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Large-amplitude chatter vibrations are one of the most important phenomena in machining processes. It is often
detrimental in cutting operations causing a poor surface finish and decreased tool life. Therefore, chatter
detection using machine learning has been an active research area over the last decade. Three challenges can be
identified in applying machine learning for chatter detection at large in industry: an insufficient understanding of
the universality of chatter features across different processes, the need for automating feature extraction, and the
existence of limited data for each specific workpiece-machine tool combination, e.g., when machining one-off
products. These three challenges can be grouped under the umbrella of transfer learning, which is concerned
with studying how knowledge gained from one setting can be leveraged to obtain information in new settings.
This paper studies automating chatter detection by evaluating transfer learning of prominent as well as novel
chatter detection methods. We investigate chatter classification accuracy using a variety of features extracted
from turning and milling experiments with different cutting configurations. The studied methods include Fast
Fourier Transform (FFT), Power Spectral Density (PSD), the Auto-correlation Function (ACF), and decomposition
based tools such as Wavelet Packet Transform (WPT) and Ensemble Empirical Mode Decomposition (EEMD). We
also examine more recent approaches based on Topological Data Analysis (TDA) and similarity measures of time
series based on Discrete Time Warping (DTW). We evaluate transfer learning potential of each approach by
training and testing both within and across the turning and milling data sets. Four supervised classification al-
gorithms are explored: support vector machine (SVM), logistic regression, random forest classification, and
gradient boosting. In addition to accuracy, we also comment on the automation potential of feature extraction for
each approach which is integral to creating autonomous manufacturing centers. Our results show that carefully
chosen time-frequency features can lead to high classification accuracies albeit at the cost of requiring manual
pre-processing and the tagging of an expert user. On the other hand, we found that the TDA and DTW approaches
can provide accuracies and Fl-scores on par with the time-frequency methods without the need for manual
preprocessing via completely automatic pipelines. Further, we discovered that the DTW approach outperforms
all other methods when trained using the milling data and tested on the turning data. Therefore, TDA and DTW
approaches may be preferred over the time-frequency-based approaches for fully automated chatter detection
schemes. DTW and TDA also can be more advantageous when pooling data from either limited workpiece-
machine tool combinations, or from small data sets of one-off processes.

1. Introduction

Advancements in sensor technology have enabled researchers to
investigate the underlying dynamics of complex systems with improved
resolution. For example, it is now possible to measure and examine the
complex vibration patterns of machining processes. The primary pur-
pose of machining processes is to remove or subtract material through
cutting and to leave behind a desired three-dimensional object. Turning
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and milling processes are amongst the most common types of
manufacturing processes. In turning, the workpiece rotates and a non-
rotating cutting tool is fed into the workpiece to achieve cutting. In
milling, the opposite is true as the workpiece stays aligned with a sta-
tionary reference frame and the cutting tool rotates while being fed into
the workpiece. One of the most challenging parts of these processes is
chatter, which occurs due to self-excited tool vibrations, e.g. see refer-
ences [1-3]. Chatter is highly undesirable as it can leave behind a poor
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surface finish and can damage the cutting tool and/or machining center.
Thus the interest in predicting and detecting chatter has become an
ongoing problem of interest.

In machining, natural frequencies of the system shift when cutting
configuration parameters such as overhang distance is changed. The
chatter frequency, where chatter takes place in the frequency domain,
also changes. Since training a classifier on a data set obtained from each
new configuration is cumbersome, we are interested in how a trained
classifier on one cutting process can transfer knowledge to the different
cutting processes. This general idea is known as transfer learning in the
literature, and within the context of machining, it has the potential to
provide a methodology for pooling data from different manufacturing
settings to more robustly detect chatter.

This study analyzes the performance of transfer learning in each of
Wavelet Packet Transform (WPT)/Ensemble Empirical Mode Decom-
position (EEMD), traditional signal processing tools, Dynamic Time
Warping (DTW), and Topological Data Analysis (TDA)-based ap-
proaches. Classifiers were trained and tested from data gathered from
milling and turning experiments. With the exception of DTW, four
different classification algorithms were used for all methods: Support
Vector Machine (SVM), Logistic Regression (LR), Random Forest clas-
sifier (RF), and Gradient Boosting (GB). K-Nearest Neighbor was used for
measuring the performance of the similarity measure technique DTW.
We categorized the methods into three groups: frequency-based
methods (WPT/EEMD, FFT/PSA/ACF (FPA)), similarity measure
approach (DTW), and the TDA-based approach. Our results show that
frequency-based methods give the highest accuracy in 13 out of 20
transfer learning combinations between the turning and milling data
sets. When the results are compared with respect to the Fl-score, it is
seen that this number goes up to 16 out of 20 combinations. However,
the results obtained from FPA and WPT, the methods that give the
highest accuracy in most of the cases of transfer learning, provide the
best accuracy with a larger standard deviation compared to the DTW
and TDA-based approaches. On the other hand, DTW provides the best
accuracy when we apply transfer learning across different cutting pro-
cesses. The TDA-based approach provides the highest accuracy and F1-
score in only two and three out of 20 combinations of transfer learning,
respectively.

The work presented in this paper is organized as follows. Section 2
explains the data collection for both machining processes—milling and
turning. Section 3 provides a brief description of transfer learning and its
categorization. Section 4 describes the salient aspects of each feature
extraction method. Section 5 presents results and also provides some
concluding remarks.

1.1. Feature extraction approaches for machining

There are several techniques to detect chatter from time series data.
Wavelet Packet Transform (WPT) and Ensemble Empirical Mode
Decomposition (EEMD) are the most common methods used in literature
[4-14]. Chen and Zheng used a Support Vector Machine (SVM) classifier
with a Recursive Feature Elimination (RFE) algorithm to detect chatter
in an end milling operation [12]. Li et al. proposed an EEMD-based
feature extraction method to predict chatter in a boring process [13].
Each of these methods relies upon feature extraction from the decom-
position of signals. To elaborate, experimental data has been decom-
posed into wavelet packets or intrinsic mode functions (IMFs). The
informative parts of the decomposition were then selected based on
frequency domain analysis; features were obtained from the informative
IMFs and reconstructed signals from informative wavelet packets.
However, these two widely used methods have some drawbacks. In
particular, they require manual pre-processing - a step that is difficult to
automate. These methods require the analyst to inspect the frequency
domain and energy ratio plots (for WPT) of the time series data to
identify the informative decomposition correctly.

Apart from the WPT and EEMD methods, several authors have
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applied a more traditional feature extraction method based on the Fast
Fourier Transform (FFT), Power Spectral Density (PSD), and/or the
Autocorrelation Function (ACF). Yesilli et al. studied these methods to
identify chatter in measured time series from a turning process [15].
Coordinates of peaks in the FFT, PSD, and ACF plots were used as fea-
tures for supervised learning classification. Determining the restriction
parameters to select peaks correctly is reported as one of the primary
challenges or shortcomings of this approach. Gradisek et al. used en-
tropy and coarse-grained information rate to develop an automatic
chatter detection approach for grinding [16]. Aslan and Altintas devel-
oped an on-line chatter detection approach that uses the Fourier spec-
trum of the spindle drive motor commands obtained from a CNC milling
machine [17]. Li et al. used multiscale permutation entropy, multiscale
power spectral entropy, and the Laplacian score to select features for
online chatter detection in the milling process, and these features were
used in gradient tree boosting [18]. Albertelli et al. introduced a chatter
detection algorithm based on cyclostationary theory, and it is tested on
the data collected from spindle encoder in milling process [19]. In
another recent study, Caliskan et al. introduced an energy-based chatter
detection approach where a nonlinear energy operator is used to search
for chatter frequency between two tooth passing frequency [20]. Wan
et al. utilized Adaboost with SVM classifiers and used frequency and
time domain features in addition to the ones obtained with stacked
denoising autoencoder to predict chatter in milling process [21].

The challenges associated with existing chatter detection methods
have continued to motivate the need to develop new approaches. For
example, the similarity measure, Dynamic Time Warping (DTW) algo-
rithm has been proposed to identify chatter in machining [22]. DTW
does not require feature extraction, and time series data is only used to
compute pairwise distance matrix. K-Nearest Neighbor (KNN) is used as
a classifier to test the performance of the proposed approach. In addi-
tion, persistent homology from Topological Data Analysis has been used
in chatter detection [23-26], and several authors have explored the use
of deep learning to detect chatter [27-30].

Feature extraction has been applied to several other machining op-
erations. Wu et al. used sensor fusion and EEMD to extract features from
signals obtained from different sensors to predict the remaining useful
life of machining tools [31]. Plaza et al. compared time direct analysis
and power spectral density to WPT and singular spectrum analysis (SSA)
for surface finish monitoring [32]. Another study focuses on building a
big data processing scheme for features extraction in electrical discharge
machining [33]. Cheng et al. extracted features in the time and fre-
quency domain and proposed a generalized multiclass support vector
machine (GenSVM) for monitoring health degradation in machining
tools [34].

1.2. Transfer learning approaches for machining

Several studies focus on chatter detection using deep learning and
transfer learning. Cherukuri et al. use synthetic data to train an artificial
neural network (ANN) to predict chatter [35]. Postel et al. used a pre-
trained Deep Neural Network to predict stability in milling operation
[36]. A synthetic data set is used to train the network and then fine-
tuning is performed using the small size of an experimental data set.
Unver and Sener used a numerical simulation of milling operation to
train AleXNet structure for Convolutional Neural Networks, and they
test the same network on experimental milling data to detect chatter
[37]. In addition to chatter detection, the majority of prior works that
apply transfer learning focus on fault detection and tool/machine con-
ditioning instead of chatter detection. Further, these works utilize deep
learning algorithms that require a large number of observations [38]
and do not provide insight into the signals' most informative features for
chatter detection. For instance, Wu et al. used 1D Convolutional Neural
Networks (CNN) for fault detection in bearings and gears [39]. They
applied two different transfer learning approaches: 1) training and
testing a classifier on samples from different working conditions and 2)
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training on simulation data and testing on experimental data. Li and
Liang developed a CNN-based approach to diagnosing severe tool wear,
tool breakage, and spindle failure during machining processes [38].
They used two different CNC machines to train and test a classifier in an
experiment that took six months to collect the data needed to train the
CNN. Lockner et al. developed a transfer learning framework based on
aritificial neural networks for injection molding process [40]. Another
study focused on CNN-based transfer learning to detect wear level of
abrasive belts [41]. Liu et al. studied the defect detection in injection
molding using CNN-based transfer learning to build automatic defect
diagnosis which can work with limited amount of samples [42]. They
have used the pre-trained network VGG-16 for training and testing
purposes, while data augmentation techniques are utilized to increase
the classification accuracy. Transfer learning is also used in welding
operation. For instance, Jiao et al. developed a transfer learning
framework that uses residual neural network (ResNet) to decrease the
amount of training data in identification of weld joints [43].

Mamledesai et al. utilized CNN and transfer learning to monitor tool
conditions to help the machinist decide whether to keep using the same
tool or replace it [44]. Marei et al. used Convolution Neural Network-
based transfer learning to predict tool wear of the carbide cutting tool
flank [45]. Another study that includes transfer learning and deep
learning is focused on the estimation of force in the milling process using
simulation data and experimental data as a source and target domain,
respectively [46]. Wang et al. use the pre-trained network VGG19 to
identify machining fault types in rolling bearings. They modified the
final fully connected layer to reduce the number of network parameters
and implemented the transfer learning between non-manufacturing data
and manufacturing data [47]. Kim et al. proposed another approach that
converts cutting force signals into images using a multi-layer recurrence
plot (MRP) to estimate the machining quality in laser-assisted micro-
milling operation [48]. They used a pre-trained ResNet-18 CNN struc-
ture and tested it on the images generated from cutting signals.

Traditional machine learning approaches are also adopted in transfer
learning approaches for machining applications. For instance, Gao et al.
implemented extreme vector machines and transfer learning to build a
prediction model for remaining tool life [49]. Yesilli et al. combined
traditional signal decomposition tools and machine learning algorithms
such as support vector machines, random forest classifier, and gradient
boosting to detect chatter in experimental turning signals [6]. Fast
Fourier Transform, Auto-correlation Function, and Power Spectral
Density are also combined with similar machine learning algorithms to
identify unstable time series obtained from turning experiments [15].
Shen et al. combined the TrAdaBoost transfer learning algorithm [50]
and singular value decomposition-based feature extraction to identify
different fault types in a bearing data set [51]. The trAdaBoost algorithm
is also used in tool tip dynamics prediction [52].

1.3. Research contribution

In this work, we present the first study on using state-of-the-art
feature extraction tools to transfer chatter knowledge across turning
and milling operations using experimental data. The main goal is to
automate chatter detection for different cutting conditions and opera-
tions and to reduce the amount of data and time needed to train a
classifier. Once a classifier is trained using a given data set, the gained
information can be utilized for different operations without needing
large and completely new training data sets from the target process.

This work is different from the prior work of a subset of the authors of
this paper on transfer learning both in focus and in the application
domain. Specifically, in [6] Yesilli et al. used Wavelet Packet Transform
(WPT) and Ensemble Empirical Mode Decomposition (EEMD) to detect
chatter in time series data collected only from turning experiments. They
utilized transfer learning to transfer knowledge in turning operations
that were performed using different overhang distances [6]. The goal of
that study was to compare the transfer learning capabilities of WPT and
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EEMD and to examine corresponding feature extraction methods. In
addition, Yesilli and Khasawneh used only turning data sets to test the
transfer learning performance of traditional feature extraction tools such
as Fast Fourier Transform (FFT), Autocorrelation Function (AF), and
Power Spectral Density (PSD) in [15].

Therefore, the work presented here is distinct from prior works, and
it provides an approach to leverage existing data sets from one
machining operation to make decisions about another operation. In
contrast to prior works on transfer learning for chatter detection, this
manuscript studies a large number of feature extraction methods
including WPT, EEMD, FFT, ACF, PSD as well as two other methods that
have only recently been applied in the context of machining: Topolog-
ical Data Analysis (TDA) methods and similarity-based methods using
Dynamic Time Warping (DTW).

2. Experimental procedure

This section describes the experimental setups and the data collected
from each experiment. In the turning experiment, three accelerometers
were attached to the setup, see locations in Fig. 1. The workpiece was
fixed to the spindle and the cutting tool was positioned at the tip of a
boring bar. The distance between the heel of the boring bar and the back
of the tool holder is called the overhang distance, see the illustration of
Fig. 2. The overhang distance is an important characteristic for the
turning experiment since the stiffness of the boring bar can be altered by
simply changing this distance. In this experiment, data is collected for
four different overhang distances with varying rotational speeds and
cutting depths; the overhang distances used in the experiments were
50.8, 63.5, 88.9, and 114.3 mm. The range of the rotational speeds and
the depth of cuts for turning and milling experiment are provided in
Table 1. We only used the x-axis data from the triaxial accelerometer
since it had the best signal-to-noise ratio. The experimental data was
oversampled at 160 kHz since we did not use an in-line analog filter. We
then used a low-pass filter (Butterworth) with an order of 100, and we
downsampled the data to 10 kHz. Note that the downsampling does not
lead to a loss of useful information since the accelerometers used in the
experiment had a 10 kHz bandwidth.

Each time series was tagged based on a time and frequency domain
analysis. The label options were stable (chatter-free), intermediate (mild
chatter), and unstable (chatter). Low-amplitude signals in the time and
frequency domain were tagged as stable. If the time series had a low
amplitude in the time domain and a large amplitude in the frequency
domain, it was tagged as mild chatter. The signals with large amplitude
in both domains were labeled as unstable. The remaining signals were
assigned as unknown since they do not fit into these criteria.

An illustration showing the milling experimental system is shown in
Fig. 3. An Ingersol machining center with a Fischer 40,000 rpm and 40
kW spindle was used to conduct experiments on an aluminum workpiece
(7050-T7451). The type of milling conducted in these experiments is
down milling. The depth of cut is 2.03 mm and radial immersion is kept
constant at 5%. Lion precision capacitive probes were used to collect the
tool displacements along the x and y axes [53]. The data were sampled at

Fig. 1. Picture of the turning experimental setup showing the cutting tool,
workpiece, and accelerometer sensors.
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Fig. 2. Illustration of the turning process shown to highlight the tool over-
hang distance.

Table 1
Cutting parameters for the turning and milling experiments.
Cutting Rotational speeds Depth of cut Feed rate
operation (rpm) (mm)
Turning - 50.8 320, 425, 570, 770 0.0254-1.27 0.0508 mm/rev
mm (0.002 in./rev)
Turning - 63.5 570, 770 0.0508-0.381 0.0508 mm/rev
mm (0.002 in./rev)
Turning - 88.9 570, 770, 1030 0.0381-0.762 0.0508 mm/rev
mm (0.002 in./rev)
Turning - 570, 770, 1030 0.127-1.016 0.0508 mm/rev
114.3 mm (0.002 in./rev)
Milling 11,206-32,161 0.381-3.556 0.191 mm/tooth/rev
Spindle
Capacitance Probes |
Laser Tachometer >

Cutting Tool —Z

—_

Fig. 3. Experimental setup of milling cutting experiments.(left) Illustration of
the setup (right) picture of the cutting tool and the workpiece.

DAQ

25 kHz. As in the turning experiments, a low pass filter was used and the
data was downsampled to 12.5 kHz. In addition, a laser tachometer was
used to independently verify the spindle rotational speed from the ma-
chine setting. The cutting tool was a 19.05 mm end mill with two teeth
and a 106 mm overhang distance. Data tagging was performed using
power spectral density (PSD) plots and Poincaré sections. Tool
displacement plots in the x direction, along with the corresponding
Poincare sections, are shown in Fig. 4.

The first milling example shown in Fig. 4 is a stable cut (£2=19488
rpm, 1.524 mm cutting depth) whereas the second example shows a
Hopf bifurcation example (2=27285 rpm, 3.556 mm cutting depth).
The first column of Fig. 4 presents the tool displacements for two teeth
and the second column provides the Poincare sections of these time
series. x;, and x;,» represent the time-delayed coordinates. In this work,
we use constant time delay parameter chosen as 6. The third column of
Fig. 4 shows the power spectrum or a PSD plot that helped us better see
the frequency content of the time series [54]. If the spectral peaks were
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synchronous with the tooth passage frequency, that meant the corre-
sponding time series was stable. However, if the spectral peaks were not
aligned with the tooth passage frequency, the cutting test was unstable,
as shown in the second row and third column of Fig. 4.

Stability predictions were made for the milling system using the
measured modal parameters and the spectral element approach [55];
the resulting stability diagram is shown in Fig. 6. The spectral element
method uses eigenvalues of a dynamic map to determine the stability of
the process [26,54]. If the magnitude of the eigenvalue is smaller than 1,
the process is stable. If the eigenvalue has only a positive real part that is
larger than 1, then the process is unstable. Eigenvalues with only
negative real part less than —1 represent the flip bifurcations, and Hopf
bifurcation occurs when an eigenvalue has amplitude larger than 1. The
illustration for the stability analysis using the real and imaginary parts of
the eigenvalues is also provided in Fig. 5. Based on this stability criteria,
10,000 time series for a 100 x 100 grid of points in the rpm vs. cutting
depth parameter space were used to produce the stability diagram
shown in Fig. 6. The stability of the experimental data set is decided
based on the Poincare section and the PSD plots. Then we included
experimental data set in the stability diagram shown with black di-
amonds (unstable) and triangle (stable) markers in Fig. 6. It is seen that
the labels obtained using the eigenvalues and the ones obtained using
frequency domain analysis and Poincare section may not match. We use
the labels obtained from the analysis shown in Fig. 4 to perform
classification.

3. Transfer learning

In traditional machine learning, a classifier is trained and tested on a
data set originating from the same source. However, real-life applica-
tions, such as chatter or fault detection in machining, can experience a
shift in the parameters between the time the classifier was trained and
the time the system is put into operation. This means that the data
collected from these applications may no longer have the same feature
space as the training set. Therefore, traditional machine learning can
require data collection for each parameter combination thus leading to
increased cost and low automation potential. As another motivating
example, some experiments are expensive to set up and perform. This
includes chatter studies which result in long downtime for production
machines and personnel during the data collection phase. Besides the
cost, some sensor data may be collected during machining one-off
products, and therefore may be considered of limited use in tradi-
tional machine learning settings. Therefore, it is extremely beneficial to
leverage extracted features related to similar phenomena across
different settings and operations. In this case, Transfer Learning presents
a useful machine learning framework that allows training and testing on
data sets from different sources. As an example, Fig. 7 shows a transfer
learning application where a chatter classifier was trained using a
turning process, and the gained information is then transferred for
detecting chatter in a milling operation.

Transfer learning is categorized according to the similarity between
tasks and the domain of each source and target. The source is the system
we use to train a classifier, while the target is the system where the
classifier is tested. There are two main terms in the definition of transfer
learning, and these are domain and task. A domain can be described as
the combination of a feature space .# and the marginal probability of
the feature space P(F), while the task contains a label space .# and the
conditional probability (P(l | f)) [56]. .5 represents the space of feature
vectors, x;, and F is the an instance set such that F = {f|fi e & ,i=1,...
,n} [57]. For a given domain, & — (% ,P(F)), a task is defined as .7~ —
(<, P(l|f)). P | ) is also considered as a predictive function f which
estimates the label for a given feature space.

Based on the differences between domains and tasks of the source
and the target, several transfer learning settings can be obtained (see
Fig. 8). We refer the interested reader to [56,58,59] for more details on
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Fig. 4. The first column represents tool displacements for two teeth, and the second column provides Poincare sections for two time series obtained with three
different rotational speeds and depth of cuts in milling experiments. The third column shows the PSD plots of the three-time series whose Poincare sections are shown
in the second column. Red dots represent tooth passage frequency. The time series shown in the first row is stable with cutting conditions 2=11793 rpm and depth of
cut of 2.54 mm, while the one in the second row is unstable with cutting conditions £2=17746 rpm and depth of cut of 1.524 mm. The third row represents an
unstable milling signal with cutting conditions 2=27285 rpm and depth of cut of 3.556 mm. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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S

R(p)

=" L

Fig. 5. Nlustration for the stability analysis using eigenvalues of the dynamic
map obtained using spectral element approach [55].

transfer learning. In this study, our machine learning framework is
included under inductive transfer learning category because we use the
same sets of features for the source and the target. The main purpose of

inductive transfer learning is to improve the performance of target
prediction function fr using the information in domain and task of the
source 5 and .7 g, respectively [56]. There are several approaches to
transfer learning. These include instance-transfer, feature representation
transfer, parameter-transfer, and relational knowledge transfer [57]. In
this work, we transfer the knowledge of parameters by using the same
trained classifier in the testing phase. We used the same set of features
for training and testing. However, the distribution of the features is
different in each domain since the source and the target are represented
by two different machining processes: turning and milling. More details
about the application of inductive transfer learning are available in
Section 5.

4. Methods

This section provides a brief description of each feature extraction
method that we used. In addition Fig. 9 provides a block diagram that
explains the procedure we followed in this study. Specifically, the left-
most block shows the experimental setup and the data collection pro-
cess. This is followed by the middle block which lists the featurization
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11 =0.05

b (mm)

1 1.5 2 2.5 3

Q (rev/min) x10?
Fig. 6. The stability of time series obtained using the analytical model provided
in Ref. [26] with different depth of cut (b) and spindle speed (£2) on 100 = 100
grid. The green color corresponds to time series with Hopf bifurcation (unsta-
ble), while the blue color represents the stable time series. The red color shows
the time series with flip bifurcation. Experimental data, whose stability is
defined based on the Poincare section and PSD plots, is shown with diamond
(unstable) and triangle (stable) symbols. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of
this article.)

methods used, as well as the similarity-based approach using DTW. The
rightmost block shows the pairwise distance matrices and feature
matrices obtained from the similarity-based approach and the feature
extraction approaches, respectively. Fig. 10 provides a cartoon of the
transfer learning framework whereby classifiers trained on the turning
data are used to detect chatter in milling and vice versa. Each of the
following subsections covers one of the methods described in the middle
block as follows: Section 4.1 summarizes WPT, Section 4.2 discusses
EEMD, Section 4.3 describes FFT, PSD, and ACF approaches, Section 4.4
explains DTW, while Section 4.5 deals with topological features from
TDA.

4.1. Wavelet Packet Transform (WPT)

This section describes the salient details for the Wavelet Packet
Transform (WPT) method. One can refer to Ref. [6] for more informa-
tion. The WPT method decomposes a signal into approximation and
detail coefficients at each level of the transform. Fig. 11 provides the
decomposition of a time series into two levels of WPT and shows the
corresponding frequency content for each wavelet packet. Detail and
approximation coefficients are obtained after applying the high-pass and
low-pass filters, respectively. They are denoted as D; and A; as shown in
Fig. 11. At each level of transform, we added additional letters A or D to
the left side of the previous notation, and the indices change with respect

classifier

|training .so.tl
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to the level of the transform. For example, in the second level of trans-
form, the approximation coefficient A; passes through the high pass
filter and becomes DA (see Fig. 11). In addition, the number of wavelet
packets at level k of the transform is 2*.

4.1.1. Milling data set

The procedure followed in this study is the same as the one described
in Ref. [6]. For both the milling and turning data sets, we applied level 4
WPT to downsampled time series. The first step was to define the chatter
frequency by checking the spectrum of the downsampled data. Fig. 12
provides FFT plots of three different time series from the milling data set.
It can be seen that the chatter frequency is around 850 Hz which is close
to the resonant frequency of 728.7 Hz; this leads us to look for wavelet
packets that also have a frequency content near this frequency. Time
series were decomposed into wavelet packets and the energy ratio of
each wavelet packet was computed. The energy ratio plots and the Fast
Fourier Transform (FFT) of the signals, reconstructed from the packets,
were provided in Figs. 13 and 14. Fig. 13 show that most of the energy
belongs to the third wavelet packet for the unstable time series. It is also
seen that the spectrum of the third wavelet packet, the unstable time
series, has a frequency content of around 1000 Hz. Thus the third
wavelet packet can be selected as the informative packet for feature
extraction.

4.1.2. Turning data set

We used the same informative wavelet packets defined in Ref. [6] to
extract features. The informative wavelet packet numbers are listed in
Table 2 for four overhang distances.

After defining the informative wavelet packets for both data sets, we
reconstructed the signals from the informative wavelet packets and
computed time and frequency domain features, as described in Ref. [6].

4.2. Ensemble Empirical Mode Decomposition (EEMD)

Ensemble Empirical Mode Decomposition (EEMD) is a modified

source relation target setting
|tloumin|| s same as “domainl Traditional

[ task || is same as [| task | ML
|domail‘1|| is same as ”domailll Transfer Learning

[ task |[different but related |[ task || (Inductive)

[domain || different but related | [domain | [Transfer Learning

| task ||different but related || task |

(Unsupervised)

ldomain”difforent but related | Idomainl Transfer Learning
l task ” ” task | (Transductive)

is same as

Fig. 8. Categorization of transfer learning.

process A

———
transfer learning

process B

Fig. 7. An example of transfer learning where training for chatter detection is performed using a turning process (the source), and the gained knowledge is imported

via transfer learning to a milling operation (the target).
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Fig. 10. Transfer learning approach used in this paper for feature extraction and similarity measure-based approaches.

k=0 ime Series
k=1 A T D
‘/,/\\\ h ./”"\\»_
k=2 AA; DA AD, DD,
0 1.-}8 1/4 38 12

Frequency (f)

Fig. 11. Illustration of two level WPT.

version of Empirical Mode Decomposition (EMD). EMD is a nonlinear
transform and it is suitable for non-stationary signals [60]. The main
difference between EMD and WPT is that the decomposition in EEMD
does not correspond to a certain frequency region, while wavelet packets
in WPT have a frequency content only in a certain frequency range. The
decomposition of a signal s(t) is obtained via a sifting process and the
steps are as follows:

1. Find all the local minimum and maximums and obtain the upper and
lower envelope of s(f)
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Fig. 12. Spectrum of three different time series from milling experiment: (left) 13,227 rpm, 2.54 mm depth of cut (doc), unstable,(mid) 16,861 rpm, 1.905 mm doc,

stable, (right) 27,285 rpm, 1.905 doc, unstable.

[ Chatter, RPM=13227, DOC=2.5400 mm
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Fig. 13. Energy ratio of the wavelet packets obtained from decomposition of
the three time series whose spectrum is provided in Fig. 12. (Blue bars) Milling -
Unstable - RPM = 13,227 - DOC = 2.54 mm. (Red bars) Milling - Stable - RPM
= 16,861 - DOC = 0.38 mm. (Orange bars) Milling - Unstable - RPM = 27,285 -
DOC = 3.556 mm. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

2. Take mean (m;(t)) of the upper and lower envelope
3. Subtract the mean from s(t) and the remaining is called hy;(t).

e The number of zero crossings and the number of extrema should be
the same or the difference between them should be at most one.

The sifting process was thus repeated until hy;(f) had the aforemen-
tioned properties, and h;i(t) was treated as new data in each iteration.
The standard deviation between the consecutive estimates of an IMF was
used as a stoppage criterion and it was generally set to a value between
0.2 and 0.3 [60]. After satisfying the criterion, the IMF c;(t) was obtained
and the residue was computed using

ri(t) = riea (1) — ei(0).

Note the original signal was the first residue ro(f). The sifting process
was repeated until we had a monotonic function as a residue and thus

hy;(t) is the first guess of the first IMF. However, it needs to satisfy the
following two conditions, see [60], to become an IMF:

e The mean value of the upper and lower envelope should be zero at

any point.
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Table 2
Informative wavelet packet numbers retrieved from Ref. [6].
Overhang Chatter frequency Informative
Distance (mm) Range (Hz) Wavelet packet
50.8 900-1000 Level 4: 3
63.5 1200-1300 Level 4: 4
88.9 1600-1700 Level 4: 6
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Fig. 14. Spectrum of reconstructed signals from first four wavelet packets of three different time series whose spectrum shown in Fig. 12. (First row) Milling, 13,300
rpm, 2.54 mm depth of cut (doc), unstable, (second row) milling, 17,300 rpm, 0.3810 mm doc, stable, and (last row) milling, 28,000 rpm, 3.5560 mm doc, unstable.
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could not extract an IMF from that function anymore. Thus the original
signal could be written in terms of the IMFs and the last residue as

s(t) = zn:c,- +r,.
i=1

One of the main drawbacks of EMD is the mode mixing problem, which
is that an IMF can contain signals with totally different frequency con-
tent or the same frequency content appears in different IMFs. To solve
this problem, Ensemble Empirical Mode Decomposition (EEMD) was
proposed by Wu and Huang [61]. The following steps were used to apply
an EEMD algorithm.

1. White noise is added to original data

2. Obtain IMFs of the signal using EMD

3. Repeat (1) and (2) with different white noise each time. The number
of repetitions is called the ensemble size.

4. Compute the mean of corresponding IMFs and residues in the
ensemble.

The experimental signal was decomposed into IMFs and the infor-
mative IMFs were selected to generate a feature matrix. The spectrum
from the original signal and the IMFs was then compared to determine
the overlap between them. The IMF with the largest overlap was selected
as the informative IMF. Fig. 15 provides an example for the selection of
the informative IMF. The original time series has frequency content
around 1000 Hz and the first two IMF are the candidates to be infor-
mative IMF. Since the spectrum of the first IMF overlaps with the orig-
inal signal's spectrum, it is selected as an informative IMF. Ideally, the
spectrum of all signals and their decomposition should be checked to
determine the informative IMF. However, this is a manually intensive
and time-consuming process. We thus repeated this process only for a
couple of time series and chose an informative IMF to be used for all time
series. Then, the selected informative IMF was used to compute the
features given in Ref. [6], and a feature matrix was generated as an input
for a supervised classification algorithm.

3.6 3.8 4 4.2
Time (s)
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4.3. Fast Fourier Transform (FFT), Power Spectral Density (PSD) and
Auto-correlation Function (ACF)

This method computes the Fast Fourier Transform (FFT), Power
Spectral Density (PSD), and Auto-correlation (ACF) for each down-
sampled data set. The next step was to find the significant peaks in these
plots and use their x and y coordinates as a feature in the classification
algorithm. Since built-in functions in computing software for peak
finding can result in incorrect peaks, we used two restriction parameters
for peak selection that enabled us to find the true peaks. These param-
eters are minimum peak height (MPH) and minimum peak distance
(MPD). The definition for minimum peak height is provided in Ref. [15]
as

MPH — Ymin + a(}'max _ymin)s

where a€ [0,11, Ymin and Ymax correspond to 57 and 957 percentile of the
amplitude of FFT/PSD/ACF plots. The a parameter is defined with
respect to the peak amplitudes. Since auto-correlation function has
negative amplitudes, the choice for a is chosen separately, while we use
the same a value for FFT and PSD plots. In this implementation, a was
0.1 and 0.5 for FFT/PSD and ACF plots, respectively.

The second parameter, MPD, was defined by visual inspection on
FFT/PSD/ACF plots of several time series. An example is provided in
Fig. 16. This figure shows the effect of the chosen MPD value on the
detection of the peaks in the FFT and ACF plots. The first two plots
provide the spectrum of a time series and the peaks found by a peak
detection algorithm with two MPD values. It is seen that a smaller MPD
value brings the selected peaks closer to each other and results in the
detection of the true peaks. Therefore, MPD was chosen for FFT and PSD
plots as 500. The same value was also used in the ACF function.

After defining the two constraints for peak detection, MPD and MPH,
we decided how many peaks to use to generate feature matrices. In this
implementation, we used coordinates of the first two peaks as features
and they were given to supervised classification algorithms.

4.4. Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) is often used to measure the simi-

Spectrum
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| . L1
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Fig. 15. Intrinsic mode functions and their spectrum for the time series with 11,210 rpm and 3.556 mm depth of cut from milling experiments.
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Fig. 16. Effect of different MPD values on selected peaks in FFT and ACF plots
of time series with RPM = 13,300 and DOC = 2.54 mm from milling experi-
ments. (Top) FFT plot and selected peaks with MPD = 2500 (top) and MPD =
500 (middle). Auto-correlation function with MPD = 500 (bottom). Orange
lines represent the MPH.

larity between two time series whose lengths are different. For example,
assume that we have two time series X and Y such that

X =x,%,...,%,

Y=y,¥2 00

where m and n are the length of the time series. Berndt and Clifford [62]
define a mapping between the time series called warping path. Fig. 17
illustrates an example of a warping path. Warping is composed of nodes
that represent the matching between elements of time series. For
instance, wy in Fig. 17 corresponds to matching between x; and y;.
Several warping paths can be generated based on the constraints,
however, the DTW algorithm chooses the one that gives the minimum
distance such that

Drw(X,Y) — min(id(wk)) )

(1

where d(wy) represents the distance between two matched elements of
the time series, and L is the length of the warping path. Since there are
numerous options for warping paths in the grid shown in Fig. 17, re-
striction parameters are needed to reduce the number of possible

m

1

\J

Fig. 17. Illustration of a warping path between two time series with length m
and n.
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warping paths. These parameters include monotonicity, continuity,
adjustment window condition, slope constraint, and boundary condi-
tions [63].

« Monotonicity: x; and y; represents the matching elements in time
series. Monotonicity condition says that i and j can not decrease such
that j(k) > j(k — 1), and j(k) > j(k — 1), where k is the index in Eq. (1).

o Continuity: i and j can not be increased by more than 1.

e Boundary condition: The start point of the warping path should
where i=1 and j=1, and the ending point of the path should be where
i=mandj=n

o Adjustment window condition: The grid shown in Fig. 17 is restricted
with the two dashed lines to decrease the area where we look for
optimal warping path.

o Slope constraint: This condition is introduced to avoid moving
significantly in one direction. Slope constraint says that the algo-
rithm can not move more than a steps in horizontal or vertical di-
rection without having at least b steps in diagonal direction [63]. The
ratio between b and a is introduced as P = b/a, and it is generally
chosen as 1.

In this implementation, we used ¢cDTW package and the Manhattan
distance to compute pairwise distances between the time series.

The pairwise distances between all time series in the data sets were
computed. The pairwise distances between the time series belong to
different overhang cases in the turning data and between turning data
cases and milling data. Two examples of heat maps for pairwise dis-
tances are given in Fig. 18.

Depending on the application of transfer learning, the corresponding
distance matrix can be chosen for the training set and test set. For
instance, if we train our classifier on 50.8 mm case in turning data and
test it on the milling data, we use the pairwise distances between time
series of 50.8 mm case for training and the distance matrix between 50.8
mm case and milling data for testing the classifier. The K-Nearest
Neighbor (KNN) algorithm was used to predict the labels of the time
series.

4.5. Topological Data Analysis (TDA)

Topological Data Analysis investigates the shape of the data. In this
implementation, we mainly focused on the persistent homology tool of
TDA and how to extract features using persistent homology. We briefly
explain the persistent homology in this section. One can refer to
Ref. [64 69] for further details. Persistence homology extracts the in-
formation from the embedded signals in Euclidean space. Taken's
embedding theorem is used to embed the data higher dimensional space
[70] and 1-D persistent homology is used to generate feature matrices in
this study.

The embedded data is called the point cloud and persistent homology
investigates connected components, loops, and voids in this point cloud.
The information extracted from the point cloud is represented on a plot
called the persistence diagram. Persistence diagrams can be computed
with respect to the shape of interest. For example, the information
related to connected components in the point cloud is provided in a 0-D
persistence diagram. In addition to this, 1-D and 2-D persistence dia-
grams are computed for loops and voids, respectively.

Fig. 19 provides an illustration on how to generate persistence dia-
grams. We start by placing balls with a radius £ centered on each pointin
the point cloud. The radius of the balls is then expanded and some of the
balls start to intersect with each other. The intersection of two balls
creates an edge between two data points as shown in Fig. 19b. As we
continue to increase ¢, three balls intersect with each other and they
create a triangle (see Fig. 19¢). Larger values of ¢ result in the inter-
section of more balls and they generate cyle. The first time when a cycle
appears is named birth time and three cycles appeared in Fig. 19d.
Further increase in the radius can lead to the generation of more
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Fig. 18. Heatmaps for the pairwise distances between milling time series (left), and for the distances between milling data set and 50.8 mm case of turning data set
(right). The numbers on x and y axes represent the number of the time series in the data set.

birth time

lJ] =1)2 =();5

Fig. 19. Illustration for explaining the generation of a persistence diagram. a) Balls with radius ¢ are centered on each point. b) The intersections of two balls create
edges. ¢) The intersection of three balls creates a triangle shown with green color. d) Further increase in radius of balls lead to the generation of cycles shown with 1,2
and 3, and the corresponding radius is assigned as birth time. &) When a circle is filled with balls (see cycle 1), the corresponding radius is said to be the death time of
the cycle. f) Birth and death times of the cycles are summarized in a persistence diagram. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

triangles inside the cycle and a cycle may be filled with triangles. The
time when a cycle is filled is called the death time. In Fig. 19e), the first
cycle is filled and its death time is denoted with d; in the persistence
diagram (see Fig. 19f). An increase in ¢ will also lead to the filling of
second and third cycles, and their death time is provided in the persis-
tence diagram. It is shown that the third cycle is the most persistent one
since it has more lifetime (d; — b;) compared to others.

4.5.1. Persistent homology

Persistent homology in 0-D, 1-D and 2-D is denoted as Hy(K), H1(K)
and H»(K), where K represents the simplicial complex. As we increase
the radius of the balls around the points on the point cloud, we create n
dimensional simplicies. A single data point is called a 0-simplex. While
an edge and a triangle are 1-simplex and 2-simplex, respectively. Since
we continuously change the ¢ (see Fig. 19), each £ will result in a
different simplicial complex. These simplicial complexes are approxi-
mated with Rips and Céch complex, which are the most commonly used
complexes. In this implementation, we use Ripser package in Python to
compute the persistence diagrams, and it employs Rips complex [71].
The definition of the Rips complex is given as

Ro(K,d) = {acm(md(x,y) <e }
xV)ES

where ¢ is the simplicial complex and d is the distance between its
vertices. For each ¢ value, there is corresponding Rips complex such that

RICR, C...CR,. (2)

A cycle can be born in one of those Rips complex R; and it can disappear
in another one (Ri;x). The corresponding birth and death time for this

11

cycle is g and ¢, respectively. The resulting birth and death time for
each cycle is plotted on a persistence diagram, and we vectorize the
persistence diagrams in this implementation to extract features from the
time series. We employ four methods and these are Carlsson coordinates,
persistence images, persistence landscapes, and template functions.

4.5.2. Computation of persistence diagrams

Before explaining the feature extraction methods of TDA, we would
like to briefly discuss how to compute the persistence diagrams from
time series data. The first step is to embed the data to higher dimensional
space using Taken's embedding [70]. We need two parameters to embed
the data and these are embedding dimension and delay parameters.
Embedding dimension is defined for each time series using False Nearest
Neighbor (FNN) algorithm [72,73]. The embedding delay parameter is
found using the method that combines Least Median Square (LMS) [74]
and FFT. Embedded data is then sent to the Ripser package in Python to
compute persistence diagrams. One can refer to Ref. [25] for more
detailed information about embedding and the methods used to find the
embedding parameters.

4.5.3. Carlsson coordinates

Carlsson Coordinates are the features that are computed using the
coordinates on the persistence diagram. We use five different features
where four of them are defined in Ref. [75] and one of them is obtained
from Ref. [23]. These features are not dependent on the number of
points in persistence diagram or the order of the points. The definition of
the five features is given as
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fi(D) =) bi(d; — b),

£(D) =Y (drax — di)(d; — bs),
£(D) =) B (di—b)’,

fe(D) =) (duax — di)*(di — b)),
f+(D) = max{(d; — b:)},

where D represents the persistence diagram, b; is the birth time and d; is
the death time of the points in the persistence diagram. These features
are computed for each persistence diagram, and we generate feature

. . 5 o
matrices using 577 | ( ; ) combinations of the features. Then, we per-

formed classification using supervised learning classification

algorithms.

4.5.4. Persistence images
Persistence diagrams can be converted into persistence images. The
first step is to define a linear transformation such that [76].

T(b;,d;) = (bird; — b;) — (bi, ).
This transformation converts a birth time versus death time diagram into
a birth time versus lifetime diagram (see Fig. 20a). Then, we place a

Gaussian to each point on the transformed diagram as shown in Fig. 20b
and the Gaussian distribution is defined as

a)

e
L]

Litetime
(5]

0 2 4 6

Birth Time

Lifetime

Birth Time
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_ 1 —(x—bx]2+(.v—m’/2a2’

Dk (x,}’) 21{0’2

where ¢ is the standard deviation and we choose it as 0.1 in this
implementation. Each Gaussian is weighted with respect to weighting
function defined as W(k) — W(bi, k) : (bx,lx) € T(D) — R. The definition
of the weighting function is given as [76].

0 ifl, <0
W(k) = W(by, 1) = %’f if0 < I, < b;
1 ifl, > b.

According to this function, the points with larger persistence values have
more weight and the weighted Gaussians are shown in Fig. 20c.

The next step was to define the persistence surface using the
weighted Gaussian such that

S(xsy) = Z W(k)Dk(xsy)'

keT (D)

Persistence image is computed on the grids defined on the domain of the
persistence surface. The value of each grid or pixel is found by the
integration given as

b)

Fig. 20. The illustration that shows the steps to obtain persistence images from the persistence diagram. a)Persistence (death-birth) vs. birth time diagram. b)
Gaussians are placed on each point on the persistence vs. birth time diagram. c) Gaussians are weighted with respect to their persistence value. d) 3D surface is

obtained using the 3D surface of Gaussians.
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After computing all pixel values, a persistence image is formed. An
example is given in Fig. 20d.

In this implementation, we use the Persim package to compute the
images. The resulting image is a matrix that contains the pixel values
and we vectorize this matrix to generate the feature matrix. The rows of
the output matrix are concatenated and the resulting vector is used as
features for the corresponding persistence diagram. The number of the
features depends on the selected range of the birth time and lifetime and
the size of the pixel. In this implementation, we only test the features
obtained using a pixel size of 0.1. This means that if we have a range
from 0 to 1 for both birth time and lifetime, we will end up with a 10 x
10 matrix for the image. Therefore, the resulting feature vector for the
image will be 100 in length. Features of all persistence diagrams are
computed and then they are sent to supervised classification algorithms
to predict chatter.

4.5.5. Persistence landscapes

Another functional summary of persistence diagrams is persistence
landscapes introduced by Bubenik and Diotko [77]. Persistence land-
scapes are piecewise functions that are defined in the domain of the
persistence diagrams. A persistence diagram is rotated 45 degrees in the
clockwise direction and then the isosceles triangles are drawn for each
point on the diagram [78] where the persistence landscapes are denoted
as J, see Fig. 21. The expression for the persistence landscapes is
described as [77]

0 if x € (b,d)

x—b ifxe (b,ﬂ'}
Bbd) | X 2

—x+d ifxe (%,d).

An example for the persistence landscape is provided in Fig. 22 for four
different signals from the turning and milling experiments.

The next step was to convert these landscape functions into features.
We should first generate a mesh that we can use to define features from
persistence landscapes functions for each diagram. The mesh generation
process is summarized in Fig. 23. The first column of the plots provides
all persistence landscapes of three different persistence diagrams. Then,
we select a landscape number and corresponding landscape functions for
each diagram. Selected landscape functions are plotted on the same
figure (see the last figure in Fig. 23). We take projections of the nodes of
the landscape functions, and we show them with red dots in Fig. 23.
Then, these points (red dots) are sorted in increasing order and the

Journal of Manufacturing Processes 80 (2022) 1-27

duplicates are removed. The resulting points are called the mesh. This
mesh is then used to calculate the corresponding function value on each
selected persistence landscape function using linear interpolation. These
function values are used as features for the persistence diagrams. Then,
we implement the supervised classification algorithm to detect chatter.

4.5.6. Template functions

Template functions are introduced in Ref. [79]. As we do in persis-
tence images, we represent the persistence diagrams in birth time and
lifetime coordinates, so we represent the points on the diagram in the
upper half-plane, W := R x R.,. Then, we define template function on
R2. A function that has compact support in W could be a template
function. This function is evaluated on each point of the diagram to
define a function such that

w(D) =) fx) f:W-R.

xel

Template system is defined as a collection of the template functions .7.
The function in the template system has distinct values for each
persistence diagram. A true template system has an infinite number of
template functions, however, it is proved that a true template system can
be approximated with a finite set of template functions in Ref. [79]. In
this work, we implement the interpolating polynomials as template
functions to vectorize the persistence diagrams.

We define two meshes denoted as %/CR and .#CR., in birth and
lifetime coordinates, respectively. The Lagrange polynomial is
computed on a mesh such that

W X —da;
Z; (x) = Ha}- —a;
77
where g; € %/CR. The Lagrange polynomial also satisfies
v (1 -k
g (a") (0 otherwise.
Template function with respect to chosen two meshes is defined as

Flx,y) = Blx,y) 167 (7 ()],

where # is the bump function that makes the template function have
compact support. However, it does not have to be defined, since we
choose the meshes which contain all points in the persistence diagram.
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Fig. 21. A simple example for persistence diagram and its persistence landscapes. (left) Persistence diagram. (right) Corresponding persistence landscapes for the

diagram shown in the left.
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Fig. 22. Persistence diagrams and persistence landscapes of four different time series from turning and milling experiments. (First row) Stable turning signal with
RPM = 320 and depth of cut (DOC) of 0.127 mm. (Second Row) Unstable turning signal with RPM = 320 and depth of cut (DOC) of 0.127 mm. (Third Row) Stable
milling signal with RPM = 11,206 and depth of cut (DOC) of 1.524 mm. (Fourth Row) Stable milling signal with RPM = 15,788 and depth of cut (DOC) of 2.54 mm.
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Fig. 23. The illustration that shows the mesh generation using first persistence landscapes (i) for three different persistence diagrams. PL; where i=1,2,3 represents
the persistence landscape sets of three different persistence diagrams. Red dots are the projection of the nodes of landscape functions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

5. Results

This section describes the classification approach and the transfer
learning details. As we mentioned in Section 2, the turning data set
contains four different cases, and the milling data does not have cate-
gorization. Therefore, the total number of combinations between the
cases of turning data and the milling data is 20. We performed classifi-
cation for all 20 combinations. In addition to transfer learning results,
we also provide the results obtained from traditional machine learning
in Section 5.1. Section 5.2 provides the results for the combination be-
tween cases of the turning data set, while Section 5.3 discusses the
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results for the combinations between turning and milling data set. In
addition, we take into account the mild chatter cases in turning data set
as unstable while performing the classification. This is performed since
the turning data is labeled in three classes (see Section 2). All results
provided in this section belong to two-class classification for both
milling and turning data sets.

5.1. Results of traditional machine learning approach for turning data set

In this section, we compare the results obtained with featurization
approaches defined in Section 4. We only provide the results for the
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turning data set in this section. Traditional machine learning is the
application where we train and test a classifier with data obtained from
the same cutting configuration. Since we have four overhang distance
cases in the turning experiment, Fig. 24 provides the results for each
overhang distance case in a heat map. The colors in the heat map
correspond to the accuracy shown in each box, and the deviations are
not taken into account for coloring the heat map.

Fig. 24 shows us that the DTW approach provides the highest accu-
racy with a small amount of deviation compared to other approaches for
50.8 mm (2 in.) overhang distances. For the same case, persistence
landscapes from the TDA-based approach can provide 92% accuracy,
while the highest accuracy from the widely adopted approach is pro-
vided by FPA with 96%. In the 63.5 mm (2.5 in.) overhang distance case,
the highest accuracy is obtained with WPT with 100%. It is worth noting
that the test set size for the 63.5 mm case is smaller compared to the
other overhang distance cases. This may explain 100% accuracy in the
test set. On the other hand, Carlson Coordinates from the TDA-based
approach provides 86% for the same case. For the 88.9 mm (3.5 in.)
case, the highest accuracy is obtained with the DTW approach and it is
followed by Carlsson Coordinates. The deviations for these two results
are smaller compared to traditional approaches. FPA provides the
largest accuracy for the last case with a larger deviation compared to
novel approaches. Overall, it can be said that the novel approaches can
match the accuracy obtained with traditional and widely adopted ap-
proaches. However, they provide better automation potential for chatter
diagnosis since they eliminate manual preprocessing during feature
extraction. Therefore, we also investigate their transfer learning per-
formance and compare them to the widely adopted and traditional ap-
proaches in the next sections.

5.2. Results of transfer learning applications between the overhang
distance cases of turning data set

The classification was performed with 10 realizations of training and
test set for each method. 67% of the training set and 70% of the test set
were used to train and test the classifier, respectively. To be fair in the
comparison of methods, the same training and test sets were used; they
were generated with a set of predefined random state parameters.
Support vector machine (SVM) with rbf kernel, logistic regression,
random forest classifier with 100 estimators and a maximum depth of
two for the trees, and gradient boosting algorithm were used to train and
test a classifier. In addition to these classifiers, similarity measure based
approach, DTW can only be used with the K-Nearest Neighbor (KNN)
classifier, since it uses a pairwise distance matrix between the time series
(see Fig. 18). Predicted labels were used to compute the average and

Persistence

WPT EEMD FPA

Carlsson

Landscapes  Coordinates

N 0.3 0.842 0.923
Ml + 0058 =+ 0.008 + 0.052
— 0.786 0.702
: +0.012 + 0.111 [EESNL
35 inch 0.907 0.848 0.930
S + 0.014 + 0081 + 0.044
4.5 inch 0.791

=+ 0.012

0.65

0.75

0.60

Journal of Manufacturing Processes 80 (2022) 1-27

standard deviation of the accuracy and F1-score for training and test set
separately. In addition to this, we categorize the methods in three
groups: 1) Time-Frequency based approaches (WPT, EEMD and FFT/
PSD/ACF (FPA)), 2) TDA-based approach and 3) Similarity measure
(DTW). We compare the results of these groups. Features and classifiers
used for each approach are given in Table 3. For more details about the
features, one can refer to Refs. [6,22,25].

For each combination of the cases between turning data sets, we have
provided figures which show the accuracy of each feature extraction
method for the classifiers mentioned above. These plots are provided in
Figs. 33-37 in Appendix A. However, these plots can only compare the
methods within the same application of transfer learning. Therefore, we
have provided a summary plot in Fig. 25. It provides the highest accu-
racies obtained out of four classifiers for all methods except DTW, while
it shows the highest score out of all KNN, where K = (1,...,5), for DTW. It
can be seen that the time-frequency-based methods, such as WPT,
EEMD, and FPA, are the methods that give the highest score when we
train and test between the overhang cases of the turning data set.
However, WPT outperforms other approaches in most of the applica-
tions in the group of time-frequency-based approaches. On the other
hand, the TDA-based approach and DTW have the highest accuracy in a
few applications. For TDA-based approaches, Carlsson Coordinates

Table 3
Features and classifiers used for three main category of approaches. SVM: Sup-
port Vector Machine, LR: Logistic Regression, RF: Random Forest, GB: Gradient

Boosting.
Category

Features Classifiers

WPT: Mean, Standard Deviation, Root
Mean Square (RMS), Peak,

Skewness, Kurtosis, Crest Factor,
Clearance Factor, Shape Factor,
Impulse Factor, Mean Square Frequency,
Standard Frequency,

One Step Auto-Correlation Function,
Frequency Center

EEMD: Energy Ratio, Peak to Peak,
Standard Deviation,

RMS, Crest Factor, Skewness, Kurtosis
FF/PSD/ACF (FPA): The coordinates of
the peaks

Carlsson Coordinates, Persistence
Landscapes, Persistence Images
Template Functions

Time-Frequency-
based

SVM, LR, RF,
GB
TDA-Based

SVM, LR, RF,
GB
K-Nearest
Neighbor

Similarity measure Pairwise Distance Matrix

(DTW)

Persistence

Paths

Kernel

Method

Persistence
Images
|

Template
Functions
1

0.761
+ 0.029

0.745
=+ 0.000
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Fig. 24. The highest accuracy out of four different classifiers (or out of selected numbers of nearest neighbor for DTW) for each approach used in traditional machine
learning applications between overhang distance cases of turning experiments. WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode Decomposition,
FPA: FFT/PSD/ACF, DTW: Dynamic Time Warping. These results are retrieved from Ref. [6,22,25].
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Fig. 25. The highest accuracy out of four different classifiers (or out of selected numbers of nearest neighbor for DTW) for each approach used in transfer learning

applications between overhang distance cases of turning experiments.

(TDA-CC) performs better than other featurization techniques within the
group. It is not easy to distinguish each result in Fig. 25. Therefore, we
select WPT, TDA-CC, and DTW to summarize their results for different
applications of transfer learning between turning data set cases and
presented the results in Fig. 26.

Fig. 26 contains only the highest scores of the selected approaches
and the ones that are in the error band of the highest score. Each color
represents a method; the best results and the ones in the error band are
represented with two different hatches on the bar plots. The bars with ‘o’
hatch are the methods with the highest accuracy and the °/* hatch shows
the methods that are in the error band. Using Fig. 26, we can define how
many times a group of methods is the best method (BM) or the method in
the error band (MIEB), and these numbers are given in Table 4. It is seen
that the frequency-based approach (WPT) has the highest score in 7 out
of 12 transfer learning applications between the cases of turning data set
and it is not in the error band when the highest score is provided by the
TDA-based approach and DTW. On the other hand, the TDA based-
approach and DTW provide the highest score two times and three
times, respectively. The TDA-based method is in the error band of the
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Table 4

The number of times when a selected method gives the highest accuracy out of
12 different applications between the cases of turning data set is denoted with
BM. The number of times when a method is in the error band of the highest
accuracy is denoted with MIEB. These two numbers are provided for accuracy
and F1-score.

Accuracy F1-Score
Method BM MIEB BM MIEB
Time - Frequency-based (WPT) 7 0 9 1
TDA-based (TDA-CC) 2 4 3 0
Similarity Measure (DTW) 3 3 0 0

highest accuracy in 4 out 12 applications, while this number is three for
DTW. It is also worth noting that WPT results provided in Fig. 26 have a
larger deviation compared to DTW and TDA-based approaches, even
though WPT provides the highest accuracies in most of the applications.

Another criterion to compare the performance of the methods is to
check the Fl-score. The Fl-score is computed for all transfer learning

Fig. 26. The classification results are obtained
from the selected methods when we train and
test between the overhang distance cases of the
turning data set. The selected methods that give
the highest accuracy are represented with the’s’
bar hatch and the ones that are in the error band
of the highest accuracy are shown with °/* bar
hatch. One approach is selected from each cate-
gory of the methods, and these are Wavelet
Packet Transform (WPT), Carlsson Coordinates
(TDA-CC), and Dynamic Time Warping (DTW).

Teain:11.43
Test:h,35
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applications and for each method. Then, the highest F1-scores out of all
classifiers were chosen, and the summary plots are given in Figs. 27 and
28. In addition, we perform the counting the number of best methods
and the methods that are in the error band as in the case of accuracy, and
these numbers are reported in Table 4. It is seen that the performance of
the time-frequency-based approach is better since it has the highest F1-
score in 9 out of 12 cases of the applications. The TDA-based approach
provides the best Fl-score three times. WPT again provides the best
results with larger deviations compared to the TDA-based approach (see
Fig. 28).

5.3. Results of transfer learning applications between turning and milling
data sets

There are 8 different permutations when we apply transfer learning
between the turning and milling operations. The classification scores for
four different classifiers are provided in Fig. 38- 40. However, these plots
include detailed results within the same application of transfer learning.
Therefore, we provide summary plots for these permutations in Fig. 29.
It is seen that FFT/PSD/ACF (FPA) gives the highest accuracies between
time-frequency-based approaches in most of the transfer learning ap-
plications. The results obtained with TDA-based approaches are similar
to each other, especially for Carlsson Coordinates (TDA-CC) and Tem-
plate Functions (TDA-TF). Since the TDA-CC provides the highest ac-
curacy when we train on 63.5 mm overhang distance of turning data set
and test on the milling data set, we choose TDA-CC to represent the TDA-
based approaches. Accordingly, FPA, TDA-CC, and DTW are compared
with respect to classification scores in Fig. 30. Similar figures for F1-
Score can also be found in Figs. 41 and 42.

In Ref. [6,15], the authors mentioned several drawbacks of the time-
frequency-based approaches. One of the main drawbacks of these
methods is that they require checking the frequency spectrum of each
time series manually to decide informative decomposition for WPT and
EEMD or the restriction parameters for FPA. In this study, we only
performed this manual preprocessing for a couple of time series. This
process gets cumbersome as the size of the data set increases. In a real-
time application, when a new time series is introduced to a classifier, the
frequency spectrum of it and its reconstructed time series obtained from
the wavelet packets need to be investigated to find the decomposition
whose spectrum has the largest overlap with the signal's spectrum. On
the other hand, the processes for the TDA-based approach and the DTW
do not require any parameter selection, and all steps can be completed

Time - Frequency-Based
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autonomously.

Based on Figs. 30 and 42, we generated Table 5 that shows the
number of times when a selected method gives the highest accuracy
(BM) or it is in the error band of the highest accuracy (MIEB). If we only
consider the accuracy as the main criterion, the DTW method provides
the highest accuracy in three out of eight applications, and it is in the
error band of the highest accuracy in two applications. In addition, the
results of the TDA-based approach is in the error band in two out of eight
applications. Considering the drawbacks of the frequency-based
approach and deviations of the results of the frequency-based
approach, DTW and TDA-based approaches can be preferred when we
apply transfer learning between different machining operations.

5.4. Transfer learning using deep learning

In addition to traditional machine learning algorithms, we also uti-
lized Artificial Neural Networks(ANNs) to test the performance of
several approaches. Deep learning frameworks can learn from raw data
set without the need of feature extraction. However, Zhoa et al. state
that inadequate size of data set, noisy raw signal, and complex
machining operations make it necessary to preprocess data before
feeding it into deep learning algoritms [80]. Therefore, we use some of
the features extracted from TDA-based approaches to apply deep
learning in transfer learning. Some of the studies in the literature (see
Refs. [36,37]) trained the deep learning algorithms using the simulation
data set to eliminate the need for an extensive amount of experimental
data set to train the classifier. However, in this work, we only used the
existing experimental data and the features extracted from them to train
deep learning algorithms to compare the results to traditional machine
learning algorithms. We are aware of the fact that we need more
observation to have a fair comparison between deep learning-based
transfer learning and traditional machine learning based transfer
learning. Since we do not split the raw experimental signals into small
pieces for Time-Frequency based approaches, we have fewer observa-
tions for these approaches. Hence, we do not utilize the features
extracted using Time-Frequency based approaches to train deep learning
algorithms.

The ANN structure used in this work has one input, three hidden, and
one output layer. The number of inputs fed into the input layer is based
on the number of features extracted from TDA-based approaches. For
instance, Carlsson Coordinates can provide five features for each
persistence diagram, so the number of inputs will be five for this
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Fig. 27. The highest F1-Score out of four different classifiers (or out of selected numbers of nearest neighbor for DTW) for each approach used in transfer learning

applications between overhang distance cases of turning experiments.
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Fig. 28. F1-Scores obtained from the selected
methods when we train and test between the
overhang distance cases of the turning data set.
The selected methods that give the highest ac-
curacy are represented with the’'s" bar hatch and
the ones that are in the error band of the highest
accuracy are shown with the ‘/° bar hatch. One
approach is selected from each category of the
methods, and these are Wavelet Packet Trans-
form (WPT), Carlsson Coordinates (TDA-CC),
and Dynamic Time Warping (DTW).
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Fig. 29. The highest accuracy out of four different classifiers (or out of selected numbers of nearest neighbor for DTW) for each approach used in transfer learning
applications between overhang distance cases of turning and milling experiments.

approach. The first and last hidden layers have 25 neurons, while the
second hidden layer has 12 neurons. The hyperbolic tangent function is
used as an activation function in all layers except the output layer. Since
the classification output is binary, we have chosen the sigmoid function
as the activation function in the output layer. Adam optimization al-
gorithm and binary cross-entropy loss functions are used to compile the
ANN. Epoch number and the batch size to update the weights of the fully
connected layers are selected as 100 and 5, respectively. We have 12
permutations between the overhang distance cases of the turning data
set, and 8 permutations between the turning and milling data set. We
used 67% of the training data set as the training set, and 70% of the test
set data set to test the ANNs. Train-test split is repeated for 10 different
pre-defined random state numbers, and we computed the mean accuracy
and standard deviation out of these 10 realizations. The results for
transfer learning applications between the overhang distance cases of
turning data set is provided in Fig. 31, while Fig. 32 provides the ac-
curacies with error bands for the transfer learning between the milling
and turning data set.
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From Figs. 31 and 25, it is seen that traditional machine learning
algorithms provide better accuracies compared to deep learning in 11
out of 12 different transfer learning applications for Carlsson Co-
ordinates, while deep learning is outperformed in 9 out of 12 applica-
tions of transfer learning between the cases of turning data set using
persistence images. When we look into Figs. 32 and 29, traditional
machine learning algorithms outperform deep learning in all applica-
tions of transfer learning for Carlsson Coordinates. However, deep
learning outperforms traditional machine learning in 4 out of 8 appli-
cations of transfer learning between the milling and turning data set
using persistence images. Overall, it is obvious that the amount of
experimental data set fed to deep learning is insufficient, and this leads
to poor performance against the traditional machine learning algo-
rithms. In addition, we do not perform hyperparameter tuning for ANNs
in this work, this could also be another reason for the poor performance
of deep learning.
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Fig. 30. The classification results obtained from the selected methods when we train and test between the overhang distance cases of the turning data set and the
milling data set. The selected methods that give the highest accuracy are represented with the’=" bar hatch and the ones that are in the error band of the highest
accuracy are shown with the °/* bar hatch. One approach is selected from each category of the methods, and these are FPA, TDA-CC, and DTW.

Table 5

The number of times when a selected method gives the highest accuracy out of 8
different applications between the cases of turning data set and the milling data
set is denoted with BM. The number of times when a method is in the error band
of the highest accuracy is denoted with MIEB. These two numbers are provided
for accuracy and F1-score.

Accuracy F1-Score
Method BM MIEB BM MIEB
Time - Frequency-based (FPA) 4 1 6 0
TDA-based (TDA-CC) 1 2 0 4
Similarity Measure (DTW) 3 2 2 1

6. Discussion and conclusion

The highest scores obtained from the transfer learning applications,
between the cases of the turning data, was between 80% and 100%,
while that drops to 60% when we train on turning data and test on the
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milling data. A period-doubling bifurcation was observed in 19 out of
318 time series of milling data and a Hopf bifurcation was observed in
the rest of the unstable cases of milling data. On the other hand, the
turning data only contains the Hopf bifurcation. When we train on the
turning data set, the classification model is not trained to recognize the
descriptors of period-doubling bifurcation, so it performs poorly when it
is tested on milling data. On the other hand, a classifier is trained with
both features of Hopf and period-doubling when the milling data is used
as the training set. This explains why training on milling data and testing
on turning data set performs better. In addition, the mathematical model
for the milling process has time-varying coefficients, while the turning
process has an autonomous system. Since the coefficients are constant in
turning processes, this can lead to misclassification when the classifier is
tested on milling processes with time-varying coefficients.

This study compared the performance of feature extraction methods
from established methods alongside those recently proposed in the
literature. Turning and milling data sets were used to evaluate the
performance of each method. The size of the training sets and the test
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Fig. 31. The classification accuracies obtained using Carlsson Coordinates and Persistence Images features with ANN algorithms for the transfer learning between the

cases of turning experiments.
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Fig. 32. The classification accuracies obtained using Carlsson Coordinates and Persistence Images features with ANN algorithms for the transfer learning between the

milling and turning experiments.
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Fig. 40. Classification accuracies obtained from transfer learning applications between turning and milling data sets using DTW approach with K=1,2,3,4,5, where K
represent the nearest neighbor number. Overhang distances (OD.) used as training or testing data set are shown in y-axis.

sets were kept the same for each method. Since the training set data and
test data are different from each other, we used 67% and 70% of the
training set and test data to train and test a classifier, respectively. Ten
random state numbers were used to generate training and test splits, and
these were used to train and test a classifier for each method. The
average and standard deviation of the 10 realizations were computed
and the final results were reported. This has been repeated for all 20
combinations between the milling data and overhang cases of turning
data.

To compare the results, we provided two types of figures for each
comparison criterion. Figs. 25, 26, 29, and 30 were obtained when the
criterion was accuracy, while Figs. 27, 28, 41, and 42 were given for the
Fl-score. It can be seen that the time-frequency-based approaches give
the highest accuracy in most of the applications of transfer learning with
larger deviations in comparison to the TDA-based approach and DTW.
When we only consider the transfer learning between the milling and
turning data sets, we see that the accuracies obtained from DTW can be
as high as 96% while the time-frequency-based approaches can be up to
86% (see Fig. 29). For the same cases of transfer learning, the highest

20

score obtained from TDA is 73% (see Fig. 29). For the transfer learning
applications where we train and test between the cases of turning, the
time-frequency-based approach has the highest accuracy of 93%; the
best score for the TDA approach and DTW are 97% and 96%, respec-
tively (see Fig. 25). We also compared the results of traditional machine
learning algorithms to the ones obtained from ANNs. It is seen that
insufficient experimental data set leads to poor results against tradi-
tional machine learning approaches. The small size of the experimental
data set also avoid us to compare different techniques to each other
using deep learning algorithms. In this work, we were only able to
compare several TDA-based approaches to each other. Using synthetic
data sets generated using the analytical model of milling and turning
operations can allow us to further extend the comparison of more ap-
proaches using deep learning frameworks in the future.

In summary, the TDA-based and DTW approaches can provide ac-
curacies and Fl-scores as high as the time-frequency-based methods.
DTW outperforms all other methods when training on the milling data
set and testing on the turning data set. In addition, the TDA-based
approach and DTW can be applied without needing manual
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preprocessing, all of the steps in their pipeline can be completed auto-
matically. Therefore, these approaches may be preferred over the time-
frequency-based approaches in either real-time or in fully automated
chatter detection schemes. It is worth noting that we have not performed
any optimization on hyperparameters of the traditional machine
learning and deep learning algorithms. Thus future studies should also
consider the effect of hyperparameter tuning.

Declaration of competing interest

The authors declare that they have no known competing financial

Appendix A

Training: Turning - 5.08 cm
Test: Turning - 6.35 cm
LR RF

SVM GB

0.810

0.593

Training: Turning - 5.08 cm
Test: Turning - 8.89 cm
SVM LR

Journal of Manufacturing Processes 80 (2022) 1-27

interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgement

This research was based upon work supported by the National Sci-
ence Foundation under Grant Nos. CMMI-1759823 and DMS-1759824
with PI FAK.

Training: Turning - 5.08 cm
Test: Turning - 11.43 cm
GB

GB SVM

0.894 pyel=g
0.834 0.640
0.860 0.844
0.708

0.763

FPa- 0.431 0.738

0.9

Fig. 33. Classification accuracies obtained from transfer learning applications for turning experiment case with 5.08 cm overhang distance. (left) Training: 5.08 cm
Test: 6.35 cm (middle) Training: 5.08 cm Test: 8.89 cm, (right) Training: 5.08 cm Test: 11.43 cm. CC: Carlsson Coordinates, PI: Persistence Images, PL: Persistence
Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode Decomposition, FPA: FFT/PSD/ACF, SVM: Support Vector
Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with Gradient Boosting classifier (GB) is not available due to large
amount of time training and testing. Therefore, it represents an empty box in the figure.
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Fig. 34. Classification accuracies obtained from transfer learning applications for turning experiment case with 6.35 cm overhang distance. (left) Training: 6.35 cm
Test: 5.08 cm (middle) Training: 6.35 cm Test: 8.89 cm, (right) Training: 6.35 cm Test: 11.43 cm. CC: Carlsson Coordinates, PI: Persistence Images, PL: Persistence
Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode Decomposition, FPA: FFT/PSD/ACF, SVM: Support Vector
Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with Gradient Boosting classifier (GB) is not available due to large
amount of time training and testing. Therefore, it represents an empty box in the figure.
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Fig. 35. Classification accuracies obtained from transfer learning applications for turning experiment case with 8.89 cm overhang distance. (left) Training: 8.89 cm
Test: 5.08 cm (middle) Training: 8.89 cm Test: 6.35 cm, (right) Training: 8.89 cm Test: 11.43 cm. CC: Carlsson Coordinates, PI: Persistence Images, PL: Persistence
Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode Decomposition, FPA: FFT/PSD/ACF, SVM: Support Vector
Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with Gradient Boosting classifier (GB) is not available due to large
amount of time training and testing. Therefore, it represents an empty box in the figure.

22



M.C. Yesilli et al.

Training: Turning - 11.43 cm
Test: Turning - 5.08 cm

SVM

llf(i

LR RF

0.832

0.7 0.8

Journal of Manufacturing Processes 80 (2022) 1-27
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Fig. 36. Classification accuracies obtained from transfer learning applications for turning experiment case with 11.43 cm overhang distance. (left) Training: 11.43
cm Test: 5.08 cm (middle) Training: 11.43 em Test: 6.35 cm, (right) Training: 11.43 cm Test: 8.89 c¢m. CC: Carlsson Coordinates, PI: Persistence Images, PL:
Persistence Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode Decomposition, FPA: FFT/PSD/ACF, SVM:
Support Vector Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with Gradient Boosting classifier (GB) is not available
due to large amount of time training and testing. Therefore, it represents an empty box in the figure.

Training: 5.08 cm
Test: 6.35 cm
Training: 5.08 cm
Test: 8.89 cm
Training: 5.08 cm
Test: 11.43 cm
Training: 6.35 cm
Test: 5.08 cm
Training: 6.35 cm
Test: 8.80 cm
Training: 6.35 cm
Test: 11.43 cm
Training: 8.89 cm
Test: 5.08 cm
Training: 8.89 cm
Test: 6.35 cm
Training: 8.89 cm
Test: 11.43 cm
Training: 11.43 cm
Test: 5.08 cm
Training: 11.43 cm
Test: 6.35 cm
Training: 11.43 cm
Test: 8.89 cm

K=1

0.93

0.681

0.882
0.706
0.696
0.807
0.653
0.816

0.2

K=2 K=3 K=4 K=5

0.880
0.708
0.701
0.803
0.664
0.824

0.5 0.6 0.7 0.8 0.9

Fig. 37. Classification accuracies obtained from transfer learning applications for turning data set using DTW approach with K=1,2,3,4,5, where K represent the
nearest neighbor number. Overhang distances used as training and testing data set are shown in y-axis.
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Fig. 38. Classification accuracies obtained from transfer learning applications when milling data set is used as training set and turning data set is used as test set. CC:
Carlsson Coordinates, PI: Persistence Images, PL: Persistence Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode
Decomposition, FPA: FFT/PSD/ACF, SVM: Support Vector Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with
Gradient Boosting classifier (GB) is not available due to large amount of time training and testing. Therefore, it represents an empty box in the figure.
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Fig. 39. Classification accuracies obtained from transfer learning applications when milling data set is used as test set and turning data set is used as training set. CC:
Carlsson Coordinates, PI: Persistence Images, PL: Persistence Landscapes, TF: Template Functions, WPT: Wavelet Packet Transform, EEMD: Ensemble Empirical Mode
Decomposition, FPA: FFT/PSD/ACF, SVM: Support Vector Machine, RF: Random Forest, GB: Gradient Boosting. The results for TDA-PL implementation with
Gradient Boosting classifier (GB) is not available due to large amount of time training and testing. Therefore, it represents an empty box in the figure.
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Fig. 41. The highest Fl-score out of four different classifier (or out of selected numbers of nearest neighbor for DTW) for each approach used in transfer learning
applications between overhang distance cases of the turning and milling experiments.
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Fig. 42. F1-Scores obtained from the selected methods when we train and test between the overhang distance cases of the turning data set and the milling data set.

The selected methods that give the highest accuracy are represented with'=" bar hatch and the ones which are in the error band of the highest accuracy are shown
with ‘/” bar hatch. One approach is selected from each category of the methods, and these are FPA, TDA-CC and DTW.
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