained in G, and
consider the quotient X (Cp). By Lemma 2.2, X(Cp) is a genus-0 surface.
By assumption, G embeds in X (Cp), and subdivides X (Cy) into a collection
of closed disks. The pre-image of each disk in X has a natural S-space
structure, similar to (i). O

Given a graph G C X as in Lemma 2.3, we say that G subdivides X
into the S-spaces provided by Lemma 2.3, which we call the components of
the subdivision. We define the mesh of G as the maximum diameter of the
components of its subdivision.

The following lemma is analogous to [3, Lem. 1]. This lemma may be
viewed as the main tool used in the proof Theorem 1.1.

Lemma 2.4. Let X, X’ be S-spaces with peripheral circles C,C’, respectively.
Given Cy € C and C, € C', a homeomorphism hg : Cy — C{, and € > 0, there
exist nicely embedded graphs G and G" with Co C G C X and C{ C G' C X',
each with mesh < € and a homeomorphism h : G — G’ extending hg.

Proof. The proof is nearly identical to the proof of [3, Lem. 1], even though
our setup is slightly different. Take Cy C C and C) C C’ equal-sized
collections of peripheral circles containing all the peripheral circles with
diameter > e. We can choose Cy,C finite by Lemma 2.1. By Lemma 2.2,
there is a homeomorphism f : X(Cp) — X'(Cj) that extends the given
homeomorphism hg : Cp — C) (here we are abusing notation slightly by
identifying the Cy C X with its homeomorphic image in X (Cy)).
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Let Zy € X(Cp) be the image of the collapsed peripheral circles under
the quotient X — X(Cp), and define Z) C X’'(Cj) similarly. Then
f(Zo)U Z[ c X'(C}) is a countable collection of points, and for any § > 0,
we can find a graph G’ C X'(C})) containing dX'(Cj)) of mesh < ¢ that
is disjoint from f(Zp) U Z,. We can choose G’ to be the 1-skeleton of a
triangulation of the surface X'(C(), so that the graphs G := f~1(G’) and G’
lift homeomorphically to nicely embedded graphs G ¢ X and G’ C X’. By
construction, point-preimages of X — X (Cy) have diameter < ¢, and there
are only finitely many diameters bigger than any given size. Therefore,
since X and X (Cy) are compact, if § is sufficiently small, then G C X will
have mesh < e. See [3, Lem. 2] for a proof of this fact. The same goes for
G cX'.

Finally, observe that f | : G — @ lifts to the desired homeomorphism
h:G— G O

3. The corrected proof

The Sierpinski curve is an S-space, as explained in [2, Proof of Lemma 3.1].
Thus to prove the theorem, it suffices to show that any two S-spaces are
homeomorphic. This argument is almost identical to the proof of [3, Thm.
3]. We sketch the argument and refer to [3] for additional details.

Let (X,7,Z) and (X',7’,Z’) be two S-spaces with peripheral circles C
and C’, respectively. For each n > 1, we construct nicely embedded graphs
G, C X and G], C X’ satisfying (1) G, and G, have mesh < 1 and (2)
Gn C Gpy1 and G, C G}, ;. In addition, we construct homeomorphisms
hy : Gp — G, with h,41 extending h,,.

First we explain how to construct a homeomorphism X — X’ given the
existence of the maps h,, : G,, — G,,. First, these homeomorphisms induce
a homeomorphism h between G := |JG,, and G’ := |JG,,. Since G,,,G),
have mesh — 0, G C X and G’ C X’ are dense. Since adjacent components
of the subdivision of G,, go to adjacent components of the subdivision of G/,
the map h : G — G’ is uniformly continuous. See [3, last two paragraphs
of the proof of Theorem 3| for a detailed proof. Therefore h extends to a
map X — X', which is a homeomorphism.

It remains to construct G,, G}, and h,,. We proceed inductively. First
choose arbitrarily Cy € C, Cfj € C' and a homeomorphism hy : Cy — CY,
and apply Lemma 2.4 with ¢ = 1 to obtain h; : G; — GY. The graph
(1 subdivides X, and each component is an S-space with a “preferred”
peripheral circle, the unique circle that intersects G; nontrivially. Note
also that there is a natural correspondence between the components of
the subdivisions of G; C X and G} C X’. For the induction step, given
G, Gl hy, we apply Lemma 2.4 to each pair of corresponding components
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of the subdivisions G,, C X and G] C X', taking ¢ = % and using the
preferred peripheral circles and h,, as input. O
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