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1. Introduction

Partial differential equations (PDEs) with random coefficients are widely used as mathematical models to quantify
uncertainties in many physical and engineering applications, for example, flows in heterogeneous porous media [1],
thermo-fluid processes [2,3], fluid–structure interactions [4], etc.

There has been a tremendous amount of study on the numerical solutions of PDEs with random coefficients,
including sampling-based methods (e.g., Monte Carlo method or stochastic collocation method) and intrusive methods
(e.g., stochastic Galerkin method). It is well known that the convergence rate of the Monte Carlo method is proportional
to 1/

p
N where N is the number of samples. Stochastic collocation method achieves faster convergence by combining a

Galerkin discretization in space with collocation in stochastic dimensions [5–7]. To alleviate the curse-of-dimensionality
due to the exponential growth of the number of collocation points in a tensor grid, Smolyak sparse grid method has
been developed [8]. These non-intrusive methods have the advantage of the ease of implementation as the corresponding
deterministic solvers can be applied.

Stochastic Galerkin method [9] is an intrusive type of discretization for solving PDEs with random coefficients. The
size of the resulting discrete equations is relatively smaller and scales approximately 1/2p (where p denotes the order
of the stochastic discretization) times the number of the sparse-grid stochastic collocation equations [8,10]. In [11,12],
experimental comparisons are provided to show that the stochastic Galerkin method is computationally less expensive
when efficient solvers are available.

Stochastic Galerkin discretization typically combines a finite element discretization in the spatial dimensions with
a Galerkin projection onto orthogonal polynomials [13,14] in stochastic dimensions. Unlike the non-intrusive ap-
proach, deterministic solvers cannot be applied directly to solve the coupled system of algebraic equations and fast
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solvers/preconditioners need to be developed. We refer to [15,16] for comprehensive overviews and comparisons of
iterative solvers for linear systems resulting from the stochastic Galerkin discretizations.

There are a number of special structures in these linear system of equations which make it possible to develop fast
linear solvers. For example, due to the block sparsity structure, Krylov subspace methods that require only matrix–vector
multiplication are well suited for these linear systems. To accelerate their convergence, various preconditioning techniques
have been designed, including a block diagonal preconditioner [17–19] and a Kronecker product preconditioner [20],
etc. Multigrid methods with the optimal order of computational complexity in the physical space are also investigated
theoretically and numerically for stochastic Galerkin discretizations [21–24]. The use of hierarchical polynomial chaos
basis functions introduces a hierarchical structure in the stochastic dimensions which can also be beneficial for the design
of iterative solvers [15,17,18].

In this work, we explore more on the sparse pattern of the stochastic space by introducing a simplex structure and
develop a block triangular preconditioner for the stochastic Galerkin discretization. The geometric multigrid method
has been utilized to invert the diagonal blocks. Numerical results show that the GMRES method preconditioned by this
preconditioner performs better than MINRes method with traditional block diagonal preconditioner as well as GMRES
method with Kronecker product preconditioner. The block triangular preconditioner is more robust and efficient in terms
of iteration steps as well as computational time. Theoretical analysis is also given to show the spectral bounds of the
preconditioned matrix. In particular, a tighter bound for the preconditioned system is provided using the Gershgorin’s
theorem for block matrices.

The rest of the paper is organized as follows. In Section 2, we describe the model elliptic problem with random diffusion
coefficient and its stochastic Galerkin discretization. In Section 3, we discuss several important structures of the matrix
from stochastic Galerkin discretization. In Section 4, we introduce the block triangular preconditioner. Some eigenvalue
analysis for the preconditioned GMRES method is described in Section 5. In Section 4.3 we review the Kronecker product
preconditioner. Finally, the performance of the proposed block triangular preconditioner is demonstrated in Section 6.

2. Model problem and stochastic Galerkin discretization

Let us consider the following second order elliptic problem

�r · (a(x,!)ru(x,!)) = f (x), x 2 D ⇢ Rd, (1)
u(x,!) = 0, x 2 @D,

where the diffusion coefficient is a real-valued random field, i.e., for each x 2 D, a(x, ·) is a random variable defined on a
probability space (⌦,F, P). We assume that a is bounded and uniformly coercive, i.e.

9 amin, amax 2 (0, +1) : P(! 2 ⌦ : a(x,!) 2 [amin, amax], 8x 2 D) = 1. (2)

Introducing the tensor product Hilbert space V = L2P (⌦) ⌦ H1
0 (D) and the corresponding inner product

(u, v)V =

Z

⌦

✓Z

D
ru(x,!) · rv(x,!) dx

◆
dP(!),

the weak solution u 2 V is a random function such that 8 v 2 V :
Z

⌦

✓Z

D
a(x,!)ru(x,!) · rv(x,!) dx

◆
dP(!) =

Z

⌦

✓Z

D
f (x) v(x,!) dx

◆
dP(!). (3)

The well-posedness of the above variational problem (3) follows from (2) and the Lax–Milgram lemma.

2.1. Karhunen-Loève expansion

We approximate the input random field a(x,!) by the following truncated Karhunen–Loève expansion

a(x,!) ⇡ am(x,!) := ā(x) +

mX

k=1

p
�kbk(x)⇠k(!), (4)

where ā(x) is the mean value of a(x,!), �k and bk(x) are the eigenvalues and eigenfunctions of C : L2(D) ! L2(D) defined
by

R
D Cova(x, ·) u(x) dx.

Given the continuous covariance function Cova(x, y), the above expansion (4) approximates a(x,!) with minimized
mean square error [9]. The number of terms in the expansion, m, depends on the eigenvalue decay rate, and in turn,
depends on the stochastic regularity, i.e., the smoothness of the covariance function. The expansion coefficients ⇠k(!) are
pairwise uncorrelated random variables with images �k = ⇠k(⌦), and probability density functions (PDFs) ⇢k : �k ! Rn.
The joint PDF of the random vector ⇠ = (⇠1, . . . , ⇠m) is denoted by ⇢(⇠ ), and the image � = ⇧m

k=1�k.
If a(x,!) is a Gaussian random field, ⇠k will also be Gaussian and mutually independent with joint PDF ⇢(⇠ ) =

⇧m
k=1⇢k(⇠k). In general, for non-Gaussian random fields, ⇠k may not be independent and their distributions are not

known. Several methods have been developed to estimate the distributions of ⇠k and to simulate non-Gaussian processes
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using Karhunen–Loève expansion, see [25,26]. A non-Gaussian random field may be approximated by polynomial chaos
expansion, see [27,28]. As an example, we consider the exponential covariance function

Cova(x, y) = � 2exp (�|x � y|/L) , (5)

where � denotes the standard deviation and L is the correlation length.

Remark 1. When replacing the diffusion coefficient a(x,!) by the truncated Karhunen–Loève expansion am(x,!), it is
important to verify the uniform coercivity condition (2) so that the problem

�r · (am(x,!)ru(x,!)) = f (x), x 2 D,

u(x,!) = 0, x 2 @D.
(6)

is well-posed. For more discussions, including the estimate of the error between the two solutions of (1) and (6), we refer
to [29,30].

One advantage of using Karhunen–Loève expansion is the separation of the stochastic and deterministic variables for
the stochastic function a(x,!). In addition, from the Doob–Dynkin lemma [31], the solution of (6) can be expressed in
terms of ⇠ , i.e. u(x,!) = u(x, ⇠1(!), . . . , ⇠m(!)). The above problem (6) can be reformulated as the following parametrized
deterministic problem:

�r · (am(x, ⇠ )ru(x, ⇠ )) = f (x), x 2 D, ⇠ 2 � ,

u(x, ⇠ ) = 0, x 2 @D, ⇠ 2 � .

2.2. Stochastic Galerkin discretization

Since the weak solution u(x, ⇠ ) is defined in a tensor product space V , we consider finite dimensional approximation
space also in tensor product form, i.e. Vh,p = Xh⌦⌅p. When the solution is smooth/analytic in stochastic variables, spectral
approximation using global polynomials of total degree  p in m variables defined in �

⌅p = span{ 1(⇠ ), . . . , N⇠ (⇠ )} ⇢ L2⇢(� )

are good candidates for approximations in the stochastic space.
For the global polynomials  i, we use the orthogonal polynomials associated with the density function ⇢ (i.e., gen-

eralized Polynomial Chaos (gPC) [14]), e.g., Legendre polynomials for uniform distribution, and Hermite polynomial for
Gaussian distribution, etc. The dimension of the space ⌅p is given by

N⇠ =
(m + p)!
m!p!

.

For example, when m = 6, p = 4, dim(⌅4) = 210. Notice that for the same m and p, the stochastic basis of stochastic
collocation method has a dimension of 64 = 1296 which is 10 times larger than dim(⌅4).

For the spatial approximation, we choose the standard finite element discretization, i.e., piecewise polynomials with
respect to a given mesh Th (h is the spatial discretization parameter)

Xh = span{�1(x), . . . ,�Nx (x)} ⇢ H1
0 (D),

where Nx is the dimension of Xh. Hence, the discrete solution uh,p has the following form

uh,p(x, ⇠ ) =

N⇠X

j=1

uj(x) j(⇠ ) =

N⇠X

j=1

 NxX

s=1

Uj,s�s(x)

!
 j(⇠ ). (7)

An a priori estimate for the discretization error ku�uh,pkL2⇢ (� )⌦H1
0 (D)

is given in [7]. Statistical information including mean,
variance, etc., can then be obtained from the explicit formula given by Eq. (7), which give good approximations to those
of the exact solution.

The stochastic Galerkin finite element method is defined by applying the Galerkin projection in the tensor product
space Vh,p. More precisely, find uh,p 2 Vh,p such that

A(uh,p, v) = (f , v), 8 v 2 Vh,p

where

A(uh,p, v) :=

Z

�

⇢(⇠ )
Z

D
am(x, ⇠ )rxuh,p(x, ⇠ ) · rxv(x, ⇠ )dxd⇠ ,

and

(f , v) :=

Z

�

⇢(⇠ )
Z

D
v(x, ⇠ )f (x)dxd⇠ .
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Since A(·, ·) is symmetric and positive definite, it also introduces an inner product and the associated norm (denote by
(·, ·)a and k · ka, respectively).

We refer to [32] for a more thorough discussion of the stochastic Galerkin method.

3. Matrix structures and iterative solvers

In this section, we describe some important matrix structures for the stochastic Galerkin matrix A which are useful in
designing efficient and robust preconditioners.

3.1. Tensor product structure

Consider the semi-discretization in the stochastic domain, the corresponding Galerkin projection u(p)(·, ⇠ ) : � ! Xh
satisfies for each stochastic basis polynomial  i(⇠ ), i = 1, . . . ,N⇠ :

Z

�

�r · (am(x, ⇠ )ru(p)(x, ⇠ )) i(⇠ )⇢(⇠ ) d⇠ =

Z

�

f (x) i(⇠ )⇢(⇠ ) d⇠ , (8)

where the semi-discrete approximation u(p)(x, ⇠ ) =
PN⇠

j=1 uj(x) j(⇠ ). Note Eq. (8) is a system of N⇠ equations with N⇠
unknown functions {uj(x)}

N⇠
j=1, i.e. the stochastic ‘stiffness’ matrix is given by

A =

0

BBB@

A1,1 A1,2 · · · A1,N⇠
A2,1 A2,2 · · · A2,N⇠

...
...

. . .
...

AN⇠ ,1 AN⇠ ,2 · · · AN⇠ ,N⇠

1

CCCA
,

where each entry Ai,j contains spatial differentiation and is given by

Ai,j =

Z

�

�r · (am(x, ⇠ )ruj(x)) j(⇠ ) i(⇠ )⇢(⇠ ) d⇠ .

Substitute in the truncated Karhunen–Loève expansion (4) for am, we get

Ai,j = �r · (ā(x)ruj(x))
Z

�

 j(⇠ ) i(⇠ )⇢(⇠ ) d⇠

�

mX

k=1

p
�kr · (bk(x)ruj(x))

Z

�

⇠k j(⇠ ) i(⇠ )⇢(⇠ ) d⇠ .

Next, we apply Galerkin projection to discretize spatial differential operators. Let

uj(x) =

NxX

s=1

Uj,s�s(x),

where {�s(x)}Nx
s=1 is the set of finite element basis functions. Multiply the spatial derivative terms in each Ai,j by the test

function �r (x) (for r = 1, . . . ,Nx) and integration by parts gives
NxX

s=1

Uj,s

Z

D
ā(x)r�s(x) · r�r (x) dx +

mX

k=1

p
�k

NxX

s=1

Uj,s

Z

D
bk(x)r�s(x) · r�r (x) dx. (9)

From (9), we define spatial stiffness matrices K0 and Kk (for k = 1, . . . ,m) as

K0(r, s) =

Z

D
ā(x)r�s(x) · r�r (x) dx,

Kk(r, s) =

p
�k

Z

D
bk(x)r�s(x) · r�r (x) dx, r, s = 1, . . . ,Nx. (10)

Similarly, we define the stochastic matrices G0 and {Gk}
m
k=1 as

G0(i, j) =

Z

�

 j(⇠ ) i(⇠ )⇢(⇠ ) d⇠ ,

Gk(i, j) =

Z

�

⇠k j(⇠ ) i(⇠ )⇢(⇠ ) d⇠ , i, j = 1, . . . ,N⇠ . (11)

4
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Finally, the stochastic Galerkin matrix A can be described as the sum of Kronecker products:

A = G0 ⌦ K0 +

mX

k=1

Gk ⌦ Kk. (12)

In practice, one does not assemble the stochastic Galerkin matrix A explicitly. Instead, using the tensor product structure
(12), only m + 1 spatial stiffness matrices Kk and m + 1 stochastic matrices Gk need to be stored.

3.2. Simplex structure

We explore the sparse pattern of the stochastic matrices Gk. Consider a lattice with vertices defined as

VL
p,m =

�
i = (i1, i2, . . . , im) 2 Zm

| 0 6 ik 6 p, k = 1, 2, . . . ,m
 
,

where m is the number of truncated terms in the Karhunen–Loève expansion and p is the maximum degree for each
univariate orthonormal polynomial. There exists a bijection between the lattice vertices VL

p,m and the tensor product
polynomial space Tp,m

Tp,m :=

(
mY

k=1

 k(⇠k) | max
1km

deg( k) 6 p

)
(13)

if we consider each ik in the multi-index i as the degree of univariate polynomial of  ik (⇠k). Alternatively, define a simplex
with vertices VS

p,m as a subset of VL
p,m:

VS
p,m =

(
i = (i1, i2, . . . , im) 2 Zm

|

mX

k=1

ik 6 p, ik > 0, k = 1, 2, . . . ,m

)
.

There also exists a bijection between the simplex vertices VS
p,m and the complete polynomial space Cp,m

Cp,m :=

(
mY

k=1

 k(⇠k) |

mX

k=1

deg( k) 6 p

)
. (14)

In view of lattice, stochastic collocation method is corresponding to the lattice vertices VL
p,m with tensor product

polynomial space Tp,m, while stochastic Galerkin method is corresponding to the simplex vertices VS
p,m with complete

polynomial space Cp,m.
For any symmetric N⇠ ⇥N⇠ matrix G, we can define a bijection between G and an undirected graph Gp,m =

�
VS
p,m, ES

p,m
�

on the simplex vertices VS
p,m and their edges ES

p,m =
�
(i, j) : i, j 2 VS

p,m
 
by setting the weight in the graph wi,j = G(î, ĵ),

where î, ĵ are the global index corresponding to the two multi-indices i, j .
Recall the three-term recurrence formula for orthonormal polynomials with the initial terms  �1(⇠ ) = 0 and  0(⇠ ) =

1:

 k+1(⇠ ) = (ak⇠ + bk) k(⇠ ) � ck k�1(⇠ ), 8k > 1, (15)

where ak, ck are non-zero and ckakak�1 > 0 for all k > 1. Now (11) turns into

Gk(î, ĵ) =

8
>>>><

>>>>:

cik+1

aik+1
, if ik = jk � 1 and il = jl, l 2 {1, 2, . . . ,m} \ {k},

cik
aik

, if ik = jk + 1 and il = jl, l 2 {1, 2, . . . ,m} \ {k},

0, otherwise.

(16)

The result above indicates that the stochastic matrices Gk are sparse. The (î, ĵ)-th entry of Gk is not zero only when
their corresponding multi-index points on Vp,m are adjacent in the kth coordinate, i.e. |ik � jk| = 1 and il = jl, l 2

{1, 2, . . . ,m} \ {k}.
In the sum G =

Pm
k=1 Gk, G(î, ĵ) is non-zero only when ki � jk1 = 1, where k · k1 is the l1-norm of vectors. Therefore,

we can define a simplex graph Gp,m =
�
VS
p,m, ES

p,m
�
on the simplex vertices VS

p,m and the edges

ES
p,m =

�
(i, j) | i, j 2 VS

p,m, ki � jk1 = 1
 
.

Fig. 1 is an example for the simplex graph Gp,m with normalized Hermite polynomials when p = 5 and m = 2.
Due to the simplex structure, the vertices of the simplex graph Gp,m are well-separated into two groups: odd total

degree and even total degree. Inside each group, the vertices are disjointed. More precisely, define

Iodd =

(
i 2 VS

p,m |

mX

k=1

ik is odd

)
,

5
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Fig. 1. The simplex lattice and a corresponding graph of stochastic matrix G with parameters p = 5 and m = 2. The black points are those with
even total degrees while the white points are those with odd total degrees. The black points are only adjacent (connected) to white points and
vice versa. For example, point #13 (corresponding to  2(⇠1) 1(⇠2) with total degree three) is connected to point #2, #3, #6, #7, all with an even
total degree. Moreover, the entries of G(13, ·) are zero except G(13, 7) = G1(13, 7) =

p
2, G(13, 6) = G1(13, 6) =

p
3, G(13, 2) = G2(13, 2) = 1 and

G(13, 3) = G2(13, 3) =
p
2.

Fig. 2. Block sparsity structure of the Galerkin matrix A under the red–black ordering of their total degree (m = 4, p = 4).

Ieven =

(
i 2 VS

p,m |

mX

k=1

ik is even

)
.

Then G =
Pm

k=1 Gk admits a sparse block matrix structure (after suitable reordering)

G =

✓
O B|

B O

◆
, with B = G(Iodd, Ieven).

Fig. 2 is an example for the simplex graph Gp,m with normalized Hermite polynomials when p = 4 and m = 4. We will
use this property to design a block Gauss–Seidel preconditioner in the next section.

4. Block preconditioners

Preconditioning techniques are often necessary in order to accelerate the convergence of the Krylov subspace methods
when solving ill-conditioned linear system of equations. In particular, for the stochastic Galerkin matrix A with block
sparse structure, it is natural to consider block preconditioners.

4.1. Block-diagonal preconditioner

It is known that the block-diagonal preconditioner (also known as the mean-based preconditioner) defined by

BD := G0 ⌦ K0, (17)

6
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works very well with the conjugate gradient (CG) method when the variance of the diffusion coefficient a(x,!) is
small [17,18]. By the uniform ellipticity assumption, the mean stiffness matrix K0 is SPD. The multigrid method can be
used to invert each diagonal block approximately.

For the block-diagonal preconditioned systems, the spectral bounds are derived in [19]. We first recall results in [19].
We begin with the estimate on the generalized eigenvalues of Kk relative to K0. Recall that µ is mean of ! and � is its
variance.

Lemma 1 (Lemma 3.4 in [19]). Let �k =
p
�kkbkk1 for k = 1, 2, . . . ,m, then

⇢(K�1
0 Kk) 

�

µ
�k.

We then recall their bound obtained for the block-diagonal preconditioner BD = G0 ⌦ K0.

Lemma 2 (Theorem 3.8 in [19]).

1 � ⌧ 6 �min(B�1
D A) 6 �max(B�1

D A) 6 1 + ⌧ ,

where

⌧ =
�

µ
Cmax
p+1

mX

k=1

�k,

Cmax
p+1 =

(
Hmax

p+1 =
p
p � 1 +

p
p, for Hermite polynomials,

Lmax
p+1 =

p
3, for Legendre polynomials.

Define N (i) =
�
j 2 Vp,m | ki � jk1 = 1

 
as the neighbors of vertex i, and N (i, k) = {j 2 N (i) | |ik � jk| = 1} as

the neighbors of vertex i in k-direction. Further define k(i, j) =
�
k 2 {1, 2, . . . , L} | (i, j) 2 Ep,m and |ik � jk| = 1

 
as the

different direction between indices i and j . Based on the simplex structure of the stochastic matrix, the result in Lemma 2
can be improved to the following result.

Theorem 1.

1 � ⌧̂ 6 �min(B�1
D A) 6 �max(B�1

D A) 6 1 + ⌧̂ , (18)

where

⌧̂ =
�

µ
max
i,|i|6p

mX

k=1

X

j2N (i,k)

G(i, j)�k, G =

mX

k=1

Gk. (19)

We claim that ⌧̂ in Theorem 1 is indeed an improvement of ⌧ in Lemma 2, i.e. ⌧̂ 6 ⌧ . In each direction k 2 {1, 2, . . . ,m},
for any i given, there are at most two vertices j1, j2 in N (i, k), cf. Fig. 1. Therefore

X

j2N (i,k)

G(i, j)�k  Cmax
p+1�k,

and the claim holds by simply summing up all the directions. The above equality holds only when ik = p�1 and all other
il = 0, l 6= k. This implies that ⌧̂ in Theorem 1 is a much tighter bound compared to ⌧ in Lemma 2, and ⌧ = ⌧̂ only when
m = 1.

In order to prove (18), we introduce the Gershgorin’s Theorem for block matrices [33–35]. For completeness, a proof
is included here.

Theorem 2 (Gershgorin’s Theorem for Block Matrices [33–35]). Consider Ā = (Āij) 2 Rdn⇥dn where Āij 2 Rd⇥d. Denote by � (·)
the spectrum of a matrix. Define

Gi = � (Āii)
[

8
<

:� /2 � (Āii) :
��(Āii � �I)�1

���1 6
X

j6=i

kĀijk

9
=

; , (20)

for i = 1, 2, . . . , n. Then

� (Ā) ✓

n[

i=1

Gi.

7



D. Wang, B. Zheng, L. Chen et al. Journal of Computational and Applied Mathematics 412 (2022) 114298

Proof. Suppose that � /2
Sn

i=1 � (Āii) then we have

Ā � �I =

0

B@
Ā11 � �I · · · 0

...
. . .

...

0 · · · Ānn � �I

1

CA (I + M(�)), (21)

where

M(�) =

0

BBB@

0 (Ā11 � �I)�1Ā12 · · · (Ā11 � �I)�1Ā1n
(Ā22 � �I)�1Ā21 0 · · · (Ā22 � �I)�1Ā2n

...
...

. . .
...

(Ānn � �I)�1Ān1 · · · · · · 0

1

CCCA
.

Assume k(Āii � �I)�1k�1 >
P

j6=i kĀijk for i = 1, 2, . . . , n. Then kM(�)k < 1 and hence I + M(�) is not singular. It implies
that Ā � �I is not singular which leads to a contradiction. Therefore � must be in the given region. ⇤

Now we give a proof of Theorem 1.

Proof. Since G0 = I and K0 is positive definite, we can define B
1
2
D = I ⌦ K

1
2
0 and then

� (B�1
D A) = � (B

�
1
2

D AB
�

1
2

D ).

It suffices to show the following bound for the symmetric matrix B
�

1
2

D AB
�

1
2

D

1 � ⌧̂ 6 �min(B
�

1
2

D AB
�

1
2

D ) 6 �max(B
�

1
2

D AB
�

1
2

D ) 6 1 + ⌧̂ .

Let

Ā = B
�

1
2

D AB
�

1
2

D = I +

mX

k=1

Gk ⌦

✓
K

�
1
2

0 KkK
�

1
2

0

◆
.

The diagonal blocks Āii = I . For a scalar index, we shall use the boldface letter to denote its corresponding multi-index,
and the structure is easier to explore in the multi-index system, cf. Fig. 1. Using these notation, together with G =

Pm
k=1 Gk,

we have for i 6= j,

Āij =

mX

k=1

(Gk)ij
✓
K

�
1
2

0 KkK
�

1
2

0

◆
= G(i, j)

✓
K

�
1
2

0 Kk(i,j)K
�

1
2

0

◆
.

Therefore, (20) can be written as

Gi = {1}
[

8
<

:� 6= 1 : |1 � �| 6
X

j6=i

����G(i, j)
✓
K

�
1
2

0 Kk(i,j)K
�

1
2

0

◆����

9
=

;

=

8
<

:� : |1 � �| 6
X

j2N (i)

G(i, j)
����K

�
1
2

0 Kk(i,j)K
�

1
2

0

����

9
=

;

=

8
<

:� : |1 � �| 6
mX

k=1

X

j2N (i,k)

G(i, j)
����K

�
1
2

0 KkK
�

1
2

0

����

9
=

;

✓

8
<

:� : |1 � �| 6
�

µ

mX

k=1

X

j2N (i,k)

G(i, j)�k

9
=

;

(22)

Since all Gi are concentric at 1, we can conclude that

� (B
�

1
2

D AB
�

1
2

D ) ✓

n[

i=1

Gi ✓ D
�
1, ⌧̂

�
,

where D
�
1, ⌧̂

�
is the disk centered at 1 with radius ⌧̂ . And so is � (B�1

D A). ⇤

8



D. Wang, B. Zheng, L. Chen et al. Journal of Computational and Applied Mathematics 412 (2022) 114298

Since BD is symmetric positive definite, we can write a symmetric version of the preconditioned system as

B
�

1
2

D AB
�

1
2

D =

mX

k=0

Gk ⌦ (K
�

1
2

0 KkK
�

1
2

0 ) = I +

mX

k=1

Gk ⌦ (K
�

1
2

0 KkK
�

1
2

0 ) =


I B|

B I

�

where B =
Pm

k=1 Gk(I2, I1)⌦(K
�

1
2

0 KkK
�

1
2

0 ) is the off-diagonal of the preconditioned system B
�

1
2

D AB
�

1
2

D corresponding to the
even–odd ordering described before based on the total degrees in the stochastic space. Here I1 is the one in {Iodd, Ieven}

with larger cardinality, I2 is the one with smaller cardinality.
With the help of Theorem 2, we can prove that the off-diagonal blocks of the preconditioned system satisfy

����


0 B|

B 0

����� = ⌧̂ , (23)

where ⌧̂ is given in (19). We will use this fact in the spectral analysis of the block triangular preconditioner in Section 5.

4.2. Block-triangular preconditioner

We can use the lower block triangular part of the matrix A as a preconditioner. This can be viewed as applying one
step of the block Gauss–Seidel method with zero initial guess.

Consider a splitting of the stochastic approximation space ⌅p according to whether their total polynomial degrees are
even or odd,

⌅p = ⌅1 �⌅2

and the corresponding splitting of the global approximation space

Vh,p = (Xh ⌦⌅1) � (Xh ⌦⌅2),

which results in a 2 ⇥ 2 block structure.
Given u(0) = 0, for k = 1, 2, . . . , the block Gauss–Seidel iterate u(k+1) is given by the following two steps:

• Find u(k+1/2) 2 u(k) + Xh ⌦⌅1 such that

A(u(k+1/2), v) =

Z

�

⇢(⇠ )
Z

D
v(x, ⇠ )f (x) dx d⇠ , 8v 2 Xh ⌦⌅1.

• Find u(k+1) 2 u(k+1/2) + Xh ⌦⌅2 such that

A(u(k+1), v) =

Z

�

⇢(⇠ )
Z

D
v(x, ⇠ )f (x) dx d⇠ , 8v 2 Xh ⌦⌅1.

In matrix notation, the above block Gauss–Seidel method can be described by the following matrix splitting

A =


D1 0
W D2

�
�


0 �W |

0 0

�
,

where

D1 = I1 ⌦ K0, D2 = I2 ⌦ K0,

W =

 
mX

k=1

Gk ⌦ Kk

!
(I2, I1) =

mX

k=1

Gk(I2, I1) ⌦ Kk.

We define the block triangular preconditioner

BT :=


D1 0
W D2

�
. (24)

The corresponding preconditioner system


D1 0
W D2

� 
Ũ1

Ũ2

�
=


F̃1
F̃2

�

may be solved inexactly by the standard multigrid V-cycle.

Remark 2. The block triangular preconditioner BT may also be motivated by considering the block LU factorization

A =


D1 0
W S

� 
I D�1

1 W |

0 I

�
, S = D2 � WD�1

1 W |. (25)

9
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It is known that with the ‘‘ideal’’ block triangular preconditioner

B̃T =


D1 0
W S

�

the GMRES method converges in at most two iterations . However, B̃T is impractical because the Schur complement S is
computationally expensive to invert. Replacing S by D in B̃T results in the block triangular preconditioner BT .

Since BT is nonsymmetric, we will use it with the GMRES method [36] or GPCG method [37]. To apply the standard
PCG method, we may consider the symmetric block Gauss–Seidel method as the preconditioner, i.e.

BS :=


D1 0
W D2

� 
D1 0
0 D2

��1 
D1 W |

0 D2

�
.

It is clear that BS is SPD and the standard PCG method is guaranteed to converge. However, it might not be efficient as
one more matrix–vector products are computed compared with the block-triangular preconditioner while the iteration
steps do not decrease much.

4.3. A Kronecker product preconditioner

Another way to develop a good preconditioner of the NxN⇠ ⇥ NxN⇠ matrix A is to approximate it by a single tensor
product L ⌦ R with certain matrix L of size N⇠ ⇥ N⇠ and R of size Nx ⇥ Nx. Van Loan and Pitsianis [38] presented a
general framework (for any NxN⇠ ⇥ NxN⇠ matrix A) to find such L and R by minimizing the Frobenius norm kA� L⌦ RkF .
However, the additional computational cost introduced in solving L and R might be dominant compare to solving the
original stochastic Galerkin system with the previous preconditioners, and therefore is not worth it in practice. A simpler
approximation with fixed L or R is brought up in Van Loan and Pitsianis [38] and then specified to the stochastic Galerkin
system by Ullmann [20]. We first recall a lemma in [38] for fixed L or R.

Lemma 3 ([38], Theorem 3). If R 2 RNx⇥Nx is fixed, then the matrix L 2 RN⇠⇥N⇠ defined by

Lst =
tr(A|

stR)
tr(R|R)

, s, t = 1, 2, . . . ,N⇠ , (26)

minimizes kA� L⌦RkF , where Ast is the s, t-th Nx ⇥Nx block of A. Similarly, if L 2 RN⇠⇥N⇠ is fixed, then the matrix R 2 RNx⇥Nx

defined by

Rij =
tr(Ā|

ijL)
tr(L|L)

, i, j = 1, 2, . . . ,Nx, (27)

minimizes kA � L ⌦ RkF , where Āij is the i, j-th N⇠ ⇥ N⇠ block of A.

In the stochastic Galerkin system, if L = I is fixed, R is simply equal to K0 according to (27), which results in the
mean-based preconditioner BD = I ⌦ K0. If R = K0 is fixed, then based on (26),

Lst =
tr(A|

stK0)
tr(K |

0K0)
,

=
1

tr(K |
0K0)

"
tr(K |

0K0)�st �

mX

k=1

(Gk)st tr(K |
k K0)

# (28)

which implies that

L = I �

mX

k=1

tr(K |
k K0)

tr(K |
0K0)

Gk. (29)

The corresponding preconditioner is the Kronecker product preconditioner

BK = L ⌦ K0 (30)

presented in [20]. Instead of using only the mean information for the mean-based preconditioner, the Kronecker product
preconditioner utilizes all the information in the stochastic Galerkin matrices.

5. Spectral analysis

We give spectral bounds for the matrix preconditioned by the block triangular preconditioner (24). For saddle point
problems, the spectral properties of block triangular preconditioner have been studied in [39–41].

10
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According to whether the total degree on the simplex points is odd or even, we can reorder the matrix A and BT as
the following:

A =


D1 W |

W D2

�
, BT =


D1 0
W D2

�
,

where recall that

D1 = I1 ⌦ K0, D2 = I2 ⌦ K0,

W =

 
mX

k=1

Gk ⌦ Kk

!
(I2, I1) =

mX

k=1

Gk(I2, I1) ⌦ Kk,

and I1 is the one in {Iodd, Ieven} with larger cardinality, I2 is the one with smaller cardinality. By direct computation,

B�1
T =


D�1
1 0

�D�1
2 WD�1

1 D�1
2

�
.

The following lemmas are useful. Here � (A) = {� | det(A � �I) = 0} is the spectrum of A and ⇢(A) = max�2� (A) |�| is
the spectral radius.

Lemma 4 ([40]). The eigenvalues of AB�1
T are positive numbers, and the spectrum satisfies

� (AB�1
T ) ⇢ {1} [ � (S,D1)

where S = D1 � W |D�1
2 W is the Schur complement of D2 in A, and � (S,D1) contains the eigenvalues µ corresponding to the

generalized eigenvalue problem

Sz = µD1z. (31)

Proof. Let µ 2 � (AB�1
T ) and (v1, v2)| is the corresponding eigenvector. Then we have

AB�1
T


v1
v2

�
=


I � W |D�1

2 WD�1
1 W |D�1

2
0 I

�
v1
v2

�
= µ


v1
v2

�

It can be written as
⇢
(I � W |D�1

2 WD�1
1 )v1 + (W |D�1

2 )v2 = µv1

0 = (1 � µ)v2

If µ = 1, then (v1, v2)| satisfiesW |D�1
2 v2 = W |D�1

2 WD�1
1 v1. If µ 6= 1, from the first equation we get (I�W |D�1

2 WD�1
1 )v1 =

µv1 which implies that µ 2 � (S,D1). ⇤

Remark 3. The eigenvalue 1 has multiplicity Nx · (|I1| � |I2|). Having eigenvalue 1 with multiplicity Nx · (|I1| � |I2|) is
advantageous when applying the Krylov subspace iterative methods as one iteration is enough to take care of these well
centered eigenvalues.

Lemma 5 ([42]). For a rectangular matrix B,

⇢(B|B) =

����


0 B|

B 0

�����
2

.

Next, we give the main result of this section.

Theorem 3. The spectrum of the preconditioned Galerkin matrix AB�1
T satisfies

� (AB�1
T ) ⇢ (1 � ⌧̂ 2, 1],

where ⌧̂ is defined in (19).

Proof. By Theorem 1 , it suffices to show that � (S,D1) ⇢ (1 � ⌧̂ 2, 1]. For the upper bound, let µ be an eigenvalue of the
generalized eigenvalue problem (31), and z be the corresponding eigenvector,

(D1 � W |D�1
2 W )z = µD1z

) (1 � µ)D1z = W |D�1
2 Wz

11
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) (1 � µ)z|D1z = (Wz)|D�1
2 (Wz)

) 1 � µ =
(Wz)|D�1

2 (Wz)
z|D1z

, (32)

by the symmetric positive definiteness of D1 and D�1
2 , we conclude that

1 � µ � 0 ) µ  1.

For the lower bound, we introduce the change of variables z̃ := D1/2
1 z in the Rayleigh quotient (32) and arrive at

µ = 1 �
z̃|B|Bz̃
z̃|z̃

� 1 � ⇢(B|B)

= 1 �

����


0 B|

B 0

�����
2

= 1 � ⌧̂ 2,

where B =
Pm

k=1 Gk(I2, I1) ⌦ (K
�

1
2

0 KkK
�

1
2

0 ) = D�1/2
2 WD�1/2

1 introduced in Section 4.1 is the off-diagonal of the

preconditioned system B
�

1
2

D AB
�

1
2

D . The third equation holds by Lemma 5 and the last equation holds by (23).
Therefore, we conclude that µ 2 (1 � ⌧̂ 2, 1]. ⇤

We emphasize the bound for the triangular block preconditioner is better than the one for the block diagonal
preconditioner since ⌧̂ is always between 0 and 1 and thus 0 < 1 � ⌧̂ < 1 � ⌧̂ 2 < 1.

6. Numerical results

In this section, we evaluate the performance of the block triangular preconditioner BT and compare with the block
diagonal preconditioner BD and Kronecker product preconditioner BK . We use linear or quadratic finite element space as
Xh and assemble the stiffness matrices Kk, k = 0, 1, 2, . . . ,m using the software package iFEM [43]. We apply the MINRES
method with tolerance = 10�8 for BD and apply GMRES method with same tolerance and restart = 20 for BT and BK .
Diagonal matrices are inverted by the geometric multigrid method with one V-cycle V (2, 2), i.e., two pre-smoothing and
two post-smoothing steps in each V-cycle. For the Kronecker product preconditioner BK = L⌦K0, the matrix L is inverted
by MATLAB’s backslash operator. All the time costs (in seconds) are for solver time only, set up time not included. All
computations are performed using MATLAB 2017b on a Lenove-Y40 with Intel Core i7-4510U CPU and 8 GB of RAM.

For each example, we present extremal eigenvalues for the un-preconditioned system A as well as the preconditioned
system P�1A with various preconditioners; see Tables 1, 4, 8, 11, and 15. The extremal eigenvalues for B�1

T A lie closer
around one compared to the other two preconditioned systems B�1

D A and B�1
K A. We also present iteration steps and time

cost with various h, p, and m. All preconditioners are robust to h and iteration steps are positively correlated to p and m.
Under the same h, p, m values, the block triangular preconditioner BT outperforms the block diagonal preconditionerBD
and BK with CPU time ratio 0.5 and 0.65, respectively.

6.1. A 2-D homogeneous boundary problem

First, we look at a 2-D benchmark problem taken from [19,44]. Let D = (�0.5, 0.5) ⇥ (�0.5, 0.5). The 2-D covariance
function is given by (5) with L = 1. Let ā(x) = 1, and f (x1, x2) = 2(0.5 � x21 � x22).

6.1.1. Gaussian Random variables with Hermite polynomials (P1-element)
Table 1 is the extremal eigenvalues for the un-preconditioned system A as well as the preconditioned systems. Tables 2

and 3 show the results of iteration steps and time cost with various h, p, and m under Hermite polynomials and piecewise
linear (P1) finite element space as Xh. All preconditioners are robust to h and iteration steps are positively correlated to
p and m. Under the same h, p, m values, the triangular preconditioner BT performs better than the Kronecker product
BK and the mean-based preconditioner BD. When p, m are large, GMRES with preconditioner BT converges almost twice
faster than MINRES with preconditioner BD.

6.1.2. Uniform random variables with Legendre polynomials (P1-element)
The extremal eigenvalues for the un-preconditioned and preconditioned systems are summarized in Table 4. Tables 5

and 6 show the results of iteration steps and time cost with various h, p, andm under Legendre polynomials and piecewise
linear (P1) finite element space as Xh. All preconditioners are robust to h and iteration steps are positively correlated to p
and m. Under the same h, p, m values, the triangular preconditioner BT performs better than the Kronecker product BK
and the mean-based preconditioner BD. When p, m are large, the computational cost of GMRES with preconditioner BT
is around 0.65 of that of MINRES using BK and 0.5 of that with preconditioner BD.
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Table 1
Extremal Eigenvalues of A and P�1A with Different Preconditioners P (µ = 1, � = 0.3, h = 1/8, Gaussian Random Variables
with Hermite Polynomials, P1-element).
m p A B�1

D A B�1
K A B�1

T A
�min �max �min �max �min �max �min �max

4
2 0.1847 11.1479 0.5294 1.4706 0.6944 1.3593 0.7785 1.2215
3 0.1424 12.3212 0.3658 1.6342 0.5669 1.5461 0.5978 1.4022
4 0.1047 13.3309 0.2239 1.7761 0.4256 1.7797 0.3976 1.6024

6
2 0.1841 11.2045 0.5235 1.4765 0.6561 1.4019 0.7730 1.2270
3 0.1416 12.3930 0.3579 1.6421 0.5144 1.6097 0.5877 1.4123
4 0.1036 13.4153 0.2143 1.7857 0.3629 1.8687 0.3826 1.6174

Table 2
Iteration Steps with Different Preconditioners (µ = 1, � = 0.3, Gaussian Random Variables with Hermite Polynomials,
P1-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/16 13 17 24 10 12 15 6 8 11
1/32 13 18 25 10 12 15 6 8 11
1/64 13 18 25 10 12 15 6 8 11
1/128 13 18 25 10 12 15 6 8 11

6

1/16 11 17 23 10 13 17 6 8 10
1/32 12 18 24 10 13 17 6 8 10
1/64 13 18 25 10 13 17 6 8 10
1/128 13 18 26 10 13 17 6 8 10

Table 3
Time Costs with Different Preconditioners (µ = 1, � = 0.3, Gaussian Random Variables with Hermite Polynomials, P1-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/16 0.1 0.2 1.2 0.2 0.2 0.8 0.1 0.1 0.4
1/32 0.4 1.1 4.4 0.3 0.8 2.8 0.3 0.7 1.5
1/64 1.3 6.3 19.3 1.2 4.7 13.5 0.9 2.2 7.9
1/128 8.8 29.4 80.4 7.9 23.5 57.5 4.8 14.5 43.1

6

1/16 0.1 1.0 2.8 0.2 0.8 2.6 0.1 0.5 1.7
1/32 0.7 3.8 16.6 0.5 3.1 10.6 0.4 1.9 6.8
1/64 2.6 16.6 59.5 2.3 14.7 48.3 1.4 7.8 28.7
1/128 16.7 69.8 248.4 15.9 63.6 195.6 9.4 36.8 118.2

Table 4
Extremal Eigenvalues of A and P�1A with Different Preconditioners P (µ = 1, � = 0.7, h = 1/8, Uniform Random Variables
with Legendre Polynomials, P1-element).
m p A B�1

D A B�1
K A B�1

T A
�min �max �min �max �min �max �min �max

4
2 0.1744 11.6305 0.4301 1.5699 0.6022 1.4954 0.6752 1.3248
3 0.1559 12.3074 0.2931 1.7069 0.4543 1.6995 0.5003 1.4997
4 0.1436 12.7364 0.1986 1.8014 0.3285 1.8676 0.3577 1.6423

6
2 0.1730 11.7466 0.4026 1.5974 0.5418 1.5636 0.6431 1.3569
3 0.1535 12.4745 0.2440 1.7560 0.3626 1.8119 0.4285 1.5715
4 0.1392 12.9380 0.1273 1.8727 0.2016 2.0298 0.2384 1.7616

Table 7 shows the iteration steps and time costs for different preconditioners with various variances � . We can find that
the iteration steps increase as � increases for all preconditioners. Again the block triangular preconditioner BT outperforms
the block diagonal preconditionerBD and BK with CPU time ratio 0.5 and 0.65, respectively.

6.1.3. GaussIan random variables with Hermite polynomials (P2-element)
The extremal eigenvalues for the un-preconditioned and preconditioned systems are summarized in Table 8.
Tables 9 and 10 show the results of iteration steps and time cost with various h, p, and m under Hermite polynomials

and quadratic (P2) finite element space as Xh. All preconditioners are robust to h and iteration steps are positively
correlated to p andm. Under the same h, p, m values, the triangular preconditioner BT performs better than the Kronecker
product BK and the mean-based preconditioner BD. Again the block triangular preconditioner BT outperforms the block
diagonal preconditionerBD and BK with CPU time ratio 0.5 and 0.65, respectively.
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Table 5
Iteration Steps with Different Preconditioners (µ = 1, � = 0.7, Uniform Random Variables with Legendre Polynomials,
P1-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/16 16 22 29 12 15 19 7 10 12
1/32 16 22 30 12 15 19 7 10 12
1/64 16 23 30 12 15 19 7 10 12
1/128 16 23 30 12 15 18 7 10 12

6

1/16 17 25 37 13 17 26 8 11 16
1/32 17 25 39 13 17 26 8 11 16
1/64 17 25 40 13 17 26 8 11 16
1/128 17 26 40 13 17 26 8 11 16

Table 6
Time Costs with Different Preconditioners (µ = 1, � = 0.7, Uniform Random Variables with Legendre Polynomials, P1-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/16 0.3 0.8 1.4 0.3 0.5 1.0 0.3 0.2 0.5
1/32 0.5 1.4 5.5 0.5 1.0 3.6 0.4 0.7 1.6
1/64 1.8 7.8 23.4 1.4 5.7 17.1 0.9 2.7 8.9
1/128 10.8 37.4 98.0 9.5 29.5 68.7 5.5 18.1 46.1

6

1/16 0.2 1.5 4.7 0.2 1.2 3.8 0.1 0.7 2.5
1/32 0.8 5.1 26.3 0.7 4.0 19.2 0.5 2.6 12.4
1/64 4.2 29.0 112.0 3.5 22.6 87.2 2.4 13.1 54.6
1/128 28.5 126.2 480.7 24.5 98.5 351.2 15.0 66.2 191.9

Table 7
Iteration Steps and Time Costs with Different Preconditioners and various � (µ = 1, p =

4, m = 6, h = 1/64, Uniform Random Variables with Legendre Polynomials, P1-element).
� BD BK BT

Iter Time Iter Time Iter Time
0.1 7 21.0 6 20.6 4 14.0
0.3 12 35.1 9 31.4 6 21.2
0.5 19 48.3 13 38.5 8 25.1
0.7 40 95.5 26 74.1 16 47.2

Table 8
Extremal Eigenvalues of A and P�1A with Different Preconditioners P (µ = 1, � = 0.3, h = 1/8, Gaussian Random Variables
with Hermite Polynomials, P2-element).
m p A B�1

D A B�1
K A B�1

T A
�min �max �min �max �min �max �min �max

4
2 0.0465 15.3835 0.5240 1.4760 0.6843 1.3747 0.7734 1.2266
3 0.0358 17.0475 0.3584 1.6416 0.5506 1.5740 0.5884 1.4116
4 0.0263 18.4825 0.2148 1.7852 0.4036 1.8249 0.3834 1.6166

6
2 0.0464 15.4837 0.5159 1.4841 0.6463 1.4211 0.7657 1.2343
3 0.0356 17.1762 0.3476 1.6524 0.4990 1.6415 0.5744 1.4256
4 0.0260 18.6336 0.2016 1.7984 0.3397 1.9161 0.3625 1.6375

6.1.4. Uniform random variables with Legendre polynomials (P2-element)
Table 11 provides the extremal eigenvalues for the un-preconditioned and preconditioned systems with different

preconditioners.
Tables 12 and 13 show the results of iteration steps and time cost with various h, p, and m under Legendre polynomials

and quadratic (P2) finite element space as Xh. All preconditioners are robust to h and iteration steps are positively
correlated to p andm. Under the same h, p, m values, the triangular preconditioner BT performs better than the Kronecker
product BK and the mean-based preconditioner BD. Again the block triangular preconditioner BT outperforms the block
diagonal preconditionerBD and BK with CPU time ratio 0.5 and 0.65, respectively.

Table 14 shows the iteration steps and time costs for different preconditioners with various variances � . We can find
that the iteration steps increase as � increases for all preconditioners. The conclusion is still true: the block triangular
preconditioner BT outperforms the block diagonal preconditionerBD and BK with CPU time ratio 0.5 and 0.65, respectively.
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Table 9
Iteration Steps with Different Preconditioners (µ = 1, � = 0.3, Gaussian Random Variables with Hermite Polynomials,
P2-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/8 13 17 24 10 12 15 6 8 11
1/16 13 18 25 10 12 15 6 8 11
1/32 13 18 25 10 12 15 6 8 11
1/64 13 18 25 10 12 15 6 8 11

6

1/8 11 17 23 10 13 17 6 8 10
1/16 12 18 25 10 13 17 6 8 10
1/32 13 18 25 10 13 17 6 8 10
1/64 13 18 26 10 13 17 6 8 10

Table 10
Time Costs with Different Preconditioners (µ = 1, � = 0.3, Gaussian Random Variables with Hermite Polynomials, P2-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/8 0.2 0.3 2.0 0.1 0.3 1.3 0.0 0.1 0.7
1/16 0.5 1.2 5.8 0.4 1.1 3.9 0.4 0.8 2.8
1/32 2.6 9.6 28.0 2.0 6.4 22.4 1.3 3.3 13.7
1/64 13.4 42.7 118.0 11.8 33.2 83.8 7.1 21.2 61.4

6

1/8 0.2 1.5 4.0 0.2 1.2 3.5 0.1 0.8 2.5
1/16 0.8 5.1 44.0 0.8 4.4 29.4 0.6 2.8 22.4
1/32 5.1 20.7 72.8 3.8 17.2 58.8 2.8 10.0 35.5
1/64 21.1 88.7 310.5 19.2 75.8 238.5 11.9 46.8 149.2

Table 11
Extremal Eigenvalues of A and P�1A with Different Preconditioners P (µ = 1, � = 0.7, h = 1/8, Uniform Random Variables
with Legendre Polynomials, P2-element).
m p A B�1

D A B�1
K A B�1

T A
�min �max �min �max �min �max �min �max

4
2 0.0439 16.1900 0.4209 1.5791 0.5866 1.5166 0.6646 1.3354
3 0.0393 17.3396 0.2798 1.7202 0.4319 1.7259 0.4813 1.5187
4 0.0361 18.0996 0.1818 1.8182 0.3004 1.8955 0.3306 1.6694

6
2 0.0436 16.3732 0.3903 1.6097 0.5273 1.5892 0.6283 1.3717
3 0.0386 17.6129 0.2268 1.7732 0.3393 1.8424 0.4022 1.5978
4 0.0350 18.4923 0.1061 1.8939 0.1697 2.0597 0.2009 1.7991

Table 12
Iteration Steps with Different Preconditioners (µ = 1, � = 0.7, Uniform Random Variables with Legendre Polynomials,
P2-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/8 16 22 29 12 15 19 7 10 12
1/16 16 22 30 12 15 19 7 10 12
1/32 16 23 30 12 15 19 7 10 12
1/64 16 23 30 12 15 18 7 10 12

6

1/8 17 25 37 13 17 26 8 12 16
1/16 17 25 39 13 17 26 8 11 16
1/32 17 25 40 13 17 26 8 11 16
1/64 17 25 40 13 17 26 8 11 16

6.2. A 3-D homogeneous boundary problem

Now we look at a 3-D homogeneous boundary problem. Let D = (�0.5, 0.5)3. The 3-D covariance function is given
by (5) with L = 1. The mean value of the random coefficient ā(x) = 1, and the right hand side f (x1, x2, x3) =

2(0.5 � x21 � x22 � x23).
We use a uniform random variable in the truncated Karhunen–Loève expansion and corresponding Legendre poly-

nomials as the gPC basis. Now we compare the performance of the mean-based block preconditioner BD, the Kronecker
product preconditioner BK and the block triangular preconditioner BT . Table 15 provides the extremal eigenvalues for the
un-preconditioned and preconditioned systems with these preconditioners.
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Table 13
Time Costs with Different Preconditioners (µ = 1, � = 0.7, Uniform Random Variables with Legendre Polynomials, P2-element).
m h BD BK BT

p = 2 p = 3 p = 4 p = 2 p = 3 p = 4 p = 2 p = 3 p = 4

4

1/8 0.3 0.4 2.9 0.2 0.4 1.5 0.1 0.3 0.7
1/16 0.9 2.4 6.6 0.6 1.3 5.9 0.5 1.1 2.2
1/32 2.6 10.4 29.7 2.0 7.9 21.4 1.5 3.6 11.7
1/64 13.4 53.9 133.8 11.9 43.4 87.1 7.0 25.3 59.4

6

1/8 0.3 2.2 6.2 0.2 1.5 4.6 0.3 1.0 3.2
1/16 1.1 6.3 28.2 1.0 5.0 21.3 0.7 3.1 12.9
1/32 4.9 36.9 145.3 4.8 25.9 106.7 3.4 18.4 71.1
1/64 39.1 163.5 648.7 32.3 125.6 480.8 20.0 83.0 301.9

Table 14
Iteration Steps and Time Costs with Different Preconditioners and various � (µ = 1, p =

4, m = 6, h = 1/32, Uniform Random Variables with Legendre Polynomials, P2-element).
� BD BK BT

Iter Time Iter Time Iter Time
0.1 7 24.7 6 24.1 4 15.4
0.3 12 55.1 9 39.2 6 31.7
0.5 19 59.7 13 45.8 8 34.5
0.7 40 120.9 26 90.8 16 58.6

Table 15
Extremal Eigenvalues of A and P�1A with Different Preconditioners P (Legendre polynomials with h = 1/8, µ = 1, m =

10, three dimensional P1-element).
p A B�1

D A B�1
K A B�1

T A
�min �max �min �max �min �max �min �max

2 0.0352 2.1185 0.4378 1.5622 0.5105 1.7807 0.6840 1.3160
3 0.0219 2.2674 0.2696 1.7304 0.3398 2.1698 0.4666 1.5334
4 0.0114 2.3699 0.1374 1.8626 0.1825 2.5423 0.2558 1.7442

Table 16
Iteration steps and time costs with different m and p for both preconditioners (Legendre
polynomials with h = 1/16, µ = 1, � = 0.7, three dimensional P1-element).
p BD BK BT

Iter Time Iter Time Iter Time
2 17 28.6 12 22.0 7 14.1
3 25 181.1 16 128.3 10 80.6
4 39 980.5 24 712.9 14 452.2

From Table 16 we can see that similar to the 2-D example, the block triangular preconditioner BT outperforms the
Kronecker product preconditioner BK and the mean-based preconditioner BD. Our conclusion on the comparison of
preconditioners: the block triangular preconditioner BT outperforms the block diagonal preconditionerBD and BK with
CPU time ratio 0.5 and 0.65, respectively, is further confirmed by the 3-D example.

7. Conclusions

In this paper, we study block preconditioners for the coupled linear systems resulting from the stochastic Galerkin
discretizations of elliptic equations with random coefficients. The proposed block triangular preconditioner utilizes the
block sparsity and hierarchical structure of the stochastic Galerkin matrix. The preconditioner is solved inexactly by
geometric multigrid V-cycle and applied to Krylov subspace methods such as GMRES. Numerical results demonstrate that
the block triangular preconditioner is computationally more efficient than the block diagonal preconditioner, especially
when the random coefficient has large variance. We also give theoretical bounds for the spectrum of the preconditioned
system.
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