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ABSTRACT

Many engineering problems involve the optimization of computationally expensive models for which
derivative information is not readily available. The Bayesian optimization (BO) framework is a particu-
larly promising approach for solving these problems, which uses Gaussian process (GP) models and an
expected utility function to systematically tradeoff between exploitation and exploration of the design
space. BO, however, is fundamentally limited by the black-box model assumption that does not take into
account any underlying problem structure. In this paper, we propose a new algorithm, COBALT, for con-
strained grey-box optimization problems that combines multivariate GP models with a novel constrained
expected utility function whose structure can be exploited by state-of-the-art nonlinear programming
solvers. COBALT is compared to traditional BO on seven test problems including the calibration of a
genome-scale bioreactor model to experimental data. Overall, COBALT shows very promising performance
on both unconstrained and constrained test problems.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Design problems, which can generally be formulated as math-
ematical optimization problems (Herskovits et al., 2005), occur
in a wide-variety of science, engineering, and manufacturing en-
deavors. For example, pharmaceutical researchers must design new
drugs to fight diseases, social media companies must design user-
friendly websites to increase advertising revenue, and process en-
gineers must synthesize flowsheets that achieve the desired goals
of the process (e.g., profitable operation that meets chemical prod-
uct specifications with minimal waste). In certain situations, one
is able to develop an equation-oriented (EO) model (also known
as “first-principles”, “physics-based” or “white-box” models) of the
system whose structure can be exploited by existing solvers that
take advantage of first- and/or second-order derivative information
(see, e.g., Biegler and Zavala, 2009; Boggs and Tolle, 2000; Misener
and Floudas, 2014; Sahinidis, 1996). However, obtaining accurate
EO models for each and every component of a complex system is
not always possible. Examples of non-EO models (also known as
“simulation-based” or “black-box” models) include thermodynamic
property relationships, models of a proprietary unit operations, and
expensive finite-element, partial differential equation-based, and
molecular simulations.
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When gradient information is not readily available, as is the
case for black-box models, one of the main alternatives is to
rely on so-called derivative-free optimization (DFO) methods (Conn
et al., 2009; Larson et al., 2019; Rios and Sahinidis, 2013), which
can be very broadly divided into stochastic and deterministic ap-
proaches. The majority of the stochastic DFO methods can be
classified as either evolutionary or population-based algorithms
including genetic algorithms (Mukhopadhyay et al., 2009), par-
ticle swarm optimization (PSO) (Eberhart and Kennedy, 1995),
and the covariance matrix adaptation evolution strategy (CMA-ES)
(Hansen et al., 2003). A key limitation of these methods, how-
ever, are that they often require a large number of function eval-
uations to find the optimum (Wessing and Preuss, 2017) such that
they are not directly applicable to expensive black-box simulators.!
Deterministic DFO methods, on the other hand, are often moti-
vated by the optimization of an expensive objective function and
can be classified as either direct search or model-based methods.
Direct methods, which includes Nelder-Mead simplex algorithm
(Nelder and Mead, 1965), mesh adaptive direct search (MADS)
(Audet and Dennis Jr, 2006), and generalized pattern search (GPS)
(Kolda et al., 2003), determine search directions from the evalua-

1 Another important limitation of many DFO methods is that they cannot directly
handle general nonlinear and/or black-box constraints and they instead focus on
box constraints that can be easily handled using simple projection operators. In-
terested readers are referred to (Larson et al., 2019, Section 7) for more details on
constraint handling methods in DFO.
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tions of the objective function directly. Alternatively, the so-called
model-based methods construct a surrogate model for the objec-
tive function using these evaluations to better guide the search
process. Model-based DFO methods mainly differ by the choice
of scale (local versus global approximation) and the type of func-
tion approximator (e.g., polynomial, neural network, or radial basis
function models).

Not only is selecting the “right” type of surrogate model chal-
lenging when little is known about the structure of the objec-
tive, this choice can have a strong effect on the performance of
the model-based DFO algorithm. Gaussian process (GP) models are
a particularly interesting class of surrogates due to the fact that
they are probabilistic and non-parametric; GP models are easily de-
rived by placing a prior over the set of possible objective func-
tions that can be recursively updated to account for measured
data (i.e., objective evaluations) using Bayes’ rule (Rasmussen and
Williams, 2006). By combining the GP model of the objective with
an expected utility (or acquisition) function that leverages the un-
certainty in the posterior distribution, we arrive at what is com-
monly referred to as the Bayesian optimization (BO) framework
(Brochu et al., 2010; Frazier, 2018; Pelikan et al., 1999; Shahri-
ari et al., 2015). A key ingredient in BO is the choice of the ac-
quisition function that should be designed in a way that trade-
offs exploration of regions where the surrogate model is uncertain
and exploitation of the model’s confidence in good solutions. Al-
though the basic BO framework can be traced back to the 1970s
(Mockus, 1975), its popularity has substantially grown in recent
years due to advances in computer power, algorithms, and soft-
ware as well as successes in a variety of application areas in-
cluding hyperparameter optimization in machine learning models
(Bergstra et al., 2011), material design and discovery (Frazier and
Wang, 2016), aircraft design (Meliani et al., 2019), and automated
controller design (Paulson and Mesbah, 2020; Sorourifar et al.,
2021a,b).

Although BO was originally formulated for unconstrained prob-
lems, it has been recently extended to handle expensive-to-
evaluate black-box constraints. There are two main classes of
methods for handling these constraints, which we categorize
as implicit and explicit. Implicit approaches define a new ob-
jective using a merit-type acquisition function that simultane-
ously accounts for effects due to the unknown objective and un-
known constraints. Several merit functions have been proposed
in the literature including the expected constrained improvement
(Gardner et al., 2014) and the augmented Lagrangian BO (ALBO)
method (Picheny et al., 2016) that combines the classical aug-
mented Lagrangian method with unconstrained BO. Explicit ap-
proaches, on the other hand, attempt to model the constraints and
solve a constrained subproblem that is restricted to a “best guess”
of the feasible region, and can be further subdivided into deter-
ministic and probabilistic methods. In deterministic explicit meth-
ods, one would disregard the variance information predicted by the
GP model such as the super efficient global optimization (SEGO)
approach in (Sasena et al.,, 2002). Probabilistic explicit methods
instead embrace this uncertainty by either restricting the feasi-
ble region to ensure high probability of constraint satisfaction at
each iteration or, more recently, relaxing the feasible region to al-
low exploration in the case of poorly modeled constraints. In par-
ticular, the recently proposed upper trust bound (UTB) method
(Priem et al., 2019), which allows the mean prediction of the GP
model to violate constraints up to a constant factor times the vari-
ance of the GP model, has shown the ability to more effectively
compromise between exploration and exploitation of the feasible
design space than alternative constrained BO methods.

Even though constrained BO methods have been found to em-
pirically perform well on a variety of complex engineering prob-
lems in which the dimension of the design space is relatively small
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(typically on the order of ten or less), its sample efficiency tends to
decrease with increasing dimension due to the exponential growth
in the size of the search space. Although this challenge can partly
be addressed by combining sensitivity and/or dimensionality re-
duction techniques with GP models (see, e.g., Bouhlel et al., 2016),
these black-box methods are fundamentally limited by the fact that
any available knowledge about the structure of the underlying ob-
jective and constraint functions is neglected. In many practical en-
gineering problems, only a portion (or subsystem) of the model
is not explicitly known; such cases do not neatly fit into the ei-
ther the white- or black-box problem classes and thus we can
introduce the notion of a hybrid “grey-box” model that involves
a mixture of EO and non-EO models. In this work, we represent
grey-box models as composite objective and constraint functions
of the form f(x) = g(h(x)) where g(-) and h(-) are the white-box
and black-box functions, respectively, which appear in many im-
portant real-world problems. For example, when calibrating pa-
rameters x of an expensive process simulator to measured data
Ymeas, the objective function to be minimized can be formulated as
f(x) =g(h(x)) = ||h(X) — Ymeas|| where h(x) is the predicted output
of the simulator for fixed parameters x and || - || is some monotonic
transformation of the likelihood of the measurement errors. It was
recently shown in (Astudillo and Frazier, 2019) that significant im-
provements in the convergence rate of BO can be achieved when
accounting for this composite structure for unconstrained prob-
lems. Extending this approach to constrained grey-box problems
is not trivial, as it relies on a stochastic gradient ascent algorithm
to maximize the composite acquisition function that is not directly
applicable to nonlinear and non-convex constraints.

A variety of methods for constrained grey-box optimization
have been developed within the process systems engineering com-
munity (Bajaj et al., 2018; Beykal et al.,, 2018a,b, 2020; Boukou-
vala and Floudas, 2017; Eason and Biegler, 2016, 2018; Kim and
Boukouvala, 2020; Schweidtmann and Mitsos, 2019), which could
be used as alternatives to the BO framework. One recent exam-
ple is the trust region filter algorithm proposed in (Eason and
Biegler, 2016, 2018), which is guaranteed to converge to a lo-
cal optimum. A potential disadvantage of this approach, how-
ever, is the lack of a global surrogate model, which may re-
sult in convergence to a highly suboptimal local optimum de-
pending on the selected initialization point. The ARGONAUT algo-
rithm (Boukouvala and Floudas, 2017) constructs a global surro-
gate model that is sequentially optimized using the global opti-
mization solver ANTIGONE; a similar adaptive sampling framework
has been recently extended to mixed-integer nonlinear programs
in (Kim and Boukouvala, 2020). There are two potential disadvan-
tages to these (and many other related) methods: (i) they often do
not directly account for the composite structure of the objective
and/or constraint functions and (ii) only a deterministic surrogate
model is trained, which tends to over exploit the initial runs when-
ever only a small number of function evaluations can be performed
due to a limited computational budget.

Motivated by the BO framework and results in (Astudillo and
Frazier, 2019), we propose a novel algorithm for constrained grey-
box optimization problems in this work, which we refer to as
COBALT (COnstrained Bayesian optimizAtion of computationaLly
expensive grey-box models exploiting derivaTive information). The
proposed COBALT algorithm is composed of the following three
main components: (i) a multivariate GP model of the black-box
portions of the problem, (ii) a novel acquisition function for com-
posite objective functions that is almost everywhere differentiable,
and (iii) a generalization of the UTB constraint handling method
to the case of composite functions using the notion of chance
constraints. Due to the composite structure of the objective and
constraints, we cannot derive the simple analytic expressions for
the constrained acquisition function often found in traditional BO
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methods. Instead, we utilize the sample average approximation
(SAA) method (Kleywegt et al., 2002) to convert the stochastic
constrained acquisition optimization problem into a deterministic
problem. To alleviate the challenges that arise with an SAA-based
reformulation of the chance constraints (Pagnoncelli et al., 2009),
we propose a moment-based approximation that greatly simplifies
the complexity of the SAA problem, which we show can be effi-
ciently optimized using state-of-the-art NLP solvers. Through ex-
tensive testing on various types of test problems, we have observed
that COBALT is able to outperform traditional BO by finding better
(up to multiple orders of magnitude) quality solutions in fewer it-
erations, which can be directly attributed to its ability to account
for the grey-box structure of the problem.

The remainder of the paper is organized as follows. In Section 2,
the constrained grey-box problem of interest in this work is formu-
lated. In Section 3, the proposed COBALT algorithm and its relevant
parameters are presented. Section 4 discusses a Matlab-based im-
plementation of COBALT and presents results and comparisons for
six benchmark global optimization problems and a complex pa-
rameter estimation problem for a genome-scale bioreactor model.
Lastly, we conclude the article and discuss some important direc-
tions for future work in Section 5.

11. Notation

Throughout the paper, we use the following notation. We let
|lx|], denote the ¢, norm of a vector x € R". We let S} and S%,
denote the set of positive semidefinite and positive definite n x n
matrices, respectively. By ITy, we denote the Euclidean projection
operator onto the set X, that is, [Tx(x) = argmin, y||x — X'||,. For
any a € R, we denote [a]* = max{a, 0}. The notation |a] is the
largest integer less than or equal to a € R and [a] is the smallest
integer greater than or equal to a € R. For a real-valued function
f:R" - R, we let Vif(x) = (0f(x)/0Xq,...,0f(x)/0xn) denote its
gradient with respect to x and simplify this to Vif(x) = Vf(x)
when the argument is clear from the context. For random vector
X, we let Ex{-} denote the expectation operator, Exy{-} denote the
conditional expectation given Y, and P{X € A} denote the probabil-
ity that X lies in the set A. By N'(u, ¥), we denote a multivariate
Gaussian distribution with mean w € R" and covariance X € S7.
The subscript n exclusively refers to current iteration; additional
subscripts may be added to denote elements and/or samples of
particular variables.

2. Problem definition

In this paper, we consider a general constrained nonlinear grey-
box optimization problem that can be mathematically defined as

min f(x.y). (1a)
s.t. gx,y) <0, (1b)
y=4d(2), (1)
zZ = Ax, (1d)
XeXCR™ yeRY, zecR™, (1e)

where x e R™ is a vector of ny decision variables that is con-
strained to a constrained within known lower xt¢ and upper xY
bounds, ie., X = {x:xf <x <Y}, ze R™ and y € R, respectively,
denote the inputs and outputs of an unknown “black-box” vector-
valued function d : R™ — R"™ referenced in (1c); A e R™*x" js a
binary matrix that encodes that the black-box function may only
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require a subset n, <ny of x as input according to (1d); and
f:R™ xR — R and g:R™ x R — R" are the known “white-
box” objective and constraint functions, respectively. We empha-
size the so-called “grey-box” structure of the optimization problem
(1) in that both f and g are composite functions that are second-
order continuously differentiable with known structure whereas d
is completely unknown. Here the phrase “unknown” strictly refers
the mathematical expression of d in terms of z; we do assume a
simulator is available to query y =d(z) at fixed ze {z:Axl <z <
AxU}. Additionally, we assume this simulator is expensive to evalu-
ate, so only a limited number of evaluations (on the order of tens
to hundreds) can be performed.

Due to the vector representation of the expensive black-box
function, we can easily incorporate any (finite) number of n;, black-
boxes by concatenating the outputs of each individual simulators

d(Ax) = [di(Aix) ", ... dn, (A, X) "], (2)

where A; € R™*™i denotes the binary encoding matrix for the ith
simulator for all i=1,...,n, and A represents the collection of
unique rows from [A], ... ,A;b]T.

An important distinction in the formulation of (1) compared
to alternative constrained grey-box algorithms is the explicit con-
sideration of the composite structure of the overall objective
I(x) = f(x,d(Ax)) and constraints c(x) = g(x, d(Ax)). Neglecting
this structure, we obtain a simplified representation of (1) as fol-
lows

I}gl/{l I(x), (3a)
stt. cu(x) <0, Vue{l,...,U}, (3b)
() <0, Vke{l,...,K}, (3¢c)

where [(x) must be generally modeled as an unknown func-
tion due to the embedded black-box function d(Ax), c(x) =

[c1 (x),...,cng(x)]T is the vector concatenation of individual con-
straint functions, k € {1,...,K} are the set of indices for which
the constraints have known closed-form equations, u € {1,..., U}

are the set of indices for which the structure of the constraints
are unknown, and ng = K+ U. The formulation (3) has been con-
sidered in several previous works (see, e.g., Beykal et al., 2018b,
2020; Boukouvala and Floudas, 2017; Kim and Boukouvala, 2020)
and is clearly a special case of (1) whenever the composite
structure of the unknown objective and constraints is neglected.
Thus, one of the main contributions of this work is to exploit
this composite structure (whenever possible) to improve the ef-
ficiency/performance of data-driven optimization procedures. The
details of our proposed algorithm for solving (1) are presented in
the next section.

3. The COBALT approach: Efficient global optimization of
constrained grey-Box models

The main idea behind the Bayesian optimization (BO) frame-
work is to sequentially decide where to sample the design space
X using all available observations of the objective and constraint
functions. Instead of relying on measurements of ¢(-) and c,(.),
Yue{1,...,U}, as would be the case for traditional BO, we rely
on observations of the black-box function d in (1) directly. Let
Dn = {%;, 2, yi}!;, where z; = Ax; and y; = d(z;), be all available ob-
servations at iteration n. By prescribing a prior belief over the func-
tion d, we can construct (and iteratively refine) a statistical sur-
rogate model for d given the available data using Bayes’ rule to
determine the posterior distribution d(-)|Dy. Given this probabilis-
tic model, we can induce an acquisition function o : X — R that
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Fig. 1. Illustration of the main components of the proposed COBALT algorithm.

leverages uncertainty in the posterior to tradeoff between explo-
ration and exploitation. We can roughly think of «, as quantifying
the utility of potential candidate points for the next evaluation of
d; by accounting for the composite structure we can focus sam-
pling on regions that have the most significant impact on the over-
all objective f(x, d(Ax)) and likelihood of producing feasible points
g(x,d(Ax)) <0, as opposed to “wasting” evaluations in regions that
are likely to yield poor results. A high-level overview of the BO
process is provided in Algorithm 1 and an illustrative flowchart is
shown in Fig. 1.

Algorithm 1 General overview of the Bayesian optimization
framework. The link of Eq. (4) is in this Algorithm.
Initialize: Maximum number of samples N and initial dataset
D;.
1: forn=1to N do
2: Build statistical surrogate model for d(-);

3: Find x,,1 as the solution to the following enrichment sub-
problem
Xp41 = argmax,y, 0n(X), (4)

4: Set z,,1 = Ax,,1 and evaluate expensive function at y,, 1 =
d(z41);
5: Augment the dataset D, 1 = Dp U {Xy41. Zny1s Yns1)-

Output: The feasible point with the lowest objective value.

There are three key ingredients in the proposed grey-box BO
method summarized in Algorithm 1: (i) the choice of probabilistic
surrogate model that consists of our prior beliefs about the behav-
ior of d; (ii) the specification of acquisition functions «;, that cap-
tures the tradeoff between exploration and exploitation and can
be relatively “easily” optimized; and (iii) the constraint handling
mechanism by choice of the sets &x; € X to ensure sufficient ex-
ploration of the feasible domain. The specific choices of these three
elements that make up the proposed COBALT method are discussed
in the remainder of this section.

3.1. Overview of Gaussian process regression

Gaussian process (GP) models represent an uncountable collec-
tion of random variables, any finite subset of which has a joint
Gaussian distribution. Thus, GPs generalize the notion of a mul-
tivariate Gaussian distribution to “distributions over functions,”
which are fully specified by their mean and covariance functions

(Rasmussen and Williams, 2006). Although any probabilistic surro-
gate model can be used, e.g., (Snoek et al., 2015), we focus exclu-
sively on GPs in this work due to their non-parametric nature, i.e.,
they can represent any function given a sufficiently large dataset.

In this section, we provide an overview of GP regression for
general scalar functions s:R™ — R from potentially noisy mea-
surements

t=s(2) +v, (5)

where v ~ A(0, 02) is a zero mean Gaussian noise term with vari-
ance o2. Here, s can be thought of as modeling a single component
of the black-box function, ie., s=d; for a given je{1,...,ny};
the extension of GP to multi-output functions will be discussed in
more detail in the subsequent section.

GPs are specified by their mean function m(-) and covariance
function k(-,-). We write that a function s(-) is distributed as a
GP with mean function m(-) and covariance function k(-,-) as fol-
lows

s(:) ~GP@m(-), k(- -)), (6)
with

m(z) = Es{s(2)}, (7a)
k(z,7') = Es{(s(z) —m(2))(s(z') —m(Z))}, (7b)

where z, 7' € R™ are arbitrary input vectors and E{-} is the expec-
tation over the function space. The GP prior can generally depend
on a set of hyperparameters W, i.e.,, m(z|W.) and k(z, Z’|¥,). With-
out loss of generality, we assume that the mean function is set to
zero

m(z|We) =0, (8)

which can be achieved by normalizing the data before training as
discussed in, e.g., (Bradford et al., 2018). When using GP regression,
the chosen class of covariance functions determines the properties
of the fitted functions. Here, we will focus on stationary covari-
ance functions from the Matérn class whose smoothness can be
adjusted by a parameter v such that the corresponding function is
[v/2 — 17 times differentiable. Some of the most commonly used
examples are

kv_1(z.2)) = ?exp (-1(z.2)). (9a)

ky_3(z.2) = *(1+V3r(z.2)) exp (—V3r(z.2)). (9b)
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kys(z,Z) = {2(1 ++/51(z,2) + gr(z, z’)2> exp (—v5r(z.2)),
(9¢c)

where r(z,7') =/(z—2Z)A-2(z—2) is the scaled Euclidean dis-
tance and A =diag(Aq,..., An,) is a diagonal scaling matrix. Note
that, in the limit v — oo, we recover the squared exponential (SQ-
EXP) covariance function of the form

kare(2.2) =7 exp (~57@ 27), (10)

which is most commonly used function whenever s is assumed
to be a member of the space of smooth (infinitely differentiable)
functions.

Under assumption (8), the hyperparameters consist of W, =
[¢,A1,...,An,]T. The parameter ¢ describes the output variance
while the parameters {)‘i}?il define the length scale of each of the
input variables. Covariance functions with different length scales
for each input are called anisotropic; if an input dimension is not
important, then its corresponding length scale will be large. Due to
the additive property of Gaussian distributions, we can derive a GP
model for the observation

t ~GP(0,k(z, 2| W) +028,), (11)

where §,, is the Kronecker delta function that is equal to 1 when-
ever z=7 and zero otherwise. If the function observations are
noisy and o2 is unknown, it can be included in the joint set of
hyperparameters for the prior denoted by ¥ = [¥/, 02]".

Training a GP model thus corresponds to calibrating the hyper-
parameters W to a given dataset. Let us assume that we have n
available measurements of the unknown function s represented by
the following matrices

Z=|z1,...,2y]" e R™", (12a)

T=I[t;,....ta]" e R™, (12b)

where z; and t; denote the it input and output data point, respec-
tively. Based on the GP prior assumption (6), the measured data
vector T must follow a multivariate Gaussian distribution of the
form

T~N(@O, Z1), [Zrlij =k(z,z;|Ve) + 0283,
V. j)e {1, ). (13)

We use the maximum likelihood estimation (MLE) framework to
infer the hyperparameters W from the log-likelihood function of
the observations

1

(W) = log(p(T|2, W) = —5T TS 'T - %log(det(Er))

- g log(27). (14)

The MLE hyperparameter estimate is then specified as the solution
to the following optimization problem

Wy = argmaxy L£(W), (15)

which can be solved using readily available NLP methods. Once we
have trained the hyperparameters, we can use the data D = {Z, T}
to infer the posterior distribution s(z)|D at any test point z using
Bayes’ rule (Rasmussen and Williams, 2006, Chapter 2)

$(2)|D ~ N (us(z: D), 0 (z: D)), (16)
with

us(z: D) = k(z,.2)Z;'T, (17a)
02(z:D) =k(z.2) —k(z.2)Z;'k(z.2)", (17b)
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where
k(z,Z) =[k(z.z1), ..., k(z,z,)] e RV, (18)

It is important to note that the posterior mean s(z; D) represents
our best prediction of the unknown function s(z) at any particular
z value, while the posterior variance o2(z; D) provides a measure
of uncertainty in this prediction.

Remark 1. The complexity of evaluating the posterior mean and
variance scales as O(n3) with respect to number of observations
n due to inversion of the covariance matrix in (16). In practice,
the Cholesky decomposition Xp = LyL{ can be computed once and
saved so that subsequent evaluations scale as 0(n?), as long as the
hyperparameters of the kernel are kept constant. This is typically
not a major issue for expensive function evaluations (due to the
relatively low computational budget which is the case of interest
in this paper); however, does become an important challenge large
datasets. There have been a significant number of contributions
on reducing the computational cost including sparse GP methods
(Snelson and Ghahramani, 2006). This topic remains a very active
area of research and recently developed packages such as GPyTorch
(Gardner et al., 2018) have been able to scale GPs to n > 10° train-
ing points.

3.2. Statistical model for multi-output black-box function

In traditional BO methods, a separate GP would be trained
for the objective and unknown constraints in (3) following the
procedure discussed in the previous section. Here, our goal is
to learn a GP model for d in (1) instead using the dataset Dy
that is recursively updated according to Algorithm 1. We model
d as being drawn from a multi-output GP distribution, i.e., d(-) ~
GP(m(-), k(-,-)) where m:R"™ — R™ is the prior mean function
and k:R™ xR% — S, is the prior covariance function. Simi-
larly to the single output case described previously, the pos-
terior distribution d(-)|D, is again a multi-output GP (MOGP),
GP(un(-),Kn(-,-)), where the posterior mean p, and covariance Ky
can be computed in closed-form (Liu et al., 2018).

When modeling the correlation between the components of d,
the evaluation cost of the posterior multi-output GP would scale
as O(n§n3) in the worst-case (see Remark 1). An alternative ap-
proach that we pursue here is to model the components of d in-
dependently, meaning we constrain K, to be a diagonal matrix, so
the necessary computations scale linearly with respect to the num-
ber of outputs O(nyn3) in the worst-case. We focus on the more
tractable case in this work since we need to systematically opti-
mize over the MOGP model embedded within the acquisition and
constraint functions, and we would like to limit the complexity of
these sub-problems. Note that the proposed COBALT method, dis-
cussed in detail below, can flexibly handle any MOGP model of in-
terest and will provide immediate gains in performance when a
more accurate MOGP model (i.e., one that better captures the un-
derlying correlation between the elements of d) is utilized. How-
ever, as shown in (Liu et al, 2018), correlated MOGPs have a
larger number of hyperparameters that must be estimated during
the training procedure, which makes the MLE estimation problem
more difficult to solve. Therefore, in practice, correlated MOGPs are
not guaranteed have a higher prediction quality than uncorrelated
MOGPs, especially in the low-data regime of interest in this work.

To build a separate GP for each d;(z) for all i e {1,...,ny}, we
divide the complete dataset Dy = {Dy . .... Dn,.n} into its individ-
ual components D; , = {x},z;, di(zj)}?=l. Using the procedure sum-
marized for scalar functions in Section 3.1, the posterior Gaussian
distribution of d(-) at any test input z is then

d(@)|Dn ~ N (1n (2). Zn(2)). (19)
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with
un(2) = [uq,(z: D1n), ..., Hd,, (z; Dny.n)]Tv (20a)
Tn(2) = Kn(z.2) = diag(0g (z: D1n)..... 04 (Z:Dnyn)).  (20b)

where Mg, (2 Dip) and adz_ (z; D; ) are the posterior mean and vari-
1

ance functions for d;(z), respectively, built from the datasets D;,
foralli=1,...,ny.

3.3. Modified expected improvement for composite functions

Now that we have a statistical model to represent our belief
about the unknown function d at iteration n as shown in (19), we
need to select an acquisition function that captures the utility of
sampling at a subsequent point x,,;. We first focus on the uncon-
strained case for simplicity; the developed approach is extended to
handle constraints in the next section.

In experimental design and decision theory literature, the func-
tion «, is often referred to as the expected utility; whereas, in
the BO literature, it is often called the acquisition or infill func-
tion. The acquisition function must be chosen carefully to achieve
a reasonable tradeoff between exploring the search space and ex-
ploiting currently known promising areas of Xx. As discussed in
(Shahriari et al., 2015), acquisition functions can be categorized
as either improvement-based, information-based, or optimistic. We
develop a modified improvement-based policy in this work based
on an extension of classical expected improvement (EI) to compos-
ite functions (Astudillo and Frazier, 2019):

EI-CFy (x) = En{[¢; - f(x. d(A0))]"}, (21)

where ¢ = min;e(y, _, ¢(x;) is the minimum value across the
points that have been evaluated so far (often referred to as the in-
cumbent) and En{-} is the expected value conditioned on all avail-
able observations Dn,. When d is scalar-valued (ny = 1), A =1I,, and
f is the identify function (i.e., f(x,d(Ax)) =d(x)), then (21) re-
duces to the traditional EI function that can be computed analyti-
cally as follows

o £ — () b~ 1)
Eln(x) = (¢ — MMX)W(W) + G”(X)‘p(an(X))’
(22)

where ® and ¢ are the standard Gaussian cumulative and proba-
bility density functions, respectively. Although such an analytic ex-
pression is relatively easy to evaluate and optimize, we are unable
to derive one for EI-CF,(x) when f is nonlinear in its second ar-
gument. Despite this potential complication, it can be shown that
EI-CF, (x) is differentiable almost everywhere under mild regularity
conditions, which are summarized next. We first recognize that, for
any fixed x € X, the posterior distribution of d(Ax) is a multivari-
ate normal according to (19). We can thus exploit the “whitening
transformation” to derive

d(AX)|Dp = pn(AX) 4+ G (AX)E, (23)

where & ~ N(0, In, ) is a standard normal random vector and Gy (2)
is the lower Cholesky factor of ¥,(z). Substituting this transforma-
tion into (21), we can replace E,{-} with an expectation over &, i.e.,
Eg{}, implying that EI-CF,(x) can be straightforwardly estimated
using Monte Carlo (MC) sampling; note EI-CF,(x) is finite for all
x € X whenever E¢{|f(x,§)|} < occ. Similarly to (Astudillo and Fra-
zier, 2019, Supplementary Material), we now make the following
mild assumptions about f, (y, and Zp:

Assumption 1. Let X be an open subset of X so that u,(Ax) and
¥n(Ax) are differentiable for every x € Xy. A measurable function
1 : R — R exists such that
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1. The function f is differentiable;

2. ||V f(x, un(Ax) + Cr(Ax)E) |2 < n(&) for all x € Xy and & € R™;

3. E¢{n(§)?} < oo is finite for & ~ N (0. I, );

4. {x € Xy : f(x, un(Ax) + Ca(Ax)§) = ¢} is countable for almost
every £ e R,

As long as the prior mean function m(Ax) and covariance func-
tion K(Ax,Ax) are differentiable on int(X), we can show that
Un(Ax) and X, (Ax) are differentiable on Xy = int(X) \ {x1,...,Xn}.
Combining this with Assumption 1, we see EI-CF,(x) must be dif-
ferentiable almost everywhere (except on a countable subset of X).
Thus, when it exists, the gradient of the composite EI function is
given by

VEI-CFy (x) = E¢{ya(x, &)}, (24)
where

=V, pn(A%) + Cu(AX)E), if f(n(AX) + G (AX)E) < fF,

otherwise.

)/n(X, é;_) =
(25)

In the derivation of (24), we have switched the order of the ex-
pectation and the gradient operators that is generally possible un-
der minor technical conditions presented in (L'Ecuyer, 1990, Theo-
rem 1). Since yn(x, &) is an unbiased estimator of VEI-CF,(x), we
could potentially use the following stochastic gradient ascent algo-
rithm to search for maximizer of (4), with o, < EI-CF,, from some
initial guess x;,10:

Xni1,e41 = g, X1 p + VeV (Xng16, &), Vee{0,...,T -1},
(26)

where {XHHI}Z:O is the sequence of design variables over T it-
erations of the algorithm, {v; [T;(} is the sequence of step sizes,
and {&}/-} are independent and identically distributed (i.i.d.) sam-
ples from the distribution of £. Even in the box-constrained case,
i.e, Xy =X such that the projection operator is simple to im-
plement, the stochastic gradient ascent algorithm is known to be
quite sensitive to the choice of step sizes vy, ..., vr_; (Huan and
Marzouk, 2014). Another key challenge is that y,(x, &) =0 for a
potentially large range of x and & values, as seen in (25), which
may cause the iteration scheme (26) to become stuck locally. This
particular problem only gets worse as the number of observations
n increase due to the fact that the incumbent ¢}, can only improve
(or stay the same) at each iteration resulting in smaller probability
that the surrogate predicts potential improvement.

This challenge has been previously noticed in the context of
El, which is often observed to be highly multimodal in nature
(Sasena et al., 2002). One potential remedy is to modify the def-
inition of the acquisition function to better reflect the shape of
the objective. One such example is the “locating the regional ex-
treme” acquisition proposed by Watson and Barnes in (Watson and
Barnes, 1995) for black-box optimization problems, i.e., WB2,(x) =
—Zn (%) + El,(x) where Z,(x) is the mean of a posterior GP sur-
rogate model for the overall objective. Although producing a
smoother function, the WB2,(x) acquisition function does not ac-
count for the difference in the scales of the predicted objective and
EL In particular, as the GP surrogate model becomes more accu-
rate, we expect El,(x) to steadily decrease, resulting in WB2,(x) ~
—#n(x), so that Algorithm 1 begins to fully focus on exploitation of
the surrogate, which may be undesired. Therefore, not only are we
interested in improving the scaling of the WB2 function, we want
to extend it to composite functions as follows

mWB2-CF, (x) = s,EI-CF, (x) — £,(x), (27)

where s, > 0 denotes a non-negative scaling factor and 7,(x) =
En{f(x,d(Ax))} denotes the predicted mean of the overall objec-
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tive function. The gradient can be straightforwardly computed us-
ing (23), (24), and (25) as follows

VmWB2-CFy (x) = Eg {Sn¥n(X. §) — V (X, n(AX) + Gr(AX)E)}.
(28)

which still exists almost everywhere and whose estimates does not
suffer from the same zero gradient issue as y;,(x, ). This means
we could use the same stochastic gradient ascent algorithm to
solve the enrichment sub-problem (4) with the acquisition func-
tion set to op < mWB2-CF, by replacing the gradient estimate
with yn(x, &) < snvn (X, &) — V f(x, un(AX) + G, (Ax)&;) in (26). The
only remaining question is how to select the scaling factor s, in
such a way that approximately preserves the global optimum of
the composite EI function

argmax,. y, EI-CF;(x) ~ argmax,,,, mWB2-CF,(x). (29)

Enforcing this condition is difficult in practice since we must
account for the full variation of [,(x) over x e A;. Motivated
by recent work in (Bartoli et al., 2019), we instead rely on a
heuristic approach that uses a finite number of starting points
Xn.start C Xn to approximately maximize the composite El, i.e.,
Rp1 A argmaxy, XmmtEl'CFn(X) where X start contains the starting
points to be used in a multistart version of (26) (i.e., multiple
restarts from different quasi-randomly sampled initial conditions
Xn+1,0)- Using this approximate maximizer, we compute the scaling

factor as
|Zn (2n+1)| : o
———~ _ if EI-CF, 0
S0 = A PELCR, Gy T M CEn(Rne) > 0.

1, otherwise,

(30)

where 8 > 1 is an additional scaling factor that accounts for the
degree of nonlinearity in 7,(x). We found that a relatively large
value of 8 = 100 gives good results for a variety of functions stud-
ied in Section 4. Finally, we highlight that, since neither EI-CF;, (x)
or 7,(x) can be exactly computed due to presence of nonlinear
terms, these terms must be estimated by MC sampling. It is im-
portant to recognize, however, that the transformation (23) implies
that the relatively expensive evaluation of w,(Ax) and C,(Ax) only
need to be done once at a given x € X such that these MC esti-
mates can be efficiently computed for even a relatively large num-
ber of samples of &£. Furthermore, we can easily replace MC sam-
pling with more computationally efficient uncertainty propagation
methods, such as unscented transform (Julier and Uhlmann, 1997)
or polynomial chaos expansions (Paulson et al., 2017), if and when
needed.

3.3.1. Illustrative example comparing black- and grey-box
formulations

In Fig. 2, we demonstrate the advantages of exploiting the
composite structure of the objective and the proposed mWB2-CF
acquisition function on an illustrative example. In particular, we
take a grey-box representation of the Rosenbrock function, i.e.,
f(x,d(x)) =100 — x2 + d(x)> where A=Dh, d(x) =x, —x2 is the
unknown black-box function, and x = [x1,x,]". The first row of
Fig. 2 shows the posterior mean (a) and variance (b) of the overall
objective ¢ for six randomly generated initial samples and the tra-
ditional EI acquisition function (c). We see that the predicted vari-
ance is low near the evaluated samples (red dots), and this vari-
ance grows as x moves away from these points. From Fig. 2¢c, we
see that classical El is largest near the lowest function value ob-
served (green diamond), which is relatively far away from the true
global minimum f(x*,d(x*)) =0 where x* =[1,1]T (white star).
This is not unexpected since the mean function built for ¢ directly
does not accurately represent the true surface (g) with these lim-
ited set of samples. The second row of Fig. 2, on the other hand,
shows the posterior mean (d) and variance (e) of the composite
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objective f(x,d(x)) for the same set of six samples as well as the
EI-CF acquisition function (f). It should be noted that the poste-
rior of f(x,d(x)) is not normally distributed and thus the mean,
variance, and EI-CF evaluations must all be approximated with MC
sampling. Not only do we see that the mean function result in a
much more accurate representation of true objective, we see sig-
nificantly less variance in the prediction due to partial knowledge
of the function’s structure. A direct result of this is that the largest
value of EI-CF (green diamond) is much closer to the global mini-
mum, as seen in Fig 2 f. However, the max operator in (21) results
in a flattened EI-CF surface that can be difficult to globally opti-
mize; the mWB2-CF acquisition function (h) clearly addresses this
problem by providing useful gradient information throughout the
design space while still preserving the global maximum of EI-CF.

3.4. Chance constraint-based relaxation of feasible region

The previous section focused on the choice of acquisition func-
tion in the absence of any black- or grey-box constraints (g = 0),
which has been the main case of interest in much of the BO lit-
erature. As mentioned in the introduction, we take a probabilistic
explicit approach to constraint handling that can be generally for-
mulated in terms of chance constraints, which is the focus of this
section.

Given our statistical model of d in (19), the constraint func-
tion in (1b) becomes a multivariate random vector for any partic-
ular x € X. Due to this inherent randomness, we can only enforce
these constraints up to a certain probability level. For simplicity,
we formulate these as a set of individual chance constraints for
each component of g(-) =[g1 (). ..., & ()] as follows

Po{gi(x,d(Ax)) <0} >1—¢€;,, Vie{l,... ,ng, (31)

where Pp{-} is the conditional probability given all available ob-
servations D, at iteration n and €;, € (0,1) is the maximum al-
lowed probability of constraint violation. In similar fashion to EI
previously, we see that (31) has a closed-form expression in cer-
tain special cases. For example, we can derive the following ex-
pression when g; is linearly related to the black-box function, i.e.,
gi(x, d(Ax)) = a (x)d(Ax) — b;(x)

al (X)n(AX) + D71 (1 — €;) ICa (AX) ;|2 < b;(x). (32)

Unfortunately, such closed-form expressions are not available in
the general nonlinear case so we again need to develop an effi-
cient approximation strategy. One approach would be to again try
a MC sampling-based approach by recognizing that

Py{gi(x, d(Ax)) < 0} = En{I{g;(x, d(Ax)) < 0}},
= Ee {I{g; (x, pn (Ax) + G (AX)E) < 0}},

M
~ % D I{gi (X, 11a (AX) + Ca(A)ED) < 0},

i1
(33)

where I{L} is the indicator function that is equal to 1 if the logi-
cal proposition L is true and 0 otherwise and {é(i)}ﬁ‘i] is a set of
M i.i.d. samples of &. Since the indicator function in (33) is non-
smooth, it substantially increases the complexity of the enrichment
sub-problem due to the inclusion of binary variables to enforce
some fraction of the constraints to hold (Pagnoncelli et al., 2009).
A much simpler approach is to rely on a moment-based approxi-
mation of (31) that can be derived from a first-order Taylor series
expansion of g;(x,y) in its second argument around y = 1, (Ax)

gi(x.y) ~ g 9) +Vygx. Hy —J). (34)

By substituting y = d(Ax) in the expression above, we see that the
posterior distribution of g;(x, d(Ax)) is approximately normally dis-
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Fig. 2. Illustrative example comparing the proposed EI-CF and mWB2-CF acquisition functions to the classical EI acquisition function on a modified Rosenbrock problem. The
top row shows the (a) mean, (b) variance, and (c) EI for the posterior of the overall objective ¢(x) given observations of ¢(x;) at six points x1, ..., Xs (shown with red dots in
all figures). The second row shows the (d) mean, (e) variance, and (f) EI-CF for the posterior of the composite objective ¢(x) = f(x, d(x)) given observations of the black-box
function d(x;) at the same six points. The last row shows the (g) exact shape of the function and (h) mWB2-CF. The white star denotes the true (unknown) global minimizer

and the green diamonds denote the maximum of the acquisition functions.

tributed for any fixed x ¢ X

8i(x. d(A%))|Dn ~ N (g (X). 02 1 (X)), (35)
where

Hgn(X) = gi(x, Un(AX)), (36a)
02 (%) = Vygi(X, 11n(AX)) Ty (A%) Vg (X, i (AX)) T, (36b)

are the approximate mean and variance for the probabilistically
modeled constraint function g; at iteration n, respectively. Under
this approximation, the chance constraints (31) can be substan-
tially simplified, which enables us to define the probabilistic ex-
plicit set &, as follows

Xp={xeX:gn(X)+ Tinogn(x) <0, Vie{l,...,ng}}, (37)

where 7;, = ®1(1 —¢;,,) can be interpreted as “trust” levels in
the constraints at the current iteration number n. We see 1;, is
explicitly related to the allowed violation probability ¢; ,, with the
shape of this curve being depicted in Fig. 3. For ¢;, values less
than 50%, we see that 7;, is positive such that the variance term

trust level

0 0.2 0.4 0.6 0.8 1
maximum violation probability

Fig. 3. The relationship between the maximum violation probability €;, and the
corresponding trust levels 7;, in the probabilistic explicit set representation of the
grey-box constraints.
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Tin0g.n(x) effectively “backs off” of the mean prediction of the
constraint. This is an overall restriction of a simple determinis-
tic prediction of the feasible region, i.e., g(x, ttn(Ax)) < 0, which is
recovered in the case that ¢;,, = 0.5. For €;, values greater than
50%, on the other hand, we see that 7; , becomes negative, so that
(37) is a relaxation of the nominal prediction of the feasible re-
gion; the basic idea of this relaxation is to try to ensure that the
predicted feasible region contains the true one with high probabil-
ity and is similar to the notion of the upper trust bounds (UTBs)
introduced in (Priem et al., 2019). In fact, it can be shown that
(37) reduces to the UTB approach in the case of fully black-box
constraint functions.

We can think of ¢;, (or equivalently 7;,) as tuning parame-
ters of the algorithm. In fact, one can imagine developing various
adaptive tuning mechanisms to update t;, at each iteration n to
control the level of exploration in the predicted feasible region.
In the early stages of Algorithm 1, we expect the GP to provide a
poor prediction of the feasible region such that larger values of 7;
would be preferred to allow for more exploration instead of overly
sampling near a feasible local minimum. As n increases, however,
we expect the GP model to become more accurate and, as our con-
fidence increases, we should shrink 7;, toward zero to accelerate
convergence. Using this rule-of-thumb, we found that the follow-
ing linear update rule worked well in our numerical tests

Tin = —3(1 - %) (38)

which starts from an initial condition of —3 (corresponds to a high
confidence that the true region is contained in ;) and converges
to 0 (corresponds to the nominal GP prediction) at the final itera-
tion. A variety of other update strategies for the trust levels could
be considered including ones that exhibit the opposite behavior or
even further increase t; ,, which we plan to explore more in future
work.

Since X, in (37) is implicitly defined by a collection of nonlin-
ear constraints, the stochastic gradient ascent algorithm in (26) be-
comes significantly more expensive as a direct result of the pro-
jector operator Iy, that requires a non-convex optimization to be
solved at every iteration. A more practical alternative is to resort
to a sample average approximation (SAA) (Kleywegt et al., 2002)
of the enrichment sub-problem (4) that reduces the stochastic op-
timization problem to a deterministic one. Using the proposed
mWB2-CF, (x) acquisition function in (27) and probabilistic explicit
set representation in (37), the SAA approximation of (4) can be for-
mulated as

1M . .
Xni1 = AZMAKy 5 > (salty — € OTF — £ (). (39a)
-1
St g n(X) + TinOgn(x) <0, Vie{l,...,ng}, (39b)
x<x<x, (39¢)

where ¢\ (x) = f(x, un(AX) + Ca(AX)ED) for all i=1,... M;
gM  £M) js 3 set of M i.i.d. realizations of the random variable
§ ~N(0,In,); and the incumbent definition must be modified to
account for constraints as follows

00, if no points are feasible,
=1 {r{lin }f(x,-,yi) s.t. g(xi,y;) <0, otherwise. (40)
1eql,..., n

In practice, when the incumbent is infinite implying no feasible
points exist, we set s, =0 such that the objective reduces to a
mean-based acquisition function.

The key distinction of SAA (relative to the stochastic gradient
ascent method) is that the same set of realizations are used for the
different iterates of x computed during the optimization process
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such that (38) is fully deterministic. This implies that we can use
any of the state-of-the-art (derivative-based) nonlinear program-
ming (NLP) solvers to efficiently locate locally optimal solutions to
this problem. Due to the fast local convergence rate of derivative-
based NLP solvers, such as IPOPT (Biegler and Zavala, 2009), we
can easily utilize them in a multi-start optimization procedure as a
heuristic to finding the global maximizer of (38). It is also impor-
tant to note that this heuristic is not a major limitation, as even
approximate solutions to (38) still produce valuable samples that
are more likely to result in improvement of the current incumbent
relative to alternatives such as random or space filling designs.

Remark 2. There has been a substantial amount of theory estab-
lished for the SAA method applied to stochastic optimization prob-
lems (see, e.g., Kim et al., 2015 for detailed discussions on these
results). Under certain assumptions on the objective and constraint
functions, the optimal solution and objective estimate obtained
from (38) converge to their respective true values in distribution
at a rate of 0(1/+/M). Furthermore, various procedures have been
developed to estimate the optimality gap between the solution of
(38) and the true solution. This optimliaty gap estimator and its
corresponding variance estimated from the MC standard error for-
mula can be used to decide if the approximate solution is trust-
worthy or if the number of samples M needs to be increased, as
discussed in (Kleywegt et al., 2002, Section 3).

Remark 3. Although we focused on inequality constraints (1b) for
simplicity, we can handle nonlinear equality constraints of the
form h(x,y) =0 similarly to (37). In particular, we can transform
h(x,y) = 0 into two-sided inequalities h(x,y) < 0 and h(x,y) > 0 to
arrive at

|Mhi.n(x)| = _Ti,nalli.n(x)’ Vie{l,...,ny}, (41)

where puy ,(x) and oy, ,(x) are the approximate mean and stan-

dard deviation for the it" component of h at iteration n, which are
defined similarly to (35). Note that the constraints (41) become in-
feasible for any positive t;,, implying that update rules that keep
these values negative, such as (38), must be used. Furthermore,
when 1;, =0, (41) can be simplified to h(x, un(Ax)) = 0, which
corresponds to the best nominal prediction of the grey-box equal-
ity constraints.

Remark 4. We focused on an individual chance constraint formu-
lation (31), as opposed to the following joint chance constraint rep-
resentation

Pa{g(x. d(Ax)) < 0} = Pa{gi(x, d(Ax)) < 0,Vie {1,...,ng}}
>1-—¢€, (42)

for two reasons. First, individual chance constraints can be dealt
with in a more computationally efficient manner since they do
not require the construction of the full multivariate distribution of
g(x, d(Ax))|Dy. Second, the choices of {¢;,} (that can be equiva-
lently mapped to the trust levels {;,}) remain tuning parameters
in COBALT. Although (42) involves only a single tuning parameter
€, it is not immediately obvious how to select this value to achieve
good performance in practice. Thus, we opt for the approach in
(38) due to the ease of interpretation of the impact on the selected
Xn.1 to changes in the trust levels. We plan to study the impact of
the individual versus joint chance constraint representation more
in our future work. It is interesting to note, however, that the col-
lection of individual violation probabilities {e;,} can be used to
derive a conservative estimate on the joint satisfaction probabil-
ity using Boole’s inequality (Paulson et al., 2020), i.e.,, € < Z?:"’] €in
though this bound is known to be conservative (unless the events
are nearly independent).
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4. Numerical examples

Several numerical experiments were carried out to test the per-
formance of the COBALT algorithm under a variety of different con-
ditions. In all cases, we assume that noiseless objective and con-
straint functions are available, however, the algorithm is capable of
identifying the noise term in the GP, as discussed in Section 3.1,
and so is directly applicable to cases with noisy observations.

4.1. Implementation of the COBALT algorithm

We now outline our implementation of the proposed COBALT
algorithm that was used to generate results in this section. The
code, which is implemented in Matlab, is freely available online at
(Paulson and Lu, 2021). The first major step is construction of the
GP regression models for the black-box functions, which require
the hyperparameters of the covariance function to be estimated, as
discussed in Section 3.1. This is achieved by solving the MLE prob-
lem in (15) using the DIRECT search algorithm from (Finkel, 2003).
The best hyperparameter value found by the initial DIRECT search
is then used to initialize Matlab’s local fmincon solver. The other
main GP calculations, such as evaluating the mean and variance
functions in (16), were performed with the Gaussian Process for
Machine Learning (GPML) toolbox developed by Rasmussen and
Nickisch (Rasmussen and Nickisch, 2010). The GPML toolbox im-
plements the Matérn and squared exponential covariance func-
tions in (8) and (10), respectively. We selected the squared ex-
ponential kernel by default in all of our tests, though this can
easily be modified in the code. The SAA-based enrichment sub-
problem (38), with M = 100 as a default, was solved using IPOPT
(Biegler and Zavala, 2009), with the CasADi (Andersson et al., 2019)
automatic differentiation toolbox being used to supply exact first-
and second-order derivatives to IPOPT.

Note that the current version of COBALT (Paulson and
Lu, 2021) is constructed to be modular, as it implements a
GreyboxModel class object that has several helper methods that
can be useful for algorithm testing and comparisons. With the ex-
ception of the final case study that requires specialized simulation
code to run, all other test problems have been included in the ini-
tial code release.

4.2. Optimization test problems and performance assessment method

We test the performance of COBALT on a diverse set of opti-
mization test problems commonly used for benchmarking global
optimization algorithms, which we slightly modify to fit the pro-
posed grey-box structure in this paper. A summary of the set of
seven test problems is provided in Table 1. The exact equations for
the test problems in the form of (1), along with their global so-
lutions, are provided in Appendix A. The first three problems in-
volve highly nonlinear (and some multi-modal) composite objec-
tive functions of varying dimension with only box constraints on
the decision variables. The next three problems all involve nonlin-
ear constraints, with at least one or more composite grey-box con-

Table 1
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straint functions. While the Toy-Hydrology problem has a known
objective and one grey-box constraint function, the Rosen-Suzuki
and Colville problems have a mixture of grey-box objective and
constraint functions. The last problem is a realistic engineering
problem that is related to parameter estimation in complex biore-
actor models.

We compare the performance of COBALT (mWB2-CF) with four
other acquisition functions: expected improvement (EI), probabil-
ity of improvement (PI), the expected improvement for compos-
ite functions (EI-CF), and random search (Random). The EI and
PI acquisitions were run using the bayesopt function from the
Statistics and Machine Learning Toolbox in Matlab. The EI-CF ac-
quisition was implemented in a similar fashion to (38), with the
mWB2-CF objective function from (27) replaced by (21). For all
problems and methods, an initial set of evaluations is performed
using max{3, n; + 1} points chosen with Latin hypercube sampling
(LHS). We use the base-10 logarithm of the best-sample simple re-
gret as our performance metric, which is defined as follows

Log10-Regret, = logo (£}, — £iye)

(43)
where ¢, is the global minimum of the exact optimization prob-
lem (see Appendix A). The regret is a measure of how far off the
best currently feasible sample, defined in (40), is from the true
global optimum at each iteration of the algorithm. The logarithm
is incorporated to account for the largely different scales that can
occur depending on the specifics of the objective function and the
initialization points. Since Log10-Regret,, depends on the randomly
selected initial points, showing results for a single initialization is
not very informative. As an alternative, we repeat every experi-
ment 50 times to estimate the average Logl0-Regret, for each al-
gorithm. Error bars are computed by estimating the confidence in-
tervals as 1.96 times the standard deviation divided by the square
root of the number of repeats. Furthermore, a detailed overview of
the computational statistics of COBALT (relative to traditional con-
strained BO) is provided in Appendix B.

4.3. Results for box-constrained global optimization test problems

We first discuss the results for the set of box-constrained test
optimization problems. Figs. 4, 5, and 6, respectively, show the
expected Logl0-Regret, over 50 replications for the Goldstein-
Price, Rastrigin, and Rosenbrock functions. We clearly see that the
COBALT algorithm (mWBS-CF) outperforms all other tested acqui-
sition functions by up to 3 orders of magnitude. It is interesting
to note that, even though the Rastrigin function in particular has
a large number of local minima, both grey-box acquisition func-
tions do not get “stuck” and are able to make much faster progress
than their fully black-box counterparts. For the smaller dimen-
sional problems (Goldstein-Price and Rastrigin), we see that EI-CF
performs only slightly worse than mWB2-CF; however, for the six
dimensional Rosenbrock problem, mWB2-CF results in significant
improvement over EI-CF. This suggests that the proposed choice of
acquisition function (and its sub-optimization routine) has a large
influence on performance, and that the gradient of mWB2-CF plays

Overview of the characteristics of the collection of seven optimization test problems considered in this
work along with their corresponding source. The detailed formulation of each test problem is provided in

Appendix A.
Name Ny ny n; ng Equation # Reference
Goldstein-Price 2 2 2 0 (A.1) Dixon, (Dixon, 1978)
Rastrigin 3 1 1 0 (A.2) Rastrigin, (Rastrigin, 1974)
Rosenbrock 6 4 4 0 (A3) Rosenbrock, (Rosenbrock, 1960)
Toy-Hydrology 2 1 1 2 (A4) Gramacy et al., (Gramacy et al.,, 2016)
Rosen-Suzuki 4 2 2 3 (A.5) Hock et al., (Hock and Schittkowski, 1980)
Colville 5 4 4 6 (A.6) Rijckaert et al., (Rijckaert and Martens, 1978)
DFBA-MLE 6 24 6 0 (A7) Paulson et al., (Paulson et al., 2019)
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Fig. 6. Expected log 10(regret) for the 6d Rosenbrock test function, with approxi-
mate confidence region shown via error bars, estimated from 50 independent real-
izations.
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Fig. 7. Expected log 10(regret) for the 2d Toy-Hydrology test function, with approx-
imate confidence region shown via error bars, estimated from 50 independent real-
izations.
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Fig. 8. Expected log 10(regret) for the 4d Rosen-Suzuki test function, with approxi-
mate confidence region shown via error bars, estimated from 50 independent real-
izations.

an important role in selecting samples that are more likely to be
optimal. We also observe that the confidence intervals for the av-
erage regret are higher for the Rastrigin problem compared to the
Goldstein-Price or Rosenbrock problems. First, it should be noted
that regret is plotted on a logarithmic scale so that the actual vari-
ance is small for all of these problems. Second, the Rastrigin ob-
jective function is quite “bumpy” due to the inclusion of a cosine
term that is difficult to resolve with a small number of samples. As
such, the performance of any BO algorithm will more strongly de-
pend on the initial set of randomly selected samples that naturally
leads to more run-to-run variability in the tested algorithms.

4.4. Results for nonlinearly constrained global optimization test
problems

Now, we highlight the performance of the COBALT algorithm
(mWBS-CF) on the test optimization problems with highly nonlin-
ear (grey-box) composite constraint functions. In particular, the ex-
pected value of Log10-Regret, over 50 replications of the randomly
selected initialization points for the Toy-Hydrology, Rosen-Suzuki,
and Colville problems are shown in Figs. 7, 8, and 9, respectively.
Recall that COBALT uses a probabilistic explicit constraint handling
method, as shown in (39b), whereas bayesopt uses an implicit



JA. Paulson and C. Lu

4
i ;
ot

— 1 [

©

g0l

St

o

2
2+ — |

m— MWB2-CF
3t = random
T e P|

-4r | I HF'] ey EI-CF

L[ [ []
5 \ | . . . . |

5 10 15 20 25 30 35 40 45 50
iteration

Fig. 9. Expected log 10(regret) for the 5d Colville test function, with approximate
confidence region shown via error bars, estimated from 50 independent realiza-
tions.

approach that effectively multiplies the unconstrained acquisition
function by the probability of constraint sanctification (see, e.g.,
Gardner et al., 2014 for additional details).

Since the initial samples are selected randomly, there is no
guarantee that Algorithm 1 (in the grey- or black-box case) will
start from a feasible point. As the algorithm progresses and a bet-
ter model of the black-box components of the model are obtained,
we expect that it becomes more likely that a feasible point is iden-
tified. To clearly represent this behavior in Figs. 7-9, we do not
plot the Log10-Regret, values for any n in which an infeasible in-
cumbent value exists in any of the 50 replicate runs. As such, the
starting iteration (e.g., n = 5 for mWB2-CF in Fig. 7) on these plots
is an estimate of the worst-case number of iterations required to
find a point within the unknown feasible domain. For the lower
dimensional problems (Toy-Hydrology and Rosen-Suzuki), we see
that COBALT is not only able to find feasible points faster than
bayesopt, but shows a significantly faster decrease in the re-
gret (43) to near-zero values. This is likely due to the fact that
the black-box components of the grey-box model are defined in
terms of fewer variables n,/ny = 0.5, so that a more accurate rep-
resentation of the feasible region can be constructed with less data.
The opposite trend, however, is observed for the higher dimen-
sional problem (Colville), which is likely due to two factors: (i) a
larger number of variables interacting with the black-box model
nz/ny = 0.8 and (ii) the relaxation of predicted feasible domain due
to the negative-valued trust levels, which gradually shrink as itera-
tions increase (38). The increased exploration achieved due to this
relaxation does provide a substantial gain in the regret, which is
seven order of magnitudes better than bayesopt for the mWB2-
CF acquisition function. Similarly to the behavior previously ob-
served for the Rastrigin problem, we see that the Colville prob-
lem results in higher variance in the regret than the Toy-Hydrology
and Rosen-Suzuki problems. In this case, the increased regret vari-
ance can be attributed to a higher dimensional d(z) with strong
nonlinear interaction terms that are harder to estimate. Further-
more, the third component of the unknown function ds(z) plays
an important role in one of the active constraints gs(x,y) (see
Appendix A.6). Compare this to the Rosen-Suzuki problem, for ex-
ample, which only has two unknown quadratic functions and one
of these functions appears in an inactive constraint (so the solution
is overall less sensitive to the estimated GP model for d(z)).

Lastly, we note that, even though EI-CF performs similarly to
mWB2-CF in the Toy-Hydrology problem, we see significant ad-
vantages of mWB2-CF in the Rosen-Suzuki and Colville problems.
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This can be attributed to the fact that EI-CF has zero gradient (see
(24) and (25)) for a significant portion of the feasible space once a
reasonably good solution has been found. This effectively prevents
EI-CF from making good progress during the later iterations (due to
the difficulty in finding the true global maximizer) that is clearly
mitigated by the switch to mWB2-CF.

4.5. Results for Bayesian calibration of genome-scale bioreactor model

Our final case study is focused on a realistic engineering prob-
lem related to the calibration of expensive computer model to
data. In particular, we are interested in estimating parameters
in the substrate uptake kinetics of a genome-scale bioreactor
model from batch measurements of concentrations of extracellu-
lar metabolites and biomass. This problem was originally proposed
in (Paulson et al., 2019) and solved using a surrogate-based op-
timization approach that required 1200 expensive model evalua-
tions. Thus, we are motivated by the potential for the COBALT al-
gorithm to achieve the same level of accuracy with significantly
fewer function evaluations.

For completeness, we provide a brief summary of the prob-
lem; interested readers are referred to (Paulson et al., 2019) for
a more detailed description. The system of interest is for diauxic
growth of a batch monoculture of Escherichia coli on a glucose and
xylose mixed media, which can be modeled using dynamic flux
balance analysis (DFBA) (Hoffner et al., 2013). DFBA models are
formulated as ordinary differential equations with embedded op-
timization problems that represent the metabolic network of the
microorganisms, which means they are fundamentally a dynamic
simulation with discrete events (i.e., a hybrid system). A general
representation of DFBA models is

S(t,0) =f(t,s(t,0),v(s(t,0),0),0), s(ty,0)=s0(0), (44)

where v(s,#) is an element of the solution set of the metabolic
flux balance model

v(s,0) € argmax, q(v,s,0), (45)

st. A@)v=0,
viB(s,0) <v <wE(s, 0),

s(t,0) denotes the state variables describing the extracellular en-
vironment at time t for fixed parameters 6 (e.g., concentration of
biomass, substrates, and products) with initial conditions sy(6);
v denotes the metabolic fluxes that include both intracellular
fluxes and exchange rates; A(f) is the stoichiometric matrix of the
metabolic network; vB(s, 0) and vUE(s, §) are the upper and lower
bounds on the fluxes that depend on the extracellular concentra-
tion, respectively; f is a vector function that defines the rate of
change of each component of s (specified by mass balances in the
extracellular medium); and q is the scalar function that represents
the cellular objective function to be maximized. For the consid-
ered case of batch operation of an E. coli fermentation reactor, we
can specify (44) in terms of three states, i.e., the concentrations of
biomass, glucose, and xlyose. The flux balance model (45) is con-
structed from wild-type E. coli using the iJR904 metabolic network
reconstruction (Reed et al., 2003), which contains 1075 reactions
and 761 metabolites. The cellular objective was chosen to maxi-
mize the growth of the cells at every time point. We simulated this
model using the DFBAlab toolbox (Gomez et al., 2014) that utilizes
Matlab’s ode15s to integrate (44) and CPLEX to solve the LP rep-
resentation of (45).

In this particular model, we have six unknown parameters 0
that correspond to the maximum substrate uptake rates, satura-
tion constants, and inhibition constants that appear v:8(s, §) and
vUB(s, 9). Noisy concentration measurements are available at eight
time points t € {5.5,6.0,6.5,7.0,7.25, 8.0, 8.25, 8.5}:

yij= [S(t,‘,@)]j +€;, V(l, ]) € {1, ,8} X {1,2,3}, (46)
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Fig. 10. Expected log 10(regret) for the DFBA-MLE problem, with approximate con-
fidence region shown via error bars, estimated from 20 independent realizations.

where [s]; is the j™ component of the state vector s that is com-
posed of biomass (j = 1), glucose (j =2), and xylose (j =3) and
e; j is the measurement error for the j™ state at the i™ time point.
Let §; ;(0) = [s(t;, 0)]; denote the model prediction of the jth state
at the i time point. Since the noise in the concentration sen-
sors often depends on the absolute value of the measurement, we
model e; ; as zero-mean Gaussian random variables with a state-
dependent standard deviation that is 5% of the measured signal,
ie,

CIJNN(O,O'I2J(9)), O’,j(9)=005|y,j(0)|, V(l,])e{l,,S}
x {1,2,3). (47)

The likelihood function is then specified by the collection of data
and noise models in (46) and (47) as follows

(Ve — §:1(0))?
o D)
ij

8 3 1

p(Ymeasw) =
1—“_[ /Znai_zj(e)

i=1 j=1
where Ymeas = (Y7, y'S%, ..., ygs™) € R24 is the complete set
of measured data. Our goal is to find the best parameter es-
timate by minimizing the negative log likelihood, i.e., Oyg =
argming {—1og(p(Ymeas|0))}. We can convert this problem to the
standard form of (1) by replacing 6 < x in the objective, rearrang-
ing, and removing constant terms that do not change the location
of the minimum. The final description of the problem is provided
in Appendix A; notice the composite structure of f, which is highly
nonlinear function of the outputs of the DFBA simulator that can
be exploited by COBALT but is neglected by other purely black-box
methods.

The performance of COBALT, relative to random search and EI-
based BO, is shown in Fig. 10. Note that, due to the complexity
of these simulations, we reduced the number of replications to 20
and compared to a limited number of alternative methods. We can
see that, although EI outperforms random search, it still reaches a
relatively poor solution on average even when the number of itera-
tions is increased to 100 objective evaluations. COBALT, however, is
able to consistently converge to a low regret value (near the global
minimum) in only 50 iterations. This is significantly fewer evalu-
ations than the 1200 needed to construct the global surrogate in
(Paulson et al., 2019). From this, we find that our results on this
problem highlight two important points: (i) we can make signif-
icant improvements over purely black-box methods by exploiting
structure whenever possible and (ii) we often needed fewer sam-
ples to find the most likely optimum point than to build a globally
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accurate surrogate model, which is especially important for com-
putationally expensive simulators/models.

5. Conclusions and future work

In this work, we present a novel algorithm for efficiently
searching for the global optimum of constrained grey-box opti-
mization problems. In particular, we extend the traditional black-
box Bayesian optimization (BO) framework to handle composite
functions of the form f(x) = g(h(x)) where g(-) is a known and
differentiable white-box function and h(-) is an unknown vector-
valued black-box function. These types of grey-box constraints, that
involve a mixture of white- and black-box components, occur in
a diverse set of engineering problems such as the calibration of
high-fidelity simulators to experimental data, material and drug
design, and maximum a posteriori estimation of machine learning
models with expensive-to-evaluate likelihoods. The proposed algo-
rithm, which we refer to as COBALT, combines multivariate Gaus-
sian process (GP) regression models (which are non-parametric
and probabilistic in nature) with a novel expected utility (or acqui-
sition) function that is subject to a chance constraint-based rep-
resentation of the feasible region. Due to the general composite
structure of the grey-box objective and constraint functions, we
cannot simply maximize the constrained acquisition function us-
ing standard optimization methods, as is the case in traditional
BO. Instead, we propose a sample average approximation of the
intractable expectation-based objective to convert it into a deter-
ministic expression whose first- and second-order derivatives can
be efficiently computed. In addition, we develop a simple moment-
based approximation of the chance constraints, so that the overall
maximization problem can be efficiently solved with state-of-the-
art nonlinear programming solvers.

To demonstrate the effectiveness of the proposed algorithm, we
compare COBALT to traditional BO on a set of seven diverse test
optimization problems. We observe that COBALT outperforms BO,
with respect to the average regret (i.e., difference between the
estimated optimum at each iteration and the true global mini-
mum), in all considered cases. The final test problem is a realis-
tic engineering problem that is focused on estimating parameters
in a genome-scale bioreactor model using experimental measure-
ments. This problem, which was recently tackled for the first time
in (Paulson et al., 2019) using a custom surrogate-based optimiza-
tion paradigm, required around 1200 expensive model simulations
to build a surrogate model that was accurate enough to (approx-
imately) solve the original parameter estimation problem. When
solving this problem using COBALT in this work, we found that
accurate solutions (i.e., within < 1% of the best known optimum)
could be found in 50 iterations on average, implying a factor of
24 less total number of expensive model simulations. Furthermore,
COBALT found solutions that were two orders of magnitude better
than standard BO found in double the number of iterations (100
total). We believe that the results presented in this paper indi-
cate that a promising path toward accelerating the convergence
of black-box optimization methods is exploiting known problem
structure as much as possible. In addition, we find that the re-
sults highlight the fundamental difference between constructing a
globally predictive surrogate model and locating the minimum of a
constrained function. It turns out the latter problem is easier than
the former, as one can simply ignore parts of the design space that
are not likely to produce “good” solutions.

Although promising results have been obtained in Section 4,
there remain several important directions for future work that
could improve the numerics and theoretical understanding of
COBALT. We briefly discuss three possible directions below.
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5.1. Extensions to other acquisition functions

Throughout this work, we focus on modified forms of the ex-
pected improvement (EI) acquisition function, which was mostly
motivated by results in (Astudillo and Frazier, 2019). However, it is
well-known that EI works best under the assumption that each ob-
servation of the objective and/or constraints has low-noise relative
to the true value of the function. This assumption is not necessar-
ily satisfied in several application domains including drug discov-
ery, medical diagnostics, biosurveillance, and molecular simulation
models. Two particularly interesting alternatives to EI in such cases
are the knowledge gradient (KG) (Frazier et al.,, 2009) and predic-
tive entropy search (PES) (Hernandez-Lobato et al., 2014) acquisi-
tion functions. Instead of relying on a selected incumbent value to
guide the selection of the next sample, KG and PES more heavily
rely on the posterior distribution of the surrogate model itself and
thus are less sensitive to noise. If more exploration is desired, then
one could alternatively select the lower confidence bound (LCB)
(Srinivas et al., 2015) acquisition function or apply Thompson sam-
pling (TS) (Bradford et al., 2018). To the best of our knowledge, KG,
PES, LCB, or TS have not been extended to the case of compos-
ite functions. Since KG and PES are computationally intensive in
the case of standard BO, we expect new tractable approximation
methods will need to be developed to apply under our proposed
constrained grey-box setting (1).

5.2. Improving the enrichment sub-problem optimization scheme

As shown in (38), we had to invoke two main approximations
(i.e., sample average approximation of the objective and moment-
based approximation of the chance constraints) to make the en-
richment sub-problem (4) tractable. Although a large amount of
analysis has been performed on these approximations (see, e.g.,
Remark 2), we have not explicitly made use of this theory in
COBALT. In particular, we do not adaptively set the number of ran-
dom samples M to ensure the solution of the approximate problem
is within a specified tolerance of the true solution. This is mainly
due to the added complexity of solving many SAA problems at
each iteration of COBALT. One potential strategy for reducing the
cost of these SAA problems is to take advantage of parallel or dis-
tributed optimization methods, such as the alternating direction
method of multipliers (ADMM) (Boyd et al., 2011), that can achieve
significant computational speedup and/or reduced communication
between sub-problems. In addition, the stochastic gradient ascent
method presented in (26) can be modified to ensure robust con-
vergence and even outperform SAA for certain classes of problems
(Nemirovski et al., 2009) (for convex constraint sets ;). As such,
developing new ways to achieve similar convergence guarantees in
the presence of non-convex sets Xj is also an interesting direc-
tion for future work. Finally, we note that the EI-CF and mWB2-
CF acquisition functions both have the potential to have many lo-
cal solutions that may provide useful information at each iteration.
Whenever multiple function evaluations can be run in parallel at
each iteration, we can use these samples to develop a batch ver-
sion of COBALT (see, e.g., Liu et al., 2021 for more details on batch
BO).

5.3. Handling high-dimensional problems using trust regions

As discussed in detail in the introduction, COBALT is focused on
global optimization of constrained grey-box models, which requires
a global surrogate model to constructed at every iteration. As the
number of inputs to the black-box portion of the model grows, the
construction of this surrogate gets significantly more challenging,
implying COBALT (as presented in this paper) may not perform
well on particularly large-scale problems. The most straightforward
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way to overcome this challenge is to apply dimensionality reduc-
tion techniques before constructing the GP model (Bouhlel et al.,
2016); building specialized methods that can be done simultane-
ously with the GP repression step may be an interesting to pursue.
An alternative direction would involve combining COBALT with es-
tablished trust region methods, e.g., (Bajaj et al., 2018; Eason and
Biegler, 2016, 2018), which only construct surrogate models over
a local region of the design space. Although there are established
convergence results for various trust region methods, they can only
guarantee convergence to a local optimum and rely on several tun-
ing parameters that may be difficult to select before running the
algorithm. In addition, most trust region methods are based on de-
terministic models and may require fully linear models (Wild et al.,
2008) to be constructed using, e.g., linear/quadratic interpolation,
which means the number of required evaluations at each iteration
scales with the size of the input dimension. A trust region BO al-
gorithm, TuRBO (Eriksson et al., 2019), was recently developed that
addresses the local versus global tradeoff by running several inde-
pendent local models and uses an implicit multi-arm bandit ap-
proach to decide which local model should be allocated samples.
Ideas from TuRBO could inform a local trust region-based strat-
egy for COBALT, which may prove to be beneficial in the context of
large-scale problems.
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Appendix A. Appendix: Representation of test problems in
standard form

Al. Goldstein-Price

We propose a modified formulation of the Goldstein-Price func-
tion that can be formulated as a grey-box optimization problem (1)
as follows

quinzq (14 (X1 + X2+ 1)2(19 — 14%; +3%3 +y1))

(30 + y5 (18 — 32x; + 12x2 + 48x; — 36x1X; + 27x3)),
st y1 =di(2) := =14z, + 6212, + 323,
y2 = dy(2) := 222 — 323,
Z=X,
—2<Xx <2, Vie{1,2}.

The global minimum is equal to 3 with x* = [0, —1]T.

(A1)

A2. Rastrigin

We propose a modified formulation of the Rastrigin function
that can be formulated as a grey-box optimization problem (1) as
follows

1;1y1121 30 +x2 — 10cos(27x;) + x5 — 10cos (2 X;) + 1,
st. y1 =di(2) :=22 —10cos(2rzy),
Z1 = X3,
—-5.12 <x; <5.12, Vie{1,2,3}.

The global minimum is equal to 0 with x* =[0,0,0]T.

(A2)



JA. Paulson and C. Lu
A3. Rosenbrock

We propose a modified formulation of the Rosenbrock function
that can be formulated as a grey-box optimization problem (1) as
follows

3
Iglylgl > (100y7 + (1 = x)*) +100(x5 — X3) + Y4
i=1

+100(xs — x2) + (1 —x5)?,
st. yi=di(2) =28, -2z}, Vie{1,2,3},
ya=d4(2) = (1-24)%
Z=x,
—-2<x <2, Vie{1,2,3,4}.

The global minimum is 0 with x* =[0,0,0,0,0,0]".
A4. Toy-Hydrology

We propose a modified formulation of the Toy-Hydrology func-
tion that can be formulated as a constrained grey-box optimization
problem (1) as follows

min x; + Xy,
XY,z
st. g1(x,y) :=1.5—-x1 —2x, —0.5sin(—47wx; +y1) <0,

L(xy) =x+x-15<0,
y1=di(2) :=2m2,
21 = X1,
0<x <1, Vie{l,2},

The global minimum is 0.5998 with x* = [0.1951, 0.4047]".

(A4)

A5. Rosen-Suzuki

We propose a modified formulation of the Rosen-Suzuki func-
tion that can be formulated as a constrained grey-box optimization
problem (1) as follows

0 w2 1 x2 o 42
rxnyug X7+ X5+ X5 —5x1 — 5X3 + Y1,

St g1(xYy)i=—(8—xX3 —x3 — X3 —XZ—X] +X —X3+X4) <0,
(X, y) i=—(10—-x] —2x3 —y2 +X1 +x4) <0,
&xy) =—5-2x2-x3
y1 =d1(2) :=222 =21z, + 723,

—X3—2X1+X2+X4) <0,

Y2 = dy(2) =22 + 223,

Z1 = X3,
2y = Xa,
—-2<x <2, Vie{l,...,4}. (A5)

The global minimum is —44 with x* =[0, 1,2, -1]".
A6. Colville

We propose a modified formulation of the Colville function that
can be formulated as a constrained grey-box optimization problem
(1) as follows

I)Pyi.rll 5.3578x% +y1,
s.t. g1(x,y) :=y, —0.0000734x1x4 — 1 <0,
g2(x,y) :=0.000853007x,x5 + 0.00009395x; x4 — 0.00033085x3x5 — 1 < 0,
g3(X,y) :=ya — 0.30586(x2x5)"'x3 —1 < 0,
24(x,y) := 0.00024186x,x5 + 0.00010159x; X, + 0.00007379x3 — 1 < 0,
g5(x.y) :=y3 —0.40584(x5)"'x, — 1 <0,
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g6(x,y) :=0.00029955x3x%5 + 0.00007992x7x3 + 0.00012157x3x4 — 1 < 0,
y1 =dq(2) := 0.8357z124 + 37.2392z,,

Y2 = dy(z) :=0.00002584z3z4 — 0.000066632224,

y3 =ds3(z) :=2275.1327(z3z4) "' — 0.2668(z4) 'z,

ya = ds(2) :=1330.3294(2224) ! — 0.42(z4) 'z,

21 =X,

23 = X3,

Z3 = X3,

Z4 = Xs,

78 <x1 <102,
33 <x; <45,
27 <x; <45,

The global minimum is
[78,33,29.998, 45, 36.7673] .

Vie {3.4.5). (A.6)

10122.7 with X' =

A7. DFBA-MLE

The DFBA-MLE problem seeks to minimize the negative log of
the likelihood function that was derived in (48). After some alge-
braic manipulations, we arrive at the following grey-box optimiza-
tion problem in the form of (1)

8 3

rxnylr; > 10g(0.0025y7 5, _1)) +
i=1 j=1

(e —Yis3(j-1)?

0.0025y75 ;1)

St Yisgon =dis-n@ =¥i@), V@ jp)e{l ..., 8} x {1,2,3},
z=x,

9.45 < x; < 11.55,

0.0024 < x, < 0.0030,

54 <Xx3<6.6,

0.0149 < x4 < 0.0182,

0.0045 < x5 < 0.0055,

12.2727 < xg < 15, (A7)

where we have substituted z = x = 6. The exact global minimum
for this problem is unknown and so was estimated from the min-
imum objective value obtained across all runs of every algorithm.
To check that this identified solution is likely to be near the global,
we verified that the resulting parameter estimate gave high-quality
predictions that result in a very large likelihood value.

Appendix B. Overview of Computational Statistics for COBALT

In this section, we provide a detailed discussion of the com-
putational cost of the proposed COBALT method relative to stan-
dard constrained Bayesian optimization (CBO) methods. The time
it takes to execute iteration n of COBALT, excluding the evaluation
cost in Step 4 of Algorithm 1, is given by

(B.1)

where tgpp,; is the time it takes to train the GP model for com-
ponent ie {1,..., ny} of d(z) and tgreyopt,n is the time required to
solve the grey-box enrichment sub-problem (4). On the other hand,
the time it takes to execute iteration n of a standard CBO algorithm
(again excluding function evaluation cost) is equal to

n
tcoBALT.n = D01 top,ni + Loreyopt.ns

(B.2)

where U + 1 is the total number of black-box functions in the for-
mulation (3) (composed of U unknown constraints and 1 unknown
objective that is equivalent to the grey-box formulation (1)) and
tglackopt,n 1S the time required to solve the black-box enrichment
sub-problem.

Let tgya , denote the time required to evaluate the unknown
function at iteration n. In the case that tg, , is much larger than

U+1
tCBO,n = Zi:l tGP,n,i + tBlackOpt.nv
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Fig. B1. CPU time required to train a Gaussian process model versus the number of
measured data points for three different packages.

tcopart,n and tepo ., then the total time to execute N steps is troa ~
>N tgvan Which is the same for COBALT and CBO. However, it
is important to look at the absolute costs of training the GP and
optimizing the acquisition function to determine how large tg,
must become for this assumption to be valid.

It is interesting to look at the difference between (B.1) and
(B.2) assuming that the same GP training tool is used

(B3)

An immediate observation from this expression is that COBALT is
not necessarily more expensive than CBO. In particular, the first
term will be negative when ny < U + 1, which can happen in prob-
lems that involve a significant number of constraints (not uncom-
mon in engineering systems). In addition to the GP training time,
the time required to numerically optimize the sub-problem plays
an important role. Thus, it is difficult to perform a comprehensive
and fair comparison since the values of {tcp n i, treyopt.n» tBlackopt,n}
depend strongly on the implementation details (including the
choice of programming language and numerical optimization pro-
cedures). We discuss some of these complexities in the following
three sections to provide some insight into the choices made in
our initial implementation. Note that there remains room for im-
provement in terms of improving the efficiency of the selected al-
gorithms; COBALT can directly benefit from any new developed al-
gorithms that accelerate GP training or the numerical solution of
the sub-problems.

ny—-U-1
tcopattn — teon = 221 top.ni + LGreyopt.n — CBlackopt,n-

B1. Cost of Gaussian process regression

Gaussian process (GP) regression has been an active area of re-
search for more than two decades, with several packages available
for performing the steps outlined in Section 3.1. To get an esti-
mate of the training time, we analyze the performance of three
commonly used packages on a simple test problem. In particu-
lar, we compare (i) GPML (Rasmussen and Nickisch, 2010), which
was the toolbox we used in COBALT, (ii) the £itgpr function im-
plemented as a part of the Statistics and Machine Learning (SML)
toolbox in Matlab, and (iii) the GPyTorch toolbox implemented in
Python. Note that all three of these packages solve the MLE prob-
lem (15) using different strategies; we used the default settings
for simplicity, though additional tuning could be done to improve
performance in each of these packages. The CPU time? versus the
number of training data points for the three considered GP pack-
ages is shown in Fig. B.1. We see that GPML takes the longest time,
which is partially due to significant overheard incurred by invert-
ing the kernel matrix that has not been optimized. However, the

2 All computational experiments carried out in Appendix B were run on a laptop
with 16 GB of RAM and a 1.8GHz Intel i7 processor.
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Fig. B2. Comparison of the Gaussian process model predictions obtained with three
different packages: (a) GPML, (b) GPyTorch, and (c) SML Toolbox. The solid blue line
represents the mean prediction and blue cloud denotes the confidence region (+1
standard deviation). The true unknown function is shown with a solid red line and
the available data is shown with black dots.

overall process takes a maximum of 2.4 seconds for 100 training
data points, which is a reasonable cost for an expensive function
(that could take many hours or more to evaluate).

It is interesting to note that GPyTorch and SML appear to scale
more favorably with respect to the amount of training data. To in-
vestigate this further, we looked at the quality of the trained GP
models compared to the true unknown function, which is shown in
Fig. B.2. From these plots, we see that GPML yields the best predic-
tions, with the true function being fully contained within the es-
timated confidence region. GPyTorch and SML, on the other hand,
under- and over-predict the true uncertainty in the function, re-
spectively, which can be attributed to identifying high sub-optimal
solutions to (15). As expected, the speed afforded by alternative GP
regression tools may come at the cost of accuracy. Based on these
results, we opted to use GPML in our implementation of COBALT
since we found it to be quite reliable (and not overly expensive) in
the low-data regime.
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Fig. B3. Comparison of the regret (left) and average CPU time (right) for solving an acquisition sub-problem (estimated by averaging over 20 independent replications) with

seven different optimization algorithms.

B2. Cost of optimizing the proposed acquisition sub-problem

There are wide-variety of available optimization methods for
solving the acquisition sub-problems, which are generally non-
convex nonlinear programs. For reasons discussed in Section 3, we
selected the local gradient-based solver IPOPT that we globalize
with a random search approach (Random+IPOPT). To demonstrate
the value of the proposed approach, we compared it to several
alternative methods on the 6-dimensional Rosenbrock test prob-
lem (with 30 randomly drawn samples). We considered the fol-
lowing alternatives that are all readily available in Matlab: the ge-
netic algorithm (GA) ga, particle swarm optimization (PSO) pso,
random search (Rand), the quasi-Netwon solver fminunc, and the
simplex-based search algorithm fminsearch. The regret, which is
equal to f(Xestimated) — f(x*) where f(Xestimateq) 1S the best solution
returned by the optimizer and f(x*) is the true global solution, and
CPU time averaged over 50 replicates is shown in Fig. B.3. We see
that our approach demonstrates a good tradeoff in that it involves
a modest computational cost while providing consistently low re-
gret values. However, as discussed in Section 5.2, our proposed nu-
merical solution method to the acquisition sub-problem is by no
means optimized and there remains several interesting directions
for future work. It should also be noted that further gains will be
achieved in the numerical optimization of the sub-problem by ac-
celerating the GP prediction (as this translates to cheaper evalua-
tion of the acquisition and constraint functions).

B3. Comparison of total CPU time per iteration for COBALT and CBO

As a final step, we look at the total execution time tcoparr,n, and
tcgo.n on the 6-dimensional Rosenbrock test problem. Note that we
compare these two under the same GP training and acquisition op-
timization procedures discussed in the previous two sections - it
would not be fair to compare to bayesopt, which internally uses
substantially different methods. The total CPU time per iteration
versus the number of data points, averaged over 50 replications of
the random initialization, is shown in Fig. B.4. Based on the analy-
sis in (B.3), we expect tcoparr.n > tcpon Since ny =4 and U = 0 for
the Rosenbrock problem. The difference grows slightly as the num-
ber of data points n increases since tgreyopt.n > tglackopt,n N this
case due to the larger number of GP models; however, the growth
is not substantial relative to the GP training cost, which dominates
the cost at every iteration. For n = 50, we see around an 8 second
increase in cost for COBALT compared to CBO on this problem. We
obtained similar results for the other test problems.

Note that a fairly conservative estimate for tcopair, can easily
be obtained using (B.1) with tgp,; 5 seconds and tgreyopt,n = 30

S
Q
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o

(o)

CPU time per iteration (sec)
N ©

10 20 30 40 50
number of data points

\S]

Fig. B4. Comparison of the total CPU time per iteration for COBALT and CBO on the
Rosenbrock test problem under the same GP training and acquisition optimization
procedures.

seconds. Therefore, we expect that COBALT would be the preferred
option for any problem that has an internal component that takes
on the order of minutes (or longer) and a budget of around N =
0(100).
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