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Abstract  
Abdominal computed tomography CT imaging enables assessment of body habitus and organ health. Quantification of 
these health factors necessitates semantic segmentation of key structures. Deep learning efforts have shown remarkable 
success in automating segmentation of abdominal CT, but these methods largely rely on 3D volumes. Current approaches 
are not applicable when single slice imaging is used to minimize radiation dose. For 2D abdominal organ segmentation, 
lack of 3D context and variety in acquired image levels are major challenges. Deep learning approaches for 2D abdominal 
organ segmentation benefit by adding more images with manual annotation, but annotation is resource intensive to acquire 
given the large quantity and the requirement of expertise. Herein, we designed a gradient based active learning annotation 
framework by meta-parameterizing and optimizing the exemplars to dynamically select the 'hard cases' to achieve better 
results with fewer annotated slices to reduce the annotation effort. With the Baltimore Longitudinal Study on Aging 
(BLSA) cohort, we evaluated the performance with starting from 286 subjects and added 50 more subjects iteratively to 
586 subjects in total. We compared the amount of data required to add to achieve the same Dice score between using our 
proposed method and the random selection in terms of Dice. When achieving 0.97 of the maximum Dice, the random 
selection needed 4.4 times more data compared with our active learning framework. The proposed framework maximizes 
the efficacy of manual efforts and accelerates learning. 
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1. INTRODUCTION  
 
Segmentation of the key organs in abdominal computed tomography CT imaging provides valuable information to assess 
the body habitus and organ health [1]. Many attempts have been made to develop automatic multi-organ segmentation 
approaches. This remains a unresolved research field [2] and there are some major challenges. For example, the organs 
have low intensity contrast with other soft tissues which results in burry boundaries. Furthermore, the organ structures are 
morphological complex since the organ sizes vary substantially within and between subjects [3]. With the success of deep 
learning in sematic segmentation tasks, many deep learning based automatic multi-organ segmentation approaches have 
been proposed [4,5,6]. However, these methods largely rely on 3D volumes which provide rich contextual information 
and relatively large amounts of sample slices. These approaches are not applicable when single slice imaging is used to 
minimize dose. Lack of 3D context, variety of acquired image levels between subjects, and lack of images slices add more 
challenges for automatic segmentation algorithms and even for manual annotation on 2D single slices. For the massive 
amount of data deep learning based approach require, adding more data into training benefits the model performance which 
makes manual annotation a necessity.  

 

For the task of 2D single slices segmentation, the image level of the CT imaging varies, which makes the abdominal 
structure different. As shown in Figure 1, some subjects have clear abdominal structure while others have ambiguous ones. 
Deep learning based approaches might perform well on those that have clear structure and fail on those that do not. The 
failed samples are referred as ‘hard cases’. Adding more ‘hard cases’ into the training set can facilitate the generalizability 
and discrimination of the model.  In a traditional approach, however, annotation was conducted in order or randomly, as 
shown in Figure 2 (a). This can end up selecting the slices that always have the same image level, which is less helpful 
than the ‘hard cases’, which will in turn increase the annotation burden. To reduce annotation efforts and accelerate the 
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segmentation process, we proposed an active learning framework to actively and quantitively select the slices that are most 
beneficial to the training process, as shown in Figure 2 (b). The active learning model in the proposed framework provided 
a suggested annotation ranking of the unannotated dataset by given them different weight. Higher weight indicates less 
similarity between the samples with the training set. The top n slices were selected to conduct manual annotation.  

 

 
Figure 1. Abdominal segmentation results on 2D single slices of abdominal CT images. On some slices whose image level 
has clear abdominal structure, shown in (a), the deep learning model is able to achieve a high segmentation accuracy while 
they fail on some other slices that have ambiguous structure, shown in (b). To increase the model generalizability, we seek 
to add more ‘hard case’ slices illustrated in (b) into the training set. 

 

 
Figure 2. Unannotated 2D single slices of abdominal CT images. In a traditional approach, slices will be annotated in order 
or randomly as shown in (a) and can end up annotating the slices that are in the same image level which have similar 
abdominal structures (1,2,3 in (a)) and leave out the slices in the different image levels unannotated (n-2, n-1, n in (a)). We 
propose to actively choose the slices that have different abdominal structures to be annotated first, as shown in (b). 
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We conducted experiments on the Baltimore Longitudinal Study on Aging (BLSA) cohort. The method was evaluated on 
a total of 586 patients which starts from 286 patients and iterate for 5 times. The results were compared with random 
selection approach in terms of Dice coefficient. To achieve the same Dice coefficient, our active learning framework 
required substantively less data than the random selection approach.  

 

2. METHODS 
We designed an active learning framework that has three steps: a supervised segmentation model training step, an active 
sample selection step, and a manual annotation step. In the first step, we conducted 5-fold validation on training a 
segmentation model using our annotated dataset. In the second step, an active learning model was trained using the 
annotated dataset, and then applied on the unannotated dataset for testing. This step created a suggested annotation list for 
the unannotated dataset. In last step, we selected top n patients slices to be annotated, n=50 in our case, and added those 
into the annotated dataset. These three steps can be conducted iteratively by updating the annotated dataset and unannotated 
dataset each time. Figure 3 shows the overall pipeline of our proposed framework.  
 

 
Figure 3. The pipeline of our proposed active learning framework and the comparison random selection framework. We started 
with a baseline segmentation model trained on 286 patient slices. In the active learning framework, we trained the active 
selection model with the annotated dataset. The unannotated dataset was applied to the trained active selection model and 
ranked each slice. The top 50 patient slices were selected to conduct the manual annotation, and then they were added to the 
annotated data. A new segmentation model was trained using the updated annotated dataset. This is the end of a round of 
active data selection. We iterated for 5 rounds by updating the unannotated dataset and annotated dataset in each round. In the 
random selection framework, the difference is that 50 patient slices were picked randomly from the unannotated dataset in 
each round to conduct the manual annotation. 

 
2.1 Supervised segmentation model training 
We adopted Deeplab-v3[7] with ResNet101[8] as our backbone. To make it more suitable for limited cases, we used the 
pre-trained weight from the ImageNet [9] to initialize our model. The total patients’ slices were divided into 5 folds, and 
hence, 5 different segmentation models were trained.  
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2.2 Active data selection 
Our active learning model was adapted from the method described in [10, 11, 12]. During training, the annotated data was 
passing to the duplicated segmentation network to reweight the training. For each sample, if the weight is high, which 
means the samples do not share a high degree of similarity with the other samples. The samples passed through the first 
network, the initial weight for each sample were the same. The new parameters were applied on the second network and 
the samples were used to finetune it. The weight was applied here during the gradient decent. The new parameters were 
used to update both networks and saved in the memory for next iteration. Based on the network performance on each 
sample, the weight gradient was calculated and used to update the weight for each sample. The weights were used to 
reweight the loss and further the gradient decent of the first network. During testing, the unannotated data was fed to the 
network to get the weight value for each slice in the unannotated data. The weight was sorted from large to small value. 
The larger the weight value, indicating the lower similarity between the training set and the slices. For this reason, we 
selected the top n patient slice to conduct the manual annotation and added into the training set, which is the n most 
representative patients. 
 
2.3 Active selection pipeline iteration 
The top n patient slices were selected to conduct manual annotation and added into the annotated dataset. Segmentation 
models were trained on the updated annotated dataset. This is the end of a round of active learning data selection. To 
iterate, we used the updated annotated dataset to train a new active learning model and applied it on the updated 
unannotated dataset, which gives us a new rank for the new unannotated dataset. Based on the new rank, another n patients 
were manually annotated and then added to the annotated dataset. A new segmentation model was trained based on the 
updated annotated dataset. This process was iterated until there were no images remaining in the unannotated dataset. 

2.4 Random selection pipeline 
For comparison, we designed a baseline random selection framework to validate the impact of the active selection model. 
In this framework, we randomly selected without replacement of the same number of samples for annotation from the 
unannotated data and added them into the annotated data as it in the active learning framework. A new segmentation model 
was trained using the updated annotated dataset. During iteration, only the annotated dataset and the unannotated dataset 
need to be updated and the process continue until the unannotated dataset was empty. Although the overall patients being 
used in active learning framework and random selection framework are the same, during each iteration, the annotated 
dataset and unannotated dataset are independent and different for these two frameworks except for the beginning of R1. 

 

3. EXPERIMENTS AND RESULTS 
 
3.1 Datasets and Implementations 
This work is based on a subset of the 2D single slices of abdominal CT images of the Baltimore Longitudinal Study on 
Aging cohort. All the data has been approved by the Institutional Review Board (IRB) and accessed in de-identified form. 
A total of 586 patients were involved in study. We started with 286 patient slices and iterated for 5 times. For each iteration, 
50 patients were added into the training dataset. We conducted 5-fold validation on all the experiments. For the baseline 
model with 286 patients, the patients were randomly divided into 5 folds, with 57/58 patients in each fold. During each 
experiment, 4 of the 5 folds were used as training dataset, and the other fold was used as testing. In each iteration, 50 new 
patients were randomly divided into 5-fold and added to the previous 5 folds. However, to make a fair comparison of the 
result, we keep the test set the same as the baseline model for both active learning framework and random selection 
framework. All the data have an image size of 512x512, and we processed them using the soft tissue CT window range [-
125, 275] HU as in [6]. The intensity of the image slices was rescaled to [0, 255] and then the slices were randomly flipped 
with 0.5 probability and resized with range [0.5, 2.0] during online data augmentation. We used cross entropy as our loss 
function, and it was optimized by the stochastic gradient decent with a learning rate of 0.02 to train for 200 epochs.  

3.2 Experimental Results 
We evaluated the methods on 9 abdominal organs: spleen, right kidney, left kidney, gallbladder, liver, stomach, aorta, and 
pancreas in terms of Dice coefficient. Figure 4 (a) shows the average Dice coefficient in each round. When the patient 
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slices number reach 586, both active and random selection method have the same training dataset, so those patients were 
randomly divided into 5-fold to conduct the cross validation as maximum Dice coefficients it can achieved when includes 
all the patients into training process, Dicemax = 0.784. Comparing active and random selection, by adding 50 patient slices 
in R1, the Dice coefficient of the active selection framework is 15.8% higher than the random selection framework (0.771 
versus 0.759). At R2, by adding 100 patients in total, the Dice coefficient of the active selection is   22.4% higher than the 
random selection (0.777 versus 0.760). Figure 4 (b) shows the amount of data required to be added to achieve the same 
Dice coefficient. When achieving 0.97 of the maximum Dice, the random selection needed 4.4 times more data compared 
with our active learning framework. The Dice coefficient difference starting to decrease gradually in the last few rounds 
mainly because the training dataset was becoming more and more similar.  Figure 5 demonstrates the segmentation results 
changes on one patient slices from R1 to R5 using both active learning framework and random selection framework.  

 

4. DISCUSSION AND CONCLUSION 
 
Herein, we proposed an iteratively active learning framework to help dynamically select the ‘hard cases’ for manual 
annotation. We designed a random selection framework for comparison. The experiments iterated for 5 times by 
conducting the manual annotation on the selection patient slices and added to the annotated dataset. Our proposed 
framework required substantively less data to achieve the same Dice coefficient score compared with a random selection 
framework. This framework has the advantage to reduce the annotation efforts and accelerate the model training process. 

 
Figure 4. Comparison of our proposed active learning framework and random selection framework. We started with 286 
patients in the baseline model and end with 586 patients. We conducted 5-fold validation on the framework iteratively for 5 
time by adding 50 patient slices in each round. The error bar in (a) and confidence interval in (b) shows the standard error of 
the mean. 
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Figure 5.  Visualization of a sample subject among 5 rounds. R1, R2, R3, R4 and R5 represents the 5 rounds, respectively. 
(a) shows the segmentation results from active learning framework. (b) shows segmentation results from random selection 
framework. GT shows the ground truth. Changes are highlighted with orange arrows. 
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