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a b s t r a c t 

Many engineering problems involve the optimization of computationally expensive models for which 

derivative information is not readily available. The Bayesian optimization (BO) framework is a particu- 

larly promising approach for solving these problems, which uses Gaussian process (GP) models and an 

expected utility function to systematically tradeoff between exploitation and exploration of the design 

space. BO, however, is fundamentally limited by the black-box model assumption that does not take into 

account any underlying problem structure. In this paper, we propose a new algorithm, COBALT, for con- 

strained grey-box optimization problems that combines multivariate GP models with a novel constrained 

expected utility function whose structure can be exploited by state-of-the-art nonlinear programming 

solvers. COBALT is compared to traditional BO on seven test problems including the calibration of a 

genome-scale bioreactor model to experimental data. Overall, COBALT shows very promising performance 

on both unconstrained and constrained test problems. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Design problems, which can generally be formulated as math- 

matical optimization problems ( Herskovits et al., 2005 ), occur 

n a wide-variety of science, engineering, and manufacturing en- 

eavors. For example, pharmaceutical researchers must design new 

rugs to fight diseases, social media companies must design user- 

riendly websites to increase advertising revenue, and process en- 

ineers must synthesize flowsheets that achieve the desired goals 

f the process (e.g., profitable operation that meets chemical prod- 

ct specifications with minimal waste). In certain situations, one 

s able to develop an equation-oriented (EO) model (also known 

s “first-principles”, “physics-based” or “white-box” models) of the 

ystem whose structure can be exploited by existing solvers that 

ake advantage of first- and/or second-order derivative information 

see, e.g., Biegler and Zavala, 20 09; Boggs and Tolle, 20 0 0; Misener

nd Floudas, 2014; Sahinidis, 1996 ). However, obtaining accurate 

O models for each and every component of a complex system is 

ot always possible. Examples of non-EO models (also known as 

simulation-based” or “black-box” models) include thermodynamic 

roperty relationships, models of a proprietary unit operations, and 

xpensive finite-element, partial differential equation-based, and 

olecular simulations. 
∗ Corresponding author. 

E-mail addresses: paulson.82@osu.edu (J.A. Paulson), lu.2318@osu.edu (C. Lu). 
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When gradient information is not readily available, as is the 

ase for black-box models, one of the main alternatives is to 

ely on so-called derivative-free optimization (DFO) methods ( Conn 

t al., 2009; Larson et al., 2019; Rios and Sahinidis, 2013 ), which 

an be very broadly divided into stochastic and deterministic ap- 

roaches. The majority of the stochastic DFO methods can be 

lassified as either evolutionary or population-based algorithms 

ncluding genetic algorithms ( Mukhopadhyay et al., 2009 ), par- 

icle swarm optimization (PSO) ( Eberhart and Kennedy, 1995 ), 

nd the covariance matrix adaptation evolution strategy (CMA-ES) 

 Hansen et al., 2003 ). A key limitation of these methods, how- 

ver, are that they often require a large number of function eval- 

ations to find the optimum ( Wessing and Preuss, 2017 ) such that 

hey are not directly applicable to expensive black-box simulators. 1 

eterministic DFO methods, on the other hand, are often moti- 

ated by the optimization of an expensive objective function and 

an be classified as either direct search or model-based methods. 

irect methods, which includes Nelder-Mead simplex algorithm 

 Nelder and Mead, 1965 ), mesh adaptive direct search (MADS) 

 Audet and Dennis Jr, 2006 ), and generalized pattern search (GPS) 

 Kolda et al., 2003 ), determine search directions from the evalua- 
1 Another important limitation of many DFO methods is that they cannot directly 

andle general nonlinear and/or black-box constraints and they instead focus on 

ox constraints that can be easily handled using simple projection operators. In- 

erested readers are referred to (Larson et al., 2019, Section 7) for more details on 

onstraint handling methods in DFO. 

https://doi.org/10.1016/j.compchemeng.2022.107700
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2022.107700&domain=pdf
mailto:paulson.82@osu.edu
mailto:lu.2318@osu.edu
https://doi.org/10.1016/j.compchemeng.2022.107700
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ions of the objective function directly. Alternatively, the so-called 

odel-based methods construct a surrogate model for the objec- 

ive function using these evaluations to better guide the search 

rocess. Model-based DFO methods mainly differ by the choice 

f scale (local versus global approximation) and the type of func- 

ion approximator (e.g., polynomial, neural network, or radial basis 

unction models). 

Not only is selecting the “right” type of surrogate model chal- 

enging when little is known about the structure of the objec- 

ive, this choice can have a strong effect on the performance of 

he model-based DFO algorithm. Gaussian process (GP) models are 

 particularly interesting class of surrogates due to the fact that 

hey are probabilistic and non-parametric ; GP models are easily de- 

ived by placing a prior over the set of possible objective func- 

ions that can be recursively updated to account for measured 

ata (i.e., objective evaluations) using Bayes’ rule ( Rasmussen and 

illiams, 2006 ). By combining the GP model of the objective with 

n expected utility (or acquisition) function that leverages the un- 

ertainty in the posterior distribution, we arrive at what is com- 

only referred to as the Bayesian optimization (BO) framework 

 Brochu et al., 2010; Frazier, 2018; Pelikan et al., 1999; Shahri- 

ri et al., 2015 ). A key ingredient in BO is the choice of the ac-

uisition function that should be designed in a way that trade- 

ffs exploration of regions where the surrogate model is uncertain 

nd exploitation of the model’s confidence in good solutions. Al- 

hough the basic BO framework can be traced back to the 1970s 

 Mo ̌ckus, 1975 ), its popularity has substantially grown in recent 

ears due to advances in computer power, algorithms, and soft- 

are as well as successes in a variety of application areas in- 

luding hyperparameter optimization in machine learning models 

 Bergstra et al., 2011 ), material design and discovery ( Frazier and 

ang, 2016 ), aircraft design ( Meliani et al., 2019 ), and automated 

ontroller design ( Paulson and Mesbah, 2020; Sorourifar et al., 

021a,b ). 

Although BO was originally formulated for unconstrained prob- 

ems, it has been recently extended to handle expensive-to- 

valuate black-box constraints. There are two main classes of 

ethods for handling these constraints, which we categorize 

s implicit and explicit . Implicit approaches define a new ob- 

ective using a merit-type acquisition function that simultane- 

usly accounts for effects due to the unknown objective and un- 

nown constraints. Several merit functions have been proposed 

n the literature including the expected constrained improvement 

 Gardner et al., 2014 ) and the augmented Lagrangian BO (ALBO) 

ethod ( Picheny et al., 2016 ) that combines the classical aug- 

ented Lagrangian method with unconstrained BO. Explicit ap- 

roaches, on the other hand, attempt to model the constraints and 

olve a constrained subproblem that is restricted to a “best guess”

f the feasible region, and can be further subdivided into deter- 

inistic and probabilistic methods. In deterministic explicit meth- 

ds, one would disregard the variance information predicted by the 

P model such as the super efficient global optimization (SEGO) 

pproach in ( Sasena et al., 2002 ). Probabilistic explicit methods 

nstead embrace this uncertainty by either restricting the feasi- 

le region to ensure high probability of constraint satisfaction at 

ach iteration or, more recently, relaxing the feasible region to al- 

ow exploration in the case of poorly modeled constraints. In par- 

icular, the recently proposed upper trust bound (UTB) method 

 Priem et al., 2019 ), which allows the mean prediction of the GP 

odel to violate constraints up to a constant factor times the vari- 

nce of the GP model, has shown the ability to more effectively 

ompromise between exploration and exploitation of the feasible 

esign space than alternative constrained BO methods. 

Even though constrained BO methods have been found to em- 

irically perform well on a variety of complex engineering prob- 

ems in which the dimension of the design space is relatively small 
2 
typically on the order of ten or less), its sample efficiency tends to 

ecrease with increasing dimension due to the exponential growth 

n the size of the search space. Although this challenge can partly 

e addressed by combining sensitivity and/or dimensionality re- 

uction techniques with GP models (see, e.g., Bouhlel et al., 2016 ), 

hese black-box methods are fundamentally limited by the fact that 

ny available knowledge about the structure of the underlying ob- 

ective and constraint functions is neglected. In many practical en- 

ineering problems, only a portion (or subsystem) of the model 

s not explicitly known; such cases do not neatly fit into the ei- 

her the white- or black-box problem classes and thus we can 

ntroduce the notion of a hybrid “grey-box” model that involves 

 mixture of EO and non-EO models. In this work, we represent 

rey-box models as composite objective and constraint functions 

f the form f (x ) = g(h (x )) where g(·) and h (·) are the white-box

nd black-box functions, respectively, which appear in many im- 

ortant real-world problems. For example, when calibrating pa- 

ameters x of an expensive process simulator to measured data 

 meas , the objective function to be minimized can be formulated as 

f (x ) = g(h (x )) = ‖ h (x ) − y meas ‖ where h (x ) is the predicted output

f the simulator for fixed parameters x and ‖ · ‖ is some monotonic 

ransformation of the likelihood of the measurement errors. It was 

ecently shown in ( Astudillo and Frazier, 2019 ) that significant im- 

rovements in the convergence rate of BO can be achieved when 

ccounting for this composite structure for unconstrained prob- 

ems. Extending this approach to constrained grey-box problems 

s not trivial, as it relies on a stochastic gradient ascent algorithm 

o maximize the composite acquisition function that is not directly 

pplicable to nonlinear and non-convex constraints. 

A variety of methods for constrained grey-box optimization 

ave been developed within the process systems engineering com- 

unity ( Bajaj et al., 2018; Beykal et al., 2018a,b, 2020; Boukou- 

ala and Floudas, 2017; Eason and Biegler, 2016, 2018; Kim and 

oukouvala, 2020; Schweidtmann and Mitsos, 2019 ), which could 

e used as alternatives to the BO framework. One recent exam- 

le is the trust region filter algorithm proposed in ( Eason and 

iegler, 2016, 2018 ), which is guaranteed to converge to a lo- 

al optimum. A potential disadvantage of this approach, how- 

ver, is the lack of a global surrogate model, which may re- 

ult in convergence to a highly suboptimal local optimum de- 

ending on the selected initialization point. The ARGONAUT algo- 

ithm ( Boukouvala and Floudas, 2017 ) constructs a global surro- 

ate model that is sequentially optimized using the global opti- 

ization solver ANTIGONE; a similar adaptive sampling framework 

as been recently extended to mixed-integer nonlinear programs 

n ( Kim and Boukouvala, 2020 ). There are two potential disadvan- 

ages to these (and many other related) methods: (i) they often do 

ot directly account for the composite structure of the objective 

nd/or constraint functions and (ii) only a deterministic surrogate 

odel is trained, which tends to over exploit the initial runs when- 

ver only a small number of function evaluations can be performed 

ue to a limited computational budget. 

Motivated by the BO framework and results in ( Astudillo and 

razier, 2019 ), we propose a novel algorithm for constrained grey- 

ox optimization problems in this work, which we refer to as 

OBALT (COnstrained Bayesian optimizAtion of computationaLly 

xpensive grey-box models exploiting derivaTive information). The 

roposed COBALT algorithm is composed of the following three 

ain components: (i) a multivariate GP model of the black-box 

ortions of the problem, (ii) a novel acquisition function for com- 

osite objective functions that is almost everywhere differentiable, 

nd (iii) a generalization of the UTB constraint handling method 

o the case of composite functions using the notion of chance 

onstraints. Due to the composite structure of the objective and 

onstraints, we cannot derive the simple analytic expressions for 

he constrained acquisition function often found in traditional BO 
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ethods. Instead, we utilize the sample average approximation 

SAA) method ( Kleywegt et al., 2002 ) to convert the stochastic 

onstrained acquisition optimization problem into a deterministic 

roblem. To alleviate the challenges that arise with an SAA-based 

eformulation of the chance constraints ( Pagnoncelli et al., 2009 ), 

e propose a moment-based approximation that greatly simplifies 

he complexity of the SAA problem, which we show can be effi- 

iently optimized using state-of-the-art NLP solvers. Through ex- 

ensive testing on various types of test problems, we have observed 

hat COBALT is able to outperform traditional BO by finding better 

up to multiple orders of magnitude) quality solutions in fewer it- 

rations, which can be directly attributed to its ability to account 

or the grey-box structure of the problem. 

The remainder of the paper is organized as follows. In Section 2 , 

he constrained grey-box problem of interest in this work is formu- 

ated. In Section 3 , the proposed COBALT algorithm and its relevant 

arameters are presented. Section 4 discusses a Matlab-based im- 

lementation of COBALT and presents results and comparisons for 

ix benchmark global optimization problems and a complex pa- 

ameter estimation problem for a genome-scale bioreactor model. 

astly, we conclude the article and discuss some important direc- 

ions for future work in Section 5 . 

.1. Notation 

Throughout the paper, we use the following notation. We let 

 x ‖ p denote the � p norm of a vector x ∈ R 
n . We let S 

n + and S 
n ++ 

enote the set of positive semidefinite and positive definite n × n 

atrices, respectively. By �X , we denote the Euclidean projection 

perator onto the set X , that is, �X (x ) = argmin x ′ ∈ X ‖ x − x ′ ‖ 2 . For
ny a ∈ R , we denote [ a ] + = max { a, 0 } . The notation � a � is the
argest integer less than or equal to a ∈ R and � a 	 is the smallest

nteger greater than or equal to a ∈ R . For a real-valued function 

f : R 
n → R , we let ∇ x f (x ) = (∂ f (x ) /∂ x 1 , . . . , ∂ f (x ) /∂ x n ) denote its

radient with respect to x and simplify this to ∇ x f (x ) = ∇ f (x )

hen the argument is clear from the context. For random vector 

, we let E X {·} denote the expectation operator, E X| Y {·} denote the 
onditional expectation given Y , and P { X ∈ A } denote the probabil-
ty that X lies in the set A . By N (μ, �) , we denote a multivariate

aussian distribution with mean μ ∈ R 
n and covariance � ∈ S 

n + . 
he subscript n exclusively refers to current iteration; additional 

ubscripts may be added to denote elements and/or samples of 

articular variables. 

. Problem definition 

In this paper, we consider a general constrained nonlinear grey- 

ox optimization problem that can be mathematically defined as 

in 
x,y,z 

f (x, y ) , (1a) 

.t. g(x, y ) ≤ 0 , (1b) 

y = d(z) , (1c) 

z = Ax, (1d) 

x ∈ X ⊂ R 
n x , y ∈ R 

n y , z ∈ R 
n z , (1e) 

here x ∈ R 
n x is a vector of n x decision variables that is con-

trained to a constrained within known lower x L and upper x U 

ounds, i.e., X = { x : x L ≤ x ≤ x U } ; z ∈ R 
n z and y ∈ R 

n y , respectively,

enote the inputs and outputs of an unknown “black-box” vector- 

alued function d : R 
n z → R 

n y referenced in (1c) ; A ∈ R 
n x ×n z is a

inary matrix that encodes that the black-box function may only 
3 
equire a subset n z ≤ n x of x as input according to (1d) ; and

f : R 
n x × R 

n y → R and g : R 
n x × R 

n y → R 
n g are the known “white-

ox” objective and constraint functions, respectively. We empha- 

ize the so-called “grey-box” structure of the optimization problem 

1) in that both f and g are composite functions that are second- 

rder continuously differentiable with known structure whereas d

s completely unknown. Here the phrase “unknown” strictly refers 

he mathematical expression of d in terms of z; we do assume a 

imulator is available to query y = d(z) at fixed z ∈ { z : Ax L ≤ z ≤
x U } . Additionally, we assume this simulator is expensive to evalu- 

te, so only a limited number of evaluations (on the order of tens 

o hundreds) can be performed. 

Due to the vector representation of the expensive black-box 

unction, we can easily incorporate any (finite) number of n b black- 

oxes by concatenating the outputs of each individual simulators 

(Ax ) = [ d 1 (A 1 x ) 
� , . . . , d n b (A n b x ) 

� ] � , (2) 

here A i ∈ R 
n x ×n z i denotes the binary encoding matrix for the i th 

imulator for all i = 1 , . . . , n b and A represents the collection of

nique rows from [ A � 1 , . . . , A 
� 
n b 
] � . 

An important distinction in the formulation of (1) compared 

o alternative constrained grey-box algorithms is the explicit con- 

ideration of the composite structure of the overall objective 

(x ) = f (x, d(Ax )) and constraints c(x ) = g(x, d(Ax )) . Neglecting

his structure, we obtain a simplified representation of (1) as fol- 

ows 

in 
x ∈X 

l(x ) , (3a) 

.t. c u (x ) ≤ 0 , ∀ u ∈ { 1 , . . . , U} , (3b) 

 k (x ) ≤ 0 , ∀ k ∈ { 1 , . . . , K} , (3c) 

here l(x ) must be generally modeled as an unknown func- 

ion due to the embedded black-box function d(Ax ) , c(x ) = 

 c 1 (x ) , . . . , c n g (x )] 
� is the vector concatenation of individual con-

traint functions, k ∈ { 1 , . . . , K} are the set of indices for which

he constraints have known closed-form equations, u ∈ { 1 , . . . , U} 
re the set of indices for which the structure of the constraints 

re unknown, and n g = K + U . The formulation (3) has been con- 

idered in several previous works (see, e.g., Beykal et al., 2018b, 

020; Boukouvala and Floudas, 2017; Kim and Boukouvala, 2020 ) 

nd is clearly a special case of (1) whenever the composite 

tructure of the unknown objective and constraints is neglected. 

hus, one of the main contributions of this work is to exploit 

his composite structure (whenever possible) to improve the ef- 

ciency/performance of data-driven optimization procedures. The 

etails of our proposed algorithm for solving (1) are presented in 

he next section. 

. The COBALT approach: Efficient global optimization of 

onstrained grey-Box models 

The main idea behind the Bayesian optimization (BO) frame- 

ork is to sequentially decide where to sample the design space 

 using all available observations of the objective and constraint 

unctions. Instead of relying on measurements of � (·) and c u (·) , 
 u ∈ { 1 , . . . , U} , as would be the case for traditional BO, we rely

n observations of the black-box function d in (1) directly. Let 

 n = { x i , z i , y i } n i =1 
, where z i = Ax i and y i = d(z i ) , be all available ob-

ervations at iteration n . By prescribing a prior belief over the func- 

ion d, we can construct (and iteratively refine) a statistical sur- 

ogate model for d given the available data using Bayes’ rule to 

etermine the posterior distribution d(·) |D n . Given this probabilis- 

ic model, we can induce an acquisition function αn : X → R that 
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Fig. 1. Illustration of the main components of the proposed COBALT algorithm. 
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everages uncertainty in the posterior to tradeoff between explo- 

ation and exploitation. We can roughly think of αn as quantifying 

he utility of potential candidate points for the next evaluation of 

; by accounting for the composite structure we can focus sam- 

ling on regions that have the most significant impact on the over- 

ll objective f (x, d(Ax )) and likelihood of producing feasible points 

(x, d(Ax )) ≤ 0 , as opposed to “wasting” evaluations in regions that 

re likely to yield poor results. A high-level overview of the BO 

rocess is provided in Algorithm 1 and an illustrative flowchart is 

hown in Fig. 1 . 

lgorithm 1 General overview of the Bayesian optimization 

ramework. The link of Eq. (4) is in this Algorithm. 

Initialize: Maximum number of samples N and initial dataset 

 1 . 

1: for n = 1 to N do 

2: Build statistical surrogate model for d(·) ; 
3: Find x n +1 as the solution to the following enrichment sub- 

problem 

x n +1 = argmax x ∈X n αn (x ) , (4) 

4: Set z n +1 = Ax n +1 and evaluate expensive function at y n +1 = 

d(z n +1 ) ; 

5: Augment the dataset D n +1 = D n ∪ { x n +1 , z n +1 , y n +1 } . 
Output: The feasible point with the lowest objective value. 

There are three key ingredients in the proposed grey-box BO 

ethod summarized in Algorithm 1 : (i) the choice of probabilistic 

urrogate model that consists of our prior beliefs about the behav- 

or of d; (ii) the specification of acquisition functions αn that cap- 

ures the tradeoff between exploration and exploitation and can 

e relatively “easily” optimized; and (iii) the constraint handling 

echanism by choice of the sets X n ⊆ X to ensure sufficient ex- 

loration of the feasible domain. The specific choices of these three 

lements that make up the proposed COBALT method are discussed 

n the remainder of this section. 

.1. Overview of Gaussian process regression 

Gaussian process (GP) models represent an uncountable collec- 

ion of random variables, any finite subset of which has a joint 

aussian distribution. Thus, GPs generalize the notion of a mul- 

ivariate Gaussian distribution to “distributions over functions,”

hich are fully specified by their mean and covariance functions 
4 
 Rasmussen and Williams, 2006 ). Although any probabilistic surro- 

ate model can be used, e.g., ( Snoek et al., 2015 ), we focus exclu-

ively on GPs in this work due to their non-parametric nature, i.e., 

hey can represent any function given a sufficiently large dataset. 

In this section, we provide an overview of GP regression for 

eneral scalar functions s : R 
n z → R from potentially noisy mea- 

urements 

 = s (z) + v , (5) 

here v ∼ N (0 , σ 2 
v ) is a zero mean Gaussian noise term with vari-

nce σ 2 
v . Here, s can be thought of as modeling a single component 

f the black-box function, i.e., s = d j for a given j ∈ { 1 , . . . , n y } ;
he extension of GP to multi-output functions will be discussed in 

ore detail in the subsequent section. 

GPs are specified by their mean function m (·) and covariance 
unction k (·, ·) . We write that a function s (·) is distributed as a
P with mean function m (·) and covariance function k (·, ·) as fol- 
ows 

 (·) ∼ GP (m (·) , k (·, ·)) , (6) 

ith 

 (z) = E s { s (z) } , (7a) 

 (z, z ′ ) = E s { (s (z) − m (z))(s (z ′ ) − m (z ′ )) } , (7b) 

here z, z ′ ∈ R 
n z are arbitrary input vectors and E s {·} is the expec-

ation over the function space. The GP prior can generally depend 

n a set of hyperparameters �c , i.e., m (z| �c ) and k (z, z 
′ | �c ) . With-

ut loss of generality, we assume that the mean function is set to 

ero 

 (z| �c ) = 0 , (8) 

hich can be achieved by normalizing the data before training as 

iscussed in, e.g., ( Bradford et al., 2018 ). When using GP regression, 

he chosen class of covariance functions determines the properties 

f the fitted functions. Here, we will focus on stationary covari- 

nce functions from the Matérn class whose smoothness can be 

djusted by a parameter ν such that the corresponding function is 

 ν/ 2 − 1 	 times differentiable. Some of the most commonly used 

xamples are 

 ν=1 (z, z 
′ ) = ζ 2 exp 

(
−r(z, z ′ ) 

)
, (9a) 

 ν=3 (z, z 
′ ) = ζ 2 

(
1 + 

√ 

3 r(z, z ′ ) 
)
exp 

(
−

√ 

3 r(z, z ′ ) 
)
, (9b) 
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 ν=5 (z, z 
′ ) = ζ 2 

(
1 + 

√ 

5 r(z, z ′ ) + 

5 

3 
r(z, z ′ ) 2 

)
exp 

(
−

√ 

5 r(z, z ′ ) 
)
, 

(9c) 

here r(z, z ′ ) = 

√ 

(z − z ′ )�−2 (z − z ′ ) is the scaled Euclidean dis- 
ance and � = diag (λ1 , . . . , λn z ) is a diagonal scaling matrix. Note 

hat, in the limit ν → ∞ , we recover the squared exponential (SQ- 

XP) covariance function of the form 

 SQ-EXP (z, z 
′ ) = ζ 2 exp 

(
−1 

2 
r(z, z ′ ) 2 

)
, (10) 

hich is most commonly used function whenever s is assumed 

o be a member of the space of smooth (infinitely differentiable) 

unctions. 

Under assumption (8) , the hyperparameters consist of �c = 

 ζ , λ1 , . . . , λn z ] 
� . The parameter ζ describes the output variance 

hile the parameters { λi } n z i =1 
define the length scale of each of the 

nput variables. Covariance functions with different length scales 

or each input are called anisotropic ; if an input dimension is not 

mportant, then its corresponding length scale will be large. Due to 

he additive property of Gaussian distributions, we can derive a GP 

odel for the observation 

 ∼ GP (0 , k (z, z ′ | �c ) + σ 2 
v δzz ′ ) , (11) 

here δzz ′ is the Kronecker delta function that is equal to 1 when- 

ver z = z ′ and zero otherwise. If the function observations are 

oisy and σ 2 
v is unknown, it can be included in the joint set of 

yperparameters for the prior denoted by � = [�� 
c , σ

2 
v ] 

� . 
Training a GP model thus corresponds to calibrating the hyper- 

arameters � to a given dataset. Let us assume that we have n 

vailable measurements of the unknown function s represented by 

he following matrices 

 = [ z 1 , . . . , z n ] 
� ∈ R 

n ×n z , (12a) 

 = [ t 1 , . . . , t n ] 
� ∈ R 

n ×1 , (12b) 

here z i and t i denote the i 
th input and output data point, respec- 

ively. Based on the GP prior assumption (6) , the measured data 

ector T must follow a multivariate Gaussian distribution of the 

orm 

 ∼ N (0 , �T ) , [�T ] i j = k (z i , z j | �c ) + σ 2 
v δi j , 

 (i, j) ∈ { 1 , . . . , n } 2 . (13) 

e use the maximum likelihood estimation (MLE) framework to 

nfer the hyperparameters � from the log-likelihood function of 

he observations 

 (�) = log (p(T | Z, �)) = −1 

2 
T � �−1 

T T − 1 

2 
log ( det (�T )) 

− n 

2 
log (2 π) . (14) 

he MLE hyperparameter estimate is then specified as the solution 

o the following optimization problem 

MLE = argmax � L (�) , (15) 

hich can be solved using readily available NLP methods. Once we 

ave trained the hyperparameters, we can use the data D = { Z, T }
o infer the posterior distribution s (z) |D at any test point z using 

ayes’ rule (Rasmussen and Williams, 2006, Chapter 2) 

 (z) |D ∼ N (μs (z;D) , σ 2 
s (z;D)) , (16) 

ith 

s (z;D) = k (z, Z)�−1 
T T , (17a) 

2 
s (z;D) = k (z, z) − k (z, Z)�−1 k (z, Z) � , (17b) 
T 

5 
here 

 (z, Z) = [ k (z, z 1 ) , . . . , k (z, z n )] ∈ R 
1 ×n . (18) 

t is important to note that the posterior mean μs (z;D) represents 

ur best prediction of the unknown function s (z) at any particular 

value, while the posterior variance σ 2 
s (z;D) provides a measure 

f uncertainty in this prediction. 

emark 1. The complexity of evaluating the posterior mean and 

ariance scales as O (n 3 ) with respect to number of observations 

 due to inversion of the covariance matrix in (16) . In practice, 

he Cholesky decomposition �T = L T L 
� 
T 

can be computed once and 

aved so that subsequent evaluations scale as O (n 2 ) , as long as the

yperparameters of the kernel are kept constant. This is typically 

ot a major issue for expensive function evaluations (due to the 

elatively low computational budget which is the case of interest 

n this paper); however, does become an important challenge large 

atasets. There have been a significant number of contributions 

n reducing the computational cost including sparse GP methods 

 Snelson and Ghahramani, 2006 ). This topic remains a very active 

rea of research and recently developed packages such as GPyTorch 

 Gardner et al., 2018 ) have been able to scale GPs to n > 10 6 train-

ng points. 

.2. Statistical model for multi-output black-box function 

In traditional BO methods, a separate GP would be trained 

or the objective and unknown constraints in (3) following the 

rocedure discussed in the previous section. Here, our goal is 

o learn a GP model for d in (1) instead using the dataset D n 

hat is recursively updated according to Algorithm 1 . We model 

as being drawn from a multi-output GP distribution, i.e., d(·) ∼
P (m (·) , k (·, ·)) where m : R 

n z → R 
n y is the prior mean function

nd k : R 
n z × R 

n z → S 
n y 
++ is the prior covariance function. Simi- 

arly to the single output case described previously, the pos- 

erior distribution d(·) |D n is again a multi-output GP (MOGP), 

P (μn (·) , K n (·, ·)) , where the posterior mean μn and covariance K n 
an be computed in closed-form ( Liu et al., 2018 ). 

When modeling the correlation between the components of d, 

he evaluation cost of the posterior multi-output GP would scale 

s O (n 2 y n 
3 ) in the worst-case (see Remark 1 ). An alternative ap-

roach that we pursue here is to model the components of d in- 

ependently, meaning we constrain K n to be a diagonal matrix, so 

he necessary computations scale linearly with respect to the num- 

er of outputs O (n y n 
3 ) in the worst-case. We focus on the more

ractable case in this work since we need to systematically opti- 

ize over the MOGP model embedded within the acquisition and 

onstraint functions, and we would like to limit the complexity of 

hese sub-problems. Note that the proposed COBALT method, dis- 

ussed in detail below, can flexibly handle any MOGP model of in- 

erest and will provide immediate gains in performance when a 

ore accurate MOGP model (i.e., one that better captures the un- 

erlying correlation between the elements of d) is utilized. How- 

ver, as shown in ( Liu et al., 2018 ), correlated MOGPs have a 

arger number of hyperparameters that must be estimated during 

he training procedure, which makes the MLE estimation problem 

ore difficult to solve. Therefore, in practice, correlated MOGPs are 

ot guaranteed have a higher prediction quality than uncorrelated 

OGPs, especially in the low-data regime of interest in this work. 

To build a separate GP for each d i (z) for all i ∈ { 1 , . . . , n y } , we

ivide the complete dataset D n = {D 1 ,n , . . . , D n y ,n } into its individ-
al components D i,n = { x j , z j , d i (z j ) } n j=1 

. Using the procedure sum-

arized for scalar functions in Section 3.1 , the posterior Gaussian 

istribution of d(·) at any test input z is then 

(z) |D n ∼ N (μn (z) , �n (z)) , (19) 
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n (z) = [ μd 1 (z;D 1 ,n ) , . . . , μd n y 
(z;D n y ,n )] 

� , (20a) 

n (z) = K n (z, z) = diag (σ 2 
d 1 

(z;D 1 ,n ) , . . . , σ
2 
d n y 

(z;D n y ,n )) , (20b) 

here μd i 
(z;D i,n ) and σ

2 
d i 
(z;D i,n ) are the posterior mean and vari- 

nce functions for d i (z) , respectively, built from the datasets D i,n 

or all i = 1 , . . . , n y . 

.3. Modified expected improvement for composite functions 

Now that we have a statistical model to represent our belief 

bout the unknown function d at iteration n as shown in (19) , we 

eed to select an acquisition function that captures the utility of 

ampling at a subsequent point x n +1 . We first focus on the uncon- 

trained case for simplicity; the developed approach is extended to 

andle constraints in the next section. 

In experimental design and decision theory literature, the func- 

ion αn is often referred to as the expected utility ; whereas, in 

he BO literature, it is often called the acquisition or infill func- 

ion. The acquisition function must be chosen carefully to achieve 

 reasonable tradeoff between exploring the search space and ex- 

loiting currently known promising areas of X . As discussed in 

 Shahriari et al., 2015 ), acquisition functions can be categorized 

s either improvement-based, information-based, or optimistic. We 

evelop a modified improvement-based policy in this work based 

n an extension of classical expected improvement (EI) to compos- 

te functions ( Astudillo and Frazier, 2019 ): 

I-CF n (x ) = E n 

{
[ � � n − f (x, d(Ax ))] + 

}
, (21) 

here � � n = min i ∈{ 1 , ... ,n } � (x i ) is the minimum value across the 

oints that have been evaluated so far (often referred to as the in- 

umbent ) and E n {·} is the expected value conditioned on all avail- 
ble observations D n . When d is scalar-valued ( n y = 1 ), A = I n x , and

f is the identify function (i.e., f (x, d(Ax )) = d(x ) ), then (21) re-

uces to the traditional EI function that can be computed analyti- 

ally as follows 

I n (x ) = (� � n − μn (x ))�

(
� � n − μn (x ) 

σn (x ) 

)
+ σn (x ) φ

(
� � n − μn (x ) 

σn (x ) 

)
, 

(22) 

here � and φ are the standard Gaussian cumulative and proba- 

ility density functions, respectively. Although such an analytic ex- 

ression is relatively easy to evaluate and optimize, we are unable 

o derive one for EI-CF n (x ) when f is nonlinear in its second ar- 

ument. Despite this potential complication, it can be shown that 

I-CF n (x ) is differentiable almost everywhere under mild regularity 

onditions, which are summarized next. We first recognize that, for 

ny fixed x ∈ X , the posterior distribution of d(Ax ) is a multivari-

te normal according to (19). We can thus exploit the “whitening 

ransformation” to derive 

(Ax ) |D n = μn (Ax ) + C n (Ax ) ξ , (23) 

here ξ ∼ N (0 , I n y ) is a standard normal random vector and C n (z)

s the lower Cholesky factor of �n (z) . Substituting this transforma- 

ion into (21) , we can replace E n {·} with an expectation over ξ , i.e.,
 ξ {·} , implying that EI-CF n (x ) can be straightforwardly estimated 

sing Monte Carlo (MC) sampling; note EI-CF n (x ) is finite for all 

 ∈ X whenever E ξ {| f (x, ξ ) |} < ∞ . Similarly to (Astudillo and Fra-

ier, 2019, Supplementary Material) , we now make the following 

ild assumptions about f , μn , and �n : 

ssumption 1. Let X 0 be an open subset of X so that μn (Ax ) and

n (Ax ) are differentiable for every x ∈ X 0 . A measurable function 

: R 
n y → R exists such that 
6 
1. The function f is differentiable; 

2. ‖∇ f (x, μn (Ax ) + C n (Ax ) ξ ) ‖ 2 < η(ξ ) for all x ∈ X 0 and ξ ∈ R 
n y ; 

3. E ξ { η(ξ ) 2 } < ∞ is finite for ξ ∼ N (0 , I n y ) ; 

4. { x ∈ X 0 : f (x, μn (Ax ) + C n (Ax ) ξ ) = � � n } is countable for almost

every ξ ∈ R 
n y . 

As long as the prior mean function m (Ax ) and covariance func- 

ion K(Ax, Ax ) are differentiable on int (X ) , we can show that 

n (Ax ) and �n (Ax ) are differentiable on X 0 = int (X ) \ { x 1 , . . . , x n } .
ombining this with Assumption 1 , we see EI-CF n (x ) must be dif- 

erentiable almost everywhere (except on a countable subset of X ). 

hus, when it exists, the gradient of the composite EI function is 

iven by 

 EI-CF n (x ) = E ξ { γn (x, ξ ) } , (24) 

here 

n (x, ξ ) = 

{ 

−∇ f (x, μn (Ax ) + C n (Ax ) ξ ) , if f (μn (Ax ) + C n (Ax ) ξ ) < f � n , 

0 , otherwise . 

(25) 

n the derivation of (24) , we have switched the order of the ex- 

ectation and the gradient operators that is generally possible un- 

er minor technical conditions presented in (L’Ecuyer, 1990, Theo- 

em 1) . Since γn (x, ξ ) is an unbiased estimator of ∇ EI-CF n (x ) , we

ould potentially use the following stochastic gradient ascent algo- 

ithm to search for maximizer of (4) , with αn ← EI-CF n , from some 

nitial guess x n +1 , 0 : 

 n +1 ,t+1 = �X n ( x n +1 ,t + νt γn (x n +1 ,t , ξt ) ) , ∀ t ∈ { 0 , . . . , T − 1 } , 
(26) 

here { x n +1 ,t } T t=0 is the sequence of design variables over T it- 

rations of the algorithm, { νt } T −1 
t=0 

is the sequence of step sizes, 

nd { ξt } T −1 
t=0 

are independent and identically distributed (i.i.d.) sam- 

les from the distribution of ξ . Even in the box-constrained case, 
.e., X n = X such that the projection operator is simple to im- 

lement, the stochastic gradient ascent algorithm is known to be 

uite sensitive to the choice of step sizes ν0 , . . . , νT −1 ( Huan and 

arzouk, 2014 ). Another key challenge is that γn (x, ξi ) = 0 for a

otentially large range of x and ξ values, as seen in (25) , which 

ay cause the iteration scheme (26) to become stuck locally. This 

articular problem only gets worse as the number of observations 

 increase due to the fact that the incumbent � � n can only improve 

or stay the same) at each iteration resulting in smaller probability 

hat the surrogate predicts potential improvement. 

This challenge has been previously noticed in the context of 

I, which is often observed to be highly multimodal in nature 

 Sasena et al., 2002 ). One potential remedy is to modify the def- 

nition of the acquisition function to better reflect the shape of 

he objective. One such example is the “locating the regional ex- 

reme” acquisition proposed by Watson and Barnes in ( Watson and 

arnes, 1995 ) for black-box optimization problems, i.e., WB2 n (x ) = 

ˆ � n (x ) + EI n (x ) where ˆ � n (x ) is the mean of a posterior GP sur-

ogate model for the overall objective. Although producing a 

moother function, the WB2 n (x ) acquisition function does not ac- 

ount for the difference in the scales of the predicted objective and 

I. In particular, as the GP surrogate model becomes more accu- 

ate, we expect EI n (x ) to steadily decrease, resulting in WB2 n (x ) ≈
ˆ � n (x ) , so that Algorithm 1 begins to fully focus on exploitation of 

he surrogate, which may be undesired. Therefore, not only are we 

nterested in improving the scaling of the WB2 function, we want 

o extend it to composite functions as follows 

WB2-CF n (x ) = s n EI-CF n (x ) − ˆ � n (x ) , (27) 

here s n > 0 denotes a non-negative scaling factor and ˆ � n (x ) = 

 n { f (x, d(Ax )) } denotes the predicted mean of the overall objec- 
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ive function. The gradient can be straightforwardly computed us- 

ng (23), (24) , and (25) as follows 

 mWB2-CF n (x ) = E ξ { s n γn (x, ξ ) − ∇ f (x, μn (Ax ) + C n (Ax ) ξ ) } , 
(28) 

hich still exists almost everywhere and whose estimates does not 

uffer from the same zero gradient issue as γn (x, ξ ) . This means 

e could use the same stochastic gradient ascent algorithm to 

olve the enrichment sub-problem (4) with the acquisition func- 

ion set to αn ← mWB2-CF n by replacing the gradient estimate 

ith γn (x, ξi ) ← s n γn (x, ξi ) − ∇ f (x, μn (Ax ) + C n (Ax ) ξi ) in (26) . The
nly remaining question is how to select the scaling factor s n in 

uch a way that approximately preserves the global optimum of 

he composite EI function 

rgmax x ∈X n EI-CF n (x ) ≈ argmax x ∈X n mWB2-CF n (x ) . (29) 

nforcing this condition is difficult in practice since we must 

ccount for the full variation of ˆ l n (x ) over x ∈ X n . Motivated

y recent work in ( Bartoli et al., 2019 ), we instead rely on a

euristic approach that uses a finite number of starting points 

 n, start ⊂ X n to approximately maximize the composite EI, i.e., 

ˆ  n +1 ≈ argmax x ∈X n, start 
EI-CF n (x ) where X n, start contains the starting 

oints to be used in a multistart version of (26) (i.e., multiple 

estarts from different quasi-randomly sampled initial conditions 

 n +1 , 0 ). Using this approximate maximizer, we compute the scaling 

actor as 

 n = 

{ 

β
| ̂  � n ( ̂  x n +1 ) | 

EI-CF n ( ̂  x n +1 ) 
, if EI-CF n ( ̂  x n +1 ) > 0 , 

1 , otherwise , 

(30) 

here β > 1 is an additional scaling factor that accounts for the 

egree of nonlinearity in ˆ � n (x ) . We found that a relatively large 

alue of β = 100 gives good results for a variety of functions stud- 

ed in Section 4 . Finally, we highlight that, since neither EI-CF n (x ) 

r ˆ � n (x ) can be exactly computed due to presence of nonlinear 

erms, these terms must be estimated by MC sampling. It is im- 

ortant to recognize, however, that the transformation (23) implies 

hat the relatively expensive evaluation of μn (Ax ) and C n (Ax ) only 

eed to be done once at a given x ∈ X such that these MC esti-

ates can be efficiently computed for even a relatively large num- 

er of samples of ξ . Furthermore, we can easily replace MC sam- 

ling with more computationally efficient uncertainty propagation 

ethods, such as unscented transform ( Julier and Uhlmann, 1997 ) 

r polynomial chaos expansions ( Paulson et al., 2017 ), if and when 

eeded. 

.3.1. Illustrative example comparing black- and grey-box 

ormulations 

In Fig. 2 , we demonstrate the advantages of exploiting the 

omposite structure of the objective and the proposed mWB2-CF 

cquisition function on an illustrative example. In particular, we 

ake a grey-box representation of the Rosenbrock function, i.e., 

f (x, d(x )) = 100 − x 2 
1 

+ d(x ) 2 where A = I 2 , d(x ) = x 2 − x 2 
1 

is the

nknown black-box function, and x = [ x 1 , x 2 ] 
� . The first row of

ig. 2 shows the posterior mean (a) and variance (b) of the overall 

bjective � for six randomly generated initial samples and the tra- 

itional EI acquisition function (c). We see that the predicted vari- 

nce is low near the evaluated samples (red dots), and this vari- 

nce grows as x moves away from these points. From Fig. 2 c, we

ee that classical EI is largest near the lowest function value ob- 

erved (green diamond), which is relatively far away from the true 

lobal minimum f (x � , d(x � )) = 0 where x � = [1 , 1] � (white star).

his is not unexpected since the mean function built for � directly 

oes not accurately represent the true surface (g) with these lim- 

ted set of samples. The second row of Fig. 2 , on the other hand,

hows the posterior mean (d) and variance (e) of the composite 
7 
bjective f (x, d(x )) for the same set of six samples as well as the

I-CF acquisition function (f). It should be noted that the poste- 

ior of f (x, d(x )) is not normally distributed and thus the mean, 

ariance, and EI-CF evaluations must all be approximated with MC 

ampling. Not only do we see that the mean function result in a 

uch more accurate representation of true objective, we see sig- 

ificantly less variance in the prediction due to partial knowledge 

f the function’s structure. A direct result of this is that the largest 

alue of EI-CF (green diamond) is much closer to the global mini- 

um, as seen in Fig 2 f. However, the max operator in (21) results

n a flattened EI-CF surface that can be difficult to globally opti- 

ize; the mWB2-CF acquisition function (h) clearly addresses this 

roblem by providing useful gradient information throughout the 

esign space while still preserving the global maximum of EI-CF. 

.4. Chance constraint-based relaxation of feasible region 

The previous section focused on the choice of acquisition func- 

ion in the absence of any black- or grey-box constraints ( n g = 0 ),

hich has been the main case of interest in much of the BO lit- 

rature. As mentioned in the introduction, we take a probabilistic 

xplicit approach to constraint handling that can be generally for- 

ulated in terms of chance constraints, which is the focus of this 

ection. 

Given our statistical model of d in (19) , the constraint func- 

ion in (1b) becomes a multivariate random vector for any partic- 

lar x ∈ X . Due to this inherent randomness, we can only enforce 

hese constraints up to a certain probability level. For simplicity, 

e formulate these as a set of individual chance constraints for 

ach component of g(·) = [ g 1 (·) , . . . , g n g (·)] � as follows 

 n { g i (x, d(Ax )) ≤ 0 } ≥ 1 − εi,n , ∀ i ∈ { 1 , . . . , n g } , (31) 

here P n {·} is the conditional probability given all available ob- 
ervations D n at iteration n and εi,n ∈ (0 , 1) is the maximum al- 

owed probability of constraint violation. In similar fashion to EI 

reviously, we see that (31) has a closed-form expression in cer- 

ain special cases. For example, we can derive the following ex- 

ression when g i is linearly related to the black-box function, i.e., 

 i (x, d(Ax )) = a � 
i 
(x ) d(Ax ) − b i (x ) 

 
� 
i (x ) μn (Ax ) + �−1 (1 − εi,n ) ‖ C n (Ax ) a i ‖ 2 ≤ b i (x ) . (32) 

nfortunately, such closed-form expressions are not available in 

he general nonlinear case so we again need to develop an effi- 

ient approximation strategy. One approach would be to again try 

 MC sampling-based approach by recognizing that 

 n { g i (x, d(Ax )) ≤ 0 } = E n { I { g i (x, d(Ax )) ≤ 0 }} , 
= E ξ { I { g i (x, μn (Ax ) + C n (Ax ) ξ ) ≤ 0 }} , 

≈ 1 

M 

M ∑ 

i =1 

I { g i (x, μn (Ax ) + C n (Ax ) ξ
(i ) ) ≤ 0 } , 

(33) 

here I { L } is the indicator function that is equal to 1 if the logi-
al proposition L is true and 0 otherwise and { ξ (i ) } M 

i =1 
is a set of

i.i.d. samples of ξ . Since the indicator function in (33) is non- 
mooth, it substantially increases the complexity of the enrichment 

ub-problem due to the inclusion of binary variables to enforce 

ome fraction of the constraints to hold ( Pagnoncelli et al., 2009 ). 

 much simpler approach is to rely on a moment-based approxi- 

ation of (31) that can be derived from a first-order Taylor series 

xpansion of g i (x, y ) in its second argument around ˆ y = μn (Ax ) 

 i (x, y ) ≈ g i (x, ̂  y ) + ∇ y g i (x, ̂  y )(y − ˆ y ) . (34) 

y substituting y = d(Ax ) in the expression above, we see that the 

osterior distribution of g (x, d(Ax )) is approximately normally dis- 
i 
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Fig. 2. Illustrative example comparing the proposed EI-CF and mWB2-CF acquisition functions to the classical EI acquisition function on a modified Rosenbrock problem. The 

top row shows the (a) mean, (b) variance, and (c) EI for the posterior of the overall objective � (x ) given observations of � (x i ) at six points x 1 , . . . , x 6 (shown with red dots in 

all figures). The second row shows the (d) mean, (e) variance, and (f) EI-CF for the posterior of the composite objective � (x ) = f (x, d(x )) given observations of the black-box 

function d(x i ) at the same six points. The last row shows the (g) exact shape of the function and (h) mWB2-CF. The white star denotes the true (unknown) global minimizer 

and the green diamonds denote the maximum of the acquisition functions. 
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Fig. 3. The relationship between the maximum violation probability εi,n and the 

corresponding trust levels τi,n in the probabilistic explicit set representation of the 

grey-box constraints. 
ributed for any fixed x ∈ X 

 i (x, d(Ax )) |D n ≈ N (μg i ,n (x ) , σ
2 
g i ,n 

(x )) , (35) 

here 

g i ,n (x ) = g i (x, μn (Ax )) , (36a) 

2 
g i ,n 

(x ) = ∇ y g i (x, μn (Ax ))�n (Ax ) ∇ y g i (x, μn (Ax )) 
� , (36b) 

re the approximate mean and variance for the probabilistically 

odeled constraint function g i at iteration n , respectively. Under 

his approximation, the chance constraints (31) can be substan- 

ially simplified, which enables us to define the probabilistic ex- 

licit set X n as follows 

 n = { x ∈ X : μg i ,n (x ) + τi,n σg i ,n (x ) ≤ 0 , ∀ i ∈ { 1 , . . . , n g }} , (37) 

here τi,n = �−1 (1 − εi,n ) can be interpreted as “trust” levels in 

he constraints at the current iteration number n . We see τi,n is 
xplicitly related to the allowed violation probability εi,n , with the 

hape of this curve being depicted in Fig. 3 . For εi,n values less 
han 50%, we see that τi,n is positive such that the variance term 
8 



J.A. Paulson and C. Lu Computers and Chemical Engineering 160 (2022) 107700 

τ
c

t  

r  

5

(

g

p

i

i  

(

c

t

a

c

I  

p

w

s

w

fi

c

i

τ

w

c

t

t

b

e

w

e

c

j

s

t

o

t

m

s

m

x

s

x

w  

ξ
ξ
a

�

I

p  

m

a

d

s

a

m

t

b

c

h

t

a

a

r

R

l

l

r

f

f

a  

d

(

c

m

w

d

R

s

f  

h  

a

|
w

d  

d

f

t

w  

c

i

R

l

r

P

f

w

n

g  

l

i

ε
g

(

x

t

i

l

d

i

t

are nearly independent). 
i,n σg i ,n (x ) effectively “backs off” of the mean prediction of the 

onstraint. This is an overall restriction of a simple determinis- 

ic prediction of the feasible region, i.e., g(x, μn (Ax )) ≤ 0 , which is

ecovered in the case that εi,n = 0 . 5 . For εi,n values greater than
0%, on the other hand, we see that τi,n becomes negative, so that 

37) is a relaxation of the nominal prediction of the feasible re- 

ion; the basic idea of this relaxation is to try to ensure that the 

redicted feasible region contains the true one with high probabil- 

ty and is similar to the notion of the upper trust bounds (UTBs) 

ntroduced in ( Priem et al., 2019 ). In fact, it can be shown that

37) reduces to the UTB approach in the case of fully black-box 

onstraint functions. 

We can think of εi,n (or equivalently τi,n ) as tuning parame- 

ers of the algorithm. In fact, one can imagine developing various 

daptive tuning mechanisms to update τi,n at each iteration n to 
ontrol the level of exploration in the predicted feasible region. 

n the early stages of Algorithm 1 , we expect the GP to provide a

oor prediction of the feasible region such that larger values of τi,n 
ould be preferred to allow for more exploration instead of overly 

ampling near a feasible local minimum. As n increases, however, 

e expect the GP model to become more accurate and, as our con- 

dence increases, we should shrink τi,n toward zero to accelerate 

onvergence. Using this rule-of-thumb, we found that the follow- 

ng linear update rule worked well in our numerical tests 

i,n = −3 

(
1 − n 

N 

)
, (38) 

hich starts from an initial condition of −3 (corresponds to a high 

onfidence that the true region is contained in X n ) and converges 

o 0 (corresponds to the nominal GP prediction) at the final itera- 

ion. A variety of other update strategies for the trust levels could 

e considered including ones that exhibit the opposite behavior or 

ven further increase τi,n , which we plan to explore more in future 

ork. 

Since X n in (37) is implicitly defined by a collection of nonlin- 

ar constraints, the stochastic gradient ascent algorithm in (26) be- 

omes significantly more expensive as a direct result of the pro- 

ector operator �X n that requires a non-convex optimization to be 

olved at every iteration. A more practical alternative is to resort 

o a sample average approximation (SAA) ( Kleywegt et al., 2002 ) 

f the enrichment sub-problem (4) that reduces the stochastic op- 

imization problem to a deterministic one. Using the proposed 

WB2-CF n (x ) acquisition function in (27) and probabilistic explicit 

et representation in (37) , the SAA approximation of (4) can be for- 

ulated as 

 n +1 = argmax x 
1 

M 

M ∑ 

i =1 

(
s n [ � 

� 
n − � 

(i ) 
n (x )] 

+ − � 
(i ) 
n (x ) 

)
, (39a) 

.t. μg i ,n (x ) + τi,n σg i ,n (x ) ≤ 0 , ∀ i ∈ { 1 , . . . , n g } , (39b) 

 
L ≤ x ≤ x U , (39c) 

here � 
(i ) 
n (x ) = f (x, μn (Ax ) + C n (Ax ) ξ (i ) ) for all i = 1 , . . . , M;

(1) , . . . , ξ (M) is a set of M i.i.d. realizations of the random variable 

∼ N (0 , I n y ) ; and the incumbent definition must be modified to 

ccount for constraints as follows 

 
� 
n = 

{ ∞ , if no points are feasible , 

min 
i ∈{ 1 , ... ,n } f (x i , y i ) s.t. g(x i , y i ) ≤ 0 , otherwise . 

(40) 

n practice, when the incumbent is infinite implying no feasible 

oints exist, we set s n = 0 such that the objective reduces to a

ean-based acquisition function. 

The key distinction of SAA (relative to the stochastic gradient 

scent method) is that the same set of realizations are used for the 

ifferent iterates of x computed during the optimization process 
9 
uch that (38) is fully deterministic. This implies that we can use 

ny of the state-of-the-art (derivative-based) nonlinear program- 

ing (NLP) solvers to efficiently locate locally optimal solutions to 

his problem. Due to the fast local convergence rate of derivative- 

ased NLP solvers, such as IPOPT ( Biegler and Zavala, 2009 ), we 

an easily utilize them in a multi-start optimization procedure as a 

euristic to finding the global maximizer of (38) . It is also impor- 

ant to note that this heuristic is not a major limitation, as even 

pproximate solutions to (38) still produce valuable samples that 

re more likely to result in improvement of the current incumbent 

elative to alternatives such as random or space filling designs. 

emark 2. There has been a substantial amount of theory estab- 

ished for the SAA method applied to stochastic optimization prob- 

ems (see, e.g., Kim et al., 2015 for detailed discussions on these 

esults). Under certain assumptions on the objective and constraint 

unctions, the optimal solution and objective estimate obtained 

rom (38) converge to their respective true values in distribution 

t a rate of O (1 / 
√ 

M ) . Furthermore, various procedures have been

eveloped to estimate the optimality gap between the solution of 

38) and the true solution. This optimliaty gap estimator and its 

orresponding variance estimated from the MC standard error for- 

ula can be used to decide if the approximate solution is trust- 

orthy or if the number of samples M needs to be increased, as 

iscussed in (Kleywegt et al., 2002, Section 3) . 

emark 3. Although we focused on inequality constraints (1b) for 

implicity, we can handle nonlinear equality constraints of the 

orm h (x, y ) = 0 similarly to (37) . In particular, we can transform

 (x, y ) = 0 into two-sided inequalities h (x, y ) ≤ 0 and h (x, y ) ≥ 0 to

rrive at 

 μh i ,n 
(x ) | ≤ −τi,n σh i ,n 

(x ) , ∀ i ∈ { 1 , . . . , n h } , (41) 

here μh i ,n 
(x ) and σh i ,n 

(x ) are the approximate mean and stan- 

ard deviation for the i th component of h at iteration n , which are

efined similarly to (35). Note that the constraints (41) become in- 

easible for any positive τi,n , implying that update rules that keep 

hese values negative, such as (38) , must be used. Furthermore, 

hen τi,n = 0 , (41) can be simplified to h (x, μn (Ax )) = 0 , which

orresponds to the best nominal prediction of the grey-box equal- 

ty constraints. 

emark 4. We focused on an individual chance constraint formu- 

ation (31) , as opposed to the following joint chance constraint rep- 

esentation 

 n { g(x, d(Ax )) ≤ 0 } = P n { g i (x, d(Ax )) ≤ 0 , ∀ i ∈ { 1 , . . . , n g }} 
≥ 1 − ε, (42) 

or two reasons. First, individual chance constraints can be dealt 

ith in a more computationally efficient manner since they do 

ot require the construction of the full multivariate distribution of 

(x, d(Ax )) |D n . Second, the choices of { εi,n } (that can be equiva-
ently mapped to the trust levels { τi,n } ) remain tuning parameters 

n COBALT. Although (42) involves only a single tuning parameter 

, it is not immediately obvious how to select this value to achieve 

ood performance in practice. Thus, we opt for the approach in 

38) due to the ease of interpretation of the impact on the selected 

 n +1 to changes in the trust levels. We plan to study the impact of 

he individual versus joint chance constraint representation more 

n our future work. It is interesting to note, however, that the col- 

ection of individual violation probabilities { εi,n } can be used to 
erive a conservative estimate on the joint satisfaction probabil- 

ty using Boole’s inequality ( Paulson et al., 2020 ), i.e., ε ≤ ∑ n g 
i =1 

εi,n , 
hough this bound is known to be conservative (unless the events 
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. Numerical examples 

Several numerical experiments were carried out to test the per- 

ormance of the COBALT algorithm under a variety of different con- 

itions. In all cases, we assume that noiseless objective and con- 

traint functions are available, however, the algorithm is capable of 

dentifying the noise term in the GP, as discussed in Section 3.1 , 

nd so is directly applicable to cases with noisy observations. 

.1. Implementation of the COBALT algorithm 

We now outline our implementation of the proposed COBALT 

lgorithm that was used to generate results in this section. The 

ode, which is implemented in Matlab, is freely available online at 

Paulson and Lu, 2021) . The first major step is construction of the 

P regression models for the black-box functions, which require 

he hyperparameters of the covariance function to be estimated, as 

iscussed in Section 3.1 . This is achieved by solving the MLE prob- 

em in (15) using the DIRECT search algorithm from ( Finkel, 2003 ). 

he best hyperparameter value found by the initial DIRECT search 

s then used to initialize Matlab’s local fmincon solver. The other 

ain GP calculations, such as evaluating the mean and variance 

unctions in (16) , were performed with the Gaussian Process for 

achine Learning (GPML) toolbox developed by Rasmussen and 

ickisch ( Rasmussen and Nickisch, 2010 ). The GPML toolbox im- 

lements the Matérn and squared exponential covariance func- 

ions in (8) and (10) , respectively. We selected the squared ex- 

onential kernel by default in all of our tests, though this can 

asily be modified in the code. The SAA-based enrichment sub- 

roblem (38) , with M = 100 as a default, was solved using IPOPT 

 Biegler and Zavala, 2009 ), with the CasADi ( Andersson et al., 2019 )

utomatic differentiation toolbox being used to supply exact first- 

nd second-order derivatives to IPOPT. 

Note that the current version of COBALT (Paulson and 

u, 2021) is constructed to be modular, as it implements a 

reyboxModel class object that has several helper methods that 

an be useful for algorithm testing and comparisons. With the ex- 

eption of the final case study that requires specialized simulation 

ode to run, all other test problems have been included in the ini- 

ial code release. 

.2. Optimization test problems and performance assessment method 

We test the performance of COBALT on a diverse set of opti- 

ization test problems commonly used for benchmarking global 

ptimization algorithms, which we slightly modify to fit the pro- 

osed grey-box structure in this paper. A summary of the set of 

even test problems is provided in Table 1 . The exact equations for 

he test problems in the form of (1), along with their global so- 

utions, are provided in Appendix A . The first three problems in- 

olve highly nonlinear (and some multi-modal) composite objec- 

ive functions of varying dimension with only box constraints on 

he decision variables. The next three problems all involve nonlin- 

ar constraints, with at least one or more composite grey-box con- 
Table 1 

Overview of the characteristics of the collection of sev

work along with their corresponding source. The detaile

Appendix A . 

Name n x n y n z n g Equation # 

Goldstein-Price 2 2 2 0 (A.1) 

Rastrigin 3 1 1 0 (A.2) 

Rosenbrock 6 4 4 0 (A.3) 

Toy-Hydrology 2 1 1 2 (A.4) 

Rosen-Suzuki 4 2 2 3 (A.5) 

Colville 5 4 4 6 (A.6) 

DFBA-MLE 6 24 6 0 (A.7) 

10 
traint functions. While the Toy-Hydrology problem has a known 

bjective and one grey-box constraint function, the Rosen-Suzuki 

nd Colville problems have a mixture of grey-box objective and 

onstraint functions. The last problem is a realistic engineering 

roblem that is related to parameter estimation in complex biore- 

ctor models. 

We compare the performance of COBALT (mWB2-CF) with four 

ther acquisition functions: expected improvement (EI), probabil- 

ty of improvement (PI), the expected improvement for compos- 

te functions (EI-CF), and random search (Random). The EI and 

I acquisitions were run using the bayesopt function from the 

tatistics and Machine Learning Toolbox in Matlab. The EI-CF ac- 

uisition was implemented in a similar fashion to (38) , with the 

WB2-CF objective function from (27) replaced by (21) . For all 

roblems and methods, an initial set of evaluations is performed 

sing max { 3 , n z + 1 } points chosen with Latin hypercube sampling

LHS). We use the base-10 logarithm of the best-sample simple re- 

ret as our performance metric, which is defined as follows 

og10-Regret n = log 10 (� 
� 
n − � � true ) , (43) 

here � � true is the global minimum of the exact optimization prob- 

em (see Appendix A ). The regret is a measure of how far off the 

est currently feasible sample, defined in (40) , is from the true 

lobal optimum at each iteration of the algorithm. The logarithm 

s incorporated to account for the largely different scales that can 

ccur depending on the specifics of the objective function and the 

nitialization points. Since Log10-Regret n depends on the randomly 

elected initial points, showing results for a single initialization is 

ot very informative. As an alternative, we repeat every experi- 

ent 50 times to estimate the average Log10-Regret n for each al- 

orithm. Error bars are computed by estimating the confidence in- 

ervals as 1.96 times the standard deviation divided by the square 

oot of the number of repeats. Furthermore, a detailed overview of 

he computational statistics of COBALT (relative to traditional con- 

trained BO) is provided in Appendix B . 

.3. Results for box-constrained global optimization test problems 

We first discuss the results for the set of box-constrained test 

ptimization problems. Figs. 4 , 5 , and 6 , respectively, show the 

xpected Log10-Regret n over 50 replications for the Goldstein- 

rice, Rastrigin, and Rosenbrock functions. We clearly see that the 

OBALT algorithm (mWBS-CF) outperforms all other tested acqui- 

ition functions by up to 3 orders of magnitude. It is interesting 

o note that, even though the Rastrigin function in particular has 

 large number of local minima, both grey-box acquisition func- 

ions do not get “stuck” and are able to make much faster progress 

han their fully black-box counterparts. For the smaller dimen- 

ional problems (Goldstein-Price and Rastrigin), we see that EI-CF 

erforms only slightly worse than mWB2-CF; however, for the six 

imensional Rosenbrock problem, mWB2-CF results in significant 

mprovement over EI-CF. This suggests that the proposed choice of 

cquisition function (and its sub-optimization routine) has a large 

nfluence on performance, and that the gradient of mWB2-CF plays 
en optimization test problems considered in this 

d formulation of each test problem is provided in 

Reference 

Dixon, ( Dixon, 1978 ) 

Rastrigin, ( Rastrigin, 1974 ) 

Rosenbrock, ( Rosenbrock, 1960 ) 

Gramacy et al., ( Gramacy et al., 2016 ) 

Hock et al., ( Hock and Schittkowski, 1980 ) 

Rijckaert et al., ( Rijckaert and Martens, 1978 ) 

Paulson et al., ( Paulson et al., 2019 ) 
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Fig. 4. Expected log 10( regret ) for the 2d Goldstein-Price test function, with ap- 

proximate confidence region shown via error bars, estimated from 50 independent 

realizations. 

Fig. 5. Expected log 10( regret ) for the 3d Rastrigin test function, with approximate 

confidence region shown via error bars, estimated from 50 independent realiza- 

tions. 

Fig. 6. Expected log 10( regret ) for the 6d Rosenbrock test function, with approxi- 

mate confidence region shown via error bars, estimated from 50 independent real- 

izations. 

Fig. 7. Expected log 10( regret ) for the 2d Toy-Hydrology test function, with approx- 

imate confidence region shown via error bars, estimated from 50 independent real- 

izations. 

Fig. 8. Expected log 10( regret ) for the 4d Rosen-Suzuki test function, with approxi- 

mate confidence region shown via error bars, estimated from 50 independent real- 

izations. 
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11 
n important role in selecting samples that are more likely to be 

ptimal. We also observe that the confidence intervals for the av- 

rage regret are higher for the Rastrigin problem compared to the 

oldstein-Price or Rosenbrock problems. First, it should be noted 

hat regret is plotted on a logarithmic scale so that the actual vari- 

nce is small for all of these problems. Second, the Rastrigin ob- 

ective function is quite “bumpy” due to the inclusion of a cosine 

erm that is difficult to resolve with a small number of samples. As 

uch, the performance of any BO algorithm will more strongly de- 

end on the initial set of randomly selected samples that naturally 

eads to more run-to-run variability in the tested algorithms. 

.4. Results for nonlinearly constrained global optimization test 

roblems 

Now, we highlight the performance of the COBALT algorithm 

mWBS-CF) on the test optimization problems with highly nonlin- 

ar (grey-box) composite constraint functions. In particular, the ex- 

ected value of Log10-Regret n over 50 replications of the randomly 

elected initialization points for the Toy-Hydrology, Rosen-Suzuki, 

nd Colville problems are shown in Figs. 7 , 8 , and 9 , respectively.

ecall that COBALT uses a probabilistic explicit constraint handling 

ethod, as shown in (39b) , whereas bayesopt uses an implicit 
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Fig. 9. Expected log 10( regret ) for the 5d Colville test function, with approximate 

confidence region shown via error bars, estimated from 50 independent realiza- 

tions. 
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pproach that effectively multiplies the unconstrained acquisition 

unction by the probability of constraint sanctification (see, e.g., 

ardner et al., 2014 for additional details). 

Since the initial samples are selected randomly, there is no 

uarantee that Algorithm 1 (in the grey- or black-box case) will 

tart from a feasible point. As the algorithm progresses and a bet- 

er model of the black-box components of the model are obtained, 

e expect that it becomes more likely that a feasible point is iden- 

ified. To clearly represent this behavior in Figs. 7–9 , we do not 

lot the Log10-Regret n values for any n in which an infeasible in- 

umbent value exists in any of the 50 replicate runs. As such, the 

tarting iteration (e.g., n = 5 for mWB2-CF in Fig. 7 ) on these plots

s an estimate of the worst-case number of iterations required to 

nd a point within the unknown feasible domain. For the lower 

imensional problems (Toy-Hydrology and Rosen-Suzuki), we see 

hat COBALT is not only able to find feasible points faster than 

ayesopt , but shows a significantly faster decrease in the re- 

ret (43) to near-zero values. This is likely due to the fact that 

he black-box components of the grey-box model are defined in 

erms of fewer variables n z /n x = 0 . 5 , so that a more accurate rep-

esentation of the feasible region can be constructed with less data. 

he opposite trend, however, is observed for the higher dimen- 

ional problem (Colville), which is likely due to two factors: (i) a 

arger number of variables interacting with the black-box model 

 z /n x = 0 . 8 and (ii) the relaxation of predicted feasible domain due

o the negative-valued trust levels, which gradually shrink as itera- 

ions increase (38) . The increased exploration achieved due to this 

elaxation does provide a substantial gain in the regret, which is 

even order of magnitudes better than bayesopt for the mWB2- 

F acquisition function. Similarly to the behavior previously ob- 

erved for the Rastrigin problem, we see that the Colville prob- 

em results in higher variance in the regret than the Toy-Hydrology 

nd Rosen-Suzuki problems. In this case, the increased regret vari- 

nce can be attributed to a higher dimensional d(z) with strong 

onlinear interaction terms that are harder to estimate. Further- 

ore, the third component of the unknown function d 3 (z) plays 

n important role in one of the active constraints g 5 (x, y ) (see

ppendix A.6 ). Compare this to the Rosen-Suzuki problem, for ex- 

mple, which only has two unknown quadratic functions and one 

f these functions appears in an inactive constraint (so the solution 

s overall less sensitive to the estimated GP model for d(z) ). 

Lastly, we note that, even though EI-CF performs similarly to 

WB2-CF in the Toy-Hydrology problem, we see significant ad- 

antages of mWB2-CF in the Rosen-Suzuki and Colville problems. 
12 
his can be attributed to the fact that EI-CF has zero gradient (see 

24) and (25) ) for a significant portion of the feasible space once a 

easonably good solution has been found. This effectively prevents 

I-CF from making good progress during the later iterations (due to 

he difficulty in finding the true global maximizer) that is clearly 

itigated by the switch to mWB2-CF. 

.5. Results for Bayesian calibration of genome-scale bioreactor model 

Our final case study is focused on a realistic engineering prob- 

em related to the calibration of expensive computer model to 

ata. In particular, we are interested in estimating parameters 

n the substrate uptake kinetics of a genome-scale bioreactor 

odel from batch measurements of concentrations of extracellu- 

ar metabolites and biomass. This problem was originally proposed 

n ( Paulson et al., 2019 ) and solved using a surrogate-based op- 

imization approach that required 1200 expensive model evalua- 

ions. Thus, we are motivated by the potential for the COBALT al- 

orithm to achieve the same level of accuracy with significantly 

ewer function evaluations. 

For completeness, we provide a brief summary of the prob- 

em; interested readers are referred to ( Paulson et al., 2019 ) for 

 more detailed description. The system of interest is for diauxic 

rowth of a batch monoculture of Escherichia coli on a glucose and 

ylose mixed media, which can be modeled using dynamic flux 

alance analysis (DFBA) ( Höffner et al., 2013 ). DFBA models are 

ormulated as ordinary differential equations with embedded op- 

imization problems that represent the metabolic network of the 

icroorganisms, which means they are fundamentally a dynamic 

imulation with discrete events (i.e., a hybrid system). A general 

epresentation of DFBA models is 

˙  (t, θ ) = f (t , s (t , θ ) , v (s (t, θ ) , θ ) , θ ) , s (t 0 , θ ) = s 0 (θ ) , (44) 

here v (s , θ ) is an element of the solution set of the metabolic

ux balance model 

 (s , θ ) ∈ argmax v q (v , s , θ ) , (45) 

s.t. A (θ ) v = 0 , 

v LB (s , θ ) ≤ v ≤ v UB (s , θ ) , 

 (t, θ ) denotes the state variables describing the extracellular en- 

ironment at time t for fixed parameters θ (e.g., concentration of 

iomass, substrates, and products) with initial conditions s 0 (θ ) ; 

 denotes the metabolic fluxes that include both intracellular 

uxes and exchange rates; A (θ ) is the stoichiometric matrix of the 

etabolic network; v LB (s , θ ) and v UB (s , θ ) are the upper and lower

ounds on the fluxes that depend on the extracellular concentra- 

ion, respectively; f is a vector function that defines the rate of 

hange of each component of s (specified by mass balances in the 

xtracellular medium); and q is the scalar function that represents 

he cellular objective function to be maximized. For the consid- 

red case of batch operation of an E. coli fermentation reactor, we 

an specify (44) in terms of three states, i.e., the concentrations of 

iomass, glucose, and xlyose. The flux balance model (45) is con- 

tructed from wild-type E. coli using the iJR904 metabolic network 

econstruction ( Reed et al., 2003 ), which contains 1075 reactions 

nd 761 metabolites. The cellular objective was chosen to maxi- 

ize the growth of the cells at every time point. We simulated this 

odel using the DFBAlab toolbox ( Gomez et al., 2014 ) that utilizes 

atlab’s ode15s to integrate (44) and CPLEX to solve the LP rep- 

esentation of (45) . 

In this particular model, we have six unknown parameters θ
hat correspond to the maximum substrate uptake rates, satura- 

ion constants, and inhibition constants that appear v LB (s , θ ) and 

 
UB (s , θ ) . Noisy concentration measurements are available at eight 

ime points t ∈ { 5 . 5 , 6 . 0 , 6 . 5 , 7 . 0 , 7 . 25 , 8 . 0 , 8 . 25 , 8 . 5 } : 
 i, j = [ s (t i , θ )] j + e i, j , ∀ (i, j) ∈ { 1 , . . . , 8 } × { 1 , 2 , 3 } , (46) 



J.A. Paulson and C. Lu Computers and Chemical Engineering 160 (2022) 107700 

Fig. 10. Expected log 10( regret ) for the DFBA-MLE problem, with approximate con- 

fidence region shown via error bars, estimated from 20 independent realizations. 
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here [ s ] j is the j 
th component of the state vector s that is com-

osed of biomass ( j = 1 ), glucose ( j = 2 ), and xylose ( j = 3 ) and

 i, j is the measurement error for the j th state at the i th time point.

et ˆ y i, j (θ ) = [ s (t i , θ )] j denote the model prediction of the j th state

t the i th time point. Since the noise in the concentration sen- 

ors often depends on the absolute value of the measurement, we 

odel e i, j as zero-mean Gaussian random variables with a state- 

ependent standard deviation that is 5% of the measured signal, 

.e., 

 i, j ∼ N (0 , σ 2 
i, j (θ )) , σi, j (θ ) = 0 . 05 | ̂ y i, j (θ ) | , ∀ (i, j) ∈ { 1 , . . . , 8 } 

× { 1 , 2 , 3 } . (47) 

he likelihood function is then specified by the collection of data 

nd noise models in (46) and (47) as follows 

p(Y meas | θ ) = 

8 ∏ 

i =1 

3 ∏ 

j=1 

1 √ 

2 πσ 2 
i, j 

(θ ) 
exp 

(
−

(y meas 
i, j 

− ˆ y i, j (θ )) 2 

2 σ 2 
i, j 

(θ ) 

)
, (48) 

here Y meas = (y meas 
1 , 1 

, y meas 
1 , 2 

, . . . , y meas 
8 , 3 

) ∈ R 
24 is the complete set

f measured data. Our goal is to find the best parameter es- 

imate by minimizing the negative log likelihood, i.e., θMLE = 

rgmin θ {− log (p(Y meas | θ )) } . We can convert this problem to the 

tandard form of (1) by replacing θ ← x in the objective, rearrang- 

ng, and removing constant terms that do not change the location 

f the minimum. The final description of the problem is provided 

n Appendix A ; notice the composite structure of f , which is highly 

onlinear function of the outputs of the DFBA simulator that can 

e exploited by COBALT but is neglected by other purely black-box 

ethods. 

The performance of COBALT, relative to random search and EI- 

ased BO, is shown in Fig. 10 . Note that, due to the complexity

f these simulations, we reduced the number of replications to 20 

nd compared to a limited number of alternative methods. We can 

ee that, although EI outperforms random search, it still reaches a 

elatively poor solution on average even when the number of itera- 

ions is increased to 100 objective evaluations. COBALT, however, is 

ble to consistently converge to a low regret value (near the global 

inimum) in only 50 iterations. This is significantly fewer evalu- 

tions than the 1200 needed to construct the global surrogate in 

 Paulson et al., 2019 ). From this, we find that our results on this

roblem highlight two important points: (i) we can make signif- 

cant improvements over purely black-box methods by exploiting 

tructure whenever possible and (ii) we often needed fewer sam- 

les to find the most likely optimum point than to build a globally 
13 
ccurate surrogate model, which is especially important for com- 

utationally expensive simulators/models. 

. Conclusions and future work 

In this work, we present a novel algorithm for efficiently 

earching for the global optimum of constrained grey-box opti- 

ization problems. In particular, we extend the traditional black- 

ox Bayesian optimization (BO) framework to handle composite 

unctions of the form f (x ) = g(h (x )) where g(·) is a known and

ifferentiable white-box function and h (·) is an unknown vector- 

alued black-box function. These types of grey-box constraints, that 

nvolve a mixture of white- and black-box components, occur in 

 diverse set of engineering problems such as the calibration of 

igh-fidelity simulators to experimental data, material and drug 

esign, and maximum a posteriori estimation of machine learning 

odels with expensive-to-evaluate likelihoods. The proposed algo- 

ithm, which we refer to as COBALT, combines multivariate Gaus- 

ian process (GP) regression models (which are non-parametric 

nd probabilistic in nature) with a novel expected utility (or acqui- 

ition) function that is subject to a chance constraint-based rep- 

esentation of the feasible region. Due to the general composite 

tructure of the grey-box objective and constraint functions, we 

annot simply maximize the constrained acquisition function us- 

ng standard optimization methods, as is the case in traditional 

O. Instead, we propose a sample average approximation of the 

ntractable expectation-based objective to convert it into a deter- 

inistic expression whose first- and second-order derivatives can 

e efficiently computed. In addition, we develop a simple moment- 

ased approximation of the chance constraints, so that the overall 

aximization problem can be efficiently solved with state-of-the- 

rt nonlinear programming solvers. 

To demonstrate the effectiveness of the proposed algorithm, we 

ompare COBALT to traditional BO on a set of seven diverse test 

ptimization problems. We observe that COBALT outperforms BO, 

ith respect to the average regret (i.e., difference between the 

stimated optimum at each iteration and the true global mini- 

um), in all considered cases. The final test problem is a realis- 

ic engineering problem that is focused on estimating parameters 

n a genome-scale bioreactor model using experimental measure- 

ents. This problem, which was recently tackled for the first time 

n ( Paulson et al., 2019 ) using a custom surrogate-based optimiza- 

ion paradigm, required around 1200 expensive model simulations 

o build a surrogate model that was accurate enough to (approx- 

mately) solve the original parameter estimation problem. When 

olving this problem using COBALT in this work, we found that 

ccurate solutions (i.e., within < 1% of the best known optimum) 

ould be found in 50 iterations on average, implying a factor of 

4 less total number of expensive model simulations. Furthermore, 

OBALT found solutions that were two orders of magnitude better 

han standard BO found in double the number of iterations (100 

otal). We believe that the results presented in this paper indi- 

ate that a promising path toward accelerating the convergence 

f black-box optimization methods is exploiting known problem 

tructure as much as possible. In addition, we find that the re- 

ults highlight the fundamental difference between constructing a 

lobally predictive surrogate model and locating the minimum of a 

onstrained function. It turns out the latter problem is easier than 

he former, as one can simply ignore parts of the design space that 

re not likely to produce “good” solutions. 

Although promising results have been obtained in Section 4 , 

here remain several important directions for future work that 

ould improve the numerics and theoretical understanding of 

OBALT. We briefly discuss three possible directions below. 
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.1. Extensions to other acquisition functions 

Throughout this work, we focus on modified forms of the ex- 

ected improvement (EI) acquisition function, which was mostly 

otivated by results in ( Astudillo and Frazier, 2019 ). However, it is 

ell-known that EI works best under the assumption that each ob- 

ervation of the objective and/or constraints has low-noise relative 

o the true value of the function. This assumption is not necessar- 

ly satisfied in several application domains including drug discov- 

ry, medical diagnostics, biosurveillance, and molecular simulation 

odels. Two particularly interesting alternatives to EI in such cases 

re the knowledge gradient (KG) ( Frazier et al., 2009 ) and predic- 

ive entropy search (PES) ( Hernández-Lobato et al., 2014 ) acquisi- 

ion functions. Instead of relying on a selected incumbent value to 

uide the selection of the next sample, KG and PES more heavily 

ely on the posterior distribution of the surrogate model itself and 

hus are less sensitive to noise. If more exploration is desired, then 

ne could alternatively select the lower confidence bound (LCB) 

 Srinivas et al., 2015 ) acquisition function or apply Thompson sam- 

ling (TS) ( Bradford et al., 2018 ). To the best of our knowledge, KG,

ES, LCB, or TS have not been extended to the case of compos- 

te functions. Since KG and PES are computationally intensive in 

he case of standard BO, we expect new tractable approximation 

ethods will need to be developed to apply under our proposed 

onstrained grey-box setting (1). 

.2. Improving the enrichment sub-problem optimization scheme 

As shown in (38) , we had to invoke two main approximations 

i.e., sample average approximation of the objective and moment- 

ased approximation of the chance constraints) to make the en- 

ichment sub-problem (4) tractable. Although a large amount of 

nalysis has been performed on these approximations (see, e.g., 

emark 2 ), we have not explicitly made use of this theory in 

OBALT. In particular, we do not adaptively set the number of ran- 

om samples M to ensure the solution of the approximate problem 

s within a specified tolerance of the true solution. This is mainly 

ue to the added complexity of solving many SAA problems at 

ach iteration of COBALT. One potential strategy for reducing the 

ost of these SAA problems is to take advantage of parallel or dis- 

ributed optimization methods, such as the alternating direction 

ethod of multipliers (ADMM) ( Boyd et al., 2011 ), that can achieve 

ignificant computational speedup and/or reduced communication 

etween sub-problems. In addition, the stochastic gradient ascent 

ethod presented in (26) can be modified to ensure robust con- 

ergence and even outperform SAA for certain classes of problems 

 Nemirovski et al., 2009 ) (for convex constraint sets X n ). As such,

eveloping new ways to achieve similar convergence guarantees in 

he presence of non-convex sets X n is also an interesting direc- 

ion for future work. Finally, we note that the EI-CF and mWB2- 

F acquisition functions both have the potential to have many lo- 

al solutions that may provide useful information at each iteration. 

henever multiple function evaluations can be run in parallel at 

ach iteration, we can use these samples to develop a batch ver- 

ion of COBALT (see, e.g., Liu et al., 2021 for more details on batch

O). 

.3. Handling high-dimensional problems using trust regions 

As discussed in detail in the introduction, COBALT is focused on 

lobal optimization of constrained grey-box models, which requires 

 global surrogate model to constructed at every iteration. As the 

umber of inputs to the black-box portion of the model grows, the 

onstruction of this surrogate gets significantly more challenging, 

mplying COBALT (as presented in this paper) may not perform 

ell on particularly large-scale problems. The most straightforward 
14 
ay to overcome this challenge is to apply dimensionality reduc- 

ion techniques before constructing the GP model ( Bouhlel et al., 

016 ); building specialized methods that can be done simultane- 

usly with the GP repression step may be an interesting to pursue. 

n alternative direction would involve combining COBALT with es- 

ablished trust region methods, e.g., ( Bajaj et al., 2018; Eason and 

iegler, 2016, 2018 ), which only construct surrogate models over 

 local region of the design space. Although there are established 

onvergence results for various trust region methods, they can only 

uarantee convergence to a local optimum and rely on several tun- 

ng parameters that may be difficult to select before running the 

lgorithm. In addition, most trust region methods are based on de- 

erministic models and may require fully linear models ( Wild et al., 

008 ) to be constructed using, e.g., linear/quadratic interpolation, 

hich means the number of required evaluations at each iteration 

cales with the size of the input dimension. A trust region BO al- 

orithm, TuRBO ( Eriksson et al., 2019 ), was recently developed that 

ddresses the local versus global tradeoff by running several inde- 

endent local models and uses an implicit multi-arm bandit ap- 

roach to decide which local model should be allocated samples. 

deas from TuRBO could inform a local trust region-based strat- 

gy for COBALT, which may prove to be beneficial in the context of 

arge-scale problems. 
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ppendix A. Appendix: Representation of test problems in 

tandard form 

1. Goldstein-Price 

We propose a modified formulation of the Goldstein-Price func- 

ion that can be formulated as a grey-box optimization problem (1) 

s follows 

in 
x,y,z 

(1 + (x 1 + x 2 + 1) 2 (19 − 14 x 1 + 3 x 2 1 + y 1 )) 

· (30 + y 2 (18 − 32 x 1 + 12 x 2 1 + 48 x 2 − 36 x 1 x 2 + 27 x 2 2 )) , 

s.t. y 1 = d 1 (z) := −14 z 2 + 6 z 1 z 2 + 3 z 2 2 , 

y 2 = d 2 (z) := 2 z 2 1 − 3 z 2 2 , 

z = x, 

− 2 ≤ x i ≤ 2 , ∀ i ∈ { 1 , 2 } . (A.1) 

he global minimum is equal to 3 with x � = [0 , −1] � . 

2. Rastrigin 

We propose a modified formulation of the Rastrigin function 

hat can be formulated as a grey-box optimization problem (1) as 

ollows 

in 
x,y,z 

30 + x 2 1 − 10 cos (2 πx 1 ) + x 2 2 − 10 cos (2 πx 2 ) + y 1 , 

s.t. y 1 = d 1 (z) := z 2 1 − 10 cos (2 πz 1 ) , 

z 1 = x 3 , 

− 5 . 12 ≤ x i ≤ 5 . 12 , ∀ i ∈ { 1 , 2 , 3 } . (A.2) 

he global minimum is equal to 0 with x � = [0 , 0 , 0] � . 
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3. Rosenbrock 

We propose a modified formulation of the Rosenbrock function 

hat can be formulated as a grey-box optimization problem (1) as 

ollows 

in 
x,y,z 

3 ∑ 

i =1 

(100 y 2 i + (1 − x i ) 
2 ) + 100(x 5 − x 2 4 ) + y 4 

+ 100(x 6 − x 2 5 ) + (1 − x 5 ) 
2 , 

s.t. y i = d i (z) := z 2 i +1 − z 2 i , ∀ i ∈ { 1 , 2 , 3 } , 
y 4 = d 4 (z) := (1 − z 4 ) 

2 , 

z = x, 

− 2 ≤ x i ≤ 2 , ∀ i ∈ { 1 , 2 , 3 , 4 } . (A.3) 

he global minimum is 0 with x � = [0 , 0 , 0 , 0 , 0 , 0] � . 

4. Toy-Hydrology 

We propose a modified formulation of the Toy-Hydrology func- 

ion that can be formulated as a constrained grey-box optimization 

roblem (1) as follows 

in 
x,y,z 

x 1 + x 2 , 

s.t. g 1 (x, y ) := 1 . 5 − x 1 − 2 x 2 − 0 . 5 sin (−4 πx 2 + y 1 ) ≤ 0 , 

g 2 (x, y ) := x 2 1 + x 2 2 − 1 . 5 ≤ 0 , 

y 1 = d 1 (z) := 2 πz 2 1 , 

z 1 = x 1 , 

0 ≤ x i ≤ 1 , ∀ i ∈ { 1 , 2 } , (A.4) 

he global minimum is 0.5998 with x � = [0 . 1951 , 0 . 4047] � . 

5. Rosen-Suzuki 

We propose a modified formulation of the Rosen-Suzuki func- 

ion that can be formulated as a constrained grey-box optimization 

roblem (1) as follows 

in 
x,y,z 

x 2 1 + x 2 2 + x 2 4 − 5 x 1 − 5 x 2 + y 1 , 

s.t. g 1 (x, y ) := −(8 − x 2 1 − x 2 2 − x 2 3 − x 2 4 − x 1 + x 2 − x 3 + x 4 ) ≤ 0 , 

g 2 (x, y ) := −(10 − x 2 1 − 2 x 2 2 − y 2 + x 1 + x 4 ) ≤ 0 , 

g 3 (x, y ) := −(5 − 2 x 2 1 − x 2 2 − x 2 3 − 2 x 1 + x 2 + x 4 ) ≤ 0 , 

y 1 = d 1 (z) := 2 z 2 1 − 21 z 1 + 7 z 2 , 

y 2 = d 2 (z) := z 2 1 + 2 z 2 2 , 

z 1 = x 3 , 

z 2 = x 4 , 

− 2 ≤ x i ≤ 2 , ∀ i ∈ { 1 , . . . , 4 } . (A.5) 

he global minimum is −44 with x � = [0 , 1 , 2 , −1] � . 

6. Colville 

We propose a modified formulation of the Colville function that 

an be formulated as a constrained grey-box optimization problem 

1) as follows 

in 
x,y,z 

5 . 3578 x 2 3 + y 1 , 

s.t. g 1 (x, y ) := y 2 − 0 . 0 0 0 0734 x 1 x 4 − 1 ≤ 0 , 

g 2 (x, y ) := 0 . 0 0 08530 07 x 2 x 5 + 0 . 0 0 0 09395 x 1 x 4 − 0 . 0 0 033085 x 3 x 5 − 1 ≤ 0 , 

g 3 (x, y ) := y 4 − 0 . 30586(x 2 x 5 ) 
−1 x 2 3 − 1 ≤ 0 , 

g 4 (x, y ) := 0 . 0 0 024186 x 2 x 5 + 0 . 0 0 010159 x 1 x 2 + 0 . 0 0 0 07379 x 2 3 − 1 ≤ 0 , 

g 5 (x, y ) := y 3 − 0 . 40584(x 5 ) 
−1 x 4 − 1 ≤ 0 , 
15 
g 6 (x, y ) := 0 . 0 0 029955 x 3 x 5 + 0 . 0 0 0 07992 x 1 x 3 + 0 . 0 0 012157 x 3 x 4 − 1 ≤ 0 , 

y 1 = d 1 (z) := 0 . 8357 z 1 z 4 + 37 . 2392 z 1 , 

y 2 = d 2 (z) := 0 . 0 0 0 02584 z 3 z 4 − 0 . 0 0 0 06663 z 2 z 4 , 

y 3 = d 3 (z) := 2275 . 1327(z 3 z 4 ) 
−1 − 0 . 2668(z 4 ) 

−1 z 1 , 

y 4 = d 4 (z) := 1330 . 3294(z 2 z 4 ) 
−1 − 0 . 42(z 4 ) 

−1 z 1 , 

z 1 = x 1 , 

z 2 = x 2 , 

z 3 = x 3 , 

z 4 = x 5 , 

78 ≤ x 1 ≤ 102 , 

33 ≤ x 2 ≤ 45 , 

27 ≤ x i ≤ 45 , ∀ i ∈ { 3 , 4 , 5 } . (A.6) 

The global minimum is 10122.7 with x � = 

78 , 33 , 29 . 998 , 45 , 36 . 7673] � . 

7. DFBA-MLE 

The DFBA-MLE problem seeks to minimize the negative log of 

he likelihood function that was derived in (48) . After some alge- 

raic manipulations, we arrive at the following grey-box optimiza- 

ion problem in the form of (1) 

in 
x,y,z 

8 ∑ 

i =1 

3 ∑ 

j=1 

log (0 . 0025 y 2 i +3( j−1) ) + 

(y meas 
i, j 

− y i +3( j−1) ) 
2 

0 . 0025 y 2 
i +3( j−1) 

, 

s.t. y i +3( j−1) = d i +3( j−1) (z) := ̂  y i, j (z) , ∀ (i, j) ∈ { 1 , . . . , 8 } × { 1 , 2 , 3 } , 
z = x, 

9 . 45 ≤ x 1 ≤ 11 . 55 , 

0 . 0024 ≤ x 2 ≤ 0 . 0030 , 

5 . 4 ≤ x 3 ≤ 6 . 6 , 

0 . 0149 ≤ x 4 ≤ 0 . 0182 , 

0 . 0045 ≤ x 5 ≤ 0 . 0055 , 

12 . 2727 ≤ x 6 ≤ 15 , (A.7) 

here we have substituted z = x = θ . The exact global minimum 

or this problem is unknown and so was estimated from the min- 

mum objective value obtained across all runs of every algorithm. 

o check that this identified solution is likely to be near the global, 

e verified that the resulting parameter estimate gave high-quality 

redictions that result in a very large likelihood value. 

ppendix B. Overview of Computational Statistics for COBALT 

In this section, we provide a detailed discussion of the com- 

utational cost of the proposed COBALT method relative to stan- 

ard constrained Bayesian optimization (CBO) methods. The time 

t takes to execute iteration n of COBALT, excluding the evaluation 

ost in Step 4 of Algorithm 1 , is given by 

 COBALT ,n = 

∑ n y 
i =1 

t GP ,n,i + t GreyOpt ,n , (B.1) 

here t GP ,n,i is the time it takes to train the GP model for com- 

onent i ∈ { 1 , . . . , n y } of d(z) and t GreyOpt ,n is the time required to

olve the grey-box enrichment sub-problem (4) . On the other hand, 

he time it takes to execute iteration n of a standard CBO algorithm 

again excluding function evaluation cost) is equal to 

 CBO ,n = 

∑ U+1 
i =1 t GP ,n,i + t BlackOpt ,n , (B.2) 

here U + 1 is the total number of black-box functions in the for- 

ulation (3) (composed of U unknown constraints and 1 unknown 

bjective that is equivalent to the grey-box formulation (1)) and 

 BlackOpt ,n is the time required to solve the black-box enrichment 

ub-problem. 

Let t Eval ,n denote the time required to evaluate the unknown 

unction at iteration n . In the case that t Eval ,n is much larger than
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Fig. B1. CPU time required to train a Gaussian process model versus the number of 

measured data points for three different packages. 
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Fig. B2. Comparison of the Gaussian process model predictions obtained with three 

different packages: (a) GPML, (b) GPyTorch, and (c) SML Toolbox. The solid blue line 

represents the mean prediction and blue cloud denotes the confidence region ( ±1 

standard deviation). The true unknown function is shown with a solid red line and 

the available data is shown with black dots. 
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 COBALT ,n and t CBO ,n , then the total time to execute N steps is t Total ≈
 N 
n =1 t Eval ,n , which is the same for COBALT and CBO. However, it 

s important to look at the absolute costs of training the GP and 

ptimizing the acquisition function to determine how large t Eval ,n 
ust become for this assumption to be valid. 

It is interesting to look at the difference between (B.1) and 

B.2) assuming that the same GP training tool is used 

 COBALT ,n − t CBO ,n = 

∑ n y −U−1 

i =1 
t GP ,n,i + t GreyOpt ,n − t BlackOpt ,n . (B.3) 

n immediate observation from this expression is that COBALT is 

ot necessarily more expensive than CBO. In particular, the first 

erm will be negative when n y < U + 1 , which can happen in prob-

ems that involve a significant number of constraints (not uncom- 

on in engineering systems). In addition to the GP training time, 

he time required to numerically optimize the sub-problem plays 

n important role. Thus, it is difficult to perform a comprehensive 

nd fair comparison since the values of { t GP ,n,i , t GreyOpt ,n , t BlackOpt ,n } 
epend strongly on the implementation details (including the 

hoice of programming language and numerical optimization pro- 

edures). We discuss some of these complexities in the following 

hree sections to provide some insight into the choices made in 

ur initial implementation. Note that there remains room for im- 

rovement in terms of improving the efficiency of the selected al- 

orithms; COBALT can directly benefit from any new developed al- 

orithms that accelerate GP training or the numerical solution of 

he sub-problems. 

1. Cost of Gaussian process regression 

Gaussian process (GP) regression has been an active area of re- 

earch for more than two decades, with several packages available 

or performing the steps outlined in Section 3.1 . To get an esti- 

ate of the training time, we analyze the performance of three 

ommonly used packages on a simple test problem. In particu- 

ar, we compare (i) GPML ( Rasmussen and Nickisch, 2010 ), which 

as the toolbox we used in COBALT, (ii) the fitgpr function im- 

lemented as a part of the Statistics and Machine Learning (SML) 

oolbox in Matlab, and (iii) the GPyTorch toolbox implemented in 

ython. Note that all three of these packages solve the MLE prob- 

em (15) using different strategies; we used the default settings 

or simplicity, though additional tuning could be done to improve 

erformance in each of these packages. The CPU time 2 versus the 

umber of training data points for the three considered GP pack- 

ges is shown in Fig. B.1 . We see that GPML takes the longest time,

hich is partially due to significant overheard incurred by invert- 

ng the kernel matrix that has not been optimized. However, the 
2 All computational experiments carried out in Appendix B were run on a laptop 

ith 16 GB of RAM and a 1.8GHz Intel i7 processor. 

r

r

s

t

16 
verall process takes a maximum of 2.4 seconds for 100 training 

ata points, which is a reasonable cost for an expensive function 

that could take many hours or more to evaluate). 

It is interesting to note that GPyTorch and SML appear to scale 

ore favorably with respect to the amount of training data. To in- 

estigate this further, we looked at the quality of the trained GP 

odels compared to the true unknown function, which is shown in 

ig. B.2 . From these plots, we see that GPML yields the best predic- 

ions, with the true function being fully contained within the es- 

imated confidence region. GPyTorch and SML, on the other hand, 

nder- and over-predict the true uncertainty in the function, re- 

pectively, which can be attributed to identifying high sub-optimal 

olutions to (15) . As expected, the speed afforded by alternative GP 

egression tools may come at the cost of accuracy. Based on these 

esults, we opted to use GPML in our implementation of COBALT 

ince we found it to be quite reliable (and not overly expensive) in 

he low-data regime. 
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Fig. B3. Comparison of the regret (left) and average CPU time (right) for solving an acquisition sub-problem (estimated by averaging over 20 independent replications) with 

seven different optimization algorithms. 
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Fig. B4. Comparison of the total CPU time per iteration for COBALT and CBO on the 

Rosenbrock test problem under the same GP training and acquisition optimization 

procedures. 
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2. Cost of optimizing the proposed acquisition sub-problem 

There are wide-variety of available optimization methods for 

olving the acquisition sub-problems, which are generally non- 

onvex nonlinear programs. For reasons discussed in Section 3 , we 

elected the local gradient-based solver IPOPT that we globalize 

ith a random search approach (Random+IPOPT). To demonstrate 

he value of the proposed approach, we compared it to several 

lternative methods on the 6-dimensional Rosenbrock test prob- 

em (with 30 randomly drawn samples). We considered the fol- 

owing alternatives that are all readily available in Matlab: the ge- 

etic algorithm (GA) ga , particle swarm optimization (PSO) pso , 

andom search (Rand), the quasi-Netwon solver fminunc , and the 

implex-based search algorithm fminsearch . The regret, which is 

qual to f (x estimated ) − f (x � ) where f (x estimated ) is the best solution 

eturned by the optimizer and f (x � ) is the true global solution, and 

PU time averaged over 50 replicates is shown in Fig. B.3 . We see

hat our approach demonstrates a good tradeoff in that it involves 

 modest computational cost while providing consistently low re- 

ret values. However, as discussed in Section 5.2 , our proposed nu- 

erical solution method to the acquisition sub-problem is by no 

eans optimized and there remains several interesting directions 

or future work. It should also be noted that further gains will be 

chieved in the numerical optimization of the sub-problem by ac- 

elerating the GP prediction (as this translates to cheaper evalua- 

ion of the acquisition and constraint functions). 

3. Comparison of total CPU time per iteration for COBALT and CBO 

As a final step, we look at the total execution time t COBALT ,n and 

 CBO ,n on the 6-dimensional Rosenbrock test problem. Note that we 

ompare these two under the same GP training and acquisition op- 

imization procedures discussed in the previous two sections – it 

ould not be fair to compare to bayesopt , which internally uses 

ubstantially different methods. The total CPU time per iteration 

ersus the number of data points, averaged over 50 replications of 

he random initialization, is shown in Fig. B.4 . Based on the analy- 

is in (B.3) , we expect t COBALT ,n > t CBO ,n since n y = 4 and U = 0 for

he Rosenbrock problem. The difference grows slightly as the num- 

er of data points n increases since t GreyOpt ,n > t BlackOpt ,n in this 

ase due to the larger number of GP models; however, the growth 

s not substantial relative to the GP training cost, which dominates 

he cost at every iteration. For n = 50 , we see around an 8 second

ncrease in cost for COBALT compared to CBO on this problem. We 

btained similar results for the other test problems. 

Note that a fairly conservative estimate for t COBALT ,n can easily 

e obtained using (B.1) with t GP ,n,i ≈ 5 seconds and t GreyOpt ,n ≈ 30 
17 
econds. Therefore, we expect that COBALT would be the preferred 

ption for any problem that has an internal component that takes 

n the order of minutes (or longer) and a budget of around N = 

 (100) . 
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