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ABSTRACT

Federated learning (FL) has emerged with increasing popularity in the medical image analysis field. In collab-
orative model training, it provides a privacy-preserving scheme by keeping data localized. In FL frameworks,
instead of collecting data from clients, the server learns a global model by aggregating local training models
from clients and broadcasts the updated model. However, in the situation where data is not identically and
independently distributed (non-i.i.d), the model aggregation requires frequent message passing, which may face
the communication bottleneck. In this paper, we propose a communication-efficient FL framework based on the
adaptive server-client model transmission. The local model in the client will only be uploaded to the server under
the conditions of (1) a probability threshold and (2) an informative model updating threshold. Our framework
also tackles the data heterogeneity in federated networks by involving a proximal term. We evaluate our ap-
proach on a simulated multi-site medical image dataset for diabetic retinopathy (DR) rating. We demonstrate
that our framework not only maintains the accuracy on non-i.i.d dataset but also provides a significant reduction
in communication cost compared to other FL algorithms.
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1. INTRODUCTION

The raw data in medical institutes, e.g., medical images and records, is quite sensitive to be exposed to other
parties. Traditional machine learning algorithms, which require aggregating the distributed datasets at a central
server, may incur practical challenges in collaborative model training. Federated learning (FL)' has recently
emerged as a privacy-preserving solution by eliminating the potential to exchange sensitive data which is beneficial
to the model training using medical data. The data privacy can be preserved by only transmitting model
parameters between the server and clients, which avoids data violation across the sites.

However, FL would suffer from performance decreasing at clinical deployment. First, the datasets which are
distributed across multi-sites inevitably fall in data heterogeneity. The variance of the collaborative datasets lacks
assurance for good generalizability when facing complex medical data. Second, each client’s local training can
only learn its generalizable parameters from its isolated data distribution. The limitation of the data accessibility,
which constrains the total usage of data distributions across institutes, may mislead the model training.

Also, in the FL scheme, a large number of institutes locate at different places, and attempt to communicate
to the central server with its local updates. The communication constraints (i.e., bandwidth bottleneck) cannot
be ignored. To achieve a higher accuracy, the size of the model becomes larger than before.? Therefore, the
network requires considerable communication resources and faces a significantly longer transmission latency in
uploading, which may lead to asynchronization in training stage.

Prior works concentrate on the model compression such as quantization® to reduce the communication over-
load, while we focus on reducing the transmission rate instead. We propose a novel approach in FL to reduce the
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communication cost between clients and server by permitting the informative update under a certain probability.
We also introduce a proximal term following the techniques in FedProx? to tackle the data heterogeneity.

In conclusion, our contributions are as follows:

e Our proposed approach presents a communication-efficient strategy by allowing the clients to determine
whether to upload its model or not. Using this strategy, our model also provides a better performance
when solving the problem of non-i.i.d.

e The experiments on the DR dataset® show that the communication cost is decreased by an average of 25%
without significantly sacrificing the accuracy. We also demonstrate that our approach improves the testing
accuracy by 2% on average and decreases the training loss by 28% in the highly heterogeneous dataset.

2. METHOD

We introduce a strategy with the goal of decreasing communication costs and improving accuracy. The proposed
approach requires two major modifications of the original FedAvg. In particular, we add a proximal term to
optimize the non-i.i.d problem and present a scheme where each client only transmits its update back to the
server only if it meets an adaptive threshold.

2.1 Statistical Heterogeneity Optimization

In the Federated averaging (FedAvg)® , which is a basic yet effective algorithm for federated learning, a central
server first distributes the initial global model to the clients (institutes) and selects a small fraction C of K
clients to begin a new epoch of local training — where K is the number of total clients in the network. Then in
each global iteration, the following server-client communication strategy with two stages will be repeated until
convergence:

e The clients will be involved in collaboration by independently performing E epochs of training the global
model on their local datasets with stochastic gradient descent (SGD) optimizer. The clients will reply to
the server with the current round updated model.

e After collecting from all participated clients, the updated models will be aggregated in the server by
averaging the updates with weights proportional to the size of the local dataset. Finally, the server starts
a new round of broadcasting the latest global model to another set of selected clients.

However, statistical heterogeneity appears when data is non-identically distributed across the network. Fe-
dAvg does not fully address this underlying challenge. Our approach modified from FedAvg aims to keep the
updated parameters across clients more similar to solve the non-i.i.d problem.

The goal of FL is to minimize the following distributed optimization model(1):
K
win {c0)= 3 st 0
k=1

In the equation above, K is the number of clients in the network, and p* is the proportional weight of the kth
client such that p* > 0 and Zszl p¥ = 1. L(w) is the user-specified loss function. In each round ¢, the updated
model weight wf,; at client & will be calculated as wf, ; = w; — 17 £L¥(w;). The loss function Ly (w) at client &
is defined by I(w,n*) given the n* data and weight w .

Due to data heterogeneity across medical institute, the global model will derive its convergence bound after
more epochs. Our approach, which is inspired by the FedProx,* tackles heterogeneity in federated networks by
introducing a proximal term in the loss function calculation. In our approach, instead of minimizing the loss in
(1), during the local update, client & will find w to minimize (2):

min b (w, wp) = L4 (w) + & o — w? (2)
L

Due to heterogeneity in data distributions, the divergence of parameters between clients will be increased.

By adding the proximal term £ [lw — wt|\2, L (w), the potential impact of various local updates, will be limited.

Proc. of SPIE Vol. 12037 1203703-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 02 Jun 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



2.2 Communication-efficient strategy

Algorithm 1: Communication-Efficient Scheme

Input: K clients, the fraction ¢ for selection, number of local rounds N, number of global epochs E,
learning rate 7, pre-defined threshold 7, probability p, proportional weights v for each client
Output: Global Model
1 Initialize global model 6;
2 fort =1: Edo

3 Server selects a subset C; of K clients at random. The size of C is ¢ x K;
4 for k in C, in parallel clients do
5 Initialize @F,, < 6, of, | + 7F;
6 fori=1, ..., N do
7 Find a wf,; to miny, h*(wf, |, we) = LF(wfy ) + 4 [|wf, — wil %
8 Update wy,, < @y, 1;
o ||| b= =k
10 if (o, < m,&p > 0.5) then
11 | Return (of,, , NONE) to server;
12 else
13 ‘ Return (of,,,w,; ™) to server
14 end
15 end
16 end
17 Server Updating: ;
18 if Receive all feedback of , and wi from C; then
19 for k in C; do
20 | Load state dictionary wf,, to 0f, ;
21 end
K k
22 Tyl < D peq Uk ¥ 0741 3
23 0t+1 — Zszl Vg * 9,’?“ )
24 end
25 end

In a FL framework, larger networks will result in a concern of communication resources such as network
uploading-downloading pipeline and bandwidth. To achieve the goal of efficient communication, existing ap-
proaches typically introduce compression of the updated model, such as subsampling model parameters' and
quantization®” on the client-side training. However, compression methods may bring along with additional com-
putation for encoding and decoding” , which increase the local training duration. Also, FedPAQ,? a quantized
message passing strategy, assumes the datasets in all clients are independent and identically distributed (i.i.d.),
which cannot provide the same accuracy when processing the non-i.i.d medical data.

Our proposed method reduces the transmission load by employing two modules: partial node (client) partici-
pation and conditional clients update. We formalize our framework for communication-efficient FL as Algorithm
1.

During each global epoch t, the server will distribute the aggregated global model 8; to the selected fraction
C of total K clients. After receiving the model 6,, client k will perform a local update on the global estimated
weight w; from 6; by finding y-inexact minimizer wf, ; of h*(wf, ;,w¢) in (2). By computing the [2 norm of, ; of
the model difference between wf and wﬁrh wfﬂ can be considered as informative update if of 1 is larger than
the an adaptive threshold 7. The threshold 7, will be determined at the beginning of each epoch ¢ by calculating
the mean of the norms of uploaded o; from every client.

Since the 7y varies in different epoch, we will meet the challenge that most of the o441 in the chosen clients
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below the 73 during some particular epochs. If client £ transmits the weight back to the server only depending
on the result of comparison between of, ; and 7, the global model will reach the convergence while resulting in
significant accuracy loss. So we add a probability p as a conditional parameter to decide whether to perform
the updating or not. In such situation, some of the updates will not be ignored even if they are considered as
relatively less informative. Specifically, if 0,11 is smaller than 7;, the clients will generate a random value p;
between(0,1). If p; is larger than p, instead of transmitting the model back, the client ¢ will transmit a "NONE”
message which is only one float 32 bits along with the 12 norm of " 1. It will significantly decrease the message
size compared to the full model. Finally, the server computes the new global model ;1 by aggregating the
received weights from C % N clients with records of the weights for the remained clients (3):

Of_H, if received an update local from client t
or, otherwise

011 = 25:1 vk x é’\t+1> é\tJrl = { ) (3)

k:

where v 1?7]@” is the weight of data set n*.

i=k
Finally, at the server side, after receiving all the updates from the selected clients, the aggregation which
processes threshold ;41 and global model 6,11 for the next epoch ¢ + 1 is shown in Line 20-21 in Algorithm 1.

3. EXPERIMENTS
3.1 Dataset

Diabetic retinopathy is a diabetes complication which can cause vision loss. The diagnosis is made by examining
scans of the blood vessels of the light-sensitive tissue at the back of the retina which turns the diagnosis into a
medical image classification problem. A DR dataset® provides a real-world medical image analysis datasets with
rated image for the severity. DR consists of 2931 variable-sized images for training, and 731 images for testing.
The problem is to classify the images of patients’ retina into five scalability categories from 0 to 4: 0 - No DR,
1 - Mild DR, 2 -Moderate DR, 3 - Severe DR, and 4 - Proliferative DR.

Like previous studies®,” we use Dirichlet distribution to generate non-i.i.d datasets among batches. For each
class j, we sample p; ~ Dirg () where Dirg () is Dirichlet distribution and 3 is the concentration parameter.
We allocate p; ;, proportion of the instances of class j of the complete dataset to batch j and due to the small
value of 3, some batches may lack of an entire subset of classes. The data distributions among batches in different

size are shown in Figure 1.
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Figure 1. The data distribution of each party using non-IID data partition. The color bar denotes the number of data
samples. Each rectangle represents the number of data samples of a specific class in a batch.
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3.2 Implementation

One of the motivations of using SqueezeNet!? is the less communication load compared to other famous models.
In our experience, SqueezeNet not only has a small size of 4.73MB but also achieves a classification accuracy of
about 80% on the DR dataset in the centralized training.'!

We implement FedAvg, FedProx, and our strategy in PyTorch.!? We use the SGD optimizer with a learning
rate of 0.002 for all approaches to draw a fair comparison. For the heterogeneous dataset partition, we choose
B = 0.5 to split the dataset for each of the classes into 20 unequal parts to form 20 batches (clients). The number
of local rounds is set to 10, and the number of the global communication epochs is set to 100 for all federated
learning approaches. The probability threshold p for conditional updating is set to 0.5, and the adaptive 12 norm
threshold is initialized to be 5.

To demonstrate the performance of our proposed algorithm, we study our FL systems described above in
regards to the following aspects: (i) the performance of communication efficiency and testing accuracy in the
client selection strategy; (ii) the effect of proximal term in heterogeneous settings.

We first test our proposed client selection algorithm and compare the communication volume saving with the
non-restricted communication scheme. All of the client selection at the server-side has an equal fraction of 0.5.
We observe similar relative accuracy behavior of our strategy corresponding to the FedProx and better accuracy
behavior compared to the FedAvg. Then we turn our attention to the policy for transmitting model updates to
the server under a certain probability even though not exceeding the pre-defined threshold. We compute the 12
norm value during the total 100 global epochs. The update scheme herein prevents the risk of misjudgment of
informativeness.

4. RESULTS

We first test our aggregation scheme with different values of proximal term. When p = 0, the strategy can be
considered as the FedAvg with communication saving methods. In Figure 2, we observe that by adding the
proximal term, the scheme improves the highest testing accuracy by 2% and decreases average training by 28%
under the selected updating situation.
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Figure 2. Training loss (left) and testing accuracy (right) between scheme with proximal term p = 0.05,0.1 and FedAvg
u = 0. Algorithm with proximal terms results in a better model accuracy and lower training loss compared to FedAvg.

As described in Section 3, to reduce communication consumption, we propose a strategy in which only the
informative updates will be processes under a certain probability by compared between threshold 7 and 12 norm
which is the difference between the previous and the current weights in each round. In Figure 3, we notice that
our approach provides nearly 25% lower communication cost compared to the approach which maintains the full
communication such as FedProx while keeping the approximately similar accuracy performance.
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Figure 3. Cumulative communication (left) measured in MBs and testing accuracy (right) of full communication, limited
updates withdraw, and unlimited updates withdraw during the training. The proposed method saves 25% transmitting
cost without significant decrease of the accuracy compared to the full communication.

It is worth considering if the probability item p is eliminated which might save more rounds of communication
overloads. Specifically, we observe that although the strategy without probability p achieves the nearly twice
communication savings, it is not capable of matching the same level of accuracy.

5. CONCLUSIONS AND DISCUSSION

In this paper, we propose a novel communication-efficient FL. method with favorable performance. Our approach
consists of two modules: (1) tackling heterogeneity by adding a proximal term to the loss function; (2) selective
model updating under the conditions of a probability threshold and an informative model determination thresh-
old. We simulate various communication scenarios on a DR dataset with non-i.i.d settings and show that our
approach significantly reduces the communication overhead while maintaining a satisfactory accuracy.

For future work, a promising direction is to study the challenge where the clients will join or leave the FL
network without any notification. The records of all clients need to be traced for the whole training rounds. We
will add a frequent monitoring strategy without significant communication costs.
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