Received: 6 September 2021

Revised: 29 December 2021

W) Check for updates

Accepted: 3 January 2022

DOI: 10.1002/aic.17591

RESEARCH ARTICLE

Process Systems Engineering

AI(J:BIEJRNAL

Adversarially robust Bayesian optimization for efficient
auto-tuning of generic control structures under uncertainty

Joel A. Paulson?

1Department of Chemical and Biomolecular
Engineering, The Ohio State University,
Columbus, Ohio, USA

2Department of Chemical and Biomolecular
Engineering, University of California, Berkeley,
California, USA

Correspondence

Ali Mesbah, Department of Chemical and
Biomolecular Engineering at the University of
California, Berkeley, CA 94720, USA.

Email: mesbah@berkeley.edu

Funding information

National Aeronautics and Space Administration
(NASA), Grant/Award Number: NNX17AJ31G;
National Science Foundation, Grant/Award
Number: 2029282

1 | INTRODUCTION

| Georgios Makrygiorgos®> | Ali Mesbah?

Abstract

The performance of optimization- and learning-based controllers critically depends
on the selection of several tuning parameters that can affect the closed-loop control
performance and constraint satisfaction in highly nonlinear and nonconvex ways. Due
to the black-box nature of the relationship between tuning parameters and general
closed-loop performance measures, there has been a significant interest in automatic
calibration (i.e., auto-tuning) of complex control structures using derivative-free opti-
mization methods, including Bayesian optimization (BO) that can handle expensive
unknown cost functions. Nevertheless, an open challenge when applying BO to auto-
tuning is how to effectively deal with uncertainties in the closed-loop system that
cannot be attributed to a lumped, small-scale noise term. This article addresses this
challenge by developing an adversarially robust BO (ARBO) method that is particu-
larly suited to auto-tuning problems with significant time-invariant uncertainties in an
expensive system model used for closed-loop simulations. ARBO relies on a Gaussian
process model that jointly describes the effect of the tuning parameters and uncer-
tainties on the closed-loop performance. From this joint Gaussian process model,
ARBO uses an alternating confidence-bound procedure to simultaneously select the
next candidate tuning and uncertainty realizations, implying only one expensive
closed-loop simulation is needed at each iteration. The advantages of ARBO are dem-
onstrated on two case studies, including an illustrative problem and auto-tuning of a

nonlinear model predictive controller using a benchmark bioreactor problem.

KEYWORDS
controller auto-tuning, data-driven optimization, model uncertainty, robust Bayesian
optimization

a variety of different forms including continuous (e.g., weight parame-

ters), discrete (e.g., logical switching conditions such as adaptive tun-

Recent years have witnessed significant progress in the design and
application of optimization- and learning-based controllers that can
deal with multivariable dynamics, constraints, and uncertainties that
appear in the system and/or the environment. However, the design of
such advanced controllers hinges on the selection of several tuning
parameters that may strongly affect closed-loop performance and con-

straint satisfaction. Additionally, these tuning parameters can come in

ing), and categorical (e.g., type of numerical discretization scheme)
representations, which implies their impact on performance can be
highly nonlinear and nonconvex. Therefore, in practice, these tuning
parameters are usually selected via trial-and-error experimentation or
heuristic-based strategies that rely on expensive closed-loop simula-
tions or experiments, which can become prohibitive when the effects

of system uncertainties are accounted for.

1 of 15 | © 2022 American Institute of Chemical Engineers.

AIChE J. 2022;68:€17591.
https://doi.org/10.1002/aic.17591

wileyonlinelibrary.com/journal/aic

https://orcid.org/0000-0002-1518-7985
https://orcid.org/0000-0002-1700-0600
mailto:mesbah@berkeley.edu
http://wileyonlinelibrary.com/journal/aic
https://doi.org/10.1002/aic.17591
http://crossmark.crossref.org/dialog/?doi=10.1002%2Faic.17591&domain=pdf&date_stamp=2022-01-27

PAULSON ET AL

To mitigate the expensive nature of tuning of advanced control-
lers, there has been an increasing interest in automatic calibration (aka
auto-tuning®®) of complex control structures to achieve desired
closed-loop performance. To this end, data-driven optimization
methods have been found to be particularly promising since auto-
tuning can be interpreted as a black-box problem in which the objec-
tive function is expensive to evaluate, potentially nonconvex and
multi-modal, and whose derivatives either do not exist or cannot be
determined. Bayesian optimization (BO)”*® has emerged as a powerful
approach for handling these types of black-box problems, even when
the measured objective value is corrupted by noise. Several recent
works have successfully demonstrated BO for model learning and

59-11

auto-tuning of model predictive control (MPC) and other com-

plex control structures.??13

Standard BO approaches for auto-tuning rely on nonparametric
Gaussian process (GP) models,** constructed from closed-loop sim-
ulation or experimental data, to describe the impact of controller
tuning parameters on the closed-loop performance measures; these
GP models can be interpreted as probabilistic “surrogate models”
for the performance measures of interest. Although GP models are
able to account for the effect of system uncertainties
(e.g., exogenous disturbances, measurement noise, and/or time-
invariant uncertainties in process models used for closed-loop simu-
lations) by optimizing an “effective noise” hyperparameter, this rep-
resentation can lead to poor predictions when uncertainties are
relatively large. That is, the GP model yields such a large variance in
predictions that the mean prediction is dominated by noise,
suggesting the GP model is uninformative. In such cases, the BO
procedure will become quite fragile and thus will lead to poor over-
all results. We addressed this challenge in our recent work by intro-
ducing an auto-tuning approach, referred to as probabilistically
robust Bayesian optimization (PRBO), that provides a probabilistic
robustness certificate at every iteration (i.e., every time a new set of
tuning parameters is tested).'®> The key idea in PRBO is to use
sample-based estimates of the worst-case performance measures at
each iteration. We show how many samples are required—indepen-
dent of the of the

uncertainties—to ensure these worst-case estimates are not vio-

number and probability distribution

lated by other randomly sampled uncertainties within a prespecified
probability level. However, since PRBO provides this certification at
every iteration, it generally requires a fairly large number of closed-
loop simulations/experiments to be performed in order to establish
accurate estimates of the worst-case performance measures. This
can limit the applicability of PRBO especially when expensive “high-
fidelity” process models (or experiments) are utilized for generating
closed-loop data.

In this article, we present an alternative robust BO approach to
PRBO that is well-suited for auto-tuning problems that rely on expen-
sive closed-loop simulations with significant time-invariant uncer-
tainties. This type of problem setting appears in a wide variety of
applications that use complex process models and model predictive
controllers (MPCs), including advanced manufacturing and energy

systems,'® among many other applications. As opposed to measuring

AI?BIl:'J R NALJLHS

an estimate of the worst-case performance directly (as done in PRBO),
the proposed approach, referred to as adversarially robust BO (ARBO),
looks to solve a problem that simultaneously captures the effect of
the controller tuning parameters and system uncertainties on the
closed-loop performance. In contrast to typical BO approaches where
a GP model is used to approximate the objective as a function of the
decision variables (in this case controller tuning parameters), we utilize
a GP to approximate the objective explicitly as a function of decision
variables and uncertain parameters. In this way, we can directly use
this joint GP model (where joint refers to the simultaneous consider-
ation of the tuning and uncertain parameters) to predict the location
of a minimax solution to the robust auto-tuning problem. We show,
however, that using a naive mean-based GP approximation of the per-
formance measure will yield overall poor tuning results, as it lacks the
ability to tradeoff between exploration of unknown parts of the
design-uncertainty space and exploitation of the current estimate of
the best tuning parameters. Instead, the proposed ARBO method uses
a GP confidence bound-based procedure suggested in?” to realize a
tradeoff between the exploration and exploitation of the design-
uncertainty space. In this approach, we alternate between an optimis-
tic prediction of the performance measure to select the next best set
of tuning parameters and a pessimistic prediction of the performance
measure to select the most likely worst-case uncertainty for the
suggested best tuning parameters. By applying this two-step proce-
dure, we only require one (expensive) closed-loop simulation at each
iteration of ARBO, which is significantly less than alternatives such as
PRBO. Building upon the theory in,'” we also discuss the rate of con-
vergence of the ARBO method, and provide an explicit upper bound
on the distance from the best suggested tuning parameters and the
true minimax optimal solution, which decays to zero as the number of
iterations increases.

We demonstrate the value of the proposed ARBO method on
two case studies; an illustrative problem to highlight the key steps
and advantages of ARBO and a challenging auto-tuning problem in
which a highly nonlinear bioreactor with several unknown parame-
ters is controlled using nonlinear MPC (NMPC) with multiple con-
straint backoffs that must be tuned. It is important to note that,
although we focus on nominal MPC, the ARBO can robustly auto-
tune any controller structure including those that incorporate
recently proposed safety schemes such as the model-predictive
safety (MPS) method.*®*?

2 | PROBLEM STATEMENT

We are interested in the auto-tuning problem for a general class of
controllers, that is, we want to select the unknown tuning parameters
such that we achieve the best possible closed-loop performance,
while protecting against potentially adversarial effects of some “exter-
nal” source of uncertainty. Let 8 € Rt denote the vector of controller
tuning parameters and & € RP2 denote the system (plant) uncertainty
vector. Given some scalar measure of the closed-loop performance

f:RPt x RP2 — R whose structure is unknown, we formulate the auto-

PAULSON ET AL.

MAI?BIFJ RNAL

tuning problem as the following robust black-box optimization

problem

iy F6.0) .

where ® C RPt and A C RP2 are the compact sets of possible tuning
parameters and uncertainty realizations, respectively. The controller
tuning parameters 0 can represent any manipulable value including
discrete structural choices (e.g., turning on/off a component) that are
modeled with binary variables, as well as parametric choices that are
modeled by continuous variables (e.g., increasing a weight value
between lower and upper bounds). To account for the effects of
uncertainty on controller tuning, we must quantify the impact of dif-
ferent realizations of § on the performance measure f. Thus, through-
out this work, we assume that a high-fidelity simulator of the process is
available for simulating the effect of specific controller configurations
and uncertainty realizations on the closed-loop performance measure
f.* This allows f to be flexibly specified by the user in terms of any
finite-time metric; some common examples include total operating
cost or setpoint tracking error, average or maximum constraint viola-
tion, and end-of-batch product quality.

We aim to find the (approximate) global solution to the controller
auto-tuning problem (1). The specific algorithm chosen to solve
Equation (1) will depend on its underlying characteristics. Thus, we
assume that the following characteristics hold, which is generally the
case in simulation-based tuning of advanced controllers under

uncertainty.!

Assumption 1.

1. The worst-case uncertainty 6* (0) € argmaxs c Af(6,6)
cannot be determined from prior knowledge.

2. The feasible sets ® and A are known and compact.

3. The closed-loop performance measure f(0,5) is fully black-
box in nature such that no closed-form expression exists for f
and it does not have any known special structure such as
convexity or linearity.

4. The total dimension of the inputs p =p4 +p, is typically not
too large; p < 20 is a good rule-of-thumb.

5. When the closed-loop performance performance is evalu-
ated, we only observe f(6,5), meaning that first- or second-
order derivatives cannot be evaluated.

6. The observations of f(6,5) are corrupted by noise. That is,
y =(6,8) +¢, where ¢ € N(0,62).

Characteristics (1)-(3) in Assumption 1 imply minimal restrictions
on the structure of the to-be-designed controller such that the pro-
posed method for controller auto-tuning can be applied even when
the control law is defined implicitly—for example, as is the case in
MPC. Characteristic (5) prevents application of derivative-based opti-
mization methods for solving Equation (1). For simplicity, characteris-
tic (6) assumes the effective noise ¢ leading to noisy observations y of

the closed-loop performance measure is normally distributed with

zero mean. The variance of noise can be treated as a hyperparameter,
as discussed in Section 4. Notice that the closed-loop performance
measure f(6,6) is quantified through possibly expensive simulations of
the closed-loop system using a process simulator. As such, the perfor-
mance measure can be queried a limited number of times; often on
the order of a few hundred of closed-loop simulations.

Remark. Although & can in principle represent any
source of uncertainty, this may lead to a high-
dimensional representation of § due to the time-varying
nature of control problems. As such, this may not satisfy
characteristic (4) in Assumption 1. Instead, § should rep-
resent the key time-invariant uncertainties
(e.g., sensitive model parameters and/or initial condi-
tions) that have the most dominant influence on the
performance measure f. If prior knowledge about the
dominant time-invariant uncertainties is not available, it
can be obtained via global sensitivity analysis,2>2* which
can be facilitated via surrogate modeling.?? Notice that,
although not included in 6, the effect of time-varying
process and measurement noise is accounted for
through noisy observations of f; see characteristic (6) in

Assumption 1.

The most direct way to solve Problem (1) would be via a nested
optimization approach wherein an inner maximization is performed
for each iteration of an outer minimization algorithm.?® This approach,
however, will expend excessive effort computing the worst-case
closed-loop performance for every selected design variables 8, which
is not appropriate when dealing with expensive evaluations of f using
a high-fidelity process simulator. This also precludes the use of evolu-
tionary algorithms,?* which are popular techniques when the objec-
tive function can be evaluated a large number of times. Alternatively,
we look to reformulate (1) as a bandit feedback problem.25 The main
idea is to sequentially select (6:,6;) €©® x A at every iteration t=
1,2,...,N; (here, “iteration” refers to a single closed-loop simulation),
and receive the corresponding noisy observations of the cost
vt =f(6:,6¢) + €. Our regret in this decision can be quantified in terms

of the instantaneous robust-regret rf which is defined as

rd = max f(6,6) — max f(6*,6), (2)

where 6* €argmingcgmaxsc af(6,6) is any global solution to
Equation (1). In words, the robust-regret in (2) quantifies how far away
our suggested decision 6; is from the best possible solution 6*
(in units of the objective function). This definition is analogous to the
standard regret definition g(6;) —g(8*) in the multi-armed bandit liter-
ature?® when our objective function is defined as the worst-case reali-
zation of the performance function g(6) = max;c af(6,6). Ideally, we
could derive an algorithm that minimizes the cumulative robust-regret
after T iterations R} = S1_,r%; however, these quantities cannot be

revealed to the algorithm since they require perfect knowledge of

PAULSON ET AL

the global solution. A viable alternative is to select an algorithm that
has no robust-regret, that is, IimTﬂN%R‘; =0 The only way that the
average robust-regret can approach zero is for the instantaneous
robust-regret to approach zero, since r{ 20 must be non-negative.
This implies that there exists a t >0 such that max;sc Af(6,8) is arbi-
trarily close to max; < Af(6*,8) and the algorithm converges as long as
R’; grows sublinearly with T. In the absence of uncertainty (i.e., the
nominal setting of A= {3}), we can easily find the point {64,...,607}
that minimizes the (nonrobust) regret by selecting the point that pro-
duces the smallest value of f(etﬁ). This is no longer true in the robust
case, however, due to the inclusion of the max operator in
Equation (2).

Therefore, we require a new recommendation procedure in addi-
tion to the selection policy for (6:,6). In the next section, we present

7 referred to as

a variant of the sequential learning algorithm in,?
adversarially robust BO, that can achieve the desired no robust-regret
property using a combined GP model for f(6,5), which simultaneously
models the effect of the design variables and uncertainty realizations

on the closed-loop performance measure.

3 | ADVERSARIALLY ROBUST BO

In this section, we first review GP regression for data-driven model-
ing of the closed-loop performance measure. We will then present
the adversarially robust BO (ARBO) algorithm, followed by an over-
view of established theoretical results!” related to the robust-regret
when solving Equation (1) under the conditions specified in

Assumption 1.

3.1 | GPregression

Let x= [«‘)T,(ST}T € X denote the concatenated vector of design vari-
ables and uncertainties, where XY =0 x A CRP and p=p; +p,. We
interchangeably denote f(6,5) as f(x) (and vice versa) throughout the
article. Since the structure of f is not known, we cannot make rigid
parametric assumptions for f. However, without further assumptions,
it would be impossible to achieve sublinear robust-regret for
Equation (1); for example, f could be discontinuous at every input
X € X in the worst-case. Therefore, we assume that a certain degree
of smoothness holds in practice, such that we can leverage GP
models that enforce smoothness implicitly without making any para-
metric assumptions. The basic idea underpinning GPs is that the
function values f(x), associated with different values of x, are random
variables and any finite collection of these random variables have a
joint Gaussian distribution.’* A GP distribution, denoted by
f(x) ~ GP(u(x),k(x,x')), is parametrized by a prior mean function u(x)
and a covariance (or kernel) function k(x,x’). Without loss of general-
ity, we assume that the prior is zero mean, that is, u(x) =0 for all
x € X.T The chosen class of covariance functions determines the prop-
erties of the fitted functions. In this work, we will focus on stationary

covariance functions from the Matefn class,?® defined as

AI?BIl:'J R NALJLHS

v

1—
)

KX, %) 2421% (@r(x,x’)) By(21/!’(X,X/))y (3)

where r(x,x') =1/ (x—x)L"2(x—x') is the scaled Euclidean distance,
L=diag(ly,...,Ip) is a diagonal scaling matrix composed of length-scale
parameters Iy,...,[, >0, v is a parameter that dictates smoothness
(i.e., the corresponding function is [v/2 — 1] times differentiable), g’z is
a scaling factor for the output variance, I" and B, are the Gamma and
modified Bessel functions, respectively, and ¥ ={l,...,I,,{} are the
hyperparameters of the kernel for a fixed value of v.

Training a GP model corresponds to calibrating {¥,0.} to the
available data. For now, we assume the kernel hyperparameters
are known and discuss the training procedure further in Section 4.
Although we focus on kernels of the form (3) for simplicity, many
other kernels are available and can be used in place of this struc-
ture, if needed. Furthermore, one can treat the kernel structure as
an additional hyperparameter that is sequentially updated at each
step of the BO process. However, since this introduces a set of
conditional hyperparameters (corresponding to the internal
parameters specific to each kernel), this can substantially increase
the GP training cost.

A key advantage of GPs, in addition to their nonparametric
nature, is the availability of simple analytic expressions for the
posterior distribution of f(x) for any input x € X. Let us assume that
we have t previous observations of the objective yt:[yl,...,yt]T at
inputs X;={X1,...X¢}. The GP model can account for the fact
that these measurements are noisy, that is, y;=f(x¢)+e
where &; NN(O,GE). Given that the noise ¢ obeys a normal distribu-
tion, the posterior f|X;,y; remains a GP GP(u;(x),k¢(x,X)) with the
following expressions for the mean u;, covariance k:;, and vari-

ance o214
120 = kf (%) (Ke+021) v, (4a)
ke (%) = k(6 X') — kI (%) (Ke + 021) ke (x), (4b)
G2(x) =ke(x,X), (4c)

where k¢(x) = [k,-(xl,x),...kj(xt,x)]T contains the covariances between
the input x and observed data points X, the covariance matrix K; has
entries [K¢J; =k(x;,) for all ije {1,...,t}, and I; is the txt identify
matrix. The main advantage of the posterior GP expressions in
Section 3.1 is that they can be used to generate confidence bounds on
the prediction of f(6,8) for any choice of input. Both the upper and
lower confidence bounds will be leveraged in the development of the
ARBO algorithm, as described next.

3.2 | ARBO algorithm

Given a so-called exploration parameter ,, we can define the following

upper and lower confidence bounds on f

PAULSON ET AL.

MAI?BIFJ RNAL

uchy (6,8) = 1, (0,8) + B %61(6,5), (5a)
Icbe(0,8) = pe(0,8) — Bt 61(0,0), (5b)

which are readily determined from the posterior GP in Equation (4).
For sufficiently large choices of f;, these confidence bounds will be
large enough to ensure the no robust-regret property with high prob-
ability (see Theorem 1). The ARBO algorithm,*” which relies on the
lower and upper confidence bounds (5), is presented in Algorithm 1.
The suggested 6; at each iteration is the one that has the minimum
“robust” lower confidence bound, as given in Equation (8). For this
choice of 6, we must select a feasible uncertainty sample. According
to Equation (9), we select the uncertainty value §; that maximizes the
upper confidence bound. We can interpret these opposite choices as:
(i) optimistic selections under uncertainty for 6; and (ii) pessimistic

selections under uncertainty for the anticipated worst-case point &;.

ALGORITHM 1 The robust sequential learning
algorithm for ARBO

Input: The set of the design variables ©® and the uncertainty
A; kernel k corresponding to GP prior; exploration parame-
ters {f;};.; and total number of iterations T.

1: Initialize the mean and standard devia-
tion (ug,00) — (O,kl/z)

2:fort=1to T do

3: Solve the following min-max optimization problem

for 0;

0 =argmin max Icb;_1(6,6). (8)
gec® O€A

4: Solve the following maximization problem for &;

8¢ = argmaxucby_1(64,6). 9)

seEA

5: Run a closed-loop simulation at x; = [Gf,ﬂr to compute
performance measure y; =f(6;,6t) + .

6:Perform Bayesian posterior update to estimate u;, o,
Icb;, and ucby using (4) and (5) by including the latest query
of the closed-loop performance measure {x:,y;}.

7: end for

8: Return the point 6;~ with the smallest upper confi-
dence bound (our best guess of the optimal design

variables)

t* = argmin maxucb_1(6;,6). (10)
te{1,.,T}0€A

While the choice (i) is common to traditional BO algorithms that utilize
confidence bounds, the choice (ii) is unique to ARBO to mitigate any
possible negative effects caused by the uncertainty. Once the main
loop in Algorithm 1 has been completed, a final “recommended” point
must be selected from the sequence {04,...,67}. Although there are
many potential choices, we choose the one that minimizes a pessimis-
tic bound on the robust-regret in Equation (10). To this end, let us
assume f(6,6) < ucb;_1(6,6) for all (6,6) € © x A; this condition will be
more formally stated later. Then, we can define the following pessi-

mistic estimate of r

76_ _ *
P 75n€ai<ucbt,1(0t,6) f*, (6)

where f* =maxsc af(0*,8) =mingc emaxs ¢ af(0,5), which must sat-
isfy r) <7 for all t 21 under the above-stated assumption. The main
difference between Equations (2) and (6) is that the algorithm has
enough information to identify the index t* that minimizes Ff since
the global solution does not depend on t. Yet, Ff is related to another
important quantity in bandit optimization termed the simple robust-

regret after T iterations, which is denoted by 5‘; and defined as

o= min_max f(6,6)—f*. (7)

s3 m
te{l..T}oeA

min _r
te{1,.,T}

It is evident that S3 <7, for all T 2 1. This in turn implies that bounds
established on r;. immediately transfer to the simple robust-regret s,
as discussed in the next section. Notice that, Algorithm 1 relies on
only a single expensive closed-loop simulation run to be performed at
every iteration, which is significantly fewer than the vast majority of

available alternatives, such as.2%’

3.3 | Upper bound on simple Robust-Regret

The ARBO Algorithm 1 requires selection of the exploration
parameters {f;},, that specify the width of the confidence intervals
on f. To this end, we rely on a simple result from Reference 25 to
select this sequence. We will focus on the case of a finite set X' =
® x A for simplicity, and discuss the extension to a compact and con-

vex set later.

bounds®® Let f(x)~
GP(0,k(x,x")) be a sample of a GP for which noisy obser-

Lemma 1. Confidence
vations y; = f(x¢) + & with e, ~ N (0,62) are available. Let
B =2log(|X|t?z2/(6a)) for a specified failure probability
a€(0,1) and finite discrete set |X| < co. Then, the follow-
ing bounds on the objective function f(x)

f(x) € [lcbe_1(x),uch¢_1(x)], ¥xe X, Vt21, (11)

hold with probability (over the GP posterior at every iteration) at
least 1 —a.

PAULSON ET AL

Next, we define the maximum information gain (MIG), which pro-
vides a measure of the informativeness of any finite set of sampling
points A c X *°

Definition 1. Let AC X denote any subset of sampling
points from X and let f be a sample of a GP model with
the same sampling conditions stated in Lemma 1. The
maximum information gain for f under t measurements is

defined as

1
= Zlogdet (I + 62K 4), 12
7e= max logde (lt+0,%Ky) (12)

where K 4 = [k(x,X')]

of the max in Equation (12) is the Shannon mutual information between f

xx ¢ A S the kernel matrix. Note that the term inside

and the observations at points x € A. <

We can now state the main theorem that bounds the perfor-
mance of the ARBO Algorithm 1. We give a brief sketch of the proof
of this result, which is a slightly different version of that provided in

Reference 17, (Supporting Information).
Theorem 1. Upper ARBO performance bound’’ Fix
a€(0,1), p,=2log(|X[t?z?/(6a)), and Tz1. Running

the ARBO algorithm for a sample f of a GP with zero

mean and kernel k(x,x’), the simple robust-regret must

Pr{sisrf, s,/ciﬁTﬁT} >1—a, (13)

where C; =8/log(1+0,2).

satisfy

Proof. From Lemma 1, we know that Icb: 1(x)
<f(x) < ucbt_1(x) holds for all x€ X,t 2 1 with probabil-
ity greater than or equal to 1 —a. Given this, from the

definitions in Equations (2) and (6), we have

= max f(6;,6) — min max f(6,) < P = max ucb_1 (¢, 6) — min max (6,5),
=ucb;_1(6;,6t) —mi ,8),
uch;_1(6%,6¢) HEIB E]nEaZ(f(6,6)
<ucb¢_1(6,6¢) — mi Icb:_1(0,6),
uebr-1(6.5) ~ pigmalebe 6.0
=ucby_1(6t,6¢) —max Icb_1(6:,6),
SeA
< uch;_1(6t,6t) — Icbi—1(6¢,6¢),
=26 1(00.50),

where the first line follows from the upper bound on f, the second line
follows from the definition of &; in Equation (9), the third line follows
from the lower bound on f, the fourth line follows from the definition
of @; in Equation (8), the fifth line follows from the fact that
maXs ¢ alcbt_1(6:,8) 2 Icbt_1(6:,6¢) for any feasible choice of 6 € A, and

the sixth line follows from the difference between the confidence

AI?BIl:'J R NALJﬂ

bounds in Equation (5). Given this bound, we can also see that the fol-

lowing sequence of inequalities must hold with probability 21—«

T T
(RS STYZ 4 ()" 413 yof 50000,

where the first step follows from the Cauchy-Schwarz inequality and
the second step follows from the monotonicity of the sequence
{Bt}¢»1- Next, we use a special case of Reference 25 (Lemma 5.4), to

establish a bound on the sum of variances in terms of the MIG (12)

.
4% . ,0t4(66,60) < Carr,

for C1=8/log(1 +0,2). From these results, it follows that
Pr{R} < \/CiTpryr} 2 1—a. The assertion in Equation (13) follows by
noting that the minimum of a sequence must be less than or equal to
the average, that is, S} < 2R}, in addition to the fact that the same

inequalities hold for 7’: in place of r. 1l

As the total number of iterations T increases in Equation (13), we
observe that the simple robust-regret gets closer to the desired value
of zero, implying the global minimax solution has been found in the
limit as T— o0, as long as the numerator C1f7yr €o(T), where o is
little-o notation that implies C1f;y1 decays faster than T. The choice
of fy in Theorem 1 clearly shows logarithmic growth with respect to
T. However, we also require bounds on the MIG y; to establish con-
vergence. It was shown in Reference 25 that y; has sublinear depen-
dence with respect to T for many commonly used kernels, including
the Matern class, such that the ARBO algorithm converges to function
evaluations near 8* with high probability for sufficiently small choices
of a. This is a key advantage of the confidence bound-based ARBO
algorithm compared to available alternatives whose theoretical prop-

erties have yet to be understood.

4 | PRACTICALIMPLEMENTATION
OF ARBO

In this section, we discuss some of the main aspects in practical imple-
mentation of the ARBO Algorithm 1, as also considered in the case
studies presented in Section 5.

4.1 | Choice of exploration constant f,

Lemma 1 and Theorem 1 only hold for discrete spaces X. However,
using the discretization technique introduced in Reference 25, these
results can be extended to continuous spaces that are compact and
convex. The main added assumption is that the kernel function k(x,x’)
must be chosen such that it ensures the following high probability

bounds on the derivatives of f for some constants a,b >0

PAULSON ET AL.

MAI?BIFJ RNAL

f(x)
BX,'

Pr{ sup

xe X

>L} <ae WP’ yi=1,..pvL>0. (14)

Whenever this condition holds, the results in Lemma 1 and Theorem 1
can be generalized to any compact and convex set X C[0,r]° by
enlarging the exploration constant

27%t?

Pr= 2Iog< 3

) +2plog (t2pbrlog%(4pa/a)) . (15)

To the best of our knowledge, these results have not yet been
extended to arbitrary nonconvex sets. However, this may not pose a
challenge in practice since the choices of ; are generally known to be
conservative.3! In the case studies in Section 5, we select Br=
Poplog(2t) to capture the dominant dependence of the exploration
constant on t and p. A typical value for f3; is 0.1. An interesting direc-
tion for future work includes establishing a more robust way to select
{B:}+»1 for specific applications.

4.2 | Estimation of GP hyperparameters

The results in Lemma 1 and Theorem 1 assume that the hyper-
parameters {¥,c.} of the GP prior for f are known exactly. Since this
is often not true in practice, we rely on the maximum likelihood esti-
mation (MLE) framework to determine the optimal hyperparameters
{Wr,or} that, at every iteration t, maximize the log-likelihood
Z t(lI"Us).M

{¥r.ol}e argmaxgt(‘ll,og) =log(p(y¢/Xt, ¥, 0¢))- (16)

Based on the GP prior, the measured data vector y; must be distrib-
uted according to a multivariate Gaussian distribution of the follow-

ing form

Ve~ N(0,2:(W,00)), [Ze(W,00)]; =k (%, X|¥) + 0265, Vije {1,...t}.
(17)

Using this representation, an analytical expression for the log-
likelihood function can be derived as

1
Z(V,0.) = —ytTEt‘lyt — élog(det(zf)) —glog(Z:r). (18)

The optimization problem (16) is a nonlinear program that can be
solved using gradient-based methods (e.g., IPOPT>?) since (18) is a
smooth, differentiable function. To ensure the optimizer does not get
stuck in a local solution, it is useful to “warm-start” the local solver
with the best solution found from a heuristic global optimization
method such as the DIRECT solver.>® Notice that the “warm-start”
approach will introduce an additional step into Algorithm 1 that could

be somewhat computationally expensive depending on the size of the
optimization (16). A simple way to reduce the computational cost
associated with hyperparameter estimation is to update the hyper-
parameters of the GP model only periodically, instead of at every iter-
ation. In this work, we exclusively use the Python package GPy to
train and make predictions with GP models.®*

4.3 | Minimax optimization for Icb;_q
Our analysis in Section 3, assumed that we could exactly optimize
the acquisition functions defined in terms of the lower and upper
confidence bounds in Equations (8) and (9). The maximization prob-
lem (9) resembles the sub-problem that arises in the standard BO,
suggesting that the same basic principles can be leveraged to
develop a practical solution method for the ARBO Algorithm 1.
Here, we propose to use a combination of derivative-free search
with a local gradient-based solver for the min-max optimization (8)
at each itertation. Note that since Icb;_1(6,5) may be nonconvex with
respect to § and nonconcave with respect to 5, we cannot use tradi-
tional alternating gradient descent-ascent methods, as they may not
even locally converge.®®

The proposed approach partially exploits the differentiability of
Icbt_1(6,8). Let us denote the optimal objective value for the inner
maximization problem as g;_1(6) =maxsc alcbt_1(6,5). We can then

equivalently formulate Equation (8) as

ming;_1(6), (19)

where g;_4 is a black-box function that can only be evaluated by call-
ing an internal algorithm to approximate g;_4(0) for any choice of
0 € ©. Since, for any fixed 6, Icb;_1(6,5) is a smooth function whose
derivatives can be efficiently computed, we can rely on gradient-
based solvers (e.g., the well-known L-BFGS-B algorithm®®) to
quickly converge to a local optimum. Since we need a good esti-
mate of the global solution for the inner maximization, we need
some type of globalization strategy. One approach is to apply a
random multi-start for several § points, with the largest converged
objective value being returned as our best approximation to g;_1(6).
The initial guess can be obtained by randomly sampling A or by com-
puting a large number of random samples of § to evaluate Ich;_1(6,6)
with 6 fixed, and choose the ones that lead to the highest Icb;_1(6,5)
in order to warm start the local solver. We then treat Equation (19) as
a black-box optimization problem that can be solved with any number
of available derivative-free optimization methods. In this work, we
rely on BOBYQA,?”*® which is a local trust region-based approach,
but various derivative-free algorithms can be generally applied.>’ We
again rely on a random multi-start procedure to protect against local
solutions for this outer minimization problem; however, since g;_4 is
fairly expensive to evaluate, we must carefully select the number of
repeats to ensure a solution can be found in a reasonable amount

of time.

PAULSON ET AL

5 | CASESTUDIES

In this section, we demonstrate the performance of the ARBO algo-
rithm on two problems. The first case study is an illustrative example
that is meant to showcase several implementation details of Algo-
rithm 1. Since the exact knowledge of the function and its min-max
solution is available, we can directly compute the key performance
assessment measures, such as the simple robust-regret, in the illustra-
tive example. The second case study focuses on a challenging NMPC
auto-tuning problem. Since this auto-tuning problem involves a
nonlinear plant simulator, we do not have exact knowledge of the true
solution and thus cannot use simple robust-regret as our performance
measure. Instead, we evaluate the solution quality directly in terms of
the closed-loop performance and constraint satisfaction profiles. The
main goal of this section is to show that ARBO can more reliably find
high-performance tuning parameters with significantly fewer closed-

loop simulations than alternative methods.

51 | lllustrative example
Consider a problem in the form of Equation (1), with the following

analytic expression for f
f(6,6) = sin(05) + V66 — 0.56), (20)

where ® =[—1,2] is the feasible set of decision variable and A =[2,4]
is the feasible set of the uncertainty. Throughout this section,
Equation (20) is unknown to any of the black-box algorithms, and is
only used for assessing the regret-based performance measures. Fig-
ure 1 shows a plot of f(0,5<f)) versus 6 for a large number of random
samples 50 € A, with the worst-case function g(6) =max;c af(6,6)

shown with a black dashed line. From this plot, we can see that

81 - = - Maxsea f(6,)
——— ARBO optimum

-10 =05 00 05 1.0 15 20

FIGURE 1 Objective function plots for various values of the
uncertain parameter §. The star symbol denotes the true minimax
solution, while the vertical blue line represents the best
recommended solution discovered by ARBO. The black dashed line
represents the point-wise worst-case f while the collection of light-
blue lines, represented as a “tube,” shows the function evaluated for
1000 random realizations of §

AI?BIl:'J R NALM

0* =—0.3573, which corresponds to an optimal minimax objective
value of f* =—0.2961.

For this illustrative problem, we can identify the globally optimal solu-
tion in the domain of interest, thus the regret metrics become readily
available for assessing the convergence of the proposed algorithm. There-
fore, we use the simple robust-regret Sf’} as our metric since we aim to
identify this robust solution in as few iterations as possible. Theorem 1
highlights the importance of the g, sequence within Algorithm 1, as
this is the main tool used to navigate the exploitation-exploration tra-
deoff in the joint {0,6} space. To better illustrate this point, we com-
pare ARBO to a purely exploitative approach, namely a Gaussian
process-based robust optimization (GP-RO) approach. In GP-RO, we
completely ignore the variance information provided by the GP model
for f(6,6) and, instead, sample 6=argmin,cegmax;scap;_1(6,6) and
St =argmaxs ¢ aps_1(0r,8). Similarly, for the recommendation process,
we rely only on the mean function, that is, 6;« is returned
with t* =argmin; ¢ (1, 1ymaxs e apt;_1(64,6).

It is well-known that determining the hyperparameters of GP
models, as discussed in Section 4, can be unreliable for very small
datasets. Thus, as opposed to starting Algorithm 1 from
iteration 1, it is usually preferred to select the first Ng points uni-
formly at random in any BO procedure to ensure a high-degree of
exploration initially.*® In this illustrative problem, we select No=
p? —1 random points before running Algorithm 1. Since the simple
robust-regret is a function of these randomly selected initial points, S‘%
itself is a random quantity, so that showing results for a single initiali-
zation may not be informative. Instead, we repeated both the ARBO
and GP-RO methods N, times (under the same random seeds) to con-
struct a sample average estimate for the expected simple robust-

regret, that is,

N,)
E{S}}~ NiZs‘iW, (21)
ri=1

P run of the

where S(;‘(D denotes the simple robust-regret for the it
algorithm starting from the ith set of No random initial points, while
N, =10. Since this estimate is constructed from a finite number of
samples, we also report estimated confidence intervals computed as
1.96 times the standard deviation divided by the square root of the
number of repeats (also known as the standard error formula).

The simple robust-regret plots for both ARBO and GP-RO are
shown in Figure 2, with the estimated sample average and
corresponding confidence intervals on the left and the individual sam-
ple paths S‘%U) for all ie {1,..,N;} shown on the right. We clearly see
that ARBO consistently converges to the true robust global optimum,
within a small tolerance compared to the true f*, for all considered
initial points. This leads to E{S}} ~0 using fewer than 15 function
evaluations. GP-RO, on the other hand, shows considerably worse
performance for the individual sample paths as well as the sample
average. Figure 2B is particularly informative, as the GP-RO algorithm
makes a little to no progress for the entire 30 allotted function evalua-
tions in several different runs. This behavior is not unexpected to

occur in algorithms that lack any degree of exploration—here, there is

PAULSON ET AL.

MAI?BIFJ RNAL

FIGURE 2 The simple robust-regret (A) B)
for ARBO (blue lines) and GP-RO (red ° 10! e
lines). The runs are repeated 10 times and _g-@ 10° %
the average simple robust-regret is shown _‘3 =1 107 %o
along with the 95% confidence intervals & B 107? I :
in (A). Individual simple robust-regret g g1 2 S
sample paths for different uncertainty E o 10~ % 107° _{\7& ——
realizations are shown in (B) g 8 107°{ —GP-RO 5 10-8 e
& 10-¢] —ARBO &
5 10 15 20 25 30 5 10 15 20 25 30
Total iterations,T’ Total iterations, T’
FIGURE 3 (A)-(C) Contour plots (A) LCB(6,), lteration 6 (B) LCB(#,), Iteration 18
showing the convergence of ARBO. The 4.00 v 450 | = 4.8
contour plots show the lower confidence 375 4.2
bound based on the current GP iteration, 3.00 gg
which guides the selection of the queried 995 2:4
0. The sequence of optimal points to be 150 b 22? 1.8
queried {6;,5;} is superimposed (light-blue 075 2'5'(3) 1.2
circles), showing the convergence pattern. 0.00 2'25 88
(D) Point-wise mismatch between the true _075 2:00 4 A ;O.G
function and the mean of the GP 15 20 —-1.0-05 00 05 10 15 20
approximation at the final iteration 0
(contour C) and the sequence of (©) (D
recommended optimal points (circles) Absolure error of GP approximation and f (6, §)
4.00 4.8 - e w 6.00
3.75 4.2 3.75 ‘ 5.25
3.50 3.6 3.50 4.50
3.25 30 325 s
v 3.00] 28 w300 3.00
2.75 12 2.75 2.95
2.50 0.6 2.50 1.50
2.25 0.0 2.25 0.75
2.00 —0.6 200 K@,) 0.00
~1.0 =0 —-1.0-0.5 0.0 05 1.0 1.5 20
0

no clear incentive for GP-RO to sample in unexplored regions of the
® x A space.

To provide additional insights into the improved performance of
ARBO over GP-RO, we show the lower confidence bound contour
plots for various iterations of a single run of ARBO in Figure 3. We
observe that in early iterations, Figure 3A, the lower confidence
bound attains relatively high values uniformly in most of the ® x A
space, since most of the space is unexplored. As more of the samples
suggested by ARBO are incorporated, shown as the light blue dots,
we see that the lower confidence bound is able to filter out regions of
the space that are not likely to be near the global minimax solution
(e.g., ARBO no longer samples near =2 after it sees large values
there). In the later iterations, Figure 3B,C, we observe that the queried
points start to form a pattern. The ARBO algorithm samples in a
region around %, while the proposed points also start converging to
worst-case value for 8.

Figure 3D shows the point-wise absolute error between the true
function f(6,5) and the mean value of the GP approximation of the

objective in the final iteration. As expected, the GP provides a very

good approximation of the unknown true function in a large region
around the global minimax solution denoted by a star, where the error
approaches to zero. Nevertheless, the GP provides an optimistic pre-
diction of f(6,5) elsewhere and, in particular, for 8 > 1. Since this opti-
mistic prediction is still worse than our known, tested evaluation
(we have already queried some points in the regions that are unlikely
to contain the global optimum), we can adaptively exclude regions of
our search space without wasting the computationally expensive sam-
ples. This highlights a fundamentally important point in BO: it is easier
(i.e., fewer samples are needed) to find a globally optimal solution than
building a globally accurate surrogate model. Additionally, this is the
key missing component in GP-RO, which can be interpreted as ARBO
with g, =0, as the mean predictions alone do not posses enough
information about the quality of the predictions. As such, GP-RO can
lead to repeated evaluations at the same uninformative points. More-
over, the gray circles in Figure 3D show the evolution of the rec-
ommended optimum based on the last step of Algorithm 1, which
closely follows the iterative generation of recommended queried

points.

PAULSON ET AL

TABLE 1 Known parameters of the bioreactor model
Fixed parameters Values Units
Yx/s 0.2 g/g
25 g/g
Vi 0.8 h—?
K 12 g/L
K; 20 g/L

5.2 | NMPC auto-tuning

After demonstrating the practical implementation and important theo-
retical results of ARBO on the illustrative example, we now use ARBO
for auto-tuning of an NMPC controller using a benchmark bioreactor

problem.

5.2.1 | Bioreactor model

We consider the continuous bioreactor problem presented in Refer-
ence 41. The dynamics of the bioreactor can be modeled by a set of
three nonlinear ordinary differential equations given by

X(t)=-DOX() +u(OX(B), X(O)=Xo, (22a)
$()=D(t)(Sr(t) sa»—%ﬁ (OX(D), SO)=So, (22b)

P(t) = —D(t)P(t) + (au(t) + H)X(t), P(0)=Po, (22¢)
where X(t), S(t), and P(t) denote the biomass, substrate, and product
concentration (units of g/L), respectively, with initial conditions
Xo=0.3g/L, So=0.2g/L, and Po=0g/L; D(t) is the dilution rate
(units of h™%); S(t) is concentration of substrate in the feed (units of
g/L); Yxss is the cell-mass yield (units of g/g); u(t) is the specific
growth rate (units of h~%): and « and B are parameters related to the
product yield. The specific growth rate is assumed to follow a modi-
fied Monod kinetic law that takes into account both substrate and

product inhibition

P(t)
.“max(_W)S(t)
= (23)
Kin +5(t) +T

We consider p,,, and Py to be time-invariant uncertainties in the
plant simulator, as explored in several previous case studies.*>*> Here,
we assume that 6= (4, Pm) € A= [0.75,1.35 hr ! x [1.25,1.75] g/L.
The rest of the model parameters are assumed to be constant and are
listed in Table 1.

The states of the bioreactor model (22) are given by
z(t) = (X(t),S(t),P(t)), while u(t)=(D(t),5(t)) denote the two

AICBE RN AL 1091

manipulated inputs. As such, we can write (22) in the following state-

space representation

2(t) = F (2(t),u(t),s), 2(0) =2, (24)

where Z :R® x R? x R2 — R3 is a function that represents the dynam-
ics of the bioreactor in Equations (22) and (23). The control objective
is to maximize the amount of product extracted from the bioreactor
over the process time t; =6 h, while satisfying minimum and maxi-
mum constraints on the biomass concentration. We can generally
denote such state (or path) constraints as G(z(t),u(t)) <0, which
reduce to the following in this case study

G(z(t),u(t)) = [Xig — X(t), X(t) —Xus, S(t) —Sue] <0, (25)

where X; g =0.285g/L and Xyg =0.385g/L are the lower and upper
bounds on the biomass concentration, respectively, while Syg=
15g/L is an upper bound on the substrate concentration. The manipu-
lated inputs must also satisfy hard input constraints u(t)e U=
[0.1,1]h~1 x [10,20] g/L. The manipulated inputs are updated every
st=0.1 h in the simulation, such that each closed-loop simulation

consists of a total of Ng;;, = 60 simulation steps.

5.2.2 | Control-relevant model and NMPC
formulation

Although a dynamic model of the bioreactor is available here (i.e., we
have access to %), this is not always the case in practice. Furthermore,
even when plant simulators are available, they may be excessively
complex and computationally costly to use for MPC design and imple-
mentation. Thus, a more practical approach is often to construct a
control-relevant model via system identification using plant simulation
data or real-plant data. Here, we used a residual neural network®* to
learn a flow-map function representing the system dynamics. In partic-
ular, we learned a transition function 577-(zk,uk) that can be applied
recursively to predict the forward evolution of the states

Zky1 = F (2, Uk) (26)

from some initial condition z; given an input sequence. The weight
and bias parameters of the neural network representing F are trained
using simulation data from the plant simulator described in
Section 5.2.1. We only collect data for the nominal parameter values
tmax = 1.0h71 and P, =1.5g/L, though one could treat the unknown
parameters as additional inputs to the model.

A residual neural network with three layers, 20 nodes per layer,
and the Swish activation®® function was used to represent & in
Equation (26). The training was efficiently carried out using Ten-
sorflow via the Keras API.*® Standard best practices regarding the
selection of batch size, weight/bias initialization, and stochastic gradient
descent optimizer settings were utilized. As such, not only this case

study considers time-invariant parameter uncertainty in the plant

110f 15 AI?BIEI RNAL

PAULSON ET AL.

simulator, but also plant-model mismatch with respect to the control-
relevant model used for the NMPC design.

Given the above-described control-relevant model and control
objective , the NMPC problem is formulated as

. N-1
Zi\km\lknfi\k Zi:o g(zi‘k'ui‘k) +oll g”k”l’

stz = '%(Zi\kyui\k)y Vi=0,..,,N—-1,

G(Zi» Ui) +0 < i, Vi=0,..,N—1, (27)
€k 20, vi=0,..,N—1,

uk €U, Vi=0,..,N—1,

Zojk = 2(tk),

where N is the prediction horizon; zj, and ujj are the predicted state
and inputs i steps ahead of current time k; z(ty) is the measured state
at time t, (from the plant simulator); & (zjy,uy)=—VD;P;ét is the
stage cost with reactor volume V = 10L; ¢, are slack variables for the
state constraints; p is a large penalty weight to penalize state con-
straint violations; and 6§ € ®=[0,0.1] are the tunable backoff parame-
ters that can be selected to improve the constraint handling ability of
NMPC.#” Note the stage cost is defined as the negative of the amount of
product extracted from the bioreactor over each 6t period; the negative
arises since we want to maximize product. Let uo*‘k(z(tk),e) denote the
first element of the solution to Equation (27). We can then define the
closed-loop system as the combination of Equation (24) and the
NMPC law

u(te) = ugy (2(t),), (28)

where the control inputs are constant during each time interval
[te,tks1), Vk€{0,...,Nsm—1}. We solve the NMPC problem using
IPOPT with all required derivatives computed via the CasADi auto-

matic differentiation package.324®

5.2.3 | Formulation of auto-tuning problem

Given the closed-loop simulation described in Section 5.2.2, we for-

mulate the auto-tuning problem as selecting backoffs 8 € ® such that

the worst-case mass of product (with respect to uncertainties 6 € A) is
maximized while the constraints (25) are not (significantly) violated.
We denote the objective function of the auto-tuning problem by
¢(0,5). To formulate the auto-tuning problem as in (1), we must select
¢(0,5) to be a weighted combination of productivity and constraint
violations. Thus, we represent the overall closed-loop performance as
follows

Niim

$(0.6) =y ZL(z(t).u(t) +w || [Gz(t).ut))] . (29)

k=1

where [a]" =max{a,0} denotes the element-wise positive part opera-
tor and w =20 is a weight parameter chosen to have a significant pen-

alty associated with constraint violations.

5.2.4 | Results and discussion
We compare the performance of ARBO and GP-RO for NMPC
auto-tuning under uncertainty. We allocate a maximum number of
50 iterations for both of these robust BO algorithms. We use Latin
Hypercube Sampling®® to generate the first 15 samples in ® x A to
ensure sufficient initial coverage of the search space; the same ini-
tial samples are used for both algorithms. There are two factors
that mainly determine the overall evolution of querying and rec-
ommended points. These include the initialization of the algorithm,
that is, the initial samples that construct the GP, and the discovery
of the of true optimal solutions in the robust BO problems. Note
that both ARBO and GP-RO involve the solution of one nested
(step 3 of Algorithm 1), one simple (step 4) and a sequence of sim-
ple (step 8) optimization problems, which, albeit relatively computa-
tionally inexpensive, may lead to incorrect solutions if the used
local solvers are “trapped” in local minima. Therefore, to examine
the consistency of ARBO, we repeat the optimization procedure
N, =5 times.

From examining the sequence of recommended optimum values,
we observe a similar behavior to the illustrative problem; ARBO con-

sistently explores the decision variables space ® while GP-RO

(A) (B) ©
& 0.06 g 21
Q * Q ()
g 2 0.12 2 0.08
0.05 5] 5
g, 50,10 5
g 0.04 g go.
& & 0.08 £ 0.6
g0 2 0.06 £ 0.04 ‘
£ 002 =00 k= |
& 001 & 0.02 e 102 .
0.00 0.00 e ; ||| (—
=20 10 0 10 20 30 40 =20 -10 0 20 30 40 0005 %0 o0 10 20 30 0
®(0,9) (@ arpo:9) P(0¢:p—ro»0)

FIGURE 4 Histograms of the closed-loop performance ¢(6,5) given in Equation (29) established under 100 realizations of the parameter
uncertainties in the plant simulator for the cases of (A) NMPC with no-backoff, (6o); (B) NMPC auto-tuned with ARBO, (6ggo); and (C) NMPC

auto-tuned with GP-RO, (65p.ro)

PAULSON ET AL

TABLE 2 Auto-tuning performance of ARBO and GP-RO across 5 trials

AICBE RN AL 1291

Worst-case performance Final recommended 4 Final worst 6§
Trial ARBO GP-RO ARBO GP-RO ARBO GP-RO
1 13.11 11.98 (1x107%,7.8x1072) (0,54 x107?) (0.75, 1.25) (0.75, 1.75)
2 11.65 41.28 (0,6.5%1072) (0,1x107Y) (1.35, 1.25) (1.35, 1.25)
3 13.09 22.86 (5.6x1072,5%x1072) (1x107%1x107Y) (1.33, 1.56) (1.35, 1.25)
4 12.44 19.19 (0x107%,7.2x1072) (6.2x107%,8.6x1072) (0.75, 1.75) (1.17, 1.66)
5 12.13 12.73 (1.4%x1072,3.8x1072) (2x1072,6.8x1072) (1.35, 1.25) (1.35,1.75)
(A), (B) ©)
2.00 0495
L.75 0.400
1.50 0.375
— [T o
<L =0.350
100 20.325
R 0.75 < 0.300
0.50 0.275
0.25 I— Nominal | 0.250
0.00 225
0 20 0 4 0 6 O
k
(D) 2.00 (E)O 195
1.75 0.400
1.50 0.375
S =0.350
>1.00 20.325
R 0.7 > 0.300
0.50 0.275
0.25 ARBO 0.250
0.00 ! 25
0 2 30 4 50 oo O
k
S 500 (H)
] . ; 0.425
75 = 0.400
1.50 = 0.375
—~19) n ar
=12 =0.350
L0 20.325
A 0.75 < 0.300
0.50 0.275
0.25 I— GP-RO | 0.250
0.00 2 30 4 50 6 O
k
FIGURE 5 Closed-loop profiles of product, biomass and substrate concentrations for 150 realizations of parameter uncertainties in the plant

simulator for the cases of NMPC with no-backoff (A-C), NMPC auto-tuned with ARBO (D-F), and NMPC auto-tuned with GP-RO (G-I)

recommendations do not update in several cases. To this end, we ana-
lyze the closed-loop performance for the final recommended point of
the ARBO and GP-RO algorithms by evaluating {f(Gt*,(S(D)}isl at
Ns =150 LHS-based sampled uncertainty values 5 € A. The results
are directly compared with the corresponding performance when a
nominal value for the constraint backoffs (i.e., 6o = [0,0] is used. Note
that in this analysis we use all performance samples that were discov-
ered by varying the final recommended point of ARBO and GP-RO
among the five replicates. The resulting histograms are shown in

Figure 4. Here, we show the relative frequency since 150 samples are

used for the nominal case, while the histograms for ARBO and GP-RO
are based on 750 samples (150 samples for 5 trials). The comparison
with the nominal case, in which the backoffs are set to zero, is pro-
vided to better highlight the advantages of auto-tuning. As seen from
Figure 4, the estimated worst-case total cost for ARBO is significantly
lower than that for the nominal case and GP-RO. This trend is
followed across the entire distributions as, on average, ARBO dis-
covers better solutions than the nominal case and GP-RO. It is worth
noting that the solution found with ARBO does result in slightly
higher nominal performance cost than the zero backoff case, which is

PAULSON ET AL.

13 0f 15 AI?BIEI RNAL

the price to pay for the added robustness achieved with the minimax
formulation of the auto-tuning problem.

The worst-case performance of the closed-loop system is quanti-
fied and listed in Table 2. As a point of reference, the worst-case
closed-loop performance for the nominal case is 36.57. From Table 2,
we can observe that the worst-case performance of ARBO is consis-
tently lower than that of the nominal case and GP-RO, except in trial
1 where the performance costs are comparable while the final rec-
ommended point is quite different. Although the GP-RO algorithm
provides significantly sub-optimal results compared to ARBO, intro-
ducing some degree of constraint backoff generally improves the
worst-case performance due to enhanced constraint satisfaction.
However, in trial 2, the GP-RO algorithm is not able to encounter a
candidate worst-case solution that leads to a performance cost even
higher than the nominal case. Note that the worst-case costs are quite
similar in ARBO, even when the final recommended points § are not
very close in the ® space. This suggests a high degree of nonlinearity
of the performance function in the joint design-uncertainty space.

To obtain more insight into effect of backoff parameters, Figure 5
shows the closed-loop state profiles for the three cases considered in
Figure 4. For ARBO, we show the profiles corresponding to trial 1,
wheras for GP-RO the profiles correspond to trial 2, which are the
respective trial for which the algorithms yield the higher worst-case
cost. From Figure 5B, it is evident that in the no-backoff case, a large
violation of X g occurs at later instances, thus incurring a large penalty
in the performance cost. This issue is alleviated by using the optimal
backoffs calculated by ARBO, which lead to significantly less violation
of the lower biomass bound X, g, while not sacrificing on the amount
of product obtained throughout the process, as seen from the concen-
trations of product in Figure 5A-D. It is important to note that achiev-
ing this behavior requires careful simultaneous tuning of 9, and 65, as
we need to allow for some level of X g and Xyg violation to obtain a
large enough amount of product, while staying within the desired
bounds for biomass concentration. It would be difficult for a practi-
tioner to infer this careful balance without running an impractically
large number of closed-loop simulations. In fact, ARBO was able to
uncover this desired balance in an automated fashion using 65 total
simulations (15 initial simulations for the GP construction and 50 iter-
ations for BO); this is fewer than the 150 simulations we used to esti-
mate the worst-case performance for the final recommended point.
Lastly, we also observe that GP-RO attempts to improve the closed-
loop behavior of the system by decreasing the amount of X,g viola-
tions as compared to ARBO; however, it does so by introducing more

significant violations of Xyg.

6 | CONCLUSIONS AND FUTURE WORK

We have presented a robust Bayesian optimization (BO) method for
auto-tuning of arbitrary complex control structures using a “high-
fidelity” plant simulator with significant time-invariant uncertainties.
The proposed adversarially robust BO (ARBO) method uses a probabi-
listic GP surrogate model to jointly describe the effect of the tuning

parameters and plant model uncertainties on the closed-loop perfor-
mance. The GP model allows for using an alternating confidence-
bound procedure to simultaneously select the next candidate tuning
and uncertainty parameter realizations. As such, ARBO requires only
one (expensive) closed-loop simulation in each iteration, as compared
to alternative robust BO approaches to auto-tuning that rely on vastly
more closed-loop simulations in each iteration. Our results on two
simulation case studies demonstrate the advantages of the confidence
bound-based procedure of ARBO in systematically realizing a tradeoff
between the exploration and exploitation of the design-uncertainty
space relative to GP surrogate-based robust optimization that lacks an
exploration mechanism.

It should be noted that there remain several interesting direc-
tions for future work to further improve the efficiency of ARBO on
relevant robust controller tuning problems. One important issue is
related to the well-known challenges associated with applying BO
in high-dimensional spaces. Since ARBO relies on GPs that jointly
learn the decision variable and uncertainty space, it is expected to
encounter difficulties in systems that either have many uncer-
tainties and/or many tunable parameters. A second challenge is
related to the implementation of ARBO and, more specifically, the
selection of optimization methods that are capable of solving the
inner/outer optimization problems including those required in the
recommendation procedure. The nested form of the minimax prob-
lem makes it critical to ensure that these inner/outer problems are
solved to near global optimality. In this paper, we propose several
strategies for practical implementation of these components of
ARBO, but substantial improvements can likely be made in the effi-
ciency of such methods . Finally, other practical aspects such as an
optimal selection strategy for the exploration constant, convergence
criteria, and the incorporation of more complex non-Gaussian noise

models into ARBO should be further examined.

ACKNOWLEDGMENT

Joel A. Paulson acknowledges National Science Foundation (Grant
No. 2029282). Georgios Makrygiorgos and Ali Mesbah acknowledge
funding from the National Aeronautics and Space Administration
(NASA) under grant number NNX17AJ31G. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of NASA.

AUTHOR CONTRIBUTIONS

Joel Paulson: Conceptualization (equal); formal analysis (equal); super-
vision (equal); writing - original draft (equal); writing - review and
editing (equal). Georgios Makrygiorgos: Conceptualization (equal);
formal analysis (equal); software (equal); writing - original draft
(equal). Ali Mesbah: Conceptualization (equal); formal analysis (equal);
funding acquisition (equal); writing - original draft (equal); writing -

review and editing (equal).

DATA AVAILABILITY STATEMENT
The codes that support the findings of this study are openly available
on GitHub.

PAULSON ET AL

ORCID

Joel A. Paulson
Ali Mesbah

https://orcid.org/0000-0002-1518-7985
https://orcid.org/0000-0002-1700-0600

ENDNOTES

* We refer to the process simulator as “high-fidelity” to denote the fact
that it can be a computationally-expensive model, such as a multiscale
model, built from a collection of software codes/packages.

T This can be easily achieved by normalizing the data before training, as
discussed in Reference 27.

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

Paulson JA, Mesbah A. Shaping the closed-loop behavior of nonlinear
systems under probabilistic uncertainty using arbitrary polynomial
chaos. Proceedings of the IEEE Conference on Decision and Control;
2018: 6307-6313.

Garriga JL, Soroush M. Model predictive control tuning methods: a
review. Ind Eng Chem Res. 2010;49(8):3505-3515.

Tran QN, Scholten J, Ozkan L, Backx A. A model-free approach for
auto-tuning of model predictive control. IFAC Proc Vol. 2014;47(3):
2189-2194.

Neumann-Brosig M, Marco A, Schwarzmann D, Trimpe S. Data-
efficient autotuning with Bayesian optimization: an industrial control
study. IEEE Trans Control Syst Technol. 2019;28(3):730-740.

Paulson JA, Mesbah A. Data-driven scenario optimization for auto-
mated controller tuning with probabilistic performance guarantees.
IEEE Control Syst Lett. 2020;5(4):1477-1482.

Zhu M, Bemporad A, Piga D. Preference-based MPC calibration. arXiv
Preprint arXiv:200311294. 2020.

Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of
machine learning algorithms. Adv Neural Inf Process Syst. 2012;25:
2960-2968.

Shabhriari B, Swersky K, Wang Z, Adams RP, De Freitas N. Taking the
human out of the loop: a review of Bayesian optimization. Proc IEEE.
2015;104(1):148-175.

Piga D, Forgione M, Formentin S, Bemporad A. Performance-oriented
model learning for data-driven MPC design. IEEE Control Syst Lett.
2019;3(3):577-582.

Lu Q, Kumar R, Zavala VM. MPC controller tuning using Bayesian
optimization techniques. arXiv Preprint arXiv:200914175 2020.
Sorourifar F, Makrygiorgos G, Mesbah A, Paulson JA. A data-driven
automatic tuning method for MPC under uncertainty using constrained
Bayesian optimization. IFAC-PapersOnLine. 2021;54(3):243-250.
Fiducioso M, Curi S, Schumacher B, Gwerder M, Krause A. Safe con-
textual Bayesian optimization for sustainable room temperature PID
control tuning. arXiv Preprint arXiv:190612086. 2019.

Khosravi M, Behrunani V, Myszkorowski P, Smith RS, Rupenyan A,
Lygeros J. Performance-Driven Cascade Controller Tuning With
Bayesian Optimization. IIEEE Transactions on Industrial Electronics.
2022.69(1):1032-1042. doi: 10.1109/TIE.2021.3050356

Rasmussen CE, Williams CKI. Gaussian Processes for Machine Learning.
MIT Press; 2006.

Paulson JA, Shao K & Mesbah A Probabilistically robust Bayesian
optimization for data-driven Design of Arbitrary Controllers with
Gaussian process emulators. Proceedings of the IEEE Conference on
Decision and Control; 2021: 3633-3639.

Edgar TF, Pistikopoulos EN. Smart manufacturing and energy sys-
tems. Comp Chem Eng. 2018;114:130-144.

Bogunovic |, Scarlett J, Jegelka S, Cevher V. Adversarially robust opti-
mization with Gaussian processes. Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems; 2018:
5765-5775.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

AICBE RN AL 2o

Soroush M, Masooleh LS, Seider WD, Oktem U, Arbogast JE. Model-
predictive safety optimal actions to detect and handle process opera-
tion hazards. AIChE J. 2020;66(6):€16932.

Ahooyi TM, Soroush M, Arbogast JE, Seider WD, Oktem UG. Model-
predictive safety system for proactive detection of operation hazards.
AIChE J. 2016;62(6):2024-2042.

Sudret B. Global sensitivity analysis using polynomial chaos expan-
sions. Reliab Eng Syst Saf. 2008;93(7):964-979.

Paulson JA, Martin-Casas M, Mesbah A. Fast uncertainty quantifica-
tion for dynamic flux balance analysis using non-smooth polynomial
chaos expansions. PLoS Comput Biol. 2019;15(8):e1007308.
Makrygiorgos G, Maggioni GM, Mesbah A. Surrogate modeling for
fast uncertainty quantification: application to 2D population balance
models. Comp Chem Eng. 2020;138:106814.

Marzat J, Walter E, Piet-Lahanier H. A new expected-improvement
algorithm for continuous minimax optimization. J Glob Optim. 2016;
64(4):785-802.

Mukhopadhyay DM, Balitanas MO, Farkhod A, Jeon SH,
Bhattacharyya D. Genetic algorithm: a tutorial review. Int J Grid Dis-
trib Comput. 2009;2(3):25-32.

Srinivas N, Krause A, Kakade SM, Seeger M. Gaussian process optimi-
zation in the bandit setting: no regret and experimental design. Pro-
ceedings of the International Conference on Machine Learning; 2015:
2171-2180.

Vermorel J, Mohri M. Multi-armed bandit algorithms and empirical
evaluation. European conference on machine learning Springer; 2005:
437-448.

Bradford E, Schweidtmann AM, Lapkin A. Efficient multiobjective
optimization employing Gaussian processes, spectral sampling and a
genetic algorithm. J Glob Optim. 2018;71(2):407-438.

Genton MG. Classes of kernels for machine learning: a statistics per-
spective. JMLR. 2001;2(Dec):299-312.

Wabersich KP, Toussaint M. Automatic testing and minimax optimiza-
tion of system parameters for best worst-case performance. IEEE/RSJ
International Conference on Intelligent Robots and Systems IEEE;
2015: 5533-5539.

Dani V, Hayes TP, Kakade SM. stochastic linear optimization under
Bandit Feedback. 21st Annual Conference on Learning Theory; 2008.
Kandasamy K, Schneider J, Péczos B. High dimensional Bayesian opti-
misation and bandits via additive models. Proceedings of the Interna-
tional Conference on Machine Learning; 2015: 295-304.

Waéchter A, Biegler LT. On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming. Math
Program. 2006;106(1):25-57.

Finkel D. DIRECT Optimization Algorithm User Guide. North Carolina
State University. Center for Research in Scientific Computation; 2003.
GPy 2014, GPy: A Gaussian process framework in python, 2012.
http://github.com/SheffieldML/GPy.

Jin C, Netrapalli P, Jordan M. What is local optimality in nonconvex-
nonconcave minimax optimization? Proceedings of the International
Conference on Machine Learning; 2020: 4880-4889.

Zhu C, Byrd RH, Lu P, Nocedal J. Algorithm 778: L-BFGS-B: Fortran
subroutines for large-scale bound-constrained optimization. ACM
Trans Math Softw. 1997;23(4):550-560.

Cartis C, Fiala J, Marteau B, Roberts L. Improving the flexibility and
robustness of model-based derivative-free optimization solvers. ACM
Trans Math Softw. 2019;45(3):1-41.

Powell MJ. The BOBYQA Algorithm for Bound Constrained Optimization
without Derivatives. Cambridge NA Report NA2009/06, University of
Cambridge, Cambridge; 2009: 26-46.

van de Berg D, Savage T, Petsagkourakis P, Zhang D, Shah N, del Rio-
Chanona EA. Data-driven optimization for process systems engineer-
ing applications. Chem Eng Sci. 2022;248:117135.

Bull AD. Convergence rates of efficient global optimization algo-
rithms. J Mach Learn Res. 2011;12(10):2879-2904.

https://orcid.org/0000-0002-1518-7985
https://orcid.org/0000-0002-1518-7985
https://orcid.org/0000-0002-1700-0600
https://orcid.org/0000-0002-1700-0600
https://doi.org/10.1109/TIE.2021.3050356
http://github.com/SheffieldML/GPy.

150f 15 AI?BIEI RNAL

41.

42.

43.

44,
45.

46.
47.

PAULSON ET AL.

Agrawal P, Koshy G, Ramseier M. An algorithm for operating a fed-
batch fermentor at optimum specific-growth rate. Biotechnol Bioeng.
1989;33(1):115-125.

Henson MA, Seborg DE. Nonlinear control strategies for continuous
fermenters. Chem Eng Sci. 1992;47(4):821-835.

Paulson JA, Martin-Casas M, Mesbah A. Input design for online fault
diagnosis of nonlinear systems with stochastic uncertainty. Ind Eng
Chem Res. 2017;56(34):9593-9605.

Qin T, Wu K, Xiu D. Data driven governing equations approximation
using deep neural networks. J Comput Phys. 2019;395:620-635.
Ramachandran P, Zoph B, Le QV. Searching for activation functions.
arXiv Preprint arXiv:171005941. 2017.

Chollet F et al., Keras. GitHub; 2015. https://github.com/fchollet/keras.
Paulson JA, Mesbah A. Nonlinear model predictive control with
explicit backoffs for stochastic systems under arbitrary uncertainty.
IFAC-PapersOnLine. 2018;51(20):523-534.

48.

49.

Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi - a
software framework for nonlinear optimization and optimal control.
Math Program Comput. 2019;11(1):1-36.

Loh WL. On Latin hypercube sampling. Ann Stat. 1996;24(5):2058-
2080.

How to cite this article: Paulson JA, Makrygiorgos G,
Mesbah A. Adversarially robust Bayesian optimization for
efficient auto-tuning of generic control structures under
uncertainty. AIChE J. 2022;68(6).e17591.
doi:10.1002/aic.17591

https://github.com/fchollet/keras.
info:doi/10.1002/aic.17591

	Adversarially robust Bayesian optimization for efficient auto-tuning of generic control structures under uncertainty
	1 INTRODUCTION
	2 PROBLEM STATEMENT
	3 ADVERSARIALLY ROBUST BO
	3.1 GP regression
	3.2 ARBO algorithm
	3.3 Upper bound on simple Robust-Regret

	4 PRACTICAL IMPLEMENTATION OF ARBO
	4.1 Choice of exploration constant βt
	4.2 Estimation of GP hyperparameters
	4.3 Minimax optimization for lcbt-1

	5 CASE STUDIES
	5.1 Illustrative example
	5.2 NMPC auto-tuning
	5.2.1 Bioreactor model
	5.2.2 Control-relevant model and NMPC formulation
	5.2.3 Formulation of auto-tuning problem
	5.2.4 Results and discussion

	6 CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENT
	AUTHOR CONTRIBUTIONS
	DATA AVAILABILITY STATEMENT

	ENDNOTES
	REFERENCES

