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Transient Stability and Active Protection of Power
Systems with Grid-Forming PV Power Plants
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Abstract—Photovoltaic (PV) power plants with grid-forming
technology must withstand severe disturbances and remain op-
erational. To address this challenge, this paper sets-forth a grid-
forming strategy for PV solar power plants so that they can ride
through power system faults. This capability is accomplished by
leveraging two-axis proportional-integral regulators with anti-
windup functionality. This paper also demonstrates that fluctu-
ations of solar irradiance can cause significant dc-link voltage
variations and loss of synchronism of grid-forming PV plants.
Hence, we develop an active dc-link protection method which
depends on estimation of solar irradiance. The contributions of
this paper are demonstrated via positive-sequence simulations of
modified versions of the WSCC 9- and IEEE 39-bus grids.

Index Terms—Photovoltaic systems, power system protection.

I. INTRODUCTION

THE transient stability of power systems with massive
penetration of grid-forming power converters is challeng-

ing to ascertain. In particular, this task is difficult to address
because grid-forming strategies that are reliable to faults are
still under research [1]–[3]. Studying the dynamic performance
of converter-based assets with grid-forming technology during
large disturbances is timely to identify problems and engineer
solutions. Notably, the advancement of grid-forming technol-
ogy is of national interest in the United States of America [4].

Grid-forming controls are attractive because converters pow-
ered by non-conventional energy resources, e.g., wind and
solar, could autonomously self-energize or black start [5].
Hence, power grids with ultra-high penetrations of converter-
based generation can be possible. This contrasts present con-
trol technology for power converters that resort to phase-
locked loops which depend on externally generated voltages,
e.g, by synchronous machines [6], [7]. Proposed grid-forming
techniques use speed-droop, virtual synchronous machine, and
virtual oscillator algorithms [7]–[19], to name a few.

In recent years, photovoltaic (PV) power plants in the U.S.
have faced several transient events. For instance: (i) The 2021
Odessa disturbance, by a fault in a transformer, caused the
disconnection of 1,112 MW of PV power [20]. (ii) The 2020
San Fernando disturbance led to the reduction of more than
1,000 MW of PV production [21]. (iii) The 2018 Palmdale
Roost and Angeles Forest event caused the reduction of more
than 1,000 MW of PV power [22]. (iv) The 2017 Canyon
2 Fire disturbance caused the disconnection of 900 MW of
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PV power [23]. (v) The 2016 Blue Cut Fire event caused
the disconnection of 1,200 MW of PV power [24]. In the
future, similar events might repeat and challenge emerging
grid-forming technologies. Further, these issues might also ex-
trapolate worldwide because PV capacity is reaching Terawatt
levels [25]. To the Authors’ knowledge, there are no utility-
scale grid-forming PV power plants deployed in the U.S.;
nonetheless, they are likely to be ubiquitous in the future [4].

A widely adopted assumption in the design and testing
phases of grid-forming technology is that the dc-link voltage
of power converters does not vary in time [7]–[19]. However,
PV power might suddenly drop if solar irradiance reduces
which can lead to dc-link voltage regulation problems. Even
if converters are powered by both PV arrays and batteries,
there could be instances when batteries fully discharge during
sunlight times. If there is no sunlight and batteries are dis-
charged, power operators must resort to wind turbines, for ex-
ample, for energy adequacy [26]. Another problem pertains to
incorporating the models of grid-forming assets into positive-
sequence simulations. Typically, a center of inertia is defined
to model relative rotor angles of synchronous machinery [27]–
[29]. However, this definition does not apply to power systems
with speed-droop grid-forming converters.

To address the aforementioned problems, this paper reports
the following advances: (i) A positive-sequence model of a
grid-forming PV-solar power plant that is capable of riding
through faults. In particular, we innovate the voltage control
strategy for current-regulated PWM converters in [30] by in-
corporating two-axis anti-windup PI regulators. The novelty is
that we extend the one-axis anti-windup series implementation
of [31, p. 91] to two-axis systems which control inputs are
bounded by a circle. (ii)A definition of a hypothetical center
of inertia to model in the positive-sequence domain grids
with a mix of machines and converters as well as power
converters only. In particular, the proposed definition enables
the possibility of simulating power systems with power con-
verters steered only by droop controls in a positive-sequence
domain. (iii) A condition in which PV power plants can lose
synchronism. We showcase that grid-forming PV power plants
can lose synchronism during variations of solar irradiance as
impacting dc-link voltage. (iv) An active protection strategy
to prevent dc-link voltage fluctuations during solar irradiation
disturbances. To that end, we engineer a method to estimate
solar irradiance using: an abstract PV array model, PV current,
and dc-link voltage. The protection interfaces with the classical
droop-control law [8]. This paper is significant for the reliable
integration of grid-forming PV power plants into power grids
and to ascertain compliance with grid codes [32], [33].
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The rest of the paper is organized as follows. Section II
frames a general model of a power system with conventional
and grid-forming PV power plants. Section III establishes a
model of PV plants with fault ride-though capability and
theory for stable grid-forming operation. Section IV engineers
an active dc-link protection against solar irradiance variations.
Section V consolidates a multi-machine multi-converter power
system in the positive-sequence domain. In Section VI, we
leverage illustrative case studies to highlight the contributions
of this paper. Section VII concludes our exposition.

II. PRELIMINARIES

A power system with conventional and PV solar power
plants is modeled with a set of differential-algebraic equations:

d

dt
x = F (x,y,u,w) (1)

0 = Gγ(x,y,u,w) (2)
Ψ = H (x,y,u,w) (3)

for t ∈ [0, T ], γ ∈ {1, 2, 3}, and x(0) = x0. Here, F : Rnx×
Rny×Rnu×Rnw 7→ Rnx , Gγ : Rnx×Rny×Rnu×Rnw 7→ Rny
and H : Rnx × Rny × Rnu × Rnw 7→ RnΨ . The parameter
T is the simulation time. The vector x ∈ Rnx encapsulates
state information of I synchronous machines, J PV plants,
and K motor loads. The vector y ∈ Rny models algebraic
variables that arise in the the transmission system. The vector
u ∈ Rnu models a set of commands that are used to drive
the grid to a desirable state. The vector w ∈ Rnw models
exogenous disturbances to the system, e.g., variability of solar
irradiation. The vector Ψ ∈ RnΨ models observations, such as
voltage and current magnitudes, at particular points in the grid.
The parameter γ indexes the transmission system topologies
before γ = 1, during γ = 2, and after a fault γ = 3. All
variables and parameters are per-unit quantities with respect
to a common volt-ampere base Sb and a speed base ωb.

A. Transformation of Variables

We consider positive-sequence abc waveforms of the form:

fabc = F

[
cos(θf ), cos(θf −

2π

3
), cos(θf +

2π

3
)

]>
(4)

where f represents either voltages or currents. Note here F
models per-unit rms magnitude. The angle θf cycles at a
synchronous speed. As commonly done in positive-sequence
analysis, abc waveforms observed at a various points of a
power grid are abstracted into dq-axis variables via [34]:

[fνd , f
ν
q ]> =

2

3
T (θν)[fa, fb, fc]

> (5)

T (θν) =

[
cos(θν) cos(θν − 2π/3) cos(θν + 2π/3)
− sin(θν) − sin(θν − 2π/3) − sin(θν + 2π/3)

]

(6)

Here, θν models the angle of a ν reference frame satisfying:

d

dt
θν = ωbων (7)

with ων per-unit angular speed in the ωb base.

f∗
dq,2

f⋆dq,2

f⋆dq,1 = f∗
dq,1

C Fmx

fd

fq

Fig. 1. Representation of a dq saturation function S . A full circle is not
shown to economize space.

B. Notation and Nomenclature

To abbreviate notation throughout the paper, we define:

fνdq , [fνd , f
ν
q ]> and fνqd , [fνq ,−fνd ]> . (8)

The superscript ν ∈ {e, r1, . . . , ri, . . . , rI , c1, . . . , cj , . . . , cJ}
serves to the indicate either the synchronous e, i-th rotor ri,
and j-th converter cj reference frames that are used in (5). We
use J + I + 1 reference frames in this paper. The speeds of
the reference frames are in (14), (34), and (37).

The naming convention of variables and parameters is
introduced here by example. In the j-th PV power plant
of Fig. 2 in Section III, icjdq,f = [i

cj
d,f , i

cj
q,f ]> [which arise

from (5)] are used to denote dq filter currents in the cj
reference frame. The parameters Xf,j and rf,j of Fig. 2 denote
filter reactance and filter resistance of the j-th PV plant.
Please, note here that superscripts identify reference frames
and subscripts differentiate parameters. This convention also
applies to synchronous machines in Section II-D.

C. Special Transformations and Functions

In this paper, variables in the ‘ri’ or ‘cj’ frames are actively
mapped into the ‘e’ one and vice-versa with [34]:

F̃ = f ed + jf eq = (fµd + jfµq )ejδµ . (9)

where δµ = θµ − θe, µ ∈ {ri , cj} for any i and j. F̃ is a
phasor form of F cos(θf ) in (4).

We employ M : R2 7→ R and S : R2×P 7→ R2 such that:

M (fνdq) =
√

(fνd )2 + (fνq )2 (10)

S (fνdq;Fmx) =

{
fνdq if F ≤ Fmx

fνdq
Fmx
F if F > Fmx

(11)

with F = M (fνdq) to simplify exposition. The function
S (·;Fmx) is critical to saturate current and voltage commands
during faults without impacting control directionality. The be-
havior of S in (11) is illustrated in Fig. 1. There, f?dq,1 = f∗dq,1
because f∗dq,1 belongs to the origin-centered circle C of radius
Fmx. On the other, hand f?dq,2 = S (f∗dq,2, Fmx) is at the
intersection of the boundary of C and the line joining the
center of C with f∗dq,2 because f∗dq,2 does not belong to C.
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D. Conventional Power Plants

The IEEE 1.1 model of an i-th (i = 1, . . . , I) synchronous
machine in the ‘ri’ reference frame is [29]:1

d

dt
erid = − 1

τdo,i

(
erid − (Xd,i −X ′d,i)iriq − efd,i

)
(12)

d

dt
eriq = − 1

τqo,i

(
eriq + (Xq,i −X ′q,i)irid

)
(13)

d

dt
ωri =

1

2Hri

(Tm,i − Te,i) with Te,i = erid i
ri
d + eriq i

ri
q (14)

d

dt
δri = ωb(ωri − ωe) . (15)

The variables erid , eriq model d- and q-axis voltages behind
a transient impedance rs + jX ′d,i whereas irid , iriq are currents
injected into a transmission network. The parameters τdo,i,
τqo,i, Xd,i, X ′d,i , Xq,i, X ′q,i, and Hri are explained in [29,
p. 32]. The form of relative rotor angle dynamics in (15) is
because rotor speed ωri and ωe are in per unit. The prime
mover torque is Tm,i and the exciter field voltage is efd,i.

The torque dynamics by an i-th prime mover is:

d

dt
Tm,i =

{
− 1
τch,i

(Tm,i − Pv,i) if thermal

− 2
τw,i

(Tm,i − Pv,i + τw,i
d
dtPv,i) if hydro .

(16)

Speed control is via a governor with speed droop Rd,i [29]:

d

dt
Pv,i = − 1

τv,i

(
Pv,i − P ?v,i + Pω,i

)
, Pω,i =

ωri − 1

Rd,i
.

(17)

The parameter τch,i is the steam chest time constant, τw,i is
the water time constant, and τv,i is the valve time constant.
The valve position command P ?v,i is from an operator. The
units of Tm,i and Pv,i in (16) are equal in per unit.

The i-th exciter, stabilizer and amplifier dynamics are [29]:

d

dt
efd,i = − 1

τe,i

(
(ke,i + Sie(efd,i))efd,i − va,i

)
(18)

Sie(efd,i) = Aie
Biefd,i (19)

d

dt
rf,i = − 1

τf,i

(
rf,i −

kf,i
τf,i

efd,i

)
(20)

d

dt
va,i = − 1

τa,i
(va,i − ka,ive,i) (21)

−va,mx,i ≤ va,i ≤ va,mx,i . (22)

For parameter explanation, please, refer to [29, p. 56-69].
The control error in (21) is:

ve,i = V ?i − Vi + rf,i −
kf,i
τf,i

efd,i . (23)

The terminal voltage of an i-th machine is:

Vi = M (vridq) with vridq = eridq − rs,iiridq +X ′d,ii
ri
qd . (24)

1The IEEE 1.1 model is considered here to simplify exposition on electric
machinery. The IEEE 2.2 representation can be readily used [29, p. 80]

III. GRID-FORMING PV POWER PLANT

We illustrate in Fig. 2 a j-th (j ∈ {1, . . . , J}) aggregated
representation of several utility-scale grid-forming PV power
inverters that constitute a PV power plant. The representation
is obtained by using the structure-preserving technique re-
ported in [6], [35]. It employs the fact that the current observed
at the terminals of the aggregated model must be equal to the
summation of the current output by individual inverters. It
also considers that the topology, controls, and set-points of all
PV inverters are identical which is a judicious assumption for
PV power plants. In Fig. 2, the grid-side converter (GSC) is
powered by a PV array and steered by a grid-forming regulator.
The PV power plant is interconnected to a bulk power system
via an ac inductive-capacitive-inductive (LCL) filter and a
step-up transformer which is not shown.

The inputs to the grid-forming regulator are: (i) ac voltage
magnitude V ?j and active power P ?e,j dispatch commands from
a grid operator, (ii) dq-axis GSC currents icjdq,f , (iii) dq-axis
grid-side currents icjdq,g , (iv) dq-axis voltages vcjdq,o at the ac
capacitor node, as well as (v) dc-link voltage vdc,j and PV-
array current ipv,j . The variables icjdq,f , icjdq,g , vcjdq,o arise by
mapping abc quantities into a cj reference frame, q.v. (5). The
signals vdc,j and ipv,j are used to estimate solar irradiance,
Ir,j , observed by the PV array. This serves also to protect
vdc,j from reaching low values during irradiance drops.

A. Ac- and Dc-Side Dynamics

We model the passive elements in Fig. 2. The dynamics of
a j-th LCL filter (j = 1, . . . , J) in the cj frame are [36]:

d

dt
i
cj
dq,f =

ωb
Xf,j

(−rf,jicjdq,f + ωcjXf,ji
cj
qd,f + v

cj
dq,f − v

cj
dq,o)

(25)
d

dt
v
cj
dq,c =

ωb
Bc,j

(ωcjBc,jv
cj
qd,c + i

cj
dq,f − i

cj
dq,g) (26)

v
cj
dq,o = v

cj
dq,c + rc,j(i

cj
dq,f − i

cj
dq,g) . (27)

The energy stored by the dc capacitor, Edc,j = v2dc,j , meets:

d

dt
Edc,j =

1

BC,j
(Ppv,j − Pcv,j) (28)

with Ppv,j and Pcv,j the power sourced and withdrawn by the
PV array and the GSC, respectively. The parameter BC,j is
the ratio between the capacitor energy at rated dc voltage and
a common MVA base Sb. In Fig. 2,

Pcv,j = v
cj
d,f i

cj
d,f + v

cj
q,f i

cj
q,f (29)

appears in the dc and ac sides of the GSC, considered lossless.
A low vdc,j event can occur if Ir,j drops because this can lead
to Ppv,j < Pcv,j which means that dEdc,j/dt < 0 in (28).

For control purposes, we consider P̃e,j and Q̃e,j [8]:

d

dt
P̃e,j =

1

τs,j
(−P̃e,j + Pe,j) (30)

d

dt
Q̃e,j =

1

τs,j
(−Q̃e,j +Qe,j) (31)
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I ,j
Tj

grid-
forming
controller

v
⋆⋆,cj
dq,f

i
cj
dq,f

v
cj
dq,o

i
cj
dq,g

vdc,j

ipv,j

V ⋆
j P ⋆

e,j

ipv,j icv,j

BC,j

+

−
vdc,j

Xf ,j , rf ,j

i
cj
dq,f

o

rc,j

Bc,j
+

−v
cj
dq,c

v
cj
dq,o

Xg,j , rg,j

i
cj
dq,g

v
cj
dq,f

v
cj
dq,gi

cj
dq,c

ṼR,j

Ppv,j Pcv,j Pcv,j

Pe,j , Qe,j

ĨR,j

GSCPV
array

LCL filter

Fig. 2. Aggregated representation of a PV power plant.

which are respectively filtered active and reactive power:

Pe,j = v
cj
d,gi

cj
d,g + vcjq,gi

cj
q,g , Qe,j = vcjq,gi

cj
d,g − v

cj
d,gi

cj
q,g (32)

and are illustrated in Fig. 2.
For control, we also define a filtered version of icjdq,g:

d̃i
cj
dq,g

dt
=

1

τg,j
(−ĩcjdq,g + i

cj
dq,g) (33)

which physically exists to filter grid transients.

B. Converter Reference Frame

The angular speed of the reference frame cj is [8]:2

ωcj = 1− kp,j(P̃e,j − P̃ ?e,j) . (34)

with P̃e,j from (30) and:

d

dt
P̃ ?e,j =

1

τω,j
(−P̃ ?e,j + P ?e,j −max{∆P ?e,j , 0}) (35)

for filtering P ?e,j − max{∆P ?e,j , 0}. The command ∆P ?e,j
innovates the classical droop control law of [8] to modulate
Pcv,j of (28). This to prevent dc-link voltage collapse as a
result of imbalances between Ppv,j and Pcv,j which will be
further explained in Section IV-B.

We note from (7) that ωcj yields θcj (ν = cj). The dynamics
of the relative angle of the j-th renewable power plant are:

d

dt
δcj = ωb(ωcj − ωe) (36)

because dδcj/dt = d(θcj − θe)/dt. Please, note the definition
of dθcj/dt appears in (7) when ν = cj , for example. Never-
theless, the model of (36) requires ωe which is not defined for
grids with machines and grid-forming converters with droop
controllers. In a machine-based grid, ωe is the speed of a
fictitious center of inertia [27]–[29].

2We note ωcj is computed within a controller, it is not speed of a rotor.

C. Speed of Synchronous Reference Frame

We define ωe for grids with a mix of machines and grid-
forming converters with speed-droop control laws [8].

Proposition 1: The angular speed for the e frame is:

ωe =

∑I
i=1 ωriHri +

∑J
j=1 ωcjHcj∑I

i=1Hri +
∑J
j=1Hcj

(37)

where Hri and ωri are in (14) as well as:

Hcj ,
τs,j

2kp,j
(38)

is a inertia constant of a j-th converter and ωcj in (34).
Proof: We leverage the exposition of [28, p. 79 ] and

[37]. From (30) and (34) by considering that P̃ ?e,j is constant:

d

dt
ωcj = −κp,j

d

dt
P̃e,j =

1

2

2κp,j
τs,j

(P̃e,j − Pe,j) . (39)

Defining Hcj = τs,j/(2κp,j) and applying addition of (39) ∀j:

d

dt

j=J∑

j=1

2Hcjωcj =

j=J∑

j=1

(P̃e,j − Pe,j) . (40)

The same approach is applied to (14) ∀i by considering that
Pm,i ≈ Tm,i and Pe,i ≈ Te,i in per unit to obtain:

d

dt

i=I∑

i=1

2Hriωri =
i=I∑

i=1

(Pm,i − Pe,i) . (41)

Because the addition of the right hand sides of (40) and (41)
defines the mean acceleration or deceleration power of ωe:

2He
d

dt
ωe =

j=J∑

j=1

(P̃e,j − Pe,j) +

i=I∑

i=1

(Pm,i − Pe,i) . (42)

Here He ,
∑i=I
i=1Hri +

∑j=J
j=1 Hcj is the inertia of a fictitious

rotor spinning at ωe. Equation (37) arises by respectively
substituting the left-hand sides of (40) and (41) into the right-
hand sides of (42) and comparing terms.

Corollary 1: The angular speed of the e frame of a power
grid with only grid-forming power converters satisfies:

ωe =

∑J
j=1Hcjωcj∑J
j=1Hcj

. (43)

We briefly illustrate the magnitude of (38) for a 100-MVA
PV power plant. Typically, τs,j = 1/(2π · 30) s ≈ 0.005 s
and kp,j = 0.05 p.u. in the 100-MVA base [38], hence
Hcj ≈ 0.05 s from (38). This calculation shows that the
inertia constant of a PV plant with grid-forming controls is
not zero. We note here that it has been previously recognized
that droop-control has nearly no inertia [39], but it has not
been quantified. Here, the inertia value by droop control is
calculated with (38). If inverters with virtual synchronous
machine control are used [40], [41], their virtual inertia
constants can be treated in (37) as if they were from actual
synchronous machines [42]. Hence, definition (37) is valid
for power systems with synchronous machines as well as for
inverters steered by virtual synchronous machine and droop
controls. We emphasize that (43) can be applied to grids
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κj
p,v S (·; Imx,j)

S (·; Imx,j)
1

τj
i,v

∫

i
⋆,cj
dq,f i

⋆⋆,cj
dq,f

z⋆,jdq,fzjdq,o

v
⋆,cj
dq,o

v
cj
dq,o ĩ

cj
dq,c + ĩ

cj
dq,g

ĩ
cj
dq,c + ĩ

cj
dq,g

+
−

+
+

+

−

+
+

−

(a) voltage regulator

κj
p,c S (·; vdc,j)

1

τj
i,c

∫

i
⋆⋆,cj
dq,f v

⋆,cj
dq,f v

⋆⋆,cj
dq,f

zjdq,f
i
cj
dq,f

vdc,j

+
−

+
+

−
+

(b) current regulator

Fig. 3. Diagrams of voltage and current regulators for a PV power plant.

powered only by inverters with droop controls because Hcj

of (38) is not zero. However, if it is arbitrarily assumed that
Hcj = 0, that creates a conundrum in the calculation.

D. Grid-Forming Strategy

We leverage the voltage control strategy for current-
regulated PWM converters in [30]. We incorporate to this
controller two-axis anti-windup proportional-integral (PI) reg-
ulators. Anti-windup technology [31, p. 91] is instrumental
here to bound control commands and the flow of the integrator
states in PI regulators, e.g., to ride through faults. The heart of
the implemented grid-forming strategy for Fig. 2 is illustrated
in Fig. 3. They are extensions from the one-axis (or one-
variable) anti-windup series implementation in [31, p. 91] to
two-axis systems. In particular, note in Fig. 3 that the control
outputs of the two-axis PI regulators are bounded by a circle
via S of (11) as explained in Section II-C using Fig. 1.

The voltage controller drives v
cj
dq,o → v

?,cj
dq,o, q.v. (27),

where:

v
?,cj
d,o = V ?j + kq,j ĩ

cj
q,g, and v?,cjq,o = 0 (44)

are dq-axis voltage set points. Here, V ?j and kq,j are voltage
magnitude command and voltage droop constant, respectively.
Voltage control in Fig. 3a is achieved via the following dq PI
regulator with two-axis anti-windup capability:

i
?,cj
dq,f = κjp,v(v

?,cj
dq,o − v

cj
dq,o) + zjdq,o + ĩ

cj
dq,g + ĩ

cj
dq,c (45)

i
??,cj
dq,f = S (i

?,cj
dq,f , Imx,j) (46)

z?,jdq,f = S (i
??,cj
dq,f − ĩ

cj
dq,c − ĩ

cj
dq,g, Imx,j) (47)

dzjdq,o
dt

=
1

τ ji,v
(−zcjdq,o + z?,jdq,f ) (48)

ĩ
cj
dq,c = −ωcjBc,jv

cj
qd,c (49)

which is illustrated in Fig. 3a. The voltage v
cj
qd,c for (49)

is calculated using (27). The parameters κjp,v and τ ji,v are

respectively the proportional and integration-time constants.
The speed currents, ĩcjdq,c, in (49) for (45) mitigates the impact
of current circulation in the ac capacitors of the LCL filter
in Fig. 2; vcjdq,c is from (26). Similarly, the grid-currents, ĩcjdq,g
in (45) which are defined in (33) compensate for impacts from
the grid. We note that ĩcjdq,c and ĩ

cj
dq,g are respectively added

and subtracted in (45) and (47) to not impact the PI integrators
when saturation in (46) does not occur. The states of the PI
integrators in (48) do not windup because the command z?,jdq,f
is bounded in an origin-centered circle of radius Imx,j in (46),
q.v. Fig. 1. Hence, the anti-windup functionality in (46)–
(48) prevents overrated current commands during faults while
automatically stopping integration. Further, the anti-windup
functionality does not impact control directionality to not
challenge synchronism, q.v. Fig. 1. In (46), Imx,j = Sj/Sb
where Sj is the plant MVA rating.

The dq-axis current commands i??,cjdq,f in (46) are inputs to
the following two-axis anti-windup PI current regulator:3

v
?,cj
dq,f = κjp,c(i

??,cj
dq,f − i

cj
dq,f ) + zjdq,f (50)

v
??,cj
dq,f = S (v

?,cj
dq,f , vdc,j) (51)

dzjdq,f
dt

=
1

τ ji,c
(−zjdq,f + v

??,cj
dq,f ) (52)

which is depicted in Fig. 3b. The parameters κjp,c and τ ji,c are
respectively the proportional and integration-time constants.
The commands v??,cjdq,f of (51) are passed to the GSC of Fig. 2
to synthesize, e.g., via space-vector modulation [43, p. 485],
the following voltages:

v
cj
dq,f = v

??,cj
dq,f (53)

which are applied to (25). We note that v?,cjdq,f in (51) are
constrained within a circle of radius vdc,j =

√
Edc,j ; Edc,j is

in (28). This models modulation index limits that commonly
appear in space-vector modulation [43, p. 487].4

Significant saturation of v?,cjdq,f can occur in (51) when the
dc-link voltage vdc,j considerably drops. This can in turn cause
current controllability problems, q.v. (53). In particular, please
note in (28) that a persistent Ppv,j < Pcv,j can lead to a
deleterious drop in Edc,j . The latter could happen when solar
irradiance unexpectedly reduces during daylight operation. To
describe these challenging conditions, we model the PV array
in Subsection III-E. We also design a dc-link protection strat-
egy in Section IV to prevent GSC controllability problems,
which is also a novelty in this paper.

E. Photovoltaic Array

We provide brief details of the PV array model in Fig. 4
which is adapted from [44, Fig. 4]. In Fig. 4: (i) Rs,j > 0
and Rsh,j > 0 are series and shunt resistances; (ii) vd,j , id,j ,
and ig,j are per-unit diode voltage, diode current, and light

3We do not use feed-forward voltages in the current controller to not cancel
out the impact of Xf,j in Fig. 2 as to mimic the reactances of synchronous
machines, e.g., see (Xd,i −X′d,i) in (12) and (Xq,i −X′q,i) in (13).

4The
√
3 from [43, p. 487] does not appear in (51) because voltage

quantities are in per unit. Hence, the GSC modulates via (53) only voltages
that satisfy M (v

??,cj
dq,f ) < vdc,j [43, p. 487]; M is in (10).
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generated current, respectively. This model considers uniform
irradiance and temperature throughout several PV modules.

I ,j

ig,j +

−
vd,j

id,j

D

igd,j

Rsh,j

Rs,j

ipv,j +

−

vdc,j

Ppv,jTj

Fig. 4. Abstract model of j-th PV array.

The current ig,j is proportional to solar irradiance Ir,j :

ig,j = irated
g,j ×

Ir,j
Istd
r,j

> 0 (54)

where irated
g,j is rated light generated current during standard

solar irradiance Istd
r,j = 1000 W/m2. The per-unit current

through the module’s internal diode satisfies [44]:

id,j = i0,j

(
e
vd,j
vT,j − 1

)
(55)

vd,j =
Rsh,j

Rs,j +Rsh,j
(vdc,j +Rs,jig,j −Rs,jid,j) (56)

igd,j = ig,j − id,j and vdc,j ≥ 0 , id,j ≥ 0 . (57)

Here i0,j and vd,j are reverse saturation current and diode volt-
age, respectively. The voltage vT,j is temperature voltage [44].

The power at the terminals of the PV array in Fig. 4 is:

Ppv,j = vd,jigd,j −Rs,j
(
igd,j −

vd,j
Rsh,j

)2

−
v2d,j
Rsh,j

(58)

which is concave in vd,j for fixed ig,j .
Lemma 1: Ppv,j of (58) is concave in vd,j .

Proof: We demonstrate this by: (i) determining concavity
of each term of (58) and (ii) noting that sum of concave
functions is concave [45, p. 79]. From (55) and (57), the term:

vd,jigd,j = vd,j (ig,j + i0,j)− i0,jvd,je
vd,j
vT,j

is concave because vd,jevd,j/vT,j is convex. The term igd,j −
vd,j/Rsh,j is concave, hence −Rs,j (igd,j − vd,j/Rsh,j)2 is as
well. Finally, −v2d,j/Rsh,j is a parabola opening downwards.

To obtain Ppv,j in (58) for (28), it is necessary to calculate
an id,j and a vd,j that satisfies (55) and (56). The aforemen-
tioned implicit relationship has to be numerically solved. Thus,
we compute at each time-step of a simulation, id,j such that:

H(id,j , vdc,j , ig,j) = id,j − i0,j
(
e
vd,j
vT,j − 1

)
= 0 (59)

with vd,j of (56) using the following Newton-Rapson iterates:

id,j,`+1 = id,j,` −
H(id,j,`, vdc,j,`, ig,j,`)

H ′(id,j,`, vdc,j,`, ig,j,`)
(60)

for ` = 0, 1, 2, . . . where H ′ is the derivative of H with respect
to id,j . These iterates always converge in a few steps to a
unique solution regardless of the initial guess id,j,0 [36], hence
it is a sound numerical implementation.

stableunstable

Pcv,j

P ∗pv,j

E∗dc,j

m⋄j

m⋄⋄j

E⋄dc,j E†dc,j

m†j

Ppv,j(Edc,j)

Edc,j

Ppv,j

Fig. 5. PV array power versus dc-link energy curve for proof of stability of
equilibrium points in Section III-F.

F. Analysis of Dc-link Stability

The maximum power a PV array can source, Ppv,j = P ∗pv,j ,
is unique because of the concavity of Ppv,j , q.v. Lemma 1.
Hence, we write P ∗pv,j = Ppv,j(E

∗
dc,j) because Ppv,j is also

concave in vdc,j and Edc,j = v2dc,j . Here, E∗dc,j is optimal
dc-link capacitor energy.

Lemma 2: Ppv,j of (58) is concave in vdc,j and Edc,j .
Proof: We write vdc,j = g(vd,j) with g from (55) and (56)

which is convex and strictly increasing on vd,j . Hence, vd,j =
g−1(vdc,j) is concave [46, p. 10]. Because Ppv,j(vd,j) is
concave, so is the function composition Ppv,j(g−1(vdc,j)) [45,
p. 85]. Ppv,j of (58) is concave in Edc,j because Edc,j = v2dc,j .

The concavity of Ppv,j in Edc,j , shown in Fig. 5, implies
the following possible equilibrium points for (28):

1) If Pcv,j < P ∗pv,j , ∃E†dc,j > E∗dc,j such that Pcv,j =

Ppv,j(E
†
dc,j).

2) If Pcv,j < P ∗pv,j , ∃E�dc,j < E∗dc,j such that Pcv,j =
Ppv,j(E

�
dc,j).

3) If Pcv,j > P ∗pv,j , @Edc,j such that Pcv,j = Ppv,j(Edc,j).
We note in Fig. 5 that the concavity of Ppv,j in Edc,j suggests
the following physical notions. Assume Ppv,j = Pcv,j in (28)
which occurs when Edc,j = E�dc,j and Edc,j = E†dc,j . The
increase of Pcv,j in (28) causes the decrease of Edc,j from
E†dc,j that signifies the increase of Ppv,j . This is a stable
behavior because Ppv,j increases to compensate the increase
of Pcv,j by the GSC in Fig. 2. On the other hand, the increase
of Pcv,j causes the decrease of Edc,j from E�dc,j that signifies
the decrease of Ppv,j . This is an unstable behavior because
Ppv,j decreases in lieu of increasing to compensate Pcv,j .

Theorem 1: Let E†dc,j > E∗dc,j and P ∗pv,j > Pcv,j . Also, let
E�dc,j < E∗dc,j and P ∗pv,j > Pcv,j . If Pcv,j = Ppv,j(E

†
dc,j) =

P †pv,j , then E†dc,j is an stable equilibrium of (28). If Pcv,j =
Ppv,j(E

�
dc,j), then E�dc,j is an unstable equilibrium of (28).

Proof: To prove stability of E†dc,j , consider (q.v. Fig. 5):

Ppv,j(Edc,j) < m†j(Edc,j − E†dc,j) + Ppv,j(E
†
dc,j) (61)

for Edc,j ∈ (E∗dc,j , E
†
dc,j) ∪ (E†dc,j ,∞), respectively. Here,

m†j = dPpv,j/dEdc,j ≤ 0 because of Lemma 2. Also,
consider a continuously differentiable function:

V (Edc,j) =
1

2
(Edc,j − E†dc,j)2 (62)
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which is commonly used to ascertain local stability [47, p.
114]. From (28) and (61), one can infer that:

d

dt
Edc,j <

m†j
BC,j

(Edc,j − E†dc,j) . (63)

By considering (62) and (63), one obtains:

d

dt
V (Edc,j) = (Edc,j − E†dc,j)

d

dt
Edc,j (64)

d

dt
V (Edc,j) <

m†j
BC,j

(Edc,j − E†dc,j)2 (65)

which establishes stability of E†dc,j because m† ≤ 0.
To ascertain instability of E�dc,j , we employ (q.v. Fig. 5):

Ppv,j(Edc,j) > m�j (Edc,j − E�dc,j) + Ppv,j(E
�
dc,j) (66)

Ppv,j(Edc,j) > m��j (Edc,j − E�dc,j) + Ppv,j(E
�
dc,j) (67)

where m�j = P �pv,j/E
�
dc,j > 0 and m��j = (P ∗pv,j −

P �pv,j)/(E
∗
dc,j − E�dc,j) > 0 because of Lemma 2; here

P �pv,j = Ppv,j(E
�
dc,j). The inequalities (66) and (67) are

respectively valid for Edc,j ∈ (0, E�dc,j) and Edc,j ∈
(E�dc,j , E

∗
dc,j). Application of (66) and (67) in (28) leads to:

d

dt
Edc,j >

m�j
BC,j

(Edc,j − E�dc,j) (68)

d

dt
Edc,j >

m��j
BC,j

(Edc,j − E�dc,j) (69)

which applied to dV (Edc,j)/dt = (Edc,j − E�dc,j)dEdc,j/dt
respectively produce:

d

dt
V (Edc,j) >

m�j
BC,j

(Edc,j − E�dc,j)2 (70)

d

dt
V (Edc,j) >

m��j
BC,j

(Edc,j − E�dc,j)2 (71)

for Edc,j ∈ (0, E�dc,j) and Edc,j ∈ (E�dc,j , E
∗
dc,j). This

establishes instability of E�dc,j because m�j > 0 and m��j > 0.

The aforementioned theorem implies that a stable grid-
forming operation can be reached only when Edc,j > E∗dc,j .
However, if Edc,j < E∗dc,j , the dynamics of the PV array
do not have stable equilibria which is detrimental for grid-
forming operation. This can occur if solar irradiance drops;
hence, dc-link voltage protection is needed.

IV. DC-LINK VOLTAGE PROTECTION

To stimulate the dc-link voltage protection, we estimate
E∗dc,j and P ∗pv,j which is the maximum power point (MPP)
of a PV array. This process uses the abstract model of the PV
array in Section III-E as well as voltage vdc,j and current ipv,j ,
q.v. Fig. 2. Estimated quantities are represented with hats.

A. Estimation of Optimal Dc-link Voltage

We first estimate ig,j of (54) which yields Ir,j of (54) with:

v̂d,j = vdc,j +Rs,jipv,j , îd,j = i0,j

(
e
v̂d,j
vT,j − 1

)
(72)

îg,j = îd,j + îsh,j + ipv,j and îsh,j = v̂d,j/Rsh,j . (73)

We then estimate the optimal dc-link voltage v̂∗dc,j which
yields Ê∗dc,j for Section IV-B. To that end, we define:

igd,j = îg,j − id,j (74)

with îg,j from (73) for usage in (58). Because (58) is con-
cave on vd,j , q.v. Lemma 2, there is a unique v̂∗d,j such
that Ppv(v̂∗d,j) is maximum and dPpv(vd,j)/dvd,j = 0 when
vd,j = v̂∗d,j . Hence, to calculate v̂∗d,j , we find a zero of:

d

dvd,j
Ppv(vd,j) , G(vd,j) = igd,j + vd,j

d

dvd,j
igd,j−

2Rs,j

(
igd,j −

vd,j
Rsh,j

)(
d

dvd,j
igd,j −

1

Rsh,j

)
− 2vd
Rsh,j

.

(75)

with id,j from (55). This is efficiently done (in the sense of
number of computations) by using Newton-Raphson iterations:

vd,j,p+1 = vd,j,p −
G(vd,j,p)

G′(vd,j,p)
(76)

for p = 0, 1, 2, . . . where G is from (75) and G′ is the
derivative of G. In G and G′ of (76), we use:

d

dvd,j
igd,j = − i0,j

vT,j
e
vd,j
vT,j and

d2

dv2d,j
igd,j = − i0,j

v2T,j
e
vd,j
vT,j .

(77)

The iterations of (76) end if |vd,j,p+1 − vd,j,p|/|vd,j,p| < εtol
with εtol a relative tolerance when |vd,j,p| > 0. If the iterations
terminate at p∗ = p+ 1, then v̂∗d,j = vd,j,p∗ .

Lemma 3: If the starting point vd,j,0 for (76) satisfies:

vd,j,0 >
2Rs,j îg,jvT,j − 3av2T,j − 6Rs,ji0,jvT,j

avT,j + 8Rs,ji0,j
(78)

with a = 1 + 2Rs,j/Rsh,j , the iterations therein converge.
Proof: By ascertaining the domain of vd,j on which

G of (75) is decreasing and concave [48, p. 86]. G(vd,j)
of (75) is decreasing because of the concavity of Ppv(vd,j),
q.v. Lemma 1. Equation (78) arises by studying the domain
of vd,j that makes G′′(vd,j) > 0 after application of Taylor’s
theorem; G′′ is the second derivative of G in (75).

The voltage v̂∗dc,j is calculated by solving (56) for vdc,j and
substitution of vd,j = v̂∗d,j and igd,j = îg,j−i0,j(ev̂

∗
d,j/vT,j−1)

with îg,j from (73). Thus, Ê∗dc,j = max{(v̂∗dc,j)2, (vmn,j)
2}

for Section III-F. Here, we consider the minimum input volt-
age, vmn,j , the GSC of Fig. 2 requires to operate, q.v. [49].
This is useful to study full outages of solar irradiance.

B. Active Dc-link Voltage Protection

We explain how to regulate ∆P ?e,j in (35) for dc-link voltage
protection. The main idea is to actively control Pcv,j of (28)
and (29) by steering ∆P ?e,j which impacts ωcj of (34). We
note in (28) that control of Edc,j is challenging because: (i)
Ppv,j is concave in Edc,j (q.v. Lemma 2) and (ii) has a saddle
point at Edc,j = E∗dc,j ≈ Ê∗dc,j . We recall Ê∗dc,j = (v̂∗dc,j)

2

is estimated in Section IV-A. As done in control of concave
systems [50], we use two control errors:
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P b
pv,j

Pa
pv,j

P b
cv,j

Pa
cv,j

(A)

(B)

(C)

(D)

(E)

E∗b
dc,j

E∗b
dc,j(1− ϵ1)2 E∗b

dc,j(1 + ϵ2)2

stableunstable

Edc,j

Ppv,j

MPP region

Fig. 6. Behavior of PV array power versus dc-link energy during solar
irradiance disturbances.

edc1,j = kpp,j

(
Ê∗dc,j(1− ε1)2 − Edc,j

)
(79)

edc2,j = kpp,j

(
Ê∗dc,j(1 + ε2)2 − Edc,j

)
. (80)

to regulate ∆P ?e,j via a PI regulator with activation conditions:

∆P ?e,j =

{
edc1,j + zPe,j if Edc,j < Ê∗dc,j(1− ε1)2

zPe,j otherwise
(81)

d

dt
zPe,j =





edc1,j
τpp,j

if Edc,j < Ê∗dc,j(1− ε1)2

edc2,j
0.5τpp,j

if Edc,j > Ê∗dc,j(1 + ε2)2

0 Ê∗dc,j ∈ Ddc,j
0 if zPe,j ≥ P ∗e,j and Ê∗dc,j > Edc,j

0 if zPe,j ≤ 0 and Ê∗dc,j < Edc,j .
(82)

The set Ddc,j = (Ê∗dc,j(1 − ε1)2, Ê∗dc,j(1 + ε2)2) defines a
deadband to mitigate continuous chattering [50], [51]. The
user-defined parameters ε1 and ε2 are relative small numbers.
The PI-regulator parameters in (79)–(82) are determined with
kpp,j = BC,j/(3τs,j) and τpp,j = 12τs,j where BC,j and
τs,j are from (28) and (30), respectively. The settling time
of the controller is 30τs,j . We clarify that (81) and (82)
are defined piecewise because Ppv,j is concave in Edc,j as
illustrated in Fig. 6. The ultimate goal is to prevent low dc-
link voltages that would impact (51) and cause, for example,
synchronization problems. This is demonstrated via simulation
in Section VI-B. We explain the operational rationale of (81)
and (82) next.

In Fig. 5, let P apv,j and P bpv,j be PV array power curves
for two values of solar irradiance Iar,j and Ibr,j (Iar,j > Ibr,j),
respectively. Also assume that a PV array initially observes
Iar,j and is operating at the stable equilibrium (A) in Fig. 5.
Then, consider irradiance instantaneously drops to Ibr,j , con-
sequently, the PV array operation changes to point (B) where
P bpv,j < P acv,j . Thus, Edc,j of (28) begins dropping because the
grid-forming converter is not cognizant yet that P bpv,j < P acv,j
given that Edc,j ≥ Ê∗dc,j(1+ε2)2. When (Edc,j , P

b
pv,j) reaches

point (C) in Fig. 5, the error edc1,j of (79) causes: (i) an
increase of ∆P ?e,j in (81), (ii) the reduction of ωc,j of (34)
via (35), and (iii) the reduction of Pcv,j in (28). We recall that
dc-link energy will not achieve a stable equilibrium in (C),

q.v. Theorem 1. Hence, Edc,j is driven to point (D) in Fig. 5.
At that point, the error edc2,j in (80) activates to steer the
integrator state zPe,j in (82) towards zero. The aforementioned
process can momentarily chatter until Edc,j ∈ Ddc,j where the
PV array is close to the MPP, e.g., see point (E).

It is worth noting here that the proposed protection system
does not cause de-rated operation of a PV power plant. In fact,
it permits the GSC of Fig. 2 to transfer up to the maximum
power that the PV array can produce at any point in time. If
the protection activates, a disadvantage is that the PV inverter
will not be able to participate in frequency regulation. This
is analogous to a synchronous generating set in which its
governor has reached its upper limit [28, Ch. 15].

V. INTERCONNECTED POWER SYSTEM

We interconnect conventional power plants, PV power
plants, and composite loads via a transmission system to form
a set of DAEs as in (1)–(3).

A. Dynamic Voltages Behind Impedances

For interconnection, the i-th power plant of Section II-D is
viewed as a voltage source behind a transient impedance [29]:

ṼG,i = −(rs,i + jX ′d,i)ĨG,i + ẼG,i (83)

ṼG,i = ejδri (vrid + jvriq ), ĨG,i = ejδri (irid + jiriq ) (84)

ẼG,i = ejδri (erid + jeriq ) . (85)

The phasors ṼG,i, ĨG,i, and ẼG,i model terminal voltage,
terminal current, and voltage behind transient impedance,
respectively. The voltages vridq are from (24). The dynamics
of erid , eriq , and δri are modeled in (12), (13), and (15),
respectively. The phasor ĨG,i to determine irid and iriq is
modeled in Section V-C.

The voltage behind impedance of the j-th PV plant is [36]:

ṼR,j = −(rg,j + rc,j + jXg,j)ĨR,j + ẼR,j (86)

ṼR,j = ejδcj (v
cj
d,g + jvcjq,g), ĨR,j = ejδcj (i

cj
d,g + jicjq,g) (87)

ẼR,j = ejδcj (e
cj
d,g + jecjq,g) , e

cj
dq,g = rc,ji

cj
dq,f + v

cj
dq,c (88)

Here, icjdq,f , vcjdq,c, and δcj are from (25), (26), and (36).
The phasors ṼR,j , ĨR,j , and ẼR,j model terminal voltage,
terminal current, and voltage behind impedance, respectively
The phasor ĨR,j to calculate icjdq,g is in Section V-C.

B. Composite Loads

We model the k-th composite load (k = 1, . . . ,K) made
of direct-drive motors, constant power demands, and constant
impedances [52]–[54]. For motor loads, the relationship be-
tween bus voltage ṼL,k and motor current Ĩm,k is [43, p. 238]:

ṼL,k =


(rs,k + jXls,k) +

jXM,k

(
r′r,k
sm,k

+ jXlr,k

)

jXM,k +
(
r′r,k
sm,k

+ jXlr,k

)


 Ĩm,k .

(89)

Here, sm,k = (ωe − ωm,k)/ωe is slip, ωe is from (37), and:

d

dt
ωm,k =

1

2Hm,k
(Te,k − Tm,k) . (90)
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Mechanical and electromagnetic torques in the k-th motor are:

Tm,k = Km,kω
2
m,k and Te,k =

X2
M,kr

′
r,ksm,k|ṼL,k|2
α2
k + β2

k

(91)

respectively. Here, αk = rs,kr
′
r,k + sm,k(X2

M,k−Xss,kX
′
rr,k)

and βk = (r′r,kXss,k + sm,krs,kX
′
rr,k). The parameters

rs,k, r
′
r,k, XM,k, Xss,k, Xlr,k, X

′
rr,k, Xls,k are per unit version

of the ones defined in [43, p. 244].
The constant power and impedance load relationships are:

conj
(
Ĩp,k

)
ṼL,k + (Pp,k + jQp,k) = 0 (92)

ṼL,k + Ĩz,kZk = 0 (93)

with conj (·) a complex-conjugate operator. Here, Ĩp,k and
Ĩz,k are current phasors by constant power and impedance
loads. The variables Pp,k, Qp,k, Zk are real power, reactive
power, and impedance, respectively. An example of a con-
stant power load is a motor driven by a variable frequency
drive [54]. We recall from (9) that the voltage and current
phasors in (92) and (93) can be expressed in dq coordinates
for computational purposes.

The current ĨL,k of each k-th composite load satisfies:

ĨL,k + Ĩm,k + Ĩp,k + Ĩz,k = 0 . (94)

C. Transmission System

Currents injected by conventional and PV power plants as
well as composite loads relate to terminal voltages by [29]:



ĨG
ĨR
ĨL


−



Y γ
GG Y γ

GR Y γ
GL

Y γ
RG Y γ

RR Y γ
RL

Y γ
LG Y γ

LR Y γ
LL






ṼG
ṼR
ṼL


 = 0 (95)

F̃χ = [F̃χ,1, F̃χ,2, . . .]
> (96)

with F̃ ∈ {Ṽ , Ĩ} a vector of voltage and current pha-
sors. The index χ ∈ {G,R,L} denotes conventional assets,
renewable PV plants, and composite loads. The submatri-
ces Y γ

GG,Y
γ
GR,Y

γ
GL,Y

γ
RG,Y

γ
RR,Y

γ
RL,Y

γ
LG,Y

γ
LR and Y γ

LL are
partitions of the admittance matrix Y γ . The network matrices
are indexed by γ = {1, 2, 3} in (2) to model faults.

D. Power System Model

In (1)–(3): x> = [x>G,x
>
R,ω

>
m], y> = [y>G ,y

>
R ,y

>
L ],

u> = [u>G,u
>
R], Ψ> = [Ψ>G,Ψ

>
R,Ψ

>
L ]. The vector w =

[Ir,1, Ir,2, . . .]
> from (54). The vector x is composed by:

x>G =[er>dq ;ω>r ; δ>r ;T>m ;P>v ; e>fd;v
>
a ; r>f ] ∈ R9I (97)

x>R =[ic>dq,f ;vc>dq,c;E
>
dc; P̃

>
e ; Q̃>

e ; P̃ ?>
e ;

δ>c ; z>dq,o; z
>
dq,f ; z>Pe ] ∈ R14J (98)

We construct, for example, from (12), (13), and (25):

er>dq = [er1d , e
r1
q , e

r2
d , e

r2
q , . . . , e

rI
d , e

rI
q ] (99)

ic>dq,f = [ic1d,f , i
c1
q,f , i

c2
d,f , i

c2
q,f , . . . , i

cJ
d,f , i

cJ
q,f ] (100)

The vectors in y are:

y>R = [vr>dq , i
r>
dq ] ,y>G = [vc>dq,g, i

c>
dq,g], y

>
L = [v>dq,L, i

>
dq,L]

(101)

TABLE I
PARAMETERS OF A PV PLANT IN ITS RATING BASE

Para. Value Unit Description
rf 0.0025 p.u. filter inductor resistance
Xf 0.25 p.u. filter inductor reactance
rg 0.0012 p.u. step-up transformer resistance
Xg 0.03 p.u. step-up transformer reactance
rc 0.04 p.u filter capacitor resistance
Bc 0.24 p.u. filter capacitor susceptance
BC 0.036 p.u. normalized dc-link capacitance
i0 7.165 ×10−13 p.u. reverse saturation current
Rs 0.0731 p.u. series resistance of PV array
Rsh 58 p.u. shunt resistance of PV array

TABLE II
CONTROL PARAMETERS OF A PV PLANT IN ITS RATING BASE

Para. Value Unit Description
κp,c 0.6631 p.u. proportional constant for PI current controller
τi,c 4 ms time constant for PI current controller
κp,v 0.1273 p.u. proportional constant for PI voltage controller
τi,v 20 ms time constant for PI voltage controller
kp 0.05 p.u. speed droop constant
kq 0.02 p.u. voltage droop constant
kpp 1.80 p.u. proportional constant for dc-link protection
τpp 80 ms time constant for dc-link protection
ε1 0.01 – deadband constant for dc-link protection
ε2 0.02 – deadband constant for dc-link protection
τω 50 ms droop-control time constant
τs 5 ms time constant for active power filter
τg 0.1 ms time constant for grid-side current filter
vmn,j 1.1 p.u. minimum GSC input voltage

where: (i) vrdq and irdq are from (24) and (84), (ii) vcdq,g and
icdq,g are from (32) and (87), illustrated in Figure 2. (iii) idq,L
and vdq,L are from (94) and (95) after using (9), respectively.

The sub-vectors of u are:

u>G = [V ?>, P ?>v ] ∈ R2I ; u>R = [V ?>, P ?>e ] ∈ R2J (102)

which are formed from (23), (17), (44) and (35).
The select outputs for assessment are:

Ψ>G = [|ṼG|>, |ĨG|>,ω>r , s>r , δ>r ] (103)

Ψ>R = [|ṼR|>, |ĨR|>, δ>c ,ω>c , s>c ,v>dc] (104)

Ψ>L = [|ṼL|>, |Ĩm|>,ω>m, s>m] (105)

where the magnitudes |ṼG| is from (83), |ṼR| from (86) and,
|ṼL| from (89), (92), and (93). We use the slip of conventional
plants sr, PV stations sc, and motors sm where:

sc,j =
ωc,j − ωe

ωe
, sr,i =

ωr,i − ωe

ωe
, sm,k =

ωe − ωm,k
ωe

(106)
and ωe from (37) to ascertain synchronism from simulations.

VI. CASE STUDIES

We demonstrate the dynamic performance of grid-forming
PV power plants during transmission faults and solar irradi-
ance disturbances. To that end, we studied modified versions
of the WSCC 9-bus [28] and IEEE 39-bus power systems [55].
The system volt-ampere and speed bases are Sb = 100
MVA and ωb = 120π rad/s. Table I and II report per-unit
parameters with respect to the PV power plant rating. The
specific parameters for a j-th PV plant with rating Sjnom in the
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B1ṼG,1

247.5 MVA
G1

B4

B5

L2

B6

L3

B7 B9B8

L1

B3

ṼR,2

S2
128 MVA

B2

ṼR,1

S1
192 MVA

EzfĨR,1 ĨR,2

ĨG,1 open CB

closed CB

const. impedance const. power motor
L1 0.8 + j0.23 - 0.152 + j0.064
L2 0.94 + j0.47 0.45 + j0.16 -
L3 0.94 + j0.47 0.32 + j0.09 -

Fig. 7. One line diagram of modified WSCC power system. The impedance
of the motor is given when the slip sm,1 = 0.02.

base Sb are scaled from the values in Tables I and II as done
in [36]. Additionally, we define here βj = Sb/S

j
nom and:

kpp,j = kpp/β
j , τpp,j = τpp, kp,j = βjkp, kq,j = βjkq

(107)

κjp,v = κp,v/β
j , κjp,c = βjκp,c, τω,j = τω, τ

j
i,v = τi,v

(108)

τ ji,c = τi,c, Rs,j = Rsβ
j , Rsh,j = Rshβ

j , i0,j = i0/β
j .

(109)

The numerical studies are conducted in a desktop with
16 GB of RAM and four cores Intel® Xeon® i3 run-
ning at 3.4 GHz. The studies are implemented using MAT-
LAB R2020a [56] and MATPOWER 7.0 [57]. The DAEs
from Sections II–V are solved using the MATLAB’s DAE
solver ode15s. The ode15s settings are: (i) 1 × 10−4

relative tolerance, (ii) 1 × 10−3 absolute tolerance, and (iii)
1× 10−3 s maximum step size. We simulated the WSCC and
IEEE systems for T = 4 s and T = 20.0 s, respectively. The
corresponding CPU times were 5.26 s and 10.77 s.

A. WSCC 9-Bus Grid: Fault-Ride Through Capability

The modified topology of the WSCC 9-bus grid is depicted
in Fig. 7. The thermal units that existed in B2 and B3
were substituted by 192- and 128-MVA PV power plants,
respectively. The load composition for this grid is specified
in Fig. 7. The transient performance of the WSCC 9-bus
system when impacted by a three-phase fault is illustrated
in Figs. 8–10. The fault impedance zf = j0.125 p.u. and
occurs close to B9 in Fig. 7. In the simulation, the fault is
applied at t = tf = 0.5 s and is cleared after 5 cycles at
t = tc = 0.5 + 5/60 s by opening the circuit breakers of the
branch interconnecting buses B9–B6 as shown in Fig. 7.

We learn from Fig. 8 the following: (A) |ṼR,1| (q.v. Fig. 2)
can be as low as 0.57 p.u. by t = 0.58 s. (B) |ṼR,2| sags to
0.37 p.u. by t = 0.58 s. (C) |ṼR,2| spikes to 1.2 p.u. by t =

0.61 s. (D) |ĨR,2| momentarily reaches 5.512 p.u. at t = 0.50 s.
(E) |ĨR,1| and |ĨR,2| drop by t = 0.61 s to mitigate the voltage
overshoot in (C), q.v. (26). (F) ωc,2 reaches 1.015 p.u. because
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Fig. 8. WSCC 9-bus grid: Performance of PV solar and conventional power
plants. Traces for S1 and S2 are with solid and dotted lines, respectively.

P̃e,2 → 0 in (34) during the fault. (G) sc,2 deviates up to 0.015
when the fault is active as a consequence of (F). (H) δc,1 and
δc,2 respectively increases from −0.012 to 0.186 rad and from
−0.018 to 0.38 rad when the fault is active because ωc1 and
ωc2 increase q.v. (36). (I) The dc-link voltage vdc,2 attains
1.59 p.u. during the fault because of a reduction on transferred
power from the PV array to the grid q.v. (28). (J) |ṼG,1| sags
to 0.86 p.u. during the fault. (K) |ĨG,1| only attains 2.7 p.u.
because the fault is relatively far from G1 q.v. Fig. 7. (L) ωr,1

reaches 1.002 p.u. because Te,1 decreases in (14). (M) sr,1
deviation is minor because of rotor inertia. (N) δr,1 decreases to
0.1058 rad from 0.1069 rad as a result of (L) and (O). (O) ωe,
the speed of the center of inertia, accelerates and reaches a
zenith during the fault. Notably, sr,1, sc1, sc,2 → 0 after the
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Fig. 9. WSCC 9-bus grid: Performance of PV and conventional power plants.
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Fig. 10. WSCC 9-bus grid: Transient behavior of motor load L1 (k = 1).

fault is cleared at t = tc s, which confirms that synchronism
is maintained.

The behavior of the PV power plant variables during the
fault are reported in Fig. 9 where: (A) The magnitude of vc1dq,o
in Fig. 2 for the PV power plant S1 drops to |Ṽo,1| = 0.59
p.u. by t = 0.58 s. (B) Similarly, the magnitude of vc2dq,o
drops to |Ṽo,2| = 0.41 p.u. by t = 0.5 s. (C) vc2dq,o can be
as high as 1.207 after the fault is cleared. (D) The current
magnitude |Ĩf,1| of ic1dq,f in Fig. 2 rises from 1.3 to 2.095 p.u
by t = 0.50 s which slightly violates the rated current Imx,1 =

1.92 p.u. of the converter in S1. (E) The magnitude |Ĩf,2| of
ic2dq,f reached 1.88 p.u. which violated the rating Imx,2 = 1.28
when the fault was applied. Nonetheless, this short-lived
current magnitude lasted less than 15 ms because |Ĩf,2| was
immediately steered towards the rated current Imx,2 = 1.28
p.u. by the grid-forming regulator in Section III-D. The impact
of this trespassing on GSC semiconductor temperature might
be minor. We recall from Fig. 3a that the radius to saturate
dq-current commands in S2, for example, is Imx,2 = 1.28 p.u.

We report the response of the motor L1 in Fig. 7 for
Hm,1 = 0.5 s for (90) and Km,1 = 0.15 for (91). In Fig. 10,
we learn that: (A) |ṼL,1| sags to 0.573 p.u. by t = 0.58 s.
(B) |Ĩm,1| increases to 0.286 p.u. because motor slip in (89)
increases. (C) ωm,1 reaches 0.9895 p.u. because ωe accelerates.
(D) sm,1 reaches 0.011 during the fault; in steady state,
sm,1 = 0.005.

We note here that the PV power plants of Fig. 7 must remain

tf

tc

2.02

1.39 vdc,1

Ppv,1

(a) PV power plant S1

tf

tc

1.35

1.39 vdc,2

Ppv,2

(b) PV power plant S2

Fig. 11. Power and voltage characteristics (gray) of the PV arrays in Fig. 7.
The loci for power plants S1 and S2 during the fault are the solid-black traces.
The fault is applied at tf = 0.5 s and cleared at tc = 0.5 + 5/60 s.

connected during the fault to comply with the North American
Electric Reliability Corporation (NERC) standard PRC-024-
3 [32] because: (i) |ṼR,1|, |ṼR,2| ∈ [0, 1.2] during the fault
event in Fig. 8. According to the voltage duration envelope
in [32, p. 18], power plants are allowed to trip, for example,
if |ṼR,j | /∈ [0.0, 1.2] for more than 150 ms. (ii) ωc,1, ωc,2 ∈
[0.96, 1.03] for less than 30 s [32, p. 18]. Power plants are
allowed to trip, for example, if ωc,1, ωc,2 /∈ [0.96, 1.03] for
more than 30 s [32, p. 17]. We emphasize that although there
was a short-lived violation of Imx,2 (for less than 15 ms), the
PV power plant S2 is not allowed to trip to comply with [32, p.
17]. Hence, a hypothetical operator of the IEEE 9-bus power
system could have used these simulation results to contrast
them against the technical specifications of PV power plants
to ascertain compliance with grid standards and determine
corrective actions if deemed necessary. Similar studies can be
conducted to test compliance with recent standards, e.g., the
standard IEEE P2800 [33].

The responses of the S1 and S2 PV arrays in Fig. 7 during
the fault are reported in Fig. 11. We learn from this figure that
vdc,2 at t = tc = 0.5+5/60 s is greater than vdc,2 at t = tf =
0.5 s because the power injected by S2 reduces as the fault is
relatively close, q.v. Fig. 7. The impact of the fault on vdc,1 is
minor because the fault is relatively far from S1. We also note
in Fig. 11 that during the fault, vdc,j > v∗dc,j = 1.39 p.u. for
j = 1, 2; hence, the active dc-link protection of Section IV-B
does not operate. Nonetheless, the protection can activate when
solar irradiance drops and the GSC injects more ac power than
can be supplied by the PV array, q.v. Section IV-B.

B. WSCC 9-Bus Grid: Dc-Link Voltage Protection

We demonstrate the functionality of the active dc-link
protection in Section IV-B. The parameters of the voltage and
current regulators are the same ones that were used in Section
VI-A. We show that variations of solar irradiance can lead to
loss of synchronism of grid-forming PV power plants. To that
end, we study the performance of S2 in Fig. 7 during a step
drop in solar irradiance:

Ir,2(t) =

{
1000 W/m2 t ∈ [0, 2.5) ∪ [5.0, 7.5] s
400 W/m2 t ∈ [2.5, 5.0) s .

(110)

The solar irradiance at S1 is Ir,1(t) = 1000 W/m2 for t ∈
[0, 7.5] s. In Fig. 12, we report the results of two simulation
instances: with and without the active protection.
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When the protection is absent, we learn from Fig. 12:
(A) vdc,2 falls to 0.62 p.u. (B) Pcv,2 falls to -1.25 p.u. (C) Ppv,2
sags to -1.16 p.u. (D) slip sc,2 drops to -0.09. All this because
low values of vdc,2 impacts (51) by t = 3.1 s, hence S2 loses
synchronism and the simulation terminates.

When the protection is active, we observe in Fig. 12:
(E) vdc,2 drops only to 1.26 p.u., hence, synchronism is not
lost. We note that vdc,2 settles around 1.32 p.u after t = 2.5 s.
(F)–(G) The estimated variable îg,2 follows the changes of ig,2.
We recall that îg,2 is used to calculate Ê∗dc,2([2.5, 5.0]) = 1.87
p.u. (which implies v̂∗dc,2([2.5, 5.0]) = 1.37), q.v. Section IV.
The value of Ê∗dc,2 is the set-point to steer ∆P ?e,2 to mod-
ulate Pcv,2 for MPP tracking as explained in Section IV-B.
(H) ∆P ?e,2 attains 0.78 p.u. by t = 2.63 s. This to reduce
the converter ac power Pcv,2, q.v., (28) and (29). After t > 5
s, ∆P ?e,2 resets because irradiance rises. The two notches of
∆P ?e,2 by t = 2.5 s and t = 5.0 s in Fig. 12 appear because the
set point Ê∗dc,2 for (79)–(82) changes abruptly as a result of the
two step-wise changes in solar irradiance in (110). We recall
that Ê∗dc,2 is estimated in Section IV-A. (I) Pcv,2 oscillates
while approaching the MPP because of the concave behavior
of the PV array, q.v. Section III-E as well as the piece-wise
response of the dc-link protection, q.v. Section IV-B. The
frequency of these control-induced oscillations is 5 Hz ca.
(J) Ppv,2 momentarily drops from 0.8 to 0.14 p.u. and recovers
to 0.5 p.u. (K) sc,2 deviates up to only 0.004 which confirms
that synchronization problems do not exist. (L) The voltage
|Ṽo,2| oscillates between [0.998, 1.001] p.u by t = 2.6 s and
decays to 0.9997 p.u. by t = 5 s. (M) |Ĩf,2| oscillates between
[0.46, 0.75] p.u by t = 2.6 s and decays to 0.64 p.u. by
t = 5 s. These short-lived oscillations are not detrimental to
the PV power plant because they do not impact mechanical
components. All the aforementioned observations suggest that
the proposed dc-link protection performs well.

C. IEEE 39-Bus Grid: Fault-Ride Through Capability

We modified the system in [55] by substituting the 1000-
MVA generators connected to buses B34 and B36 with two
PV power plants S5 and S7 of the same rating, respectively.
We studied the response of the system to a five-cycle fault
near bus eight B8 in [55, Fig. 1]. The fault was applied
at t = 0.50 s and removed at t = 0.5 + 5/60 s. This
did not cause stability problems as evidenced in Fig. 13. In
particular, voltage magnitudes and speed values of the PV
plants and conventional ones converged close to nominal after
the fault was cleared. If the fault had remained active for more
than seven cycles, the synchronous machines G2 connected
to bus B31 and G3 connected to bus B32 would have lost
synchronism.

From Fig. 13, we infer the following: (A) The voltage
magnitude, |ṼR,7| at the terminal of PV power plant S7 sags
to 0.85 p.u. at t = 0.50 s. (B) The current magnitude, |ĨR,5|
spikes to 9.63 p.u. at t = 0.50 s from 6.806 p.u. (C) The
current magnitude |ĨR,7| reaches 7.98 p.u. at t = 0.50 s.
(D) The speed ωc,7 reaches 1.004 p.u. during the fault. (E) The
slip sc,7 deviates up to 0.004 at t = 0.60 s as a consequence
of (D). (F)–(G) The angles δc,5 and δc,7 respectively increase
from −0.38 to −0.26 rad and from −0.33 to −0.198 rad when
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|Ĩ f
,2
|

(M)

Fig. 12. WSCC 9-bus grid: Performance of renewable plant S2 during solar
irradiance drop without (dotted line) and with (solid line) dc-link protection.

the fault is active because ωc5 and ωc7 increase q.v. (36). (H)
The dc-link voltage vdc,5 slightly rises to 1.575 p.u during
the fault. (I) The voltage magnitude, |ṼG,3| of the machine
connected to bus 32 sags to 0.68 p.u. at t = 0.58 s. (J) The
current magnitude, |ĨG,1|, spikes to 18.92 p.u. at t = 0.51 s
because G1 is relatively close to the fault occurring in bus B8.
(K) The speed ωr,2 reaches 1.007 p.u. at t = 0.593 s because
G2 is also close to the fault. (L) The slip sr,2 deviates up
to 0.006 at t = 0.59 s which is indicative that G2 has the
potential to lose synchronism. (M) The angle δr,2 increases to
1.505 rad at t = 1.07 s which is the largest because of (L).
(N) The synchronous speed ωe reaches 1.002 p.u. at t = 1.7 s
and later converges to the rated value which is indicative that
there are no frequency problems.

The behavior of the PV power plants during the fault
are reported in Fig. 14 where: (A) The magnitude of vc5dq,o
in Fig. 2 for PV power plant S5 drops to |Ṽo,5| = 0.88 p.u.
by t = 0.5 s. (B) Similarly, the magnitude of vc7dq,o drops to
|Ṽo,7| = 0.88 p.u. by t = 0.5 s. (C) |Ṽo,5| can be as high as
1.13 after the fault is cleared. (D) The current magnitude |Ĩf,5|
rises from 5.5 to 7.94 p.u by t = 0.50 s, the rated current of
S5 Imx,5 = 10 p.u. (E) The magnitude |Ĩf,7| reached 7.5 p.u.
when the fault was applied; here, Imx,7 = 10 p.u. The PV
power plants of this case study must also remain connected
to comply with NERC standard PRC-024-3 [32] because: (i)
|ṼR,5|, |ṼR,7| ∈ [0, 1.2] during the fault event in Fig. 13 and
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(ii) ωc,5, ωc,7 ∈ [0.96, 1.03] for less than 30 s [32, p. 18].
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Fig. 13. IEEE 39-bus grid: Performance of PV solar and conventional power
plants. Traces for S5 and S7 are with solid and dotted lines, respectively.

VII. CONCLUSION

This paper has reported a positive-sequence model of a grid-
forming PV solar power plant with fault ride-through capabil-
ity and dc-link voltage protection. To this end, we engineered
two-axis anti-windup PI regulators to limit dq voltage and
current commands within a circle. Further, we demonstrated
via simulation that grid-forming plants can lose synchronism
when solar irradiance drops. This problem was mitigated by
engineering an active dc-link protection scheme. The models
were purposely leveraged in positive-sequence domain to
mitigate the computational burden of EMT studies [58]. In
general, the contributions of this paper are significant to study
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|Ṽ
o
,7
|

(B)

(C)

0 0.5 1 1.5 2

t (s)
4
5
6
7
8

|Ĩ f
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Fig. 14. IEEE 39-bus grid: Performance of PV solar and conventional power
plants.

the dynamic performance of bulk power systems with ultra-
high penetrations of grid-forming PV assets during faults and
solar disturbances. Notably, a power system analyst can use the
advances in this paper to ascertain compliance of grid-forming
PV power plants with interconnection standards [32], [33].
Also, this work can be instrumental to quantify the impact of
conventional power plants on the dynamics of PV assets using,
for example, linearization techniques, albeit this was not done
in this paper.

An important research direction is to model PV-array
blocking diodes to study the impacts of full solar irradiance
outages, e.g., using PLECS [59]. Further, it is of interest
to investigate the interaction of sub-transient dynamics of
synchronous machinery with grid-forming assets as well as
the impact of the variation of grid-forming control parameters,
e.g., τs,j in (30). An additional research avenue consists of
ascertaining the set of all possible current magnitudes at the
inverter terminals of grid-forming PV power plants, e.g., using
reachability analysis [60], [61]. Finally, future research will
extend this framework to grid-forming power plants powered
by wind and battery energy resources.
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