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1. INTRODUCTION

Let G be a semisimple algebraic group, split over R, and let P C G be a parabolic
subgroup. Lusztig [Lus94] introduced the totally nonnegative part of the partial
flag variety G/P, denoted (G/P)>¢, which he called a “remarkable polyhedral
subspace”. He conjectured and Rietsch proved [Rie99] that (G/P)>¢ has a decom-
position into open cells. We prove the following conjecture of Williams [Wil07]:

Theorem 1.1. The cell decomposition of (G/P)>o forms a regular CW complez.
Thus the closure of each cell is homeomorphic to a closed ball.

A special case of particular interest is when G/P is the Grassmannian Gr(k,n)
of k-dimensional linear subspaces of R™. In this case, (G/P)>o becomes the to-
tally nonnegative Grassmannian Grso(k,n), introduced by Postnikov [Pos07] as
the subset of Gr(k,n) where all Pliicker coordinates are nonnegative. He gave a
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stratification of Gr>g(k,n) into positroid cells according to which Plicker coordi-
nates are zero and which are strictly positive, and conjectured that the closure of
each positroid cell is homeomorphic to a closed ball. Postnikov’s conjecture follows
as a special case of Theorem [[.1}

Corollary 1.2. The decomposition of Gr>o(k,n) into positroid cells forms a regular
CW complex. Thus the closure of each positroid cell is homeomorphic to a closed
ball.

When k = 1, Gr>o(1,n) is the standard (n — 1)-dimensional simplex A,_; C
P?—!. Simplices, and more generally convex polytopes, are prototypical examples
of regular CW complexes. While the spaces (G/P)>o and Gr>o(k,n) are not them-
selves homeomorphic to polytopes, our results confirm that they have the simplest
possible topology.

1.1. History and motivation. A matrix is called totally nonnegative if all its
minors are nonnegative. The theory of such matrices originated in the 1930’s [Sch30,
GK37]. Later, Lusztig [Lus94] was motivated by a question of Kostant to consider
connections between totally nonnegative matrices and his theory of canonical bases
for quantum groups [Lus90]. This led him to introduce the totally nonnegative
part G'>o of a split semisimple G. Inspired by a result of Whitney [Whi52], he
defined G'>o to be generated by exponentiated Chevalley generators with positive
real parameters, and generalized many classical results for G = SL,, to this setting.
He introduced the totally nonnegative part (G/P)>¢ of a partial flag variety G/ P,
and showed [Lus98bl Section 4] that G>o and (G/P)>( are contractible.

Fomin and Shapiro [FS00] realized that Lusztig’s work may be used to address
a longstanding problem in poset topology. Namely, the Bruhat order of the Weyl
group W of G had been shown to be shellable by Bjérner and Wachs [BW82], and by
general results of Bjorner [Bjo84] it followed that there exists a “synthetic” regular
CW complex whose face poset coincides with (W, <). The motivation of [FS00]
was to answer a natural question due to Bernstein and Bjorner of whether such a
regular CW complex exists “in nature”. Let U C G be the unipotent radical of
the standard Borel subgroup, and let Usg := U N G>¢ be its totally nonnegative
part. For G = SL,,, U>( is the semigroup of upper-triangular unipotent matrices
with all minors nonnegative. The work of Lusztig [Lus94] implies that Uso has a
cell decomposition whose face poset is (W, <). The space U is not compact, but
Fomin and Shapiro [F'S00] conjectured that taking the link of the identity element in
U, which also has (W, <) as its face poset, gives the desired regular CW complex.
Their conjecture was confirmed by Hersh [Herl4b|. Hersh’s theorem also follows as
a corollary to our proof of Theorem [[.T} see Remark

Corollary 1.3 ([Herldb]). The link of the identity in Usg is a reqular CW complez.

For recent related developments, see [DHMI19].

Meanwhile, Postnikov [Pos07] defined the totally nonnegative Grassmannian
Gr>o(k,n), decomposed it into positroid cells, and showed that each positroid cell is
homeomorphic to an open ball. Motivated by work of Fomin and Zelevinsky [FZ99]
on double Bruhat cells, he conjectured [Pos07, Conjecture 3.6] that this decom-
position forms a regular CW complex. It was later realized (see (@I)) that the
space Gr>o(k,n) and its cell decomposition coincide with the one studied by Lusztig
and Rietsch in the special case that G/P = Gr(k,n). Williams [Wil07, Section 7]
extended Postnikov’s conjecture from Grs>o(k,n) to (G/P)>o.
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There has been much progress towards proving these conjectures. Williams
[Wil07] showed that the face poset of (G/P)>o (and hence of Gr>o(k,n)) is graded,
thin, and shellable, and therefore by [Bj684] is the face poset of some regular CW
complex. Postnikov, Speyer, and Williams [PSW09] showed that Gr>o(k,n) is a
CW complex, and their result was generalized to (G/P)>¢ by Rietsch and Williams
[RWO08]. Rietsch and Williams [RW10] also showed that the closure of each cell
in (G/P)>o is contractible. In previous work [GKLIT|[GKL19], we showed that
the spaces Gr>o(k,n) and (G/P)>o are homeomorphic to closed balls, which is
the special case of Theorem [I1] for the top-dimensional cell of (G/P)>o. We re-
mark that our proof of Theorem [[T] uses different methods than those employed
in [GKL17,[GKL19], in which we relied on the existence of a vector field on G/P
contracting (G/P)>¢ to a point in its interior. Singularities of lower-dimensional
positroid cells give obstructions to the existence of a continuous vector field with
analogous properties.

The topology of a regular CW complex is completely determined by the com-
binatorial structure of its associated cell closure poset, as observed by Bjorner
[Bj684]. Therefore one may regard spaces such as Us and Gr>g(k, n) as canonical
topological realizations of natural posets arising in combinatorics. We expect this
phenomenon to hold more broadly for other spaces appearing in total positivity, as
we discuss in Section [T0l

Totally positive spaces have also attracted a lot of interest due to their appear-
ances in other contexts such as cluster algebras [FZ02] and the physics of scat-
tering amplitudes [AHBC™16]. Our original motivation for studying the topology
of spaces arising in total positivity was to better understand the amplituhedra of
Arkani-Hamed and Trnka [AHT14], and more generally the Grassmann polytopes
of the third author [Lam16]. Faces of these geometric objects are linear projections
of closures of positroid cells, and we expect that Corollary [[.2] will play an essential
role in developing a theory of Grassmann polytopes.

1.2. Stars, links, and the Fomin—Shapiro atlas. Rietsch [Rie99.[Rie06] defined
a certain poset (@, %), and established the decomposition (G/P)>0 = |,cq, >0
into open balls Hg>0 indexed by g € Q. She showed that for h € @, the closure

I1;° of IT;¥ is given by I1;.° = Ly<n I17%. When (G/P)> is the totally nonnegative
Grassmannian Grxo(k, n), this is the positroid cell decomposition of [Pos07].
Given g € @, define the star of g in (G/P)>¢ by

(1.1) Star; " := |_| ;0.
hzg
In Section Bl we define another space Lk;0 (the link of g) stratified as Lk;O =

Uy Lk;%. We later show in Theorem that Lkg20 is a regular CW complex
homeomorphic to a closed ball.

At the core of our approach is a collection of (stratification-preserving) homeo-
morphisms

(1.2) 7y : Star;® =5 170 x Cone(Lk; "),

one for each g € Q. Here Cone(A) := (A x R>()/(A x {0}) denotes the open cone
over A. The homeomorphisms {7, | g € @} are part of the data of what we call
a Fomin—Shapiro atlas; cf. Definition 23l Our construction is inspired by similar
maps introduced in [FS00] for the unipotent radical Usg.
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FI1GURE 1. The map v, for the case G = SL3 and P = B from
Example [[4

Example 1.4. When G = SL,, and P = B is the standard Borel subgroup, G/B
is the complete flag variety consisting of flags in R™, and the Weyl group W is the
group S,, of permutations of n elements. The face poset Q; of (G/B)>¢ is the
set {(v,w) € S, xS, | v < w} of Bruhat intervals in S,,, and the cell Ha?w) C
(G/B)>¢ indexed by (v,w) € @ has dimension ¢(w) — ¢(v). For example, when
n = 3, this gives a cell decomposition of a 3-dimensional ball; see Figure [I(left).

For g := (s1,5281), H;O is an open line segment, and Stargo consists of 4 cells:
a line segment 170 = H(>S? sps,)» tWO Open square faces H(>S? wp) and Hﬁg o251’

and an open 3-dimensional ball H(>ig wo)" This union is indeed homeomorphic to

1170 x Cone(LkEO) shown in Figure [l(right). Here Lk;0 is a closed line segment
>0

whose endpoints are Lk>0_ and Lk, g .y,

. .. >0
and whose interior is Lk{"q -

In Definition 2] we introduce the abstract notion of a (shellable) totally non-
negative space, which captures several known combinatorial and geometric prop-
erties of (G/P)>( used in our proof. This includes the shellability of Q; due to
Williams [Wil07], and some topological results [Rie06l[KLS14] on Richardson vari-
eties.

In Section Bl we prove (Theorem 24]) that every shellable totally nonnegative
space that admits a Fomin—Shapiro atlas is a regular CW complex. Our argument
proceeds by induction on the dimension of Lk;%, and depends on a delicate interplay
between objects in smooth and topological categories. We use crucially that the
maps (L2) in a Fomin—Shapiro atlas are restrictions of smooth maps. On the
topological level, we rely on the generalized Poincaré conjecture [Sma61l[Fre82)
combined with some general results on poset topology.

The bulk of the paper is devoted to the construction of the Fomin—Shapiro at-
las. For each g € @Q; we give an isomorphism @, between an open dense subset
Oy C G/P and a certain subset of the affine flag variety G/B of the loop group
G associated to G. The map @,, which we call an affine Bruhat atlas, sends the
projected Richardson stratification of G/P to the affine Richardson strat-
ification of its image inside G/B. The hardest part of the proof consists of showing
that the subset O, C G/P contains Star?o. See Section for a more in-depth
overview of the construction of @,,.

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun 2 15:40:28 EDT 2022 for download from IP 169.232.149.130.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY THEOREM 517

Remark 1.5. The map @,, generalizes the map of Snider [Snil0] from Gr(k,n) to
all G/P; see Remark [@.0 A different approach to give such a generalization is due
to He, Knutson, and Lu [HKT], which led them to the notion of a Bruhat atlas.
See [Elel6] for the definition. We call our map @, an affine Bruhat atlas since
its target space is always an affine flag variety, while the Bruhat atlases of [HKL]
necessarily involve more general Kac—Moody flag varieties. A similar map has been
independently constructed by Huang [Hual9)].

Remark 1.6. The method of link induction that we use in Section [3.3] has ap-
peared before in e.g. [GLMSO08,[Her14a]. When applied to the problem at hand,
this method immediately runs into the difficulty of showing that the closure of each
cell is a topological manifold. Our strategy for overcoming this issue is based on
combining technical topological results in Section Bl with the approach of [FS00].
The crucial new algebraic ingredient is that the factorizations of [FS00] happen
inside the unipotent group U, while we utilize an embedding into the affine flag
variety for that purpose. This embedding is defined on an open dense subset of
G/ P, but surprisingly, this subset turns out to contain the whole totally nonneg-
ative part of the star of the corresponding cell. In order to show this result, we
develop a toolbox of subtraction-free parametrizations in Section[Bl This machinery
also reveals intriguing properties of (G/P)>g such as Proposition [0.22] which may
be interesting to explore further in their own right.

1.3. Outline. In Section 2, we introduce totally nonnegative spaces and define
Fomin—Shapiro atlases. We state in Theorem 2.4] that every shellable totally non-
negative space that admits a Fomin—Shapiro atlas is a regular CW complex, and
prove it in Section Bl We give background on G/P in Section @ and study
subtraction-free Marsh—Rietsch parametrizations in Section Bl We then apply our
results on such parametrizations to prove Theorem [6.4] which will later imply that
the above open subset O, contains Stargzo. We introduce affine Bruhat atlases in
Section [l and use them to construct a Fomin—Shapiro atlas for G/P in Section B
Theorem [Z5] (which implies our main result Theorem [I)) is proved in Section B3
Section [ is devoted to specializing our construction to type A (when G = SL,),
with a special focus on the totally nonnegative Grassmannian Grxo(k,n). We il-
lustrate many of our constructions by examples in Section[d and we encourage the
reader to consult this section while studying other parts of the paper. We discuss
some conjectures and further directions in Section [[0l Finally, we give additional
background on Kac-Moody flag varieties in Appendix [Al

2. OVERVIEW OF THE PROOF

We formulate our results in the abstract language of totally nonnegative spaces,
since we expect that they can be applied in other contexts; see Section 10l

2.1. Totally nonnegative spaces. We refer the reader to Section for back-
ground on posets and regular CW complexes. For a finite poset (Q, <), we denote
by Cj =QU {0} the poset obtained from Q by adjoining a minimum 0. Bjérner
showed [Bjo84] Proposition 4.5(a)] that if Cj is graded, thin, and shellable, then Q is
isomorphic to the face poset of some regular CW complex. If @ is a graded poset,
we let dim : Q) — Z>( denote the rank function of Q.
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Definition 2.1. We say that a triple (), V=%, Q) is a totally nonnegative space (or
TNN space for short) if the following conditions are satisfied.

(TNN1) The poset (@, =) is graded and contains a unique maximal element 1.

(TNN2) Y is a smooth manifold, stratified into embedded submanifolds J =
Uyeo \)O)g, and for each h € Q, Y, has dimension dim(h) and closure
Ih = ngjh j} g

(TNN3) Y29 is a compact subset of ).

(TNN4) Forg € Q, Y, 0.= )O)gﬁyzo is a connected component of )O)g diffeomorphic
to Riigl @),

(TNN5) The closure of y}fo inside Y equals y,?o = |_|g5h yg>0.

We say that a TNN space (V,Y2°,Q) is shellable if it additionally satisfies the

following.

(TNN1’) The poset (Q, <) is thin and shellable.

For the case ) = G/P, the smooth submanifolds Joig are the open projected
Richardson varieties of [KLS14].

Definition 2.2. Let N > 0, and denote by || - || the Euclidean norm on RY. We
say that a pair (Z,9) is a smooth cone if Z C RY is a closed embedded submanifold
and ¥ : Ryg x RY — RY a smooth map such that

(SC1) ¥ gives an (R, -)-action on R¥ that restricts to an (R, -)-action on Z.
(SC2) %Hﬁ(t, z)|| > 0 for all t € R~ and z € RV \ {0}.
The map ¥ is a smooth analog of a contractive flow of [GKLI1T]; see Lemma 3.4
For g € @, define Stary := Uhtg V), and Stau“gZO = Stary NY2Y = I—lhtg yh>0;
cf. (TI).
Definition 2.3. We say that a TNN space (V,V2° Q) admits a Fomin—Shapiro
atlas if for each g € @, there exists an open subset O, C Stary, a smooth cone
(Z4,94), and a diffeomorphism
(2.1) g0y S (VyNOy) x Z,
satisfying the following conditions.

o

(FS1) For all h = g, we are given Zy, C Z, such that Z, = | ], Zog,h and
Zg,q = {0} . 5
FS2) For all h = g and t € Rsq, we have 9¢(¢, Zy 1) = Zg .
FS3) For all h = g, we have Dg(JOJh NOy) = (j}g NO,) x Ogyh.
FS4) For all y € YV, N Oy, we have 74(y) = (y,0).
FS5) Star;? C Oy.
We will prove the following result in Section B3] using link induction.

Theorem 2.4. Suppose that (¥,YZ°,Q) is a shellable TNN space that admits
a Fomin-Shapiro atlas. Then Y20 = |—|heQ y;o is a reqular CW complex. In

(
(
(
(

particular, for each h € Q, yhzo is homeomorphic to a closed ball of dimension
dim(h).

Thus Theorem [[.T] follows as a corollary of Theorem 2.4l and the following result:
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Theorem 2.5. (G/P,(G/P)>o,Q) is a shellable TNN space that admits a Fomin—
Shapiro atlas.

2.2. Plan of the proof. We give a brief outline of the proof of Theorem 25l See
Section[lfor background on G/ P, and see Section[fland Appendix[Alfor background
on G/B. We deduce that (G/P, (G/P)>o, Q) is a shellable TNN space from known
results in Corollary In order to construct a Fomin—Shapiro atlas, we consider
the (infinite-dimensional) affine flag variety G/B associated to G. It is stratified
into (finite-dimensional) affine Richardson varieties G/B = | | reyr ’R , where W
is the affine Weyl group and < denotes its Bruhat order. There ex1sts an order-
reversing injective map 1 : Q; — W, defined in [HLI5]; see (Z7). The set of
minimal elements of Q; equals {(u,u) | u € W7}, where W is the set of minimal
length parabolic coset representatives of the Weyl group; see Section For each
minimal element f := (u,u) € Qy, v identifies the interval [f, 1] of Q; with (the
dual of) a certain interval [, 7,,] C W. For the case G/P = Gr(k,n), elements of
Q@ are in bijection with I-diagrams of [Pos07], and ¢ sends a J-diagram indexing
a positroid cell to the corresponding bounded affine permutation of [KLS14]; see
Example

In Section [.3] we lift ¢ to the geometric level: given a minimal element f :=
(u,u) € Q, we introduce a map @, : ct - G/B defined on an open dense subset
i c G/P We show in Theorem [Z.3] that for g € Q; such that g > f, @, sends

c n Hq isomorphically to the affine Richardson cell R wEg))

For every § € W, we consider an open dense subset C; C G/B defined by C
-B_ - B/B, as well as affine Schubert and opposite Schubert cells X9 = =5 <R

Xg = |_|§ <F Rg . In Proposition B2l we give a natural isomorphism
(2.2) i i
C; = )%g X /@g’ which restricts to  (Cz N 7%1{) = 7035 X 703}% for all h < g < f
A finite-dimensional analog of this map is due to [KWY13], and similar maps have
been considered in [KL79L[FS00]. The action of ¥ on Xd essentially amounts to
multiplying by an element of the affine torus, and thus preserves 7032 for all h < g.
Let us now fix g € @, and choose some minimal element f := (u,u) € Q;
such that f < g. Then the map @, is defined on an open dense subset C&J) -
G/P, and let us denote by O, C ng‘]) the preimage of Cy,) under ¢,. The
diffeomorphism (21]) is obtained by conjugating the isomorphism ([22]) by the map
@y. The smooth cone (Zy,9,) is extracted from the corresponding structure on
XY As we have already mentioned, the hardest step in the proof consists of

showing To achieve this, we study subtraction-free parametrizations of
partial flag varieties in Section B and then use them to show that some generalized
minors of a particular group element (1(;]3 (z) from Section [6] do not vanish for all
T € Star;O. The definition of (1(;]3 (z) is quite technical, but we conjecture in
Section [@ that in the Grassmannian case, these generalized minors specialize to

simple functions on Gr(k,n) that we call u-truncated minors. We complete the
proof of Theorem in Section B3l
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3. TOPOLOGICAL RESULTS

Throughout this section, we assume that (), Y=°, Q) is a TNN space that admits
a Fomin-Shapiro atlas. Thus for each g € ), we have the objects Og4, Z,, ¥4, and
U4 from Definition 231 Additionally, we assume some familiarity with basic theory
of smooth manifolds; see e.g. [Leel3].

3.1. Links. Throughout, we denote the two components of the map 7, from (2.1))
by 179 = (Ug1,742), where Ugq1 : Oy = Yo N Oy and 749 : Oy = Z,. We set
Starg b= y,?o N Stargzo = I_lgjg’jh yg>,0. Let N, be the integer from Definition [22]
such that Z, C RNs,

Definition 3.1. Let g < h € Q). Denote

Zg20 = Ugo (Star?o) , Zg%,g =g (Stari%) , Z;g = ZgZO N ég’h,
Sy :={z RV : |z =1}, Lk} :=22)nS,, Lk ) = Z) N S,
Note that by |(FS3) m we have
>0 >0 _ >0
(3.1) g h - |_| Zgyg/’ kayh - |_| Lkg’g’
9=29’'=h 9=g'=h

In the latter disjoint union, we have Lk;g = () since Zogyg = {0} by |(FS1)]

Lemma 3.2. Let g <h €Q.
(i) For all z € Oy, we have x € Y;° if and only if vy(z) € Y70 x Z;g
(i) Z;g is an embedded submanifold of Z, of dimension dim(h) — dim(g) that
intersects Sy transversely. For allt € Rsg and x € Zq>2, we have Y(t,x) €
729,
(iii) Lk>h is a contractible smooth manifold of dimension dim(h) — dim(g) — 1.

(iv) Lk—h is a compact subset of Zy.

Before we prove these properties, let us state some preliminary results on smooth
manifolds. Given smooth manifolds A, B and a smooth map f : A — B, a point
a € Ais called a regular point of f if the differential of f at a is surjective. Similarly,
b € B is called a regular value of f if f~1(b) consists of regular points. In this case
F71(b) is a closed embedded submanifold of A of dimension dim(A)—dim(B) [Leel3),
Corollary 5.14].

Lemma 3.3. Suppose that A, B are smooth manifolds and B’ C B is such that

A X B’ is an embedded submanifold of Ax B. Then B’ is an embedded submanifold

of B.

Proof. Choose a € A. Clearly a is a regular value of the projection A x B" — A,

so {a} x B’ is an embedded submanifold of A x B’, and hence of {a} x B. O
We also recall some facts about 9 from [GKLI17].

Lemma 3.4. Letd : RogxRY — RN be a smooth map satisfying [[SC1)| and [[SC2)|
(i) We have ¥(t,0) =0 for all t € Rsg.
(ii) We have lim;_,o; 9(t,2) = 0 for all x € RN,
(iii) For all z € RN \ {0}, there exists a unique t € Rq such that ||9(t,z)|| = 1,
which we denote by t1(x). The function t; : RN \ {0} — R~ is continuous.
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Proof. The function f : R x RV — RY defined by f(t,2) = ¥(e~t, x) is a contrac-
tive flow, as defined in [GKLI7, Definition 2.1]. Therefore the statements follow
from [GKL17, Lemma 2.2] and the claim in the proof of [GKL17, Lemma 2.3]. O

Proof of LemmaB2l (i): We prove this more generally for g < h. The set Star?o is
connected since it contains a connected dense subset yi> Y. Therefore Dgﬁl(Stargzo)
is a connected subset of )Oig N O4. By it contains y>0, and therefore
Egyl(StargZO) = V>0 by By definition, Dg,z(Stargz’%) = Z;,g, and thus
ﬂg(Starig) c Y70 x Z;}OL. By we get 75(V70) € Y70 x Z7]. In partic-
ular, Z;g = Dg,g(yio) is a connected subset of Zog7h. Let C' be the connected
component of Zog,h containing Zq>2 By 7y Y (Y70 x O) is a connected sub-
set of Jo)h N Oy, which contains yh> 0 as we have just shown. Therefore we must
have v, 1(V0 x C) = Y70 by which shows that Z) = C'is a connected
component of égﬁh. Thus indeed ag(y;O) = yg>0 X Z;g.

(ii): By [[TNN4)| and [[TNN2)} V;° is an embedded submanifold of Y. Applying
74 and using (i), we get that Y70 x Z>0 is an embedded submanifold of Y0 x Z,
of dimension dim(h) — dim(g). By Lemma B3l Z;g is an embedded submanifold
of Z,. Moreover, it follows from [(FS2)] that 9,(t, Z;O) Z>0 for all t € R, since

Z;g is a connected component of Zog,h. Thus 1 is a regular value of the restriction

-1 - Z;g — R0, so the manifolds S, and Z, >2 intersect transversely inside RVs.

(iii): By (ii), Lkg h = Zg>2 NSy is an embedded submanifold of Z, of dimension
dim(h) —dim(g) —1. To show that it is contractible, we use the fact that a retract of
a contractible space is contractible [Hat02, Exercise 0.9]. Since Y} 0 is contractible
(by [[TNN4)), so is 7y (V;?) = V7O x Z7). Then {x} x Z7}) is a retract of Y0 x Z )
for any = € Y79, so Z;,g is contractible. Finally, by (ii) and Lemma [3.4(iii)| the
map x> gyt ( ), x) gives a retraction Z>’2 — Lk;%

(iv) By Starq h= yh>0ﬁStar>0 thOﬂOg is a closed subset of O,. Thus
Vg(Stargﬁ) is a closed subset of Y70 x Z,. Since Dg(Starg?%) =70 % Zgzﬁ (by (i)
and (3))), we get that Z;g is a closed subset of Z,. It follows that Lki% = Z;gﬂSg
is a closed and bounded subset of Z,, which is closed in R™s by Definition O

Recall that Cone(A) := (AxRx>q)/(A x{0}) is the open cone over A. We denote
by ¢ := (x,0) € Cone(A) its cone point.
Proposition 3.5. Let g < h € Q.
(i) We have a homeomorphism Z;g = Cone(Lki%) sending 0 to the cone
point ¢, and sending Z;S, to Lk;g, xRsq for all g < g’ < h.

(ii) We have a homeomorphism Stari% = V70 x Cone(Lkig) sending Y79 to
V70 x{c}.
Proof. (i): Define a map ¢ : >2 — Cone(Lki%) sending 0 to ¢ and z to

(19 (ti(x), 2), ¢ ) for z € Z n \ {0}, where ¢;(z) is defined in Lemma [3.4(iii)}

and 4(tq(x )7x) € Lk;g by Lemma We claim that ¢ is a homeomor-
phism. Note that £ has an inverse £, which sends ¢ to 0 and (y,t) to J,(¢,y)
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for (y,t) € Cone(Lki?L) \{c} = Lki% xRso. By Lemma [3.4(iii)] ¢ is continuous
on Z;g {0} and £~! is continuous on Lki% XRsg. It remains to show that £ is
continuous at 0 and that £~! is continuous at c.

Suppose that (z,)n>0 is a sequence in ZgZ’?L \ {0} converging to 0. We claim
that ¢1(x,) — 0o as n — oo. Otherwise, after passing to a subsequence, we may
assume that there exists R € R+ such that t;(z,) < R for all n > 0. Then
implies that |94 (R, z,)|| > [|¥4(t1(zn), 25)|| =1 for all n > 0. Taking n — oo gives
|94(R,0)|| > 1, contradicting Lemma This shows that & is continuous at 0.

Suppose now that ((yn,t,))n>0 is & sequence in Lkz(,)l xR~ converging to c, i.e.,
tn — 0. The function D(t) := max,es, [[J4(t, )| is increasing in ¢, by compactness
of Sy and [(SC2)] We have lim;_, o+ D( ) = 0 by Lemma [3.4(ii)| and compactness
of S (more precisely, by Dini’s theorem). Therefore £~ (yn7 tn) = 0g(tn,yn) con-
verges to 0 as n — oo, showing that €1 is continuous at c.

(ii): By Lemma[3.2(i), 74 restricts to a homeomorphism Star— = V70 x Zq>2,
which by [(FS4)]sends Y;° to Y70 x {0}. The result follows from (i). O

Our next aim is to analyze the local structure of the space Lk 0. For two
topological spaces A and B and a € A, b € B, a local homeomorphzsm between
(A,a) and (B,b) is a homeomorphism from an open neighborhood of a in A to an
open neighborhood of b in B which sends a to b.

Lemma 3.6. Let g <p 2 h € Q, z, € Lk 2, and set d := dim(p) — dim(g) —

1. Then there exists a local homeomorphism between (Lki%,x,,) and ( 729 % RY,
(0,0)).

Proof. Choose some x4 € yg> Y and consider the open subset H, C Z, defined by
Hy,:={z € Z, | v, (z4,2) € O,}. Introduce a map

Ogp: HyN Sy — Zp, x»—>up2( 1(379,;10))

Since z, € Lk, C Z29 and z, € V>0, we get Iy = vy (g, 1) € V7O by
Lemma [3.2(i)] By [[FS5)l we have V0 C Starp C Oy, and thus x, € H,. Since
H, is open in Z4, H, NS, is an open subset of Z; N S, which is nonempty since it
contains z,. We have 8, ,(x,) = 0 by

We claim that x,, is a regular point of 6, ,. By the differential of 7, o :

O, — Z, is surjective at z,, and its kernel is the tangent space of ), at z,.

By [[TNN4)| and [(FS5)] Yy Y is a connected component of )O)p N O,, and it contains
Ty = v, Y(xg4,2,) as we have shown above. Therefore z, is a regular point of
0y,p if and only if the manifolds Y;° and F := ;! ({24} x (H, N S,)) intersect
transversely at Z,. By Lemma [3.2(i)] we have 7g(V20) = yg>° X Z;g, and clearly
Ug(F) ={zg4} x (Hp,NS,). These two manifolds intersect transversely at (x4, ;)
by Lemma We have shown that x,, is a regular point of 6, ,.

By the submersion theorem (see e.g. [Kos93l Corollary A(1.3)]), there exist local
coordinates centered at x, € H,NS, and at 0 € Z, in which 0 ,, is just the canonical
projection RIM(HpNSg) _y Rdim(Zp)  Recall that @ contains a unique maximal
element 1, and by &I)) we have dim(Z,) = codim(g) := dim(1) — dim(g). Thus
dim(H,NSy) = codim(g)—1, dim(Z,) = codim(p), and dim(H,NS,)—dim(Z,) = d.
We have shown that there exist open neighborhoods U of z, in H, NS, and V of
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0 in Z, and a diffeomorphism 3 : U = V x R? sending z,, to (0,0) such that the
first component of § coincides with the restriction 64, : U — V.

. >0
In order to complete the proof, we need to show that the image 8(U N Lk;h)
equals (VN ZPZ’,?) x R?. We may assume that U is connected. Suppose we are given

z € U, and let r € Q be such that z’ := Dg_l(a:g,x) € JOJ,,. Since U C H,, 2’ belongs
to O, C Star, by Definition 23] and therefore p < r. By Lemma [3.2(i), we have

z € UNLk, " if and only if 2 € Y0, On the other hand, 7,1(7; ! ({z,} x U)) is a

connected subset of Joip NO, that contains 7, 1(Z,) € V0. Thus 1,1 (v, (x4,U)) C

V7% by [[TNN4)| It follows that 2’ € Y7° if and only if 0, ,(x) = 7 2(z") belongs
to Z 9. The result follows by taking the union over all p < r < h, using (31). O

3.2. Topological background.

3.2.1. Regular CW complezes. We refer to [Hat02|[LWG9] for background on CW
complexes.

Definition 3.7. Let X be a Hausdorff space. We call a finite disjoint union X =
|_|a€Q X, a reqgular CW complex if it satisfies the following two properties.

(CW1) For each a € @, there exists a homeomorphism from the closure X, to a
closed ball B which sends X, to the interior of £
(CW2) For each a € @, there exists Q" C @ such that Xo = | 5o Xp-

The face poset of X is the poset (@, <), where 8 < « if and only if X5 C X,.

The condition is often omitted from the definition of a regular CW com-
plex, but is necessary in order to apply the arguments of [Bjo84]. We remark that
the cell decomposition of Y=° satisfies [[CW2)| by [[TNN5)

3.2.2. Posets. We review the definitions of graded, thin, and shellable for finite
posets, though we will not need to work with them in our arguments. We refer
to [Bj680LIStal2] for background.

A finite poset (Q, <) is called graded if every maximal chain in @ has the same
length ¢, in which case we denote rank(Q) := ¢. For x < z € @, we denote by
[z,2] :={y € Q| x <y < z} the corresponding interval. Note that the intervals in
a graded poset @Q are also graded, and we call Q) thin if every interval of rank 2 has
exactly 4 elements.

The order complex of a graded poset @ is the pure (rank(@) — 1)-dimensional
simplicial complex whose vertices are the elements of (), and whose faces are the
chains in Q. We say that @ is shellable if its order complex is shellable, i.e., its

maximal faces can be ordered as F1, ..., F}, so that for 2 < k < n, FiN <U1<i<k Fz>

is a nonempty union of (rank(Q) — 2)-dimensional faces of F.

Proposition 3.8 ([Bjo80, Proposition 4.2]). If a graded poset is shellable, then so
are each of its intervals.

See [Bjo84] Sections 2 and 3] for the proof of the following result.

Theorem 3.9 ([LWG69,[DK74,Bjo84]). Suppose that X is a regular CW complex
with face poset Q. IfQLI{O, i} (obtained by adjoining a minimum 0 and a mazimum
1 to Q) is graded, thin, and shellable, then X is homeomorphic to a sphere of
dimension rank(Q) — 1.
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3.2.3. Poincaré conjecture. Recall that an n-dimensional topological manifold with
boundary is a Hausdorff space C' such that every point « € C' has an open neighbor-
hood homeomorphic either to R™ or to R>g x R"™! via a homeomorphism which
takes x to a point in {0} x R?~!. In the latter case, we say that x belongs to the
boundary of C, denoted OC.

The following is a well-known consequence of the (generalized) Poincaré con-
jecture due to Smale [Sma6l], Freedman [Ere82], and Perelman [Per02]. We refer
to [Dav08, Theorem 10.3.3(ii)] for this formulation.

Theorem 3.10 ([Sma6ll [Fre82] Per02]). Let C' be a compact contractible n-
dimensional topological manifold with boundary, such that its boundary OC' is home-
omorphic to an (n — 1)-dimensional sphere. Then C' is homeomorphic to an n-
dimensional closed ball.

For n > 6, Theorem can be proved using the topological h-cobordism the-
orem [Mil65L[KS77]. We sketch another standard argument for deducing Theo-
rem [3.10] from the Poincaré conjecture when n is arbitrary. The boundary of C is
collared by |Bro62, Theorem 2], i.e., there exists a homeomorphism from an open
neighborhood of 9C in C to C x [0,1), which takes dC to OC x {0}. Thus we
can attach the (collared) boundary of an n-dimensional closed ball to the (collared)
boundary of C, obtaining a topological manifold C’. By van Kampen’s theorem,
C" is simply connected. It is easy to see from the Mayer—Vietoris sequence that C’
is a homology sphere. Thus C’ must be homeomorphic to a sphere by the Poincaré
conjecture. Therefore C' is homeomorphic to a closed ball by Brown’s Schoenflies
theorem [Bro60)].

The following is also a consequence of Brown’s collar theorem [Bro62, Theo-
rem 2.

Proposition 3.11. Suppose that C is a topological manifold with boundary 0C.
Then C' is homotopy equivalent to its interior C'\ 0C.

3.3. Link induction.

Theorem 3.12. Suppose that (¥,V=°,Q) is a shellable TNN space that admits a
Fomin—Shapiro atlas, and let g < h € Q). Then Lng’?L = y=<g<n Lk;g, (cf. BI))
is a regular CW complex homeomorphic to a closed ball of dimension dim(h) —
dim(g) — 1.

Proof. We proceed by induction on d := dim(h) — dim(g) — 1. For the base case

d = 0, we have Lki% = Lk;%, which is a 0-dimensional contractible manifold by

Lemma Thus Lki% is a point, and we are done with the base case. Assume
now that d > 0 and that the result holds for all d' < d. We need to verify

and|(CW2)|when X, = Lk;% (the other cases follow from the induction hypothesis).
>0

We claim that Lk;g is a topological manifold with boundary 0 Lk oh where
20 _ >0
(3.2) oLy = || Lk;9.
g=g’'<h

Let z € Lki%. By @B1)), we have x € Lk;g, for a unique g < ¢’ < h. If ¢ = h,
then x has an open neighborhood in quZ% homeomorphic to R? by Lemma
If ¢ < h, then by Lemma we have a local homeomorphism (quzg,x) =

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun 2 15:40:28 EDT 2022 for download from IP 169.232.149.130.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY THEOREM 525

(Z>,Oh x R%,(0,0)), where d’ := dim(g’) — dim(g) — 1. By Proposition we
have a homeomorphism Zgz/?h = Cone(Lki?h) which sends 0 to the cone point c.
By the induction hypothesis, Lkgz,?h is homeomorphic to a (d — d’ — 1)-dimensional
closed ball, and so we have a homeomorphism Cone(Lng,?h) = R X R-d'~1
which sends ¢ to (0,0). Composing gives a local homeomorphism (Lkz(,)l, r) =
(Rso x R4=4=1 x R (0,0,0)). Thus indeed Lk*h is a topological manifold with
boundary given by ([B.2)).

By Lemma Lkg%% is compact. By Lemma and Proposition 3111
Lkz(,)I is contractible. Thus Lkz(,)I is a compact contractible topological manifold
with boundary. In addition, the boundary 6Lk— 1, is a regular CW complex by

the induction hypothesis. Its face poset is the mterval (g,h) = [g,h] \ {g,h} in
Q. The interval [g,h] is graded, thin, and shellable by [(TNN1)| |(TNN1’)L and
Proposition B8] and thus 8Lki% is homeomorphic to a (d — 1)-dimensional sphere

by Theorem B9 By Thegrem BI0l we get a homeomorphism from Lki% to a
d-dimensional closed ball B. By ([B.2)), it sends the interior Lk;% to the interior

of B. This proves and [(CW2)| follows from (B2). This completes the

induction. O

Proof of Theorem 4l The proof follows the same structure as the proof of Theo-
rem We proceed by induction on dim(h). If dim(h) = 0, then Y;2° = ;0 is
a point by which finishes the base case.

Let dim(h) > 0. We want to show that thO is a topological manifold with
boundary

(3.3) oV = | v

g=<h
Let z € y,fo. By [[TNN5)] we have e Y70 for a unique g <X h. If g = h,
then x has an open neighborhood in yh homeomorphic to RI™(*) by m
If g < h, then Star— is an open subset of Y20 (its complement is Ug g Vo s
which is closed by m Thus Starg—,h is an open neighborhood of x in yh .
By Proposition and Theorem B.I2] we get a homeomorphism

Stargz?1 = Ry x RIMW=1 whose first component sends z € V70 to 0 € Rxo.

This shows that yhzo is a topological manifold with boundary given by ([B.3).
By |(TNN3)[ and |(TNN5)| yhzo is compact. By [(TNN4)| and Proposition BT
thO is contractible. Thus thO is a compact contractible topological manifold with

boundary. In addition, the boundary 831,120 is a regular CW complex by the in-
duction hypothesis. Its face poset is the interval (0,h) in Q The interval [0, h]
is graded, thin, and shellable by [[TNNT)| [[TNNT’)| and Proposition B8 and thus
83),120 is homeomorphic to a (d — 1)-dimensional sphere by Theorem We are
done by Theorem [3.I0], as in the proof of Theorem O

Remark 3.13. We note that Theorems and imply the result of Hersh
(see Corollary [[3)) that the link of the identity in the Bruhat decom-
position of Usq is a regular CW complex. (Recall that U is the unipotent radical
of the standard Borel subgroup B C G.) Indeed, let B_ C G denote the opposite
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Borel subgroup. Then the natural inclusion U < G/B_ sends U to the opposite
Schubert cell Star(jq ;qy indexed by id € W, and the composition of this map with

V(id,iaq) sends the link of the identity in UY¥; homeomorphically to Lk(zig id), (id,w) for
alweWw.

4. G/P: PRELIMINARIES

We give some background on partial flag varieties. Throughout, K denotes an
algebraically closed field of characteristic 0, and K* := K\ {0} denotes its multi-
plicative group.

4.1. Pinnings. We recall some standard notions that can be found in e.g. [Lus94l
Section 1]. Suppose that G is a simple and simply connected algebraic group over
K, with T C G a maximal torus. Let B, B_ be opposite Borel subgroups satisfying
T = BN B_. We identify G with its set of K-valued points. When K = C, we
assume that G and T are split over R, and denote by G(R) C G and T(R) C T
the sets of their R-valued points. (Thus what was denoted by G in Section [ is
from now on denoted by G(R). We are also assuming that G is a simple algebraic
group, rather than semisimple; our results for the case of a general semisimple group
reduce to the simple case by taking products.)

Let X(T) := Hom(T,K*) be the weight lattice, and for a weight v € X(T) and
a € T, we denote the value of v on a by 7. Let ® C X(T) be the set of roots.
We have a decomposition ® = ®* LI~ of ® as a union of positive and negative
roots corresponding to the choice of B; see [Hum75, Section 27.3]. For o € &, we
write @ > 0 if « € &7 and a < 0 if « € ®~. Let {a;}ies be the simple roots
corresponding to the choice of ®T. For every ¢ € I, we have a homomorphism
¢; : SLy — G, and denote
(4.1)

zi(t):=¢i (é i) o yi(t) = (1 (1)) o Si= ((1) _01> =yi(D)zi(=1)yi(1).

The data (T, B, B_, z;,y;;t € I) is called a pinning for G. Let W := Ng(T)/T
be the Weyl group, and for i € I, let s; € W be represented by $; above. Then W
is generated by {s; }ier, and (W, {s; }icr) is a finite Coxeter group. For w € W, the
length £(w) is the minimal n such that w = s;, -+ - s;, for some iy, ...,i, € I. When
n = f(w), we call i := (i1,...,1,) a reduced word for w. The representatives {$;};cs
satisfy the braid relations [Spr98| Proposition 9.3.2], so we set w 1= §;, --- $;, € G,
and this representative does not depend on the choice of i.

Let Y(T) := Hom(K*,T) be the coweight lattice. For i € I, we have a simple
8 t91 € Y(T). Denote by (-,-) : Y(T) x X(T) — Z the
natural pairing so that for v € X(T'), § € Y(T), and t € K*, we have (3(t))" =
487 Let {w; }ier € X(T) be the fundamental weights. They form a dual basis to
{o Yier: (o wi) = d;5 for i, € I.

The Weyl group W acts on T by conjugation, which induces an action on Y (7T'),
X(T), and ®. For vy € X(T),t € K*, a € T, and w € W, we have [EZ99] (1.2)
and (2.5)]

coroot oy (t) == ¢;

(4.2) (™ raw)? = a™?, az;(t)a”t = z;(a®t), ayi(t)a ' = yi(a"¥t).
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Following [BZ97, (1.6) and (1.7)] (see also [FZ99, (2.1) and (2.2)]), we define two
involutive anti-automorphisms z — 27 and x — z* of G by

(4.3) (zi(t)" = wi(t), (wi()" = z4(t), W’ =, a’ =a,

(4.4) (wi(t))" = i(t), (i ()" = wi(), W' =z, at=at
forallie I, t € K*, a € T, and w € W, where z := w™'. We note that when
z=w"'eWandi=(i,...,i,) is a reduced word for w then v = 5"

while 2 = 31,, c 0 Sqy

4.2. Subgroups of U. We say that a subset © C ® is bracket closed if whenever
a, f € O are such that a + 5 € ®, we have o + € ©. For a bracket closed subset
© C @7, define U(O) C U to be the subgroup generated by {U, | « € ©}, where
U, is a root subgroup of G; see [Hum75, Theorem 26.3]. For a bracket closed subset
OCcd,let U (©):=U(-0)" cU_.

Given closed subgroups Hi, ..., H, of an algebraic group H, we say that Hy,--- ,
H,, directly span H if the multiplication map Hy x --- x H, — H is a biregular
isomorphism.

Lemma 4.1 ([Hum75, Proposition 28.1]). Let © C ®* be a bracket closed subset.
(i) If©® = | ], 0; and ©,04,...,0, C &t are bracket closed then U(O) is
directly spanned by U(©1),...,U(O,).
(ii) In particular, U(©) is directly spanned by {U, | a € O} in any order, and
therefore U(0) = KI®!I.

For a € ® and w € W, we have WUy ~! = Uyq. For w € W, define Inv(w) :=
(w=t®~) N ®*+. The subsets Inv(w) and T \ Inv(w) are bracket closed [Hum?75,
Section 28.1], and

(4.5) U(Inv(w)) = *U_w NU.

4.3. Bruhat projections. Let © C ®T be bracket closed, and let w € W. Define
01 := 0 NInv(w) and O3 := O \ Inv(w). Thus both sets are bracket closed and

WU(O)w ' NU_ =U_(w8,), wUO)w 'NU =U(wO,).

Denote Uy := U_(wO;) and U := U(wOz). Then by Lemma [4.1(i)] the multipli-
cation map gives isomorphisms p12 : Uy X Uy — wU(©)w ™! and pgy : Uy x Uy —
wU(©)w~t. Denote by vy : wU(0)w ™! — Uy and vy : wU(©)w~! — Uy the second

component of u;ll and uf;, respectively. In other words, given g € wU(0)w!,
v1(g) is the unique element in U3 NUsg and v»(g) is the unique element in Us NU4 g.

Lemma 4.2 ([KWY13, Lemma 2.2]). The map (v1,v2) : wU(O)w ™! — Uy x Us is
a biregular isomorphism.

4.4. Commutation relations. Let a,b € W be such that (ab) = ¢(a) + £(b).
Then
(4.6)

Inv(b) C Inv(ab), b 'Inv(a) C ®*, and Inv(ab) = (b~ 'Inv(a)) U Inv(b).

Thus by Lemma [4.1(i), the multiplication map gives an isomorphism
(4.7) b~ U (Inv(a))b x U(Inv (b)) = U(Inv(ab)).
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We will later need the following consequences of [{1): if ¢(ab) = €(a) + ¢(b) then

(4.8) b=l (U_na"'Ua)  (U_ N (ab)~ Uab) - b,
(4.9) (Una ‘U_a)-bcb-(UN (ab)~ U_ab).

Multiplying both sides of @J) by b~' on the left, we get b~ U(Inv(a))b C
U(Inv(ab)), which follows from (). We obtain (@8] from ([£9) by applying the
map x — x7; see ([E3).

Lemma 4.3. Let o € &1 and i € I be such that o # ;. Let ¥ C ® denote the set
of all roots of the form ma — ra; for integers m > 0, r > 0. Then VU is a bracket
closed subset of ®*, and for all t € K we have y;(t)Uyy;(—t) C U(¥).

Proof. Let x € U, and x’ := éi_lxéi € Uy, By [BB0S, Lemma 4.4.3], s; permutes
ot \ {a;} (in particular, s;a > 0). Write

Denote by ¥/ C ® the set of all roots of the form ms;a + ra; for integers m,r >
0. Tt is clear that ¥/ C &%t \ {a;,s;a} is a bracket closed subset. By [Hum75,
Lemma 32.5], we have x;(—t)z'z;(t)2’~!1 € U(V'), so x;(—t)z'z;(t) € U(¥)z'.
Thus ¥” := sV’ is also a bracket closed subset of ®* \ {a;,a}, and we have
$;U(U2's7 = Uz, Clearly, ¥ = " U {a}. We thus have y;(t)U,yi(—t) C
U(W"\U, = U (D). O

4.5. Flag variety and Bruhat decomposition. Let G/B be the flag variety of
G (over K). We recall some standard properties of the Bruhat decomposition that
can be found in e.g. [Hum75l Section 28|. Define open Schubert, opposite Schubert,
and Richardson varieties:

(4.10) X* := BiB/B, X,:=B_0B/B, Ry, :=X,nX" (forv<weW).

Recall the Bruhat and Birkhoff decompositions:

(4.11) G= || BiB= || B_9B, where
weWw veW
(4.12) B_oBNBWwB=0 and X,NX"=0 forvZweW.

Let X, denote the (Zariski) closure of )%v. Similarly, let X* denote the closure
of X*, and then R, ,, = X, N X" is the closure of R, ,, in G/B. We have

(4.13) X, = || X, xv=|] xv,
v<o’ w!' <w
(414) G/B = |_| }O%'U,wv R’U,w = |_| év’,'uu’-
v<w v<v’ <w’<w
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For any w € W, i € I, and t € K*, we have

(4.15) x;(t) € B_§;B_, y;(t) € B$;B,

(4.16) B&iB- BB C {gzzgu BB, i iz i Z

(417)  B-&B-- BB C {g_z@wb?u B_B, i ZZ i Z

(4.18) BvB - BwB C BowB for v € W such that {(vw) = ¢(v) + £(w).
For t = (t1,...,t,) € (K*)™ and a reduced word i = (i1, ...,iy,) for w € W, define
(4.19) xi(t) ==, (t1) -2, (tn), and  yi(t) ==y, (t1) - - yi, (tn)-

It follows from (£I5), ([@I0), and (3] that

(4.20) xi(t) € B_wB_, yi(t) € BuB.

4.6. Parabolic subgroup W; of W. We give a description of the poset @ ; studied
in [Rie06,(GY09[KLS14\[HL15] in a form adapted to our needs in this paper.

Let J C I, and denote by W; C W the subgroup generated by {s;};cs. Let W~/
be the set of minimal-length coset representatives of W/Wy; see [BB0S, Section 2.4].
Let wy be the longest element of W, and w” := wow; be the maximal element of
W, Let ®; C ® consist of roots that are linear combinations of {c;};cs. Define

ot=0,ndT, @;=0,nd, o —et\ot, oYV =0\ ;.

The sets <I>}F, @SFJ), o7, <I>(7J) are clearly bracket closed, so consider subgroups
Uy =U@}), Uy =U_(23), vV =v@), vY=uv_(a)

In fact, we have

(4.21) ot =Tnv(wy), &) =Iwv(w’), w,U;0;" =U,.

Let W/ = {ww; | w € W’}. By [BBO05, Proposition 2.4.4], every w € W
admits a unique parabolic factorization w = wiwsy for wy € WY and we € Wy, and
this factorization is length-additive. We state some standard facts on parabolic
factorizations for later use.

Lemma 4.4.
(i) Ifue WY and siju < u, then s;u € W.
(i) Given u € W7 and r,v' € Wy, we have ur < ur’ if and only if r < r'.

Proof. For (i) suppose that s;u ¢ W7, so that sius; < s;u for some j € J. Then

sius; < sju < u < us,;, which contradicts ¢(us;) = ¢(s;us;) £1. For (ii), see [BB05,
Exercise 2.21]. O
Lemma 4.5. For any w € W7, we have Inv(w) C @S_‘]). In particular, u@} C o,
wU ;w~t C U, and u')U;u'J_l cU~.

Proof. Let a € @ be a positive root. Then it can be written as a = Ziel c;ay for
¢; € Z>o. Since w € WY, we have wa; > 0 for all i € J. Thus if wa < 0, we must
have ¢; # 0 for some i ¢ J, soae@f). O

Lemma 4.6 ([He09]). Let z,y € W.
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(i) The set {uv | u < z, v < y} contains a unique mazximal element, denoted
xxy. The set {zv | v <y} contains a unique minimal element, denoted x<y.
(ii) There exist elements u' < x and v’ <y such that xxy = v’ = u'y, and these
factorizations are both length-additive.
(iil) If o’ <z, then 2’ xy < xxy and 2’ <y < x<y.
(iv) If zy is length-additive, then x *y = xy and (zy) <y~ ' = x.

The operations * and < are called the Demazure product and downwards De-
mazure product.

Proof. The first three parts were shown in [He09), Section 1.3], with the caveat that
our < is the ‘mirror image’ of He’s . Part (iv) follows from the definitions of * and
<. |

Definition 4.7. Let Q; = {(v,w) € WxW | v < w}. We define an order relation
=< on Q@ as follows: for (v,w), (v',w'") € Qs, we write (v,w) = (v',w’) if and only
if there exists r € W such that vr is length-additive and v' < vr < wr < w’. For
(v,w) € Q, define

7O =W w) € Q| (vw) % (W)},
Q7 = {0 w) € Qu | (v, ) 2 (v, w)}

Lemma 4.8.
(i) Let (v,w), (v',w') € Qy, r € Wy, and v' < vr < wr < w'. Then (v,w) =
(v, w").
(i) Let (u,u), (v,w), (v, w') € Qy. Then (u,u) X (v,w) < (v, w') if and only if
(4.22)
v <wvr’ <ur <wr’ <w' for some r,v’ € Wy such that vr’ is length-additive.

Proof. (i): By Lemma 6] there exists ' < r such that v *r = vr’ > vr, and
vr' is length-additive. We have vr’ < wr’ by Lemma and wr’ < wr by
Lemma Therefore v' < vr < vr’ < wr’ <wr <w', so (v,w) < (V,w').

(ii) (=): Suppose that (u,u) =< (v,w) = (v,w’"). Then by Definition 7] there
exist 7,7 € Wy such that vr’ is length-additive, v/ < vr’ < wr’ < w', and
v < ur” < w. Define r € W; by the equality (ur”) x v’ = ur. Then applying * r’
on the right to v < ur” < w, by Lemma (iv), we obtain vr’ < ur < wr’.
Therefore ([{.22]) holds.

(ii) («<): Suppose that [@22]) holds. Then (v, w) < (v',w’). Define v/ € W; by
the equality (ur)<r’~! = ur”. Then applying <(r’)~* on the right to vr’ < ur < wr”,
by Lemma [£.6(ii)|-(iv), we obtain v < ur” < w. Therefore (u,u) < (v, w). O

Remark 4.9. By Lemma Definition 7] remains unchanged if we omit the
condition that vr is length-additive. It follows that @Q; coincides with the poset
studied in [HLI5, Section 2.4]. Therefore by [HLI5, Appendix], @ is also isomor-
phic to the posets studied in [Rie06,[GY09,KLS14].

4.7. Partial flag variety G/P. Fix J C I as before. Let P C G be the subgroup
generated by B and {y;(t) | t € K*, i € J}. We denote by G/P the partial flag
variety corresponding to J, and let 75 : G/B — G/P be the natural projection
map. Let Lj C P be the Levi subgroup of P. It is generated by T" and {z;(¢), y:(¢) |
i € J, t € K*}. Let P_ be the parabolic subgroup opposite to P, with L; = PNP_.
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For (v, w) € @ we introduce f[mw = Wj(évﬂu) C G/P, and define the projected

Richardson variety I, ,, C G/P to be the closure of 11, ,, in the Zariski topology.
By [KLS14, Proposition 3.6], we have

(4.23) G/P= || Myw and I,= | | Iy .
('va)eQJ (v’,w’)EQ§(“"w)

Now let K = C. The varieties )%w, )%U, XV, X, év,wa and R, ,, are defined over
R. The map m; is defined over R as well, and thus so are lglvyw and II, ,,. We let

(G/B)e={9B|geGR)}ICG/B, Ry, =(G/B)aNRyuw, R .=(G/B)eNRyu,
(G/P)p={zP|zeGR)}CG/P, TF =11, ,N(G/P)r, IE =11, ,N(G/P)g.
It follows that the decomposition [@23)) is valid over R:

(4.24) (G/Pr= || IE,, e, = | | 1%

(’U ’w)GQJ (’U ’IJJ/)GQ<(U sw)

4.8. Total positivity. Assume K = C in this section. Recall from Section L I]that
for each i € I, we have elements z;(t), y;(t) (for t € C) and ) (t) (for t € C*).

Definition 4.10 ([Lus94]). Let G>¢ C G(R) be the submonoid generated by x;(t),
yi(t), and o (t) for t € Rsg. Define (G/B)>o to be the closure of (G>o/B) C
(G/B)r in the analytic topology. For v < w € W, let RE?D denote the closure of

R = Ry, N (G/B)so inside (G/B)so.

Definition 4.11 (|Lus98al[Rie99]). Set (G/P)>o := 7;((G/B)>0). For (v,w) €
Q., let TIZ9, denote the closure of IT79, := 7;(R7Y,) inside (G/P)>o.

Thus we denote by 179 what was denoted by 1170 in Example [L4l We have

w (v,w)
decompositions
(4.25) (G/P)so= || T30, 570, = | | 170,
('U w)eQJ (’U ’IJJ’)GQ-<(U yw)
As a special case of [@20), for J = 0 we have
(4.26) (G/B)so= | | R7S. R0 = || R’
v<w v<v’' <w’' <w

Lemma 4.12. (Assume K = C.) Let (v,w) € Q; and r € Wy be such that vr is
length-additive. Then

(427) ﬁv,w = ﬂj(lo%v w) =Ty (évr,wr)7 H>0 =Ty (Ri?u) = (R;‘Owr)
(4.28) Iy = 7TJ(RU w) = W(J(er,wr)v HE?U = WJ(RE%) = (Rirowr)

Proof. By [KLS14, Lemma 3. 1] we have WJ(]%WU) = w,](]o%wﬁm) = va, and
s restricts to isomorphisms va = va, ]%W,W = lglvyw. Thus WJ(R>O) =

v,Ww
(Rirowr) = Hi?” follows from the equality 7;((G/B)>0) = (G/P)>o, prov-
ing (A27). To show (£28)), note that R, ; and Rig are compact for any a < b, and
therefore their images under 7; are closed. (|
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Recall the definition of x;(t) and y;(t) from [@I9). Choose a reduced word
i=(i1,...,0n) for w € W and define

Uso(w) := {xi(t) |t € RZo}, Usy(w) == {yi(t) [t € RLy}.
Let Usg C U(R) (respectively, U5, C U-(R)) be the submonoid generated by

z;(t) (respectively, by y;(t)) for t € Ro. Then Usg = [ |, ey Uso(w) and US, =
wew USo(w). We have Uso(w) = UsoNB_wB_ and UZ,(w) = US,N BwB, and
these sets do not depend on the choice of the reduced word i for w; see [Lus94]
Proposition 2.7].

4.9. Marsh—Rietsch parametrizations. Assume that K is algebraically closed.
Given w € W, an expression w for w is a sequence w = (w(q), . . ., W(,)) such that
wo) = id, w() = w, and for j =1,...,n, either wg;) = w;_1) or w) = w(j_1)s;
for some i; € I. In the latter case we require w(;_1) < wy;y, unlike in [MR04]. We
define Jf :={1 < j <n|wg_1) <wy}and Jg :={1 <j<n|w;_1y =w;}
so that JF U Jo = {1,2,...,n}. Every reduced word i = (i1, ...,i,) for w gives
rise to a reduced expression w = w(i) = (w(), ..., W(n)) With wy = w(j_1ys;; for
j=1...,n.

Lemma 4.13 ([MRO04, Lemma 3.5]). Let v < w € W, and consider a reduced ez-
pression W = (W(q), - - ., W) for w corresponding to a reduced word i = (iy, ..., in).
Then there exists a unique positive subexpression v for v inside w, i.e., an expres-
sion v = (v(0), - - -, VU(n)) for v such that for j = 1,...,n, we have v(;_1)y < v(j_1)5i,-
This positive subexpression can be constructed inductively by setting v(,) = v and

(4.29) vty = V() Si;s v(j)sl:j < V() forj=m,....1.
V(j)s otherwise,

Corollary 4.14. In the setting above, if v(1y = s; for some i € I then v £ s;w.
Proof. Indeed, if v < s;w < w then there exists a positive subexpression v/ =
(UEO),...,vEn_l)) for v inside w(i’), where i’ = (ia,...,4,). By (@Z9), we have
ij) = v(j4+1) for j =0,1,...,n — 1, which contradicts the fact that ’UEO) = 1 while
V) = Si- |
For w € W, let Red(w) := {w | w is a reduced expression for w}. For v < w €
W, let
Red(v,w) := {(v,w) | w € Red(w), Vv is a positive subexpression for v inside w}.

Thus for all v < w, the sets Red(w) and Red(v,w) have the same cardinality. Let
v<we Wand (v,w) € Red(v,w). Given a collection t = (tx)rese € (K*)7v,
define

Yiy, (tk), if ke J3>

4.30 t):=g1-- g, wh =
(4.30) gvw(t) :=g1- -gn, where gp {s if ke J.

4.9.1. Marsh—Rietsch parametrizations of (G/B)>¢. In this section, we assume K =
C. Let v, w, v, and w be as above. Define a subset G39, C G(R) by

JO
Gi,(\)av = {gV,W(t) |t e R>VO}'
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Theorem 4.15 ([MR04] Theorem 11.3]). The map G(R) — (G/B)g sending g to
gB restricts to an isomorphism of real semialgebraic varieties

G7% = RS,
Proposition 4.16 ([Lus94| Proposition 8.12]). We have G>¢-(G/B)>oC(G/B)>o.

Lemma 4.17. Suppose that g € G>¢ and x € G are such that xB € Rig} for some
v<wéeW. Then gzB € R>" , for some v <v <w < w'.

v w’!

Proof. By Proposition we have gxB € (G/B)>g, so it suffices to show that
gr € Buw'BN B_v'B for some v < v < w < w'. Note that we have x € BwB N
B_9B. By Definition LT0] it is enough to consider the cases g = z;(t) and g = y;(t)
for i € I and t € Ryg.

Suppose that g = y;(t). We clearly have g € B_0B. If s;w > w then
by (4I6) we have gr € B$;wB. Thus we may assume that s;w < w. By The-

orem 10 we can also assume z = gy w(t) = g1---gpn for t € Ri‘% and some
choice of (v, w) € Red(v, w) such that w = (w(q), ..., w(,)) satisfies w(;) = s;. Let
vV = (V) -+ V(n))- Ifvay # s; then g1 = y;(t'), so gx € G;?N and we are done.
If v(yy = s; then by Corollary [A14] we have v £ s;w. Recall that gr € B_9B and
by I6), gr € Bs;wB U BwB. But B_oBN B$;wB = () by ([£I2). Therefore we
must have gr € BwB, finishing the proof in this case.

The case g = z;(t) follows similarly using a “dual” Marsh—Rietsch parametriza-
tion [Rie06l Section 3.4], where for (v, w) € Red(v,w), every element of R,"

wwo,vwWo
is parametrized as

. x;, (ty), if ke JS,
B, here = F v
g gntioB, where g {-1 itk e J.

ik
We will use the following consequence of Theorem [4.15] in Section [0.11]

Corollary 4.18 (cf. [KLS14, Proposition 3.3]). Letu € WY, r € W, and v € W
be such that v < ur. Then

TRy, =7 (RyD 0 ) =1170

var—1u var—1 u”

Proof. Leti= (i1,...,i,) be areduced word for w := ur, such that (iy)41,.--,n)
is a reduced word for r. Let (v,w) € Red(v,w) be such that w corresponds to i.
Then it is clear from Lemma that after setting v’ := (v(gy,...,V((w))) and

u = (W), .-, W), we get (v/,u) € Red(v <r~t u). Moreover, the indices
i4(u)+1s - - - » in clearly belong to J, so if g1---gn € Gi?,v then g1 -+~ gy € Gi/?u
and 77(g1 - gnB) = 75(g1 - ge(uyB). We are done by Theorem O

4.10. G/P is a shellable TNN space. We show that the triple ((G/P)g,
(G/P)>0,Qy) is a shellable TNN space in the sense of Definition 21l We start
by recalling several known results.

Theorem 4.19.
(i) The poset Q\J = Q; U{0} is graded, thin, and shellable.
(ii) (G/P)r is a smooth manifold. Fach f[gw is a smooth embedded locally closed
submanifold of (G/P)g.
(iii) For (v,w) € Q, I12% is a connected component of 19[]15’10.

VW
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Proof. Part (i) is due to Williams [Wil07]. For (ii), (G/P)g is a smooth manifold

because it is a homogeneous space of a real Lie group. Each H]}f’w is a smooth

embedded manifold because it is the set of real points of a smooth algebraic subva-

o

riety IL, ., of G/P; see [KLS14l Corollary 3.2] or [Lus98a,Rie06]. Part (iii) is due
to Rietsch [Rie99]. O

Corollary 4.20. ((G/P)r,(G/P)>0,Qs) is a shellable TNN space.

Proof. Let us check each part of Definition 211
[(TNNT)]and[[TNN1")} These follow from Theorem[d.19(i)] The maximal element
1€ Qy is given by (id, w”); see Section E6l
(TNN2); This follows from Theorem [{4.19(ii){ and (£.24).
(TNN3)} This holds since (G/P)g is compact and 1129 C G/P is closed.
(

TNN4)} This follows from Theorem combined with Theorem
(TNN5)p This result is due to Rietsch [Rie06]; see (£25]). O

4.11. Gaussian decomposition. Assume K is algebraically closed. Let us define
Gf:=B_B, GF:=BB_.

Fori € I, let AT : G — K and A : GT — K be defined as follows. Given
(x_,mp,24) €U_ x T x U, we have z_zor4 € G and x zoz_ € G(ﬂf, and we set
AF(z_zozy) = 28", AF(zymox_) := zf°“". For a finite set A, let P4 denote the
(JA|—1)-dimensional projective space over K, with coordinates indexed by elements

of A.

Lemma 4.21.
(i) The multiplication map gives biregular isomorphisms

U-xTxUSGE, UxTxU_-"GE.

(i) The maps AF and Aii extend to reqular functions G — K.

(i) GT = {x € G| AF(z) #0 forali € I}, GE = {x € G | Af(2) #
0 forallielI}.

(iv) Fiz i € I and let Ww; := {ww; | w € W} denote the W-orbit of the corre-
sponding fundamental weight. Then there exists a regular map A?ag :G/B —
PW«i such that for w € W and x € G, the ww;-th coordinate of A?ag(xB)
equals Af (w™'z).

Proof. For (i), see [Hum75, Proposition 28.5]. Parts (ii) and (iii) are well known
when K = C; see [FZ99, Proposition 2.4 and Corollary 2.5]. We give a proof for
arbitrary algebraically closed K, using a standard argument that relies on repre-
sentation theory. We refer to Section 31] for the necessary notation and
background.

We have GE = iy ' G and AE (wy ' ging) = AF(g) for all g € GF. Thus it
suffices to give a proof for AJ and G{. For i € I, there exists a regular function
Cw; : G — K that coincides with A7 on G{; see [Hum7h, Section 31.4]. This
shows (ii). Explicitly, ¢, is given as follows: consider the highest weight module V,,
for G, and let vy € V,,, be its highest weight vector. We have a direct sum of vector
spaces V,, = Kvy @ V', where V' is spanned by weight vectors of weights other
than w;. Letting r* : V,,, — K denote the linear function such that r*(vy) =1
and r* (V') = {0}, we have c,,(g) := rT(gvy) for all g € G. The decomposition
Vi, = Kvy @ V7 is such that for (z_,z0,24+) € U_ x T x U and w € W, we have
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Txivy = vy, Tovy = Moy for some M € K*, z_vy € vy + V', 2 V' C V/, and
wvy € V' if ww; # w;. Thus if g € G then ¢, (g) # 0 for all i € I. Conversely, if
g ¢ G then by ([@II)), there exists a unique w # id € W such that g € U_wTU.
For i € I such that ww; # w;, we get cy,(g) = 0. This proves (iii). For (iv), let
Vi, = V1® V3 where V; is spanned by all weight vectors of weights in Ww;, and V3 is
spanned by the remaining weight vectors. Let m : V,,, = Vi denote the projection
along V5. It follows that for all g € G, m1(gvy) # 0. Then A?ag is the natural
morphism G/B — P(V}), sending ¢gB to [m1(gvy)]. O

Lemma 4.22. Define Gé‘]) := P_P (with notation as in Section E.1]).

(i) We have G(()J) =P_B and P =]y, BrB.

(ii) For p € P, we have pU)p~' = UV, Similarly, for p € P_, we have
pUDp=t = UY) " In particular, for p € L, we have pUPp~t = UV and
pUpt =,

(iii) The multiplication map gives a biregular isomorphism UEJ) x L; x U =
G(()J). In particular, every element x € Gé’]) can be uniquely factorized as
[ac](_‘]) -z [a:]&]) et . L; - UY. The map G(()J) — Ly sending x to [z];
satisfies [p_xp4]s = [p=]s[x]slp+]s for all x € G(()J), p— € P_, andpy € P.

(iv) The map b — [b]; gives group homomorphisms U — Uy and U_ — U}, such
that

zi(t), ified,
1, otherwise,

2 (t) = [zi(t)]s = { yi(t) = [y(®)]y = {yi(t), ifi€J,

1, otherwise.

Proof. By [HumT75, Section 30.2], U) is the unipotent radical (in particular, a
normal subgroup) of P and U is the unipotent radical of P_. This shows (ii).

It follows that P = L,U) = L,B, and therefore G\’ = P_B. By [Hum?75,
Section 30.1] and @I1)), P = | |,cy, B7B, which proves (i).

By [Bor91l Proposition 14.21(iii)], the multiplication map gives a biregular iso-
morphism v xp - Gé‘l). By [Hum75l Section 30.2], the multiplication map
gives a biregular isomorphism L; x U)) — P. Thus we get a biregular isomor-
phism UY) x L, x UV = G(()J). It is clear from the definition that [p_xzpy]; =
[p-]sl2]s[p+]s, since we can factorize p— = [p_]"[p_]; and py = [p+]s[p+]7.
Thus we are done with (iii), and (iv) follows by repeatedly applying (iii). a

4.12. Affine charts. For u € W, define CY") := aG{” /P c G/P. The following
maps are biregular isomorphisms for u € W7 and v,w € W (see [Bor91, Proposi-
tion 14.21(iii)], [Spr98, Proposition 8.5.1(ii)], and [FHI1l Corollary 23.60]):

(4.31) aUt gt = o), g gyP,
(4.32) WU_ o ' nU_ 5 X, g+ guB,

. WU_w~tnU = X v — guwB.
(4.33) U_ ™ 'nU = X g+ gwB
As a consequence of (32) and {33, we get
(4.34) B_oB = (4U_NU_%)-B, BwB = (wU_NUw)-B.
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The isomorphism in (£31]) identifies an open dense subset ci ot @ /P with the
group U 4~1. We now combine this with Lemma

Definition 4.23. Let U” := aU a1 nU and U{” := U4 nU_. For
T € uG(()J), consider the element ¢(/) e U 4~1 such that g u e PN uUEJ),
which is unique by (@3I]). Further, let hg’]),gg‘]) € Ul(‘]) and th),géJ) € UQ(J)
be the elements such that hé‘])g(']) = g%‘]) and h(lJ)g(J) = gé‘]). By (@31), the
map z — ¢(/) is regular, and the map ¢(/) — (gf”,gé‘”,hﬁ”, hé‘])) is regular by
Lemma Let us denote by « : qu;’) — UQ(J) the map z — Kk, = hé‘l). It

descends to a regular map « : C’fjj) — UQ(J) sending =P to k.

5. SUBTRACTION-FREE PARAMETRIZATIONS

We study subtraction-free analogs of Marsh—Rietsch parametrizations [MR04] of
(G/B)>0.

5.1. Subtraction-free subsets. Given some fixed collection t of variables of size
|t|, let R[t] be the ring of polynomials in t, and Rs¢[t] C R[t] be the semiring of
nonzero polynomials in t with positive real coefficients. Let F := R(t) be the field
of rational functions in t. Define

s = {R(t)/Q(t) [ R(t), Q(t) € Rolt]},  Fur = {0} U T,
F2i=A{R(t)/Q(t) | R(t) € R[t], Q(t) € Rso[t]}.

We call elements of Fgt subtraction-free rational expressions in t. In this section,
we assume that K = F is the algebraic closure of F.

Definition 5.1. Let T5f € T be the subgroup generated by ay(t) for i € I and
t € Fj;. Let G° C G be the subgroup generated by

{2:(t),y:(t) | i€, te FYU{w|we WrUT™.

We define subgroups U® := U N G°, U® := U_ NG°, B® := T5U° = U°T* and
B :=TstU® = U°T*! (cf. Lemma5.2). We also put U®(0) := U°NU(O) (respec-
tively, U (©) := U® NU_(O)) for a bracket closed subset © of ®* (respectively, of

®7). Given a reduced word i for w € W, define
(5.1) Ust(w) := {x:(t) | t' € (FD)"}, Uy (w) = {yi(t') [t € (F)"}-

These subsets do not depend on the choice of i; see [BZ97), Section 3].
For two subsets Hi and Hs of G, we say that H; commutes setwise with Hy if
H, -Hy; = Hy- Hi. We say that H; commutes setwise with g € Gif Hy-g=g- H;.

Lemma 5.2. T% commutes setwise with B°, U, U_, U®(©), U°(0), Usx(w),
Ug(w), and 1.

Proof. Tt follows from ([@2) that T commutes setwise with B®, U, U_, U (w),
U; (w), and w. For U°(O), U°(O), we use a generalization of [@2): for o € &7,
i € I, and w € W such that wa; = a, write z4(t) := wz;(t)w! € U°({a}) and
Ya(t) == wyi(t)w=t € U°({—a}) for t € F°. Then @2) implies az,(t)a™t =
7o(a%t) and ays(t)a=! = yo (a=t). O
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Let us now introduce subtraction-free analogs of Marsh—Rietsch parametriza-
tions. Let v < w € W and (v,w) € Red(v,w). Recall that for t' = () )rese €

(K*)Js, gvw(t') = g1+ gn is defined in ([@30). Define Gf,f)w ={gvw(t) | t' €
(F%)~} € G°. The following result is closely related to [MR04, Lemma 11.8].

Lemma 5.3. Letv < w € W and (v,w) € Red(v,w). Let gy w(t') be as in [@30)
fort' e (.F:f)‘]‘?. Then for each k =0,1,...,n and for all x € U° N @&%U,O(k), we
have

(5.2) 91 Gk T Gkl Gn € g1 Gn - UC.

Proof. We prove this by induction on k. For k = n, the result is trivial, so suppose
that k <n. Let z € U° N bael)U_b(k). If grt1 = 5; for some i € I then £(vgq1)) =
U(vky) + £(si), so we use [AI) to show that x - gri1 = grq1 - 2’ for some z’ €

-1

U0t
' elU°nN 1'1(_kl+1)U_1'J(k+1), so we are done by induction.

U_¥(j41)- Since 2’ = éi_laréi and each term belongs to G°, we see that

Suppose now that gxy1 = y;(t) for some i € I and t € FJ;. Write

T Gkl = Gkr1 * G109k = Ghr1 - Yi(—t)zys ().
By (@3), U°n b@%U,fb(k) = U®(Inv(v(yy)). Clearly again y;(—t)zy;(t) € G°, and
we claim that y;(—t)zy;(t) € U(Inv(vyy)) for all 2 € U(Inv(v(gy)). First, using
Lemma we can assume that x € U, for some o € Inv(v()). Since v(gys; >
V(ky, we have a; ¢ Inv(v()), so o # . Let ¥ = {ma—ra;} C ®* be the set of roots
as in Lemma [£3] Our goal is to show that ¥ C Inv(v(y). Let v := ma —ro; € ¥
for some m > 0 and 7 > 0. We now show that v € Inv(v()), which is equivalent
to saying that vy < 0. Indeed, vy = mvg)ya — rvgye;. Since a € Inv(vy,)),
vy < 0. Since a; ¢ Inv(vp)), vayas > 0. Thus vy < 0, because —v()y is a
positive linear combination of positive roots. We have shown that ¥ C Inv(v(,),
and thus by Lemma B3] we find y;(—t)zy;(t) € U(Inv(v(yy)). Since vy = vq1),
we get

yi(=t)zyi(t) € U°(Inv(vy)) = U Moo U—dy = U° NG U—dgern),
and we are done by induction. O

Proposition 5.4. Forv<w e W, the set G , - U® C G° does not depend on the
choice of (v,w) € Red(v,w). In other words: let (vo,wq), (v1,w1) € Red(v,w).
Then for any to € (Fi)™vo there exist t; € (F5)™ and x € U® such that

Evo,wo (to) = 8vi,wi (tl) t L.

Proof. Recall that for each wy € Red(w) there exists a unique positive subexpres-
sion vo for v such that (vo,wg) € Red(v,w). We need to show that choosing
a different reduced expression w; for w results in a subtraction-free coordinate
change to — t1 of the parameters in Theorem Any two reduced expressions
for w are related by a sequence of braid moves, so it suffices to assume that wqy and
w differ by a single braid move.

The explicit formulae for the corresponding coordinate transformations can be
found in the proof of [Rie08, Proposition 7.2]; however, an extra step is needed to
show that those formulae indeed give the correct coordinate transformations. More
precisely, suppose that @’ is a root subsystem of @ of rank 2, and let W’ be its Weyl
group. Then it was checked in the proof of [Rie08| Proposition 7.2] that for any
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IS,
o' <w' e W, any (v(,wp), (vi,w) € Red(v/,w’), and any t{, € (FJ) Vo, there
. JS
exist t) € (F3)™*1 and € U such that gy w: (t0) = 8v; w; (t1) - 2.
Let us now complete the proof of Proposition [5.4] (as well as of [Rie08, Propo-
sition 7.2}) Suppose that wy and wy differ by a braid move along a subword

Gk+1 " Getm Of g1+ gn. Here gry1-+ grim = 8vy,wy(to) as above. Applying a
move from [Rie08|, we transform gpy1 - gk tm into gi - gy, @ for some z € U

and gj, 1 Gym = 8v).w; (t7). Thus

91 G0 =01 Gk Gkg1 " Gham T Ghtmal One
By [MRO4, Proposition 5.2], the elements h := g1 - gxtm and A’ = g1 --- g -
Ghi1 """ Jhqm belong to U_ 04,y Since h = h'z, we get = € 1}@1m)U,©(k+m).
Moreover, since h,h' € G°® and x € U, we must have x € U®. Thus by Lemma [5.3]
we have

gl...gnegl...gk_.g;c+1...g;€+m.gk+m+1...gn.U<>. D
Definition 5.5. From now on we denote Ry, := G5 ,B° C G°. By Proposi-

tion 5.4 the set R, does not depend on the choice of (v,w) € Red(v,w). As we
discuss in Section 5.4, RSf, is the “subtraction-free” analog of Ri v.

5.2. Collision moves. Assume K = F. By [FZ99, (2.13)], for each t € F}; there
exist t1 € F, ay € T, and t_ € F° satisfying
(5.3) $ixi(t) = avai(t-)yi(t4),  =i(1)s = yi(t4)zi(t-)ay,

(5.4) 571 i(t) = aqya(t)ai(ts), w081 = wi(ty)yi(t-)as.
(Here, each of the four moves yields different ¢,,a,t_.) By [FZ99, (2.11)], for
each t,t' € F; there exist t4,t, € F% and ay € T satisfying
(5-5) wi()yi(t) = yi(t) )it )ar,  yi(t)wi(t) = 2i(t)yi(t) Jas.
By [FZ99, (2.9)], we have
(5.6) 205 (F) = gy ()aat), for i £ j.
j j
As a direct consequence of (B3], (5.8]), and Lemma[5.2 for any v, w € W we get
(5.7) Ust(v) - U (w) - T = U (w) - Ut (v) - T
Lemma 5.6.
(i) Let w e W. Then
(5.8)
B® ™t Ui (w) = B® - Ug(w™) and UZ(w)-w ' B® =Ug(w™')  B°.
(ii) If v,w € W are such that £(vw) = £(v) + £(w), then
(5.9) ot UL (v) € B -t Ug(v™h).
(iii) Let wy,...,wx € W be such that (wy - wy) = l(wy) + -+ + l(wg). Then

for any h € Uy (wq ---wy) there exist by € Usf(wl_l)7 by € Usf(wlzl) such
that for each 1 < i < k, we have

(5.10) w; byt h € B oby-- by

K2

L Alternatively, the proof of [Ric08, Proposition 7.2] can be completed using [MR04, Theo-
rem 7.1]. We thank Konni Rietsch for pointing this out to us.
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(iv) Letv <w e W. Then
(5.11) 07Uy (w) € B - Ug(v™h).
Proof. Let us prove the following claim: if vv; = w and ¢(w) = £(v) + £(v1), then
(5.12) v UL (w) C T (U N7 UD) - U (v1) - Use(v™h).

We prove this by induction on £(v). If £(v) = 0 then v = id and (EI2) is trivial.
Otherwise there exists an ¢ € I such that v/ := s;v < v and thus v’ = s;w < w.
Let yi(t') € Ug(w). Using ([B.4), we see that for some t; € Fj, t4 € F; and
t_ e F°,

o oyi(t) € 0T sy (t) - U (w') € T gt ) (ty) - U (w').

By BO), () - U;(w’) C Tt Uz (w') - Ust(si). Clearly siv' > v soy =
o'y (t_)0" € U_. On the other hand, vy'v~' = §; 'y;(t_)s; = zi(— _) eU.
Thus ¥’ € U_ No~1Uv, and it is also clear that y' € G<> We have shown that

(5.13) o loyi(t) e Ty 0T UL (W) - Use(si)
cT (U N0 tUD) - &' Ug (W) - Ugt(s4).
We have v'v; = w’, so by induction,
oL UL (W) € T (U2 o/t - U (01) - Use (0.
Since Uyt (v~ 1) - Ugt(s;) = Ugp(v™1), we have shown that
o lyi(t) e T (U N UD) - (U N0 ) - U (v1) - Uge(v™h).
By (&6) applied to a = s;, b = v/, ab = v, we get Inv(v') C Inv(v), so (U N

o'7IUY) € (U2 No~1UD), and we have finished the proof of (G.12]).

Combining (B12) with (£8), we obtain (&.9). Next, (5I0) can be shown by
induction: the case £ = 0 is trivial. For & > 1, we can write h = hy---hy €
Ug(wy)---Ug (wr). By (B3), we have

IU-_l"'lbl_l'hr--thBi-wi_l-'-lb2_1~b/1'h2---hk

K2

for some b} € Ug(w1) that does not depend on i. Using (B.7)), we write b -hg -+ - hy, =
hy---hy by € Ug(wg) - Ug (wi) - Usg(wr), and then proceed by induction.
Let us state several further corollaries of (5.12)):

(5.14) Wt UL (w ) c T (U° N~ Uw) - Ugp(w™),

5.15 Uz (w) -~ € Ug(w™) - (U nwUw™h) - T,
sf

(5.16) W - Ug(w™) € (U NwU_w™t) - Ug (w) - T

Indeed, specializing (5.12]) to v = w, we obtain (5.14). We obtain (515)) from (5.14)

by replacing w with z := w~! and then applying the involution z — z* of ({&4),
while (5.16) is obtained from (5I5) by applying the involution x + z7 of [{@3).

To show (B.8), observe that the inclusion B® - w~! - Uj(w) C B® - Ug(w™!)
follows from (BI4). To show the reverse inclusion, we use (B.I6]) to write

B Us(w™) = B2 - i Ue(w™) € B2 - (U naU_™) - U (w).

Since w ™! (U°NwU_w™') C U%w™ !, we obtain B® -~ -Uj (w) = B® -Ug(w™1),
which is the first part of (5.8). The second part follows by applying the involution

x— xt of [@F).
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It remains to show (GII)). We argue by induction on ¢(w), and the base case
£(w) = 0 is clear. Suppose that v < w, and let w’ := s;w < w for some i € I. If
v’ 1= s;v < v then by the same argument as in the proof of (513, we get

ot UL (w) € BE -9~ UL (w') - Use(s4).
Since v" < w’, we can apply the induction hypothesis to write o'~ - U (w’) C
B® - Ug(v'™1). We thus obtain
o' Ug(w) C B - Ug(V'™1) - Use(s;) = BS - Ugt(v™1),

finishing the induction step in the case s;v < v. But if s;v > v then v~ 1y;(t1)0 €
U®, so in this case we have 071U (w) C U® - v~ - U (w'), and the result follows
by applying the induction hypothesis to the pair v < w'. |

5.3. Alternative parametrizations for the top cell. The following two lemmas
are subtraction-free versions of [Rie06, Lemmas 4.2 and 4.3].

Lemma 5.7. Let v € W. Then we have
RSf = Usf(’l)’wo) . ’(j)o . BO.

v, Wo

Proof. Recall from Definition that Ry, = G, - B°. We have w = wp, so
choose a reduced expression wq for wg that ends with v. With this choice, Gf,{w . =

U (wov™!) - 9. Thus we can write
R =GE B =U;(wov™t) -0 B® = U (wov™t) - iy ! - aivg - BC.

v, Wo V,Wo

Let 2z := wov~!. Using (B8) and B® -y = g - B®, we have

Uy (wov™) - iy i - B® = U (2) - 271 b - B® = Ugg(271) - aivg - B°.
Combining the above equations, we find RZ{MO = Ug(271) -1 - B®, and it remains
to note that z~! = vwo_l = vwy. O

Lemma 5.8. Let v <w € W. Then we have
(5.17) Ust(0™) - Ut (wow™) - B, = R, = Ut (o) - B

id,wo

Proof. It follows from the definition of Gf,f,w that if w'w is length-additive then

Us (w’)Rfﬁw = Rff)w,w. Applying this to w’ = wow ™!, we get " (wow™1) - Rf]fw =
Rsf

o wy- By Lemma 577 we have Ry, - B® = Ug(vwo) -t - B°. Thus Ugt(v™") -
Ust(vwg) - g - B® = Ug(wg) - wo - B®, so applying Lemma [E.7] again, we find
Use(wo) - o - B® = R}, - B°. The result follows since RS}, = Ug (wo) - B®. O
5.4. Evaluation. We explain the relationship between R ~and R>° . Given t’ €

R URNN
R‘;lo, we denote by evaly : Fif — Rs ¢ the evaluation homomorphism (of semifields)

sending f(t) to f(t'). It extends to a well-defined group homomorphism evaly: :
G° — G(R), and it follows from Theorem [0l that {evaly (¢)B | g € Rfjfw} =R,
as subsets of (G/B)g. It is clear that the following diagram is commutative.

AT AF
Fei g S F
(518) evaly/ i levalt/ ievalt/
R ¢— G(R) —— R
A A7

i i
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Here solid arrows denote regular maps, and dashed arrows denote maps defined on
a subset F' C F given by F' := {R(t)/Q(t) | R(t),Q(t) € R[t], Q(t’) # 0}. Since
the diagram (5.I8) is commutative, it follows that the images AF(G®) and AF(G®)
belong to F.

Let t = (t/,t”). Observe that any f(t',t”) € FJ gives rise to a continuous
function RI;O‘ X R|>t0| — Rsp. Moreover, if sending t” — 0 in f(t',t") gives rise
to a well-defined subtraction-free rational expression, then f(t’,t”) extends to a
continuous function R|>t0| X R‘;O‘ — R>¢. Surprisingly, the converse is also true, as
our next result shows. B

Lemma 5.9. Suppose that f(t',t") € F is such that the corresponding function

R‘;O‘ X IR';O — Ry extends to a continuous function R‘;O‘ X R|>t0 — R>q. Then
limgr o f(t', ") can be represented (as a function R|>t0| — R>o) by a subtraction-
free rational expression in t'.

Proof. By induction, it is enough to prove this when [t”| = 1, where t" = ¢ is
a single variable. In this case, f(t',¢") = R(t',t")/Q(t',t") where R and @ have
positive coefficients. Let us consider R and ) as polynomials in t” only. After
dividing R and @Q by (#)* for some k, we may assume that one of them is not
divisible by #”. Then @ cannot be divisible by ¢”, since otherwise f would not
give rise to a continuous function R‘;l)‘ X R‘;g‘ — R>g. We can write Q(t',t") =
Q1(t, "+ Qo(t)) and R(t/,t") = Ry(t',t")t" + Ro(t'), where Ry, Ry, Q1, Q- are
polynomials with nonnegative coefficients and Q2(t’) # 0. Thus limg o f(t/, ")
can be represented by Ra(t)/Q2(t’), which is a subtraction-free rational expression
in t'. O
Lemma 5.10. (Assume K = C.) Suppose that a < b < c € W. Then AT (b~ 'z) #
0 for some x € G(R) such that B € R?.

Proof. Suppose that A¥(b~'z) = 0 for all z € G(R) such that 2B € R;9. Consider
the map A* : G/B — PV from Lemma We get that the bw;-th
coordinate of A?ag is identically zero on RY. Therefore it must be zero on the
Zariski closure of R2Y inside G/B, which is R, .. By @I4), R, . contains bB =

]O:ibyb, and thus AF (bilb) must be zero. We get a contradiction since by definition
AF(b71b) = 1. O

5.5. Applications to the flag variety. We use the machinery developed in the
previous sections to obtain some natural statements about (G/B)>o.

Lemma 5.11. (Assume K = F.) Suppose that a < c € W and b € W. Then for
any x € RE, andi eI,

a,c
(5.19) AF (b~ 'z) € Fy.
Moreover, if a < b < c then

(5.20) AF(b~'z) € F4, and € bB_B.

Proof. Let t = (t1,t2,t3) with [t1| = {(a), [t2| = l(wo) — £(c), |ts| = £(c) — L(a).
Choose reduced words i for a=! and j for woc™!, and let (a, c) € Red(a, ). Suppose
that = € ga c(t3)B® and let

g = x;(t1) 'y.i(t2) "Bac(ts) € Usf(a_l) Uy (wOC_l) : sz,c'
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By Lemma B8 g € Uf(wo) B = UZ(b) - Uz (b~ wp) - B°. By (B.8), we have
b1 U (b) C B® - Ugk(b™ ). Therefore

b~lge B® -Ug(b™h) - Ug (b~ wy) - BC.

By (1), we get b~'g € B - Ug (b~'wp) - U (b~') - B® = B - B°, and by defini-
tion, Af(y) € FZ for any y € B® - B°. Since A is a regular function on G by
Lemma [£.21(ii)} the function f(t1,ts,t3) := AF(b~'g) € FZ extends to a continu-
ous function on thl‘ X Rlif]l X R‘t?" Therefore by Lemmam limg, ¢,—0 f(t1,t2,t3)
is a subtraction- free rational expression in ts. Since limg, ¢,,0 9 = 8ac(ts), we get
that AT (b 'gac(t3)) € Far. Since € ga (t3)B°, (BI9) follows.

Suppose now that a < b < ¢. We would like to show (B.20), so assume that
for some i € I and z € RS, we have AT (b~'z) = 0. Let t' € (F3)!* and
(a,c) € Red(a,c) be such that z € gac(t')B®, and let y(t) := gac(t). Then we
have AF (b~1y(t)) € Fur by GI9). If AF (b~ 1y(t)) were a nonzero rational function
in t then clearly substituting t — t’ for t’ € (F%)!*| would also produce a nonzero
rational function. Since substituting t — t’ yields A;F(lflx) = 0, we must have
AT (b71y(t)) = 0. Therefore AT (b~'a’) = 0 for all 2’ € RS,

Now let t' € R|>t‘0. Recall from Section [5.4] that the image of szc in (G/B)r
under the map evaly equals R>9. Thus by (5I8), AF(b~'2’) = 0 for all 2/ € G(R)
such that 2/B € R;?, which contradlcts Lemma 5100 Hence AT (b~'x) € F, and

therefore 2 € bB_ B follows from Lemma [£.21(iii)} finishing the proof of (5.20). [

Corollary 5.12. (Assume K = C. ) Suppose that a < c € W and b e W. Then for
any (a,c) € Red(a,c) and t’ € R>0, we have

(5.21) AF (b gac(t)) > 0.
Moreover, if a < b < c then
(5.22) AF (b 'gac(t) >0, and R CbB_B/B.

Proof. By (519), we know that AI(E’lgaC( t)) € Fg for all ¢ € I. Evaluating
at t = t’ (cf. Section 54), we find that AF(b~'gac(t')) > 0 for all i € I, show-
ing (B21)). Similarly, (522]) follows from (G.20]). O

Proposition 5.13. (Assume K = F.) For all v,w,v',w’ € W and x € Ug(v') -
T8 Ug (w'), we have A (vxi~") € Fi.

Proof. Let t = (t1,tq,t],t5) with [t;]| = £(v'), [to| = L(w'), |t]| = L(we) — £(V'),
and [th| = f(wg) — L(w'). Let t, := (t],t1) and t,, := (t2,t}). Choose reduced
words i,j for wgy such that i ends with a reduced word for v’ and j starts with a
reduced word for w’. Set g = g(t1,t2,ty, tw) = Xi(ty)-a-yj(t,) for some arbitrary
element a € T, We get

bgu ™t € 0 Ugt(wo) - T - U (wo) - ™
co- Usf('l)_l) - Usg(vwy) - TsF. U}(wow_l) ~Ug (w) - w

S

By (6.18), (5.7), and (5.8), we get vgui—! € BO'US¥(’U)'USf(’LU_1) -B®. By [&1), we

can permute U (v) and Ug(w ™), showing 9guw =" € B®- B®. Thus Af (vgw~!) €

. . . . t1 t t] t5 .
- It gives rise to a continuous function on R|> ! Rl 2‘ X Rl ‘ RL%‘, so sending
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t),t, — 0 via Lemma [5.9 and varying t1, t2, and a, we get A;t(vxu'ﬁl) € Fy for
all @ € Uge(v') - T - U (w'). O

6. BRUHAT PROJECTIONS AND TOTAL POSITIVITY

In this section, we prove a technical result (Theorem [6.4]) which later will be
used to finish the proof of Theorem Assume K is algebraically closed and fix
uwe W’

6.1. The map Q(j,]v. Retain the notation from Definition f.23] Given v € W and

u € WY, let us introduce a subset
(6.1) G) = {z e aG) | ke € 9GS} C G
Note that if x € G,(;]g then P C GS[’]I),; see Lemma

Definition 6.1. Define a map 7 : GS[II)) — Ly sending x € G,(;]g to n(x) =
[07 kex]s. Also define a map myp_ : ﬂGéJ) — 4P_ sending = € qu;” to the

unique element 7, p_(z) € 4P_ NzU). Explicitly (cf. Lemma [£.22(ii)), we put
(6.2) map_ (z) = afa 2] la ]y = 2 - ([0 2))
Finally, define C,E‘Q : G&Jl), — G by Q(jjg (7) :=mup_(2) - m(x)~ L

Lemma 6.2.

(i) The maps K and T,p_ are regular on ﬁGé‘]).

(ii) The maps n and Q(jjg are regular on GS;,’?, C qu;’).

(i) Ifx € uGéJ) and &’ € xP then Ky = Ky.

(iv) Ifz € G% and =’ € P then Q([]g (z) = fﬂg (x').
Proof. Parts (i) and (ii) are clear since each map is a composition of regular maps.
Part (iii) follows from Definition B23] since by construction the map & starts by
applying the isomorphism in (31]), which gives a regular map e = autqt.

To prove (iv), suppose that = € Gq(j]g and ' € xP is given by 2’ = xp for p € P.
Then myp_(2') = mup_(x)[p]s by Lemma [4.22(iii)} By (iii), Ky = Kz, and n(z’) =

[0 kpa']y = [0 kex) s [p]s = n(x)[p]s. Thus

(@) =map_ (@) (@) = map_()[pls - [Pl '0(z) " = ¢)(2). O
Lemma 6.3. Let x € 4P_.

(i) We have myp_(z) = x.
(i) Ifx € GY) then ¢\7)(x) = an(x)1.

Proof. Both parts follow from Definition a

The ultimate goal of this section is to prove the following result.

Theorem 6.4. (Assume K = C.) Let (u,u) < (v,w) <X (v',w') € Qs and z € G
be such that B € Ri?w,. Then x € Gq(j]g and C&Jg (x) € BB_w.
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544 PAVEL GALASHIN ET AL.

6.2. Properties of k. We further investigate the element k,x. Denote @ := uw;y €
WJ

max*

Lemma 6.5. The groups U/, U1(J)7 and Uz(‘]) from Definition E23] satisfy

(6.3) wU' Dt = auP g1,
(6.4) U =i nU =aU_a ' nU,
(6.5) U =i nU =au_a T nU_.

Proof. By Lemma we see that u';JUSJ)u';jl = U which shows ©3).
For (6.4), U1(J) = aUY 41 N U by definition. By Lemma A7, we have wUyu~t C
U_, so ([64) follows from. (IE) For (I;E),.observe.: that .U]J¢}_ = @},. SO ﬁfbj C &~
by (@8). We thus have GU_a~' = (GU; &) - (iU i-1) where (@U i) c U,
and hence GU_a" ' NU_ = aU a1 nU_ = US") by the definition of U{”. O

Lemma 6.6. For z € ﬂGéJ), there exists a unique element h € UQ(J) such that
hx € UfJ)aP, and we have h = k.

Proof. Let ¢/ € U) and p € P be such that ¢(/) 4 = xp. We first show that
such an h € UQ(J) exists. By Definition 23] x, is an element of UQ(J) such that
keg) € U1(J)- In particular, K,z = kpgup=! € Ul(J)aP, which shows existence.
To show uniqueness, observe that the action of w1 on uG(()J)/P C G/P is

free by ([@31]), and in particular the action of UQ(J) is also free. O
Lemma 6.7. Ifz € aGé’]) N BurB for some r € Wy, then K, = 1.

Proof. By Lemma [6.6] it suffices to show that BurB C Ul(J)uP. Write
BuiB C BuP C (BuB) - P.
By @34)), BuB C (4U_ NUw) - B, and therefore we find
BB C (aU_NUd)-P = @U_u" ' nU)uP = U aP,
where the last equality follows from (E.4]). O

Lemma 6.8. LetacT.
(i) The subgroups wU g1, Ul(‘]), and UQ(J) are preserved under conjugation by

a.

(i) Ifz € ﬂG(()J), then ax € QG((JJ) and Ke T = ak,T.

(iii) (Assume K = C.) For each w € W, there exists py, € Y(T) such that for
all v € WwB_B, lim;_,q pY,(t) - *B = wB in G/B. If w € W, then for all
z € wGY), limy_o pY,(t) - P = WP in G/P.

Proof. Since @ € Ng(T), there exists b € T such that ai = ab. Thus awlU o~ 1a™?
= abUDb 1= = U4~ which shows (i), and (ii) is a simple consequence
of (i). To show (iii), assume K = C and choose p¥ € Y (T') such that (p¥,a;) <0
for all i € I. Then lim;_,q p¥ (t)yp"¥(t)~! = 1 for all y € U_, and in particular for all
ye U Set pY := w1pY, so that for £ € C*, pY,(t) = wp" ()" by @Z). Every
x € WwB_ B belongs to wyB for some y € U_, so py,(t)-z-B = wp" (t)yp" (t)"*-B —
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REGULARITY THEOREM 545

WwB as t — 0. Similarly, if w € W then every x € u')G(()J) belongs to wyP for some
yEU&]) by @E31), so p),(t) -xzP — wP as t — 0. O

Lemma 6.9. Suppose that v < ur < w” for some v",w”" € W and r € Wy, and
let x € G.

(i) (Assume K=F.) Ifx € Rv,, W'

(ii) (Assume K=C.) If zB € RUN W'
some 1y, € Wy such that ry, > 7.

then x € ﬂG((JJ).

then x € aGé‘] and kzxB € RUN ury 10T

Proof. When K = F, (520) implies RS}, , C @wB_B C 4P_B, and by
Lemma | P_B = G(J), which shows (i). Similarly (for K = C), by Corol-
larym we have x € urB_B for any x € Rv,, Wiy S0 R2Y L C ﬂG(()J).

Assume now that K = C and zB € R}? .. Let p € P and g e Uyt
be such that zp = ¢, Then kyap = gg )u for g(‘]) € UI(J). By (©64), Ul(J)iL -
Uu C BuB. By Lemma we have p~! € By, B for some r,, € W;. We get
kor = g\ i-p~! € BuB - Bi,B C Bii,B by [@I8). On the other hand, k, € U_
and x € B_v"B, so k,x € B_v"B. Therefore k,xB € év’ﬁurw-

We now show r,, > r. By (£22), « € wB_B, so by Lemma [6.8(iii)} we have
pY.(t)- 2B — wiB as t — 0 in G/B. Since i € uGS”, k is regular at @B, and
by Lemma 6.7 we have kg = 1. Thus ryyv (4)epy,(t)xB — @B as t — 0. By
Lemma [6.8(i)} %,y (1)zprr(t)2B = py,.(t) - £z B, which belongs to Ryt ur, for all
t € C*. We see that the closure of ]O%W,Ww contains urB, and so v” < ur < ur,

by (@I4). Thus r < r, by Lemma |4.4(ii)|
Finally, we show k2B € (G/B)>o. First, clearly the map x is defined over R,

!’

so k2B € (G/B)r. Consider the subset R>? o) = Uwrsa R>,9’w,, C (G/B)>o.
It contains R>,9 1w, @S an open dense subset, and therefore R~ o (o) is connected.
We have already shown that for any 2’ € Rv,, [,wo]’ nw/x 'B € RU,, a (because

we have 7, > r = wy). Thus the image of the set R’ under the map

v [a wo]
' /@w/ac must lie inside a single connected component of RR However, if
' € R>Y Rv,, [@wo)] then x,» = 1 by Lemma [6.7] so in this case k2’ € Rv,, a
We conclude that the image of R is contained inside Ri,?’ﬁ (G/B)>o. It

follows by continuity that for arbitrary v” < ur < w” and z € Rif{w,,, we have
KexB € (G/B)ZO O

v ar
(R

[@,wo]

We will use the following consequence of Lemma in Section @.1T]

Corollary 6.10. (Assume K = C.) In the notation of Lemma we have
kexP €157 for 0" =" ary?

Proof. Lemma says that k,2B € R} wr,,» SO applying Corollary T8 we
find that 7;(kyzB) = kP € H),, . O

6.3. Proof via subtraction-free parametrizations. In this section, we fix some
set t of variables and assume K = F. Also fix u € W and recall that & = uw; €
WJ

max-*
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546 PAVEL GALASHIN ET AL.

By Definition 23] the map & is defined on ﬁG(()J). By Lemma [6.9(i), we have
Ry, i C uGgJ whenever v < ur < w” for some r € W;. In particular, s is
defined on Ug (w”) C Rld o for all w” > 4.

Proposition 6.11. Let ¢ € W be such that £(aq) = €(a) + ¢(q). Then for h €
U (uq), we have kph € Uy ().

Proof. Write h € Ug (tug) = Uy (a) - Uy (¢). Using (58], we find

(q
hea-at-Ug(a) -Us(q) Cu- B -Ug(at) U (q).

By &), B - Usf(ft_l) (@) =B U;(q) - Us(@™") C B - Ug(@™ ). Writing

B® c U_-T5, we get
hea-U_-T" - Ug(a™) =T - au_a=" - a-Ug(a™).

Applying (EI6), we find

heT aU_a= -1 - (U naU_u™') - Uy (@) caU_u~ ' - T - U (a).
Let g € uU_u~" be such that h € g- T - U (@). Recall from (G3) that UQ(J) =

aU_u—'NU_. By Lemmald.1(i)] there exists b’ € UQ(J) such that g € uU_a~'NU.
Thus

Whe@U-_u'nU)- T Uz (a) cU-T - US ().
But observe that both h and A’ belong to U_. Since the factorization of h'h as
an element of U - T - U_ is unique by Lemma it follows that h'h € U (4).
By @20), U; (@) C BuB. By Lemma [67, kjp, = 1, so k, = I/, and thus kph €

Uy (). O
Corollary 6.12. For g € W such that £(tuq) = £(a) + £(q) and v < 4, we have
R .o cal)

i uq u,v
Proof. As we have already mentioned, Lemma [6.9(1)] shows that R ;, C qu;’)
Let z € Rld uq US} (ag) - B®, and let b € B® and h € U (tuq) be such that z = hb.
By Lemma we have rk, = kp. By Proposition 611l xph € Ug (), and
therefore k.2 € Ug (@) - B® = R5j ;. By (G.20), we get k.2 € 0B_B. O

Corollary shows that the map ¢{%) is defined on the whole RSl o

Lemma 6.13. Suppose that ug € W7 and vy < 1o := uowy. Let h € Uy (to), and
let by, b, € U be such that iy *h € B_-b, and 0y *h € B_-b,. Then [b,b;']; € Us(r)
for somer € Wj.

Proof. First, recall from Lemma and (BII) that b, and b, are uniquely
defined and satisfy b, € Usf(agl), b, € Usf('Uo_l). Let h = hyhgy for hy € Ug (uo)
and hy € Uy (wy). Our first goal is to show that [b,]; € U; satisfies (and is
uniquely defined by) w;1h2 € B_ - [b,];. Letting b, € Uy be uniquely defined by
w5 hy € B_ - b, we thus need to show that [b,]; = bl,.
By (5.3), there exists d € Ug(ug ') such that
-1

Wy g thy € B -yt - d
Since d € U, we can use Lemma to factorize it as d = [d]J[d]S;]). Since hy €
U; C Ly;, Lemma [£:22(ii)] shows that there exists d’ € U(/) such that [d]SrJ)hg =
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REGULARITY THEOREM 547

had'. Since [d]; € U; by Lemma [£:22(iv)] (@2I) shows that @ '[d]; € U_w;".
Combining the pieces together, we get

figth = iy Vg thihg € B® iyt - [d)5[d)) - ho € B_ -5 hed = B_ - b,d'.

On the other hand, g 'h € B_ - by, so b, = b, d’, where b/, € U; and d’ € U, Tt
follows that [b,]; = b/, and thus we have shown that w; hy € B_ - [b,];.

We now prove the result by induction on f(ug). When ¢(ug) = 0, we have
g = wy and vg € Wy. Thus there exists v; € W such that w; = vg - v1 with
U(wy) = L(vo)+L(v1). We have by, b, € Uy, so [buby '] = byby ' by Lemma[4.22(iv)]
By (5.10), there exist by € Ugt(vy ) and by € Ugt(vy ") such that

vo 'h € B® by, w;'he B -bib.

In particular, we have b, = by and b, = bybg. Thus [b,b; ;= b; € Usf(vfl), and
we are done with the base case.

Assume £(ug) > 0, and let 7 € I be such that u; := s;up < ug. By Lemma [4.4(i)
up € WY, so define @y := wywy € W, .. Let h € U (tig) be factorized as h =
hlhlth for h; = yl(t) S US;(Si), hll S U;(ul), and hg € US ( J).

Suppose that s;vg > vg, in which case we have vy < @;. Let h' := hihs and
b/, € U be defined by i, 'h’ € B_-b/,. Since s;vy > vp, we see that 9, 'h; € B_ -9, ',
SO 1'10_1h’ € B_- 1'10_1]1 B_-b,. By the induction hypothesis applied to vy < and
h' € Uj (), we have [b),b, '], € Us(r) for some r € Wy. On the other hand, we
have shown above that [b,]; satisfies @ 'ho € B_ - [b,];. But since b’ = h}hy for
ho € Ug (wy), we get that [b’ ]J satisfies w7 'hy € B_-[b,] 7, and thus [b,]; = [b],] ;.

Therefore using Lemma we get
[buby ']y = [bu]J[bll]J = [0L)s b5y = L6y s € Use(r),

finishing the induction step in the case s;vy > vyp.

Suppose now that vy := s;v9 < vo. Let h = h;hlhy € Ug(to ) be as above.
By (B3, é;lhi € B® - Ug(s;), so let d; € Ug(s;) be such that §; 'h, € B® - d;.
By m, Usf(Si) : Ub_f(ﬁl) = U;(’[Ll) : Usf(Si), so let b; € Usf( ) and h e Usf( )
be such that d;hjhe = h'b;. We check using (5.9) that

(6.6) g h € B -a;'h' by, @y 'h€ B o h - b,
Let b,,b! € U be defined by ii;*h' € B_ - b, and o7 'h' € B_ - V,,. Then by the

induction hypothesis applied to vy < @ and b/ € U (@), we find [b],b)71]; € Use(r)
for some r € W;. But it is clear from (6.0) that b, = b!,b; and b, = b,b;. Therefore
[buby Y] € Ugt(r). 0

Theorem 6.14. For allv<a, we W/, ie I, and x € R we have

id,wq ?
(6.7) AT )(z)i~ ) € Fu.

Proof. Let ¢ € W be such that wg = g, so £(iq) = £(@) + £(q). Let z € R} we =
Uy (wo) - B® be written as = h - b, where h = hihohs € Uy (wo) for hy € Uy (u),
ho € Us(wy), hs € Us(q), and b € B®. By (GI0), there exist by € Usf( b,
by € Ugt(wy), and b3 € Ug(q™!) such that

(6.8) W 'h € B® -by, @ 'he B by, iy h e B -baboby.
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Let o/ := hbfl. We have o' = ;zcb_lbf1 € zB C zP, and therefore 2’ € G&Jl), and

w0 () = Cuw(x) by Lemma [6.2(1v n the other hand, by , T € ub” C
£9(2") = (i (x) by Lemma B:2(iv]} On the other hand, by [68), o’ € aB°
uP_, so Lemma [6.3(ii)| implies dﬂ? (2") = a'n(a") L.

Let us now compute n(z') = [0~ 'k2'];. By Lemma Ke = Kg' = K,
and by Proposition 611} x,h € U (@). Thus by (EII), 0~ 'kph € B - Ust(v1),
so let do € B°® and by € Ugx(v™!) be such that 9~ 'kph = doby. By definition,
Kn € U2 , 50 by @3), @ 'kpi € U_, and therefore using (6.8) we find

0 Ykph =4 Ykpti - th € U- -4 th € B_ - byby.
We can now apply Lemma we have v < @, kph € Uy ( ), w tkph €
_ - boby, and v 'kph € B_ - bg. Let b, := byby € U and b, := by € U. By
Lemma [6.13, [b,b; 7 = [belbal]J € Usf(r) for some r € Wj.
Recall that 9~ 'k,h = dobg for dg € B® and by € Uy (v—!). Thus

n(z') = [0 ke y = [0 kpa']; = [0 kphbT g = [doboby ] s

By Lemma we get [doboby *]s = [do].s[boby '] s. Thus
(@) = (") = aln(2") ™ = ' [boby '] [do] 5
By (6.8), we have 1y, 'a’ € B2 -bgbs, so ' € Biigbsby. Using Lemma [£.22(iv)] we
thus get
) (@) = 2'[boby 5 [do] ' € B - tirgbslbabiby ] [do]

We are interested in the element Q(jjg (z)w~t. We know that dy € B?, so [do]; €
T*'U; , and by Lemma FL5] w[do] =1 € T - U_. Hence

D(x)w=" € B - aingbsbabiby *]s[do] ;'™ © B® - aigbs[babiby ] yuwt - T UL

In particular, AF(¢5) (z)i~1) € Fir if and only if AF (wobs[babiby ] si~1) € Fur.
Recall that b3 € Ugx(q™!) and [bgblbo_l]J € Ug(r) for some r € Wj;. Thus
bs[babiby '] s € Ust(q~'7), so we are done by Proposition (131 O

Proof of Theorem 6.4l Our strategy will be very similar to the one we used in the
proof of Corollary

Fix (u,u) < (v,w) = (v,w') € Q. Let t = (t1,t2,t3) with |t;| = £(v),
to| = £(wo) — £(w'), and [t3] := £(w') — £(v'), and assume K = F. Choose reduced
words i for v/~! and j for wow'~!, and let (v/,w’) € Red(v',w’). Suppose that
T € gy w (t3) - B®. Then

g(t1,t2,t3) == x3(t1) - yj(t2) - v wi(ts) € Use(v'™1) - U (wow'™ . R '
By Lemma (5.8 we have g(t1,t2,t3) € Rld wy+ LThus by Theorem [6.14} for all i € 1
we have Af((&‘]g (g(t1,t2,t3))1w 1) € Fy. Denote by

Flt1,t2,s) 1= AF(CL) (g1, ta, t5))i ™)
the corresponding subtraction-free rational expression, which yields a continuous
function R‘tbl X R‘tél X R‘t?(’)l — R>p. We claim that f extends to a continuous
function R‘;Bl XR‘;%' ><}Rm| — R>O Indeed fix some (t/, t5,t5) € R&g' ><R|>t?)| let3|
and let K = C. The element ! g( 1, th,t%) (obtalned by evaluating at (t] t’ 5);
see Section [5.4)) belongs to Gzo R>° S and by Lemma .17 there exist v”, w” ew
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such that v < v’ <w' <w"” and 2’ € Ri’?,w”' Recall from Lemmathat we
have
v <V <wor <ur <wr’ <w' <w”’

for some /,r € W such that £(vr’) = £(v) +£(r"). In particular, by Lemma |6.9(ii)
' € qu)") and kpx' € Rif{ww for some 7, € Wj; such that r, > r. By
Corollary 512 k2’ € vr'B_B C @Gg‘]), which shows that z' & Gq(j,]?,. The
map ng‘]g is therefore regular at z’ by Lemma The map Aii is regular
on G by Lemma so in particular it is regular at ng‘]g (x')w~t. We have
shown that the map z” — AF( ﬁfg(x”)w*) is regular at o’ = g(t},t}, t5) for
all (t},t5,t5) € R;B‘ X R;%‘ X R‘;f’)‘. Thus the map f(t1,t2,t3) extends to a
continuous function R‘Ztlol X R‘;Ol X R‘;f’)l — R>¢. By Lemma [5.9] we find that
£(0,0,t3) := limg, ¢,—0 f(t1,t2,t3) belongs to Fy, i.e., it can be represented by a
subtraction-free rational expression in the variables t3. On the other hand, it is
clear that (0,0, t3) = AF (V) (gvr wr (t3))i ™).

Our next goal is to show that f(0,0,ts) € FJ%. Indeed, suppose otherwise that
£(0,0,t3) = 0 (as an element of F). By Lemma C,SJU) descends to a regular
map GgJ,),/P — G (still assuming K = C). Therefore the map f : GgJ,),/P - C
sending 2/ P to AF( ,([]v) (2")~1) is also regular. If f(0,0,t3) = 0 then f vanishes
on T J(R;?w/) = 117° ,, and therefore it vanishes on its Zariski closure, which is

v w’
Iy . We have w7 (R;Y,) = 1170, C Iy 4, 50 f(x) =0 for any z € GE[JB; such that
B e Ri ?U. Let us show that this leads to a contradiction.

Let 2 € G be such that 2B € R;',. By ([@21), there exists 2’ € xP such that
©'Be R By Lemmal6.9(ii)| we have 2’ € uG(()J), and thus z € uGé‘]). Having

vr! wr!*

zB € Rio implies z € B_vBNBwB. Since k; € Uz(‘]) c U_,wehave k,x € B_vB.

w

By @34), B_oB = (0U_ NU_9)B C 9B_B, so kzx € vB_B, and therefore
x € Gi(j]l); Moreover, 'k z € B_B, and thus n(z) = [0~ 'kz]; € U;TU;. On
the other hand, m,p_(z) € zUY) ¢ 2B C BwB; see Definition Thus

¢ (z) = map_(z)n(x) ' € BWB - U;TU; = BuB - Uj.
Recall that because w € W, we have U; ™! C &~ 'U_ by Lemma Hence
()=t € BuB-Uj -~ € BuBw 'B_.

u,v

By ([@34)) (after taking inverses of both sides), BwB = B - (U_w NwU), so
(D(x)ywteB- (U_NnwlUw')-B_.CcB-B_.

u,v

In particular, AE( 15‘]8 (x)w~1) # 0 for all i € I. This gives a contradiction, showing

f(0,0,t3) € F%. But then evaluating f at any t; € Ri(g/)_é(v,) yields a positive
real number. We have shown that AF( 1([]3 (x)w™t) # 0 for all z € G such that
B e Ri?w,. We are done by Lemma [4.21(iii)| O

7. AFFINE BRUHAT ATLAS FOR THE PROJECTED RICHARDSON STRATIFICATION

In this section, we embed the stratification 23] of G/P inside the affine
Richardson stratification of the affine flag variety. Throughout, we work over
K=C.
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7.1. Loop groups and affine flag varieties. Recall that G is a simple and simply
connected algebraic group. Let A := C[z,271] and A, , A_ C A denote the subrings
given by A, := C[z], A_ := C[z7!]. Then we have ring homomorphisms €v, :
A4 — C (respectively, évy, : A — C), sending a polynomial in z (respectively, in
z71) to its constant term. Let G := G(A) denote the polynomial loop group of G.

Remark 7.1. The group G is closely related to the (minimal) affine Kac—Moody
group GM™ associated to G, introduced by Kac and Peterson [KP83,[PK83]. Below
we state many standard results about G without proof. We refer the reader unfa-
miliar with Kac-Moody groups to Appendix [Al where we give some background
and explain how to derive these statements from Kumar’s book [Kum02].

We introduce opposite Iwahori subgroups
Bi={g(z) € G(A}) |evolg) € BY,  B_ = {g(="") € G(A_) | evoulg) € B_}
of G, and denote by
U:={g(z) € GAL) | evolg) €U}, U= {g(="") € G(A) | evag) € U}

their unipotent radicals. There exists a tautological embedding G — G, and we
treat G as a subset of G.

We let T := C* x T C C* x G be the affine torus, where C* acts on G via
loop rotation; see Section The affine root system A of G is the subset of
X(T) :=Hom(T,C*) =2 X(T) © ZJ given by

A = ArlUAiy,, where A :={p+j0|Be®, jeZ}, Am:={jo|jecZ\{0}}
are the real and imaginary roots, and the set of positive roots A™ C A has the form
(7.1) At ={js|j>0tu{B+ji|pe® j>0tu{B|s e}

We let Af := AT N A, and A, := A~ N A,e. For each a € A}, (respectively,
a € Ar), we have a one-parameter subgroup U, C U (respectively, U, C U_). The
group U (respectively, U_) is generated by {Ua},cn+ (respectively, {Ua} ecn-),
and for each a € A,., we fix a group isomorphism z, : C = U,.

Let Qy = Dicr Zay denote the coroot lattice of ®. The affine Weyl group
W = W x QY is a semidirect product of W and QY, i.e., as a set we have W =
W xQ4, and the product rule is given by (w1, A1)- (w2, A2) 1= (wiwa, A\; +wiA2). For
A € QY, we denote the element (id, \) € 1474 by 7. The group W is isomorphic to
Neewg(T)/T, and for f € W, we choose a representative f € G of f in Ne g (T,
with the assumption that for w € W, the representative w € G C G is given by
@1). Thus W is a Coxeter group with generators so U {si}ier, length function
W — Z>y, and affine Bruhat order <. The group W acts on A, and for a € ®,
B € Ares A € QY¥, and w € W, we have

(72) ’wT/\u)_1 =Twr, TAQG =0+ <A’ Oé>5, ™ = 5’ T,\I/{BT)\_l = U, 3.

Let G/B denote the affine flag variety of G. This is an ind-variety that is
isomorphic to the flag variety of the correspondlng affine Kac— Moody group gmin,

see Appendix [A4l For each h,f € W we have Schubert cells X /.= BfB/B and
opposite Schubert cells Xh = B,hB/B. If h £ f € W then Xh NX/ = . For
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h < f, we denote 702}; = /\th N XS, For all g € W, we have
(73)  X9=||Ry X=| R av=| AN x=| ] A
h<g 9<f h<g g f

For g € W, let
(7.4)  Cy:=gB_B/B, U (g9):=gU_¢g " NU, and Usx(g):=gU_¢g  NU-.
As we explain in Appendix [A.5] the map x — zgB gives biregular isomorphisms
(7.5) UG S Cy Uhlg) D X, Unlg) S A,

Let D) C U be the subgroup generated by {L{a}aeArt\@Jr. Similarly, let u) c
U_ Dbe the subgroup generated by {Ua}aeA;\é,. For z € G C G, we have
(7.6) - UD gt =y D, pyD ot =D,

7.2. Combinatorial Bruhat atlas for G/P. We fix an element A € Q4 such
that (A, a;) =0 for i € J and (\, o) € Z<g for i € I\ J. Thus A is anti-dominant
and the stabilizer of A in W is equal to W. Following [HL15], define a map

(7.7) V:Qs =W, (v,w)—vnw

By [HL15, Theorem 2.2], the map 1 gives an order-reversing bijection between @ ;
and a subposet of W. More precisely, let 73 := 75(w”)~!, and recall from (7.2)
that uryu=! = 7,x. By [HL15] Section 2.3], for all (v,w) € Q; we have

(7.8) vw P =v-rf cwlwTt Lumaw) = L) + (1)) + L(w! wTh;
see Figure 2 for an example. By [HLI5, Theorem 2.2], for all u € W7 we have
(7.9) PQF) ={g e W | <g<mu).

(7.10) Y(Qs)={g e W |1 < g < 7y for some we W’}

Remark 7.2. The construction of [HL15] can be applied in the more general setting
where A is an anti-dominant coweight, and thus ¢ sends @ ; to the extended affine
Weyl group. This is especially natural when A is a minuscule coweight, and thus
G/P is a cominuscule Grassmannian. In this case, the image of ¥ is a lower order
ideal in affine Bruhat order. The map @, below then sends C’q(j]) to the Schubert
cell X7ur as opposed to the more complicated intersection XT; N AT,

7.3. Bruhat atlas for the projected Richardson stratification of G/P. Let
u € WY, Recall that A € QY has been fixed. We further assume that the represen-
tatives 7, and 7, satisfy the identity 47t ~! = 7.

Our goal is to construct a geometric lifting of the map . Recall the maps
T~ gg‘]) and T — géJ) from Definition £.23] We define maps

(7.11)

Dy ng‘]) -G, P — ggJ)zl STy (gé‘])u)*l = g%‘]) “Tux (gé‘]))*l, and
(7.12)

@u:CY) 5 G/B,  zP s o,(zP) B.

The main result of this section is Theorem [7.3

Theorem 7.3.
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(1) The map @, is a biregular isomorphism

3 J) ~ PTux — > Tu
pu:CY) DX N = | R,
(v 'UJ)GQ>(U' su)

and for all (v,w) = (u,u) € Qy, @u restricts to a biregular isomorphism

Gu : CE) NI, S R7

vy w— 1"

(2) Suppose that (u,u) = (v,w) <X (v, w') € Q. Then
Pu (HU Jw’ ) - Cm—)\w 1
The remainder of this section will be devoted to the proof of Theorem

7.4. An alternative definition of @,. Recall the notation from Definition [£.23]
and that we have fixed u € W7/ and A € Q¥ satisfying (A, a;) = 0 for i € J and
(N ;) € Zog for i € T\ J. We list the rules for conjugating elements of G C G by
.

Lemma 7.4. We have

(7.13) TA-p=p-Tn forallpe Ly,

(7.14) U it cuD, w oY it cu®,
(7.15) LU i cu®, v cul?,
(7.16) fun U3 i bcu®D oL Ul iy cul,

Proof. Recall that Ly is generated by T, Uy, and U}, and since Taa = « for all
a € §y, we see that (CIJ) follows from (T2)). By (T2)), we find mya € A\ T

for o € @) and ma € A c\ @ for o € @Sr), which shows (7I4]). Similarly,
7 € AL\ O fora € <I>+ and 75 ‘o € A\ @ fora € ®"”) which shows (Z15).

To show (18], we use (Z8), (Z14), (ZI5), and Ul(‘]), UQ(J) c aUP 01 to get
Fun - UST i =it UL - ai e cany - UY) i ta cad@ i =uD,

tod - U da=aiy ot U cana cary b Y mact caua =y O

The map @, can alternatively be characterized as follows. Recall from Defini-
tion €23 that we have a regular map & : uGgJ) — Uz(‘]) that descends to a regular

map  : CY) — UQ(J) by Lemma [6.2(iii)} Recall also from Lemma [4.22(i)| that
A
uGy’ =uP_ - B.

Lemma 7.5. Let x € 4P_. Then

(7.17) Gu(xP) = ke - 75 -z~ 1 - B.

Proof. We continue using the notation of Definition EE23l Let p € Ly and ¢/ €
uU(J) 1~ be such that zp = ¢(/)u. Note that g(J)' = hg‘])g(‘])ﬂ = hg‘])xp, and

since h(‘]) € U(J) cUc B We see that (g5 (1 @)~ - B = (xp)~' - B. On the other

)

hand, kzxp = h(J gy = g )41, Since p commutes with 7, by ([I3]), we find

Pu(zP) = gy)ﬂ STy - (gé‘])n)_l B =Kzxp- Ty - (a?p)_l B=rkyx-7\-z '-B. O
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7.5. The affine Richardson cell of ¢,.
Lemma 7.6. We have

(7.18) o= || (@ nil).

(vw)eQ7 ™

Proof. The torus T acts on G/P by left multiplication and preserves the sets C'q(j])
and lglmu for all (v,w) € Q. By @23), I, ,, contains @P if and only if (u,u) <
(v, w). Suppose that zP € D ﬂﬁmw for some (v, w) € Q. Then TxP/P C C’&J),
and by Lemma the closure of this set contains 4. On the other hand, the
closure of this set is contained inside II,, ,,, and thus (u,u) < (v, w). O

Lemma 7.7. Let (v,w) € Q§(u’u). Then

(J) N Hv w) C 7%/7'1“\

vy wL”

(7.19) Pu(C

Proof. Let x € aGé‘]) be such that zP € IOL,,w. Let us first show that @,(xP) €
X7, By (712), we have

(7‘20) @u(xp) = g;]) : 7._u)\ : (géJ))_l . 7.—7:)\1 '7Lu>\ - B.
Observe that gg‘]) € Ul(‘]) C U, and by ([ZI8), 7 - (gé‘l))_1 i e We get
(7.21) ¢u(@P) -7l €U, so @u(xP) € BTy B.

This proves that @, (zP) € X
We now show @, (zP) € X7, 1. Recall that II,, ,, = m7(Ry ), so assume that

x € B_oB N BwB. Since uGgJ) = 4P_B by Lemma |4.22(i)] we may assume that
x € 4P_, in which case @, (xP) is given by (TI7). We have k,z € B_0B and
x~! € BB, so it suffices to show

(7.22) B_9B-iy-Bw 'B C B_-orai - B.
Clearly we have
B_oB-#\-Buw 'BcB_-o-UD .U;-7,-UY .Uy~ B.

By (ZI3) and Lemma[d.22(ii)} U; can be moved to the right past 7, and U(/). We
can then move U() to the left past 7y using (Z14)), which gives

B_UBT)\BwilBCB_UU(J)u(_I)T)\UwalB

By (Z9), U can be moved to the left past 0 - U) | and then U) can be moved
to the right past 7 using (.I3)), yielding

B_’UBT)\BwilBCB_UT/\u(I)UJ,LUle

By (Z8), U can be moved to the right past Uy -w~'. Since w € W, Lemma &7
implies that Uy - ™! C w™1U, so ([22) follows. O
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7.6. Proof of Theorem[7.3(1)l Observe that X, JﬁX 2=y Q>

by (Z3) and (Z9). By (Z19), @u(CY ) C Xy NX7r. Let us identify X7 with the
affine variety U; (1,) via (T5)), and denote by @1 : ct - Uy (Ty») the composition

of () and @,.

We claim that @ gives a biregular isomorphism between Cq([]) and a closed
subvariety of U (7). Let x € qu)") and let g(/), g%‘]), gé‘]) be as in Definition [4.23]
Let y := @, (vP) - 7}, 80 @u(xP) = y - 7ur - B. Thus @}, (xP) = y if and only if
y € Ur(Tyr). By (C2I), we have y € U. Hence in order to prove y € Ui (Tyy), we
need to show y € %UAU,%J)}. Conjugating both sides by 7,, we get

. . . J) . J
tol oy dun = Toalgl s - (6877

= (u,u) R TuA

vryw 1

)

which belongs to U_ since (gé‘]))_1 € Uz( ) c U by definition and 7, gi )Tu,\ €

U vy (CI6). Thus y € Uy (1ur) and @, (zP) = y. By Lemmal2] we may identify
' with U(J) X U(J), so let @k - Ul(J) U(J) — Uy (Tun) be the map sending
(917, 95”) to y := gt Fur(8") 170

Let ©; := ud) Nd+ and O, := ud) N D~ s0 UI(J) =U(©,), Uz(‘]) =U_(0,),
and ©; LB, = ud?), By the proof of (ZI6)), 7,002 C AL\ ®T and 7, o, c Am,
and thus ©; U 7,002 C Inv(7,)!). Let O3 C A be defined by O3 := Inv(7,,') \
(©1U7y202). By LemmalAT] the multiplication map gives a biregular isomorphism

(7.23) UO1) x U(TuinO2) x [ Ua = Unv(r, ) = Us(1un),
acOs

where U(©) denotes the subgroup generated by {U,}aco. In particular, U(04) -

U(Tu202) is a closed subvariety of ul(Tu)\) isomorphic to ClO1l+1©2] — ctw”)  Ob-
serve that U(7,202) = 7 ,\UQ( T, )\ , and hence gou essentially coincides with the re-
striction of the map (23] to U(O1) x U(7,2O2) x {1}. We have thus shown that @}
gives a biregular isomorphism between Uy ) % U(J) and a closed £(w”)-dimensional
subvariety of U;(7,). Therefore @, gives a biregular isomorphism between C&J)
and a closed ¢(w”)-dimensional subvariety @u(Cq(j])) of X7ur. By Proposition [A.2]
AN X7ux s a closed irreducible subvariety of X ™ and by (8) and Proposi-

tion [A2] it has dimension ¢(w”). Since cﬁu(Cqu)) C XN X7ax it follows that
gpu(C’(J)) XN X7ux. We are done with the proof of Theorem

Remark 7.8. Alternatively, the proof of Theorem |7.3(1)| could be deduced from
Deodhar-type parametrizations [Had84l[Had85[BD94] of RZ’:iw_l, by observing that
any reduced word for 7, that is compatible with the length-additive factorization

Tux =u -7y -w’u"t in (T3) contains a unique reduced subword for 7.

7.7. Proof of Theorem 9] We use the notation and results from Section [6
Let 2 € G be such that P € I1;,%,,. Since IT;)° , = m;(R°,,), we may assume that
B € R.° “w- Then x € uG( ) by Lemma S0 @y (zP) is defined. In addition,
by Lemma m we may assume that x € 4P_. By definition, @, (xP) € Cyry -1

if and only if w7y, 971 @, (xP) € B_B/B. By (I7), this is equivalent to

(7.24) wiy o kpx -y -2t € BUB.
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By Theorem [64] = € G%{l),, so D kL € G(()J). Let us factorize y := v 'k,x as

y =" W} using Lemma By (ZI3) and (ZIH), we get

1 1

wWTy 07 Rpx Ty T

=75 ) i A i it ) e e U [yl u® e

Using ([T6)), we can move UD to the left and YD to the right, so we see that (T24])
is equivalent to w[y] ;=1 € B_B. By Definition [6.Il we have [y]; = n(x), and by
Lemma we have Q(jjg (z) = an(z)~' = z[y];'. By Theorem 4] Q(jjg (x) €
BB_1, and after taking inverses, we obtain w(y];z~! € B_B C B_B, finishing the
proof. O

8. FROM BRUHAT ATLAS TO FOMIN—SHAPIRO ATLAS
We use Theorem [T.3] to prove Theorem

8.1. Affine Bruhat projections. We first define the affine flag variety version of
the map 7, from (ZI)). We will need some results on the Gaussian decomposition
inside G; see Appendix [A_5] for a proof.

Lemma 8.1. Let Gy := B_ - B.
(i) The multiplication map gives a biregular isomorphism of ind-varieties

(8.1) U xT xU = Go.

For x € Gy, we denote by [z]- € U_, [z]o € T, and [x]+ € U the unique
elements such that x = [x]_[x]o[z]+.

(ii) For g € W, the multiplication map gives bireqular isomorphisms of ind-
varieties

(8.2) paz s U (g) X Us(g) = GU-G ", po1 = Ua(g) X Ur(g) = gU-g~".

The group gU_g~ ", as well as its subgroups U;(g) and Us(g), acts on Cy. The

following result, which we state for the polynomial loop group G, holds in Kac—
Moody generality.

Proposition 8.2. Let g € W.
(i) For x € G such that B € Cg4, there exist unique elements y1 € Ui(g) and
Y2 € Us(g) such that y1aB € /’@g and yoxB € X9
(ii) The map v, : Cy — A(f’g x X9 sending xB to (y12B,y2xB) is a biregular
isomorphism of ind-varieties.
(ii) For all h, f € W satisfying h < g < f, the map D, restricts to a bireqular
isomorphism Cg N 70€£ = 7035 X 7%;]1 of finite-dimensional varieties.

Proof. Let us first prove an affine analog of Lemma B2l Let vy : gU_g~ — Us(g),
vy 1 gU_g~" — Ui(g) denote the second component of up; and sy (cf. B2)),
respectively, and let v := (v1,10) : GU_G~1 — Us(g) X Us(g). We claim that v
is a biregular isomorphism. By Lemma v is a regular morphism. Let us
now compute the inverse of v. Given x; € Ui(g) and z2 € Us(g), we claim that
there exist unique y; € Ui (g) and y2 € Us(g) such that y;x9 = yoxy. Indeed, this
equation is equivalent to y, 'y; = 125", so we must have yp = [z125']”" and
y1 = [x125 ]+, Clearly, v= (29, 21) = Y172 = yo21, and by Lemma[8.1(1)} the map
v~1 is regular. Applying (Z.5)) finishes the proof of [8.2(i)] and [8.2(ii)}
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We now prove Observe that if zB € C; N 703}; for some h < f € W then
z € B_hBN BfB. Let y1,y> be as in Then y; € Ur(g) C U, so y1z € BfB.
Similarly, yo € Us(g) C U_, s0 yox € B_hB. Tt follows that if zB € C, N 7%;? then
vg(xB) € 702,% X 702_{; In particular, we must have h < g < f, and we are done

by ([T3). O

8.2. Torus action. Recall that 7 = C* x T is the affine torus. The group C* acts
on G via loop rotation as follows. For ¢ € C*, we have t- g(z) = g(tz). We form the
semidirect product C* x G with multiplication given by (t1,21(2)) - (t2, 22(2))
(t1ta, z1(2)x2(t12)) for (t1,21(2)), (t2,22(2)) € C* x G. Let Y(T) := Hom(C*, T)
Zd®Y(T). For A€ Y(T),t € C*, t' € C, and o € Ay, we have

(8.3) MO za(EINE) L = 2o (EXE),
where 2, : C =5 U, is as in Section [T} and (-, ) : Y/(T) x X(T) — Z extends the
pairing from Section 1] in such a way that (d,d) =1 and (d, ;) = (o), ) = 0 for
1€l

Let ¢ € W and define N := £(g). If Inv(g) = {a®,...,a™}, then by
Lemma [A] the map x, : CN — U;(g) given by
(8.4) Xg(t1, .- tN) == To (t1) -+ oo (EN)

is a biregular isomorphism. For t = (t1,...,ty) € CV, define

R i

1
6]l == (Jta]* + - + [tn[*) * € Rxo,
and let || - || : Ui (g) = Rxo be defined by [ly|| := [|x; " (y)||. Identifying /,(g) with
X9 via ([TH), we get a function || - || : X9 R>o.

We say that p € Y(T) is a regular dominant integral coweight if (p,d) € Z~o and
(p, ;) € Zsg for all i € I. In this case, we have (p, o) € Z~ for any a € Af. Let us
choose such a coweight g, and define ¥, : R5oxG/B — G/B by ¥,(t, zB) := p(t)z5.

It follows from (B3) that if g € W and y € Ui(g) is such that x;'(y) =
(t1,...,tNn) then there exist k1,...,kny € Zs¢ satisfying

1
(8.5) 195(t, ygB) || = (5 [t |2 + -+ + £ [tn[2)® for all £ € Rug.

8.3. Proof of Theorem By Corollary E20, ((G/P)r,(G/P)>0,Qs) is a
shellable TNN space in the sense of Definition 2.l Thus it suffices to construct a
Fomin—Shapiro atlas.

Let (u,u) X (v,w) € Qy, and define f = (u,u), g == (v,w). Thus we have
() = Tur and ¥(g) = vryw~'. Moreover, for the maximal element 1 = (id, w”) €
Q7, we have ¢(1) = T)‘\] By Theorem the map @, gives an isomorphism
ct = Xy N XU Let (95 c ¢t be the preimage of Cyg) N X3y N xv)
under @,, and denote by Oy := OF N (G/P)g. Since Cyy) is open in G/B, we see
that O(C is open in C”) which is open in G/P, so O, is an open subset of (G/P)g.
By Theorem [7.3(2)} Oy contains Star , which shows |(F'S5)l Moreover, we claim
that O, C Star,. Indeed if h = f but h 7 g then ¥(h) £ ¥(g). The map @, sends

I, N C(‘]) to Rw(f) which does not intersect Cy(4) by (A3).

¢(h)
We now define the smooth cone (Z,,9,). Throughout we identify X¥(9) with
CNe for N, := £((g)) via B4). We set Z Wiy N X9 and Z‘Ch = RZEZ))
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for g = h € Q;. We let Z, Z(C N RNo and th = Z(C N RNy denote the
corresponding sets of real pomts Thus )| follows. The action ¥4 restricts to
RYs and by ([83), it satisfies [[SC2)l As we discussed in Section B2] the action of

gy also preserves both Z, (showing Oand ég,h (showing .

Finally, we define a map 7, : Og — (IIy N OS) x CNo as follows. Let 7, =
(Dg1,7g,2) : Cg = )% x X9 be the map from Proposition B2 We let 7y o := 7y 200,
so it sends (9 — Cy(g) = Xvle) (CN By Proposition the image of 7, 2
is precisely Z‘C We also let 7,1 1= @, 0410 @y, so it sends

OF = Cyq wa(l) NV o RED 21, N O
It follows from Theorem [7.3(1)| and Proposition [B.2 that Ug = (Ug,1,Vq,2) gives a
biregular isomorphism OC (H N (’)C) XZg. €. All maps in the definition of Z(C are
defined over R, so 7, gives a smooth embedding O, — (Hﬂs NOy) x RNs with image
(12[]15 NO,) x Z;. By Lemma B3] we find that Z, is an embedded submanifold of
RNs, so we get a diffeomorphism
7y 0, 5 (EN0O,) x Z,

By Theoremand Proposmonm we find that for h = g, 7, sends Hhﬁ(’)
(H NOy) x Zgh, showing When 2P € H N Oy, we have @, (zP) €
'Rw(f 80 Ug1(@u(zP)) = @u(xzP) and Uy 2(@,(zP)) € RY) " Thus Ug1(zP) =

¥(g)’ ¥v(g)’
x and 7go(xP) = 0, showing [(FS4)l We have checked all the requirements of
Definitions 211 2.2, and O

9. THE cASE G = SL,,

In this section, we illustrate our construction in type A. We mostly focus on the
case when G/P is the Grassmannian Gr(k,n) so that (G/P)>¢ is the totally non-
negative Grassmannian Grso(k,n) of Postnikov [Pos07]. Throughout, we assume
K=C.

9.1. Preliminaries. Fix an integer n > 1 and denote [n] := {1,2,...,n}. For
0<k<n,let ([Z]) denote the set of all k-element subsets of [n].

Let G = SL,, be the group of n x n matrices over C of determinant 1. We have
subgroups B,B_,T,U,U_ C G consisting of upper triangular, lower triangular,
diagonal, upper unitriangular, and lower unitriangular matrices of determinant 1,
respectively. The Weyl group W is the group S, of permutations of [n], and for
i€l =[n—1], s; € W is the simple transposition of elements ¢ and i + 1. If
w € W is written as a product w = s;, ...s;,, then the action of w on [n] is given
by w(j) = si, (- -+ (s4,(j)) -+ ) for j € [n]. For S C [n], we set wS :={w(j) | j € S}.
For example, if n = 3 and w = s2s1 then w(l) = 3, w(2) = 1, w(3) = 2, and
w{l,3} ={2,3}.

For i € [n — 1], the homomorphism ¢; : SLy — G just sends a matrix A € SLy

to the n x n matrix ¢;(A) € SL,, which has a 2 x 2 block equal to A in rows and
. . ) 0-107 . 100 .
columns 4,7 + 1. Thus if n = 3 then $§; = [(1) 0 0}, $o = [8 0 701}, and if w = s981

0-1 0
then w = [0 8 —1} In general, given w € S,,, w contains a £1 in row w(j) and

column j for each j € [n], and the sign of this entry is —1 if and only if the number
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of £1’s strictly below and to the left of it is odd. In other words, the (w(j),j)-th
entry of w equals (—1)#ti<ilw(®)>w(i)}

For x € SL,,, 7' is just the matrix transpose of z, and x* defined in (@4 is the
“positive inverse” given by (x*); ; = (—1)"(z~1), ; for all i, ;.

For i € [n — 1], the function A : SL,, — C is the top-left i x ¢ principal minor,
while Af : SL,, — C is the bottom-right ¢ x ¢ principal minor. The subset GJ =
B_ B consists precisely of matrices € SL,, all of whose top-left principal minors
are nonzero, in agreement with Lemma We define AT (z) = Af(x) :=
detx = 1.

9.2. Flag variety. The group B acts on G = SL, by right multiplication, and
G/B is the complete flag variety in C". It consists of flags {0} = Vo C V; C
-+ C V, = C" in C" such that dimV; = i for ¢ € [n]. For a matrix « € SL,,, the
element B € G/B gives rise to a flag Vo € V4 C --- C V,, such that V; is the
span of columns 1,...,i of . For k € [n], S € ([Z]), and x € SL,,, we denote by
Agag the determinant of the k x k submatrix of z with row set S and column set
[k]. Thus for each k € [n], we have a map A% : G/B — cp()-1 sending 2B to

(Agag(x))sq[:]). Here ([Z]) is identified with the set Wwy, from Lemma [4.21(iv)]
9.3. Partial flag variety. For J C [n], we have a parabolic subgroup P C G, and
the partial flag variety G/P consists of partial flags {0} = Vo CV;, C---CVj, C
V, = C", where {j1 < --- < ji} := [n—1]\J and dim V}, = j; for i € [I]. The projec-
tion 7y : G/B — G/P sends a flag (Vp,V1,...,V,) to (Vo, Vi, ..., V;,, V). When
J =0, we have P = B and G/P = G/B. We will focus on the “complementary”
special case:

Unless otherwise stated, we assume that J=[n — 1]\ {k} for some fixed k€[n — 1].

In this case, G/P is the (complex) Grassmannian Gr(k,n), which we will identify
with the space of n x k full rank matrices modulo column operations. Let us write
matrices in SL,, in block form [%’%], where A is of size k x k and D is of size

(n—k)x (n—k). For a matrix z = [%’%] € SL,,, we denote by [z| := [%] the n x k
submatrix consisting of the first £ columns of . Thus every x € SL,, gives rise to
an element P of G/P which is a k-dimensional subspace Vi, C C" equal to the
column span of [z|. The map Azag in this case is the classical Pliicker embedding
AR Gr(k,n) — Cp() 1,

The set W from Section consists of Grassmannian permutations: we have
w € W7 if and only if w = id or every reduced word for w ends with s;. Equiv-
alently, w € WY if and only if w(1) < -+ < w(k) and w(k + 1) < --- < w(n),
so the map w ~ wlk] gives a bijection W’ — ([Z]). The parabolic subgroup W;
(generated by {s;};ecs) consists of permutations w € S,, such that w[k] = [k], and
the longest element wy € Wy is given by (w;(1),...,ws(n)) = (k,...,1,n,....k+
1). The maximal element w’ of W is given by (w’(1),...,w/(n)) = (n — k +
1,...,n,1,...,n— k). We have

o= {P]} v = ()
LJ—{[%%]}’ P_{[%%]}’
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where U, is an r X r upper unitriangular matrix, I, is the r x r identity matrix,
A € SLy, D € SL,,_, and B, C are arbitrary k x (n — k) and (n — k) x k matrices,
respectively.

9.4. Affine charts. We have G(()J) ={zreq| AFkajg( ) # 0}, and for z = {%’%} €

GS (such that det A = A?,;g( ) # 0), the factorization z = [2]'”[2]} [x]f) from
Lemma is given by

A|B _{ L | o ] [A 0 ] [Ik.A‘lB]
ClD |~ | CAT Ty 0| D-CA'B 0 Lior |-
The matrix D — CA~'B is called the Schur complement of A in x.

For u € W, the set Cy) C G/P from Section [L12] consists of elements 2P such
that Aﬂ?lf]( ) # 0. The (inverse of the) isomorphism (£31)) essentially amounts to
computing the reduced column echelon form of an n x k matrix: if x € G is such
that 2P € C” is sent to g € U a1 via (#31), then the n x k matrices [z
and [g(‘])u| have the same column span, and the submatrix of [g(‘])u| with row

set u[k] is the k x k identity matrix. Let us say that an n x k matrix M is in

u[k]-echelon form if its submatrix with row set u[k] is the k x k identity matrix.

The matrices g§">u and gé‘])ﬂ from Definition @23l are obtained from ¢(”) 4 simply

al, (M) = [g%‘”
and (M) := [gé u} be the corresponding n x k matrices. Thus M; ; = J; ;) for
all 7 € ulk] and j € [k], and we have

) )My, it <u(j), MY = M, if i > u(j),
7 0, otherwise, - 0, otherwise,

(9.1)

by replacing some entries with 0. Explicitly, let (M; ;) := [

)

for all i € [n] and j € [k]. The operation M — M’, which we call u-truncation, will
play an important role.

Example 9.1. Let G/P = Gr(2,4) and u = s3s2 € W7, so ulk] = {1,4}. We have

1 1 1 1
. - J) . J).
e=gPi= ] = e =) 80 =5 |
1 1 1 1
where blank entries correspond to zeros.

9.5. Positroid varieties. We review the background on positroid varieties in-
side Gr(k,n), which were introduced in [KLS13], building on the work of Post-
nikov [Pos07]. Let S,, be the group of affine permutations, i.e., bijections f : Z — Z
such that f(i+n) = f(i)+n for all i € Z. We have a function av : S,, — Z sending
f toav(f) := 23" (f(i) — i), which is an integer for all f € S,. For j € Z,
denote S’j,n :={f eS8, |av(f) =j}. Every f € S, is determined by the sequence
f(),..., f(n), and we write f in window notation as f = [f(1),..., f(n)]. For
X\ € Z", define 7, € S,, by 7y 1= [d1,...,dy], where d; =i+ n); for all ¢ € [n]. Let
Bound(k,n) C S’k,n be the set of bounded affine permutations, which consists of all
f € S, satisfying av(f) = k and i < f(i) <i+n for all i € Z. The subset Sp, is a
Coxeter group with generators sy, ..., 8,—1,8, = So, where for i € [n], s; : Z — Z
sendsttoi+1,i+1to¢, and j tog forally;‘éz i1+ 1 (mod n). We let < denote
the Bruhat order on So n, and £ : SO n — Z>o denote the length function. We
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have a bijection Sy, — S, sending (i — f(i)) to (i = f(i) + k), which induces a
poset structure and a length function on Skn When f < g, we write g <°? f, and
we will be interested in the poset (Bound(k,n), <°P), which has a unique maximal
element 7, := [l + k,2+ k,...,n+ k]. It is known that Bound(k,n) is a lower
order ideal of (S’kn, <°P). We fix A = 10" % := (1,...,1,0,...,0) € Z" (with k
1’s). Then 7y = [1+mn,...,k+n,k+1,...,n]is one of the ([:]) minimal elements
of (Bound(k,n),<°P). The group S, is naturally a subset of Sy, and we have
e = Ta(w’)™! = 7, where 7y was introduced in Section Note that A is
cominuscule; see Remark

Given an n X k matrix M and i € [n], we let M; denote the ith row of M. We
extend this to all i € Z in such a way that M;,,, = (=1)*"1M; for all i € Z. Thus
we view M as a periodic Z x k matrix. (The sign (—1)*~! is chosen so that if
M € Gr>o(k,n), then the matrix with rows M;, ..., M;+,—1 belongs to Gr>o(k,n)
for all ¢ € Z; see Section[@.11l) Every n x k matrix M of rank k gives rise to a map
fym Z — Z sending ¢ € Z to the minimal j > 4 such that M; belongs to the linear
span of M;y1,...,M;. It is easy to see that fy; € Bound(k,n) and fas depends
only on the column span of M. For h € Bound(k,n), the (open) positroid variety
I, ¢ Gr(k,n) is the subset I, = {M € Gr(k,n) | far = h}. Its Zariski closure
inside Gr(k,n) is 1T, = || <ony, ; see [KLSI3, Theorem 5.10].

For h € Bound(k, n), define the Grassmann necklace T, = (I,)acz of h by

(9.2) I, :={h(i)|i<a, h(i) > a} forac€Z.

Then I, is a k-element subset of [a,a + n), where for a < b € Z we set [a,b) :=
{a,a+1,...,b—1}. For a <b € Z and M € Gr(k,n), define rank(M;a,b) to be
the rank of the submatrix of M with row set [a,b). For a,b € Z and h € S,,, define
rap(h) = #{i < a | h(i) > b}. We describe two well-known characterizations of
open positroid varieties; see [KLS13l Section 5.2].

Proposition 9.2. Let h € Bound(k,n) and let T, = (I,)aez be its Grassmann
necklace.

(i) The set I, consists of all M € Gr(k,n) such that for each a € Z, I, is the
lezicographically minimal k-element subset S of [a,a + n) such that the rows
(M;);ics are linearly independent.

(ii) For M € Gr(k,n), we have M € I, if and only if

(9.3) k —rank(M;a,b) =rop(h) foralla <beZ.

We use window notation for Grassmann necklaces as well, i.e., we write 7, =
[I1,..., 1]

Recall that we have fixed A = 1¥0"~* € Z". For (v,w) € Q, define f, ., € S,
by
(9.4) Jow = vrw L.

Theorem 9.3 (JKLS13| Propositions 3.15 and 5.4]). The map (v, w) — fy. gives
a poset isomorphism

(Qs,=) = (Bound(k,n), <°P).

For (v,w) € Q, we have lglvyw = IEIfUM and 11, = Iy, as subsets of G/P =
Gr(k,n).
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Example 9.4. There are n positroid varieties of codimension 1, each given by the
condition A??E i =0 for some i € [n]. Indeed, the top element (id, w”’) € Q;
covers n elements, namely (s;, w”) for i € [n—1], together with (id, s,_xw?). In the

o J . . flag _
former case we have f;, ., = s;73, which corresponds to the variety A{i—k-‘,—l,...,i} =

0. In the latter case we have fiq s _, w7 = T;\’sn,k, which corresponds to the variety

fla,
A{ng—k+1,...,n} =0.

Example 9.5. One can check directly from (@) and ([@2)) that the first element of
the Grassmann necklace of f, ., is I1 = v[k]. Similarly, wk] = {i € [n] | fyw(7) >
Example 9.6. Elements of Bound(k,n) and @ are in bijection with I-diagrams
of [Pos07]. The bijection between @; and the set of JI-diagrams is described
in [Pos(7, Section 19]: the pair (v, w) € @  gives rise to a I-diagram whose shape is
a Young diagram inside a k x (n — k) rectangle, corresponding to the set w[k]. The
squares of the J-diagram correspond to the terms in a reduced expression for w, as
shown in Figure [ (top left): the box with coordinates (7, 7) in matrix notation is

...—-10 1 2 3 4 5 6 7 8 9 10 11 12...

So | S3 84‘ w*l
S1| 82
~
X
oo | oo ) v
o (
o

...—-10 1 2 3 4 5 6 7 8 9 10 11 12...

FIGURE 2. A I-diagram (bottom left), the labeling of its squares
by simple transpositions (top left), and the result of applying the
bijection of Theorem (right). See Example [0.6] for details.

labeled by sj4;—;, and we form the expression by reading boxes from right to left,
bottom to top. The terms in the positive subexpression for v inside w correspond
to the squares of the I-diagram that are not filled with dots; see Figure 2] (bottom
left). Thus the bijection of Theorem can be pictorially represented as in Fig-
ure 2l (right). We refer to [Pos07, Section 19] or [Wil07, Appendix A] for the precise
description. For the example in Figure 2] we have v = s1, w = s951545352, and
fo.w =1[3,4,7,5,6] in window notation, which is obtained by following the strands
in Figure [ (right) from top to bottom.

9.6. Polynomial loop group. We explain how the construction in Section [7 ap-
plies to the case G/P = Gr(k,n). Recall that A := Cl[z,27!]. Let GL,(A) de-
note the polynomial loop group of GL,,, consisting of n X n matrices with entries
in A whose determinant is a nonzero Laurent monomial in z, i.e., an invertible
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element of A. (We use GL,(A) instead of SL,,(A) as the constructions are com-
binatorially more elegant.) We have a group homomorphism val : GL,(A) — Z
sending z € GL,(A) to j € Z such that detz = ¢z for some ¢ € C*, and we let
GLY(A) := {& € GL,(A) | val z = j}. The subgroups GL, (A ) and GL,(A_)
are contained inside the group GL{®(A) of matrices whose determinant belongs
to C*. We have subgroups U(A+) = evy HU), U_(A_) == ev ' (U-), B(Ay) =
évy'(B) and B_(A_) := ev ! (B_) of GL{Y(A). Thus in the notation of Section [7]
for G = SL,, we have G = SL,(A) C GLno)(A), B =SL,(A)NB(A;) C B(A,),
U=U(Ay),andU_ =U_(A_).

To each matrix z € GL,,(A), we associate a Z x Z matrix & = (Z; ;) jez that is

uniquely defined by the conditions

(1) %ij = Titn,j4n foralli,j € Z, and

(2) the entry z; ;(z) equals the finite sum Y- ,; Z; j+dn2? for all i,5 € [n].
One can check that if x = zjx9, then T = Z1Z5. With this identification, the
subgroups U, U_, B(A,), and B_(A_) have a very natural meaning. For example,
x € GL,(A) belongs to U if and only if Z; ; = 0 for i > j and Z; ;, = 1 for all i € Z.
Similarly, B(Ay) consists of all elements € GL,,(A) such that Z; ; = 0 for ¢ > j
and Z;; # 0 for all ¢ € Z.

To each affine permutation f € Sy n, We associate an element f € GL,(A) so
that the corresponding Z x Z matrix f satisfies f” =1ifi= f(j) and fw =0
otherwise, for all i,j € Z. In other words, if for i,j € [n] there exists d € Z such
that f(j) = i + dn then fi j(z) := 2~% and otherwise f; ;(z) := 0. Observe that
val f = k for all f € S, and thus f € GL™(A). Recall that we have fixed
A = 1%0"~% ¢ Z". We obtain 7, = diag (%, ey i,l ,1) with k entries equal
to 1, and for u € WY, we therefore get 7, = diag(cq, ..., cn), where ¢; = % for

i ezu[k] and ¢; = 1 for i ¢ ulk].

9.7. Affine flag variety. The quotient GL{*)(A)/B(A,) is isomorphic to the
affine flag variety G/B of Section [Tl for the case G = SL,. Indeed, GL((A) acts
simply transitively on GL®*)(A) and we clearly have GL{” (A)/B(A}) = G/B. For
f <P he S, and g € S, we have subsets X¥, X, R €, < GL(A)/B(Ay)

defined by
X = B(AL) - f B(AY)/B(AL), X i=B_(AL)-h- B(Ay)/B(AL),
R = X, N A7, C,:=g-B_(A_)-B(Ay)/B(Ay).

Let us now calculate the map ¢, from (IIl). Recall that it sends zP € cy)
to g( ) “Tux -+ (g (J)) Assuming as before that z = ¢()u € ﬂU(_J), consider the
corresponding n X k matrix (M; ;) := [z| in u[k]-echelon form.

Proposition 9.7. The matriz y = o, (xP) € GL¥(A) is given for all i,j € [n]
by
(9.5) Yij(2) = ¢ =M s, ifi>j and j =u(s) for some s € [k],

M; s

z )

if 1 < j and j = u(s) for some s € [k].

Proof. This follows by directly computing the product gg’]) CTu (gé']))_l. O
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Example 9.8. In the notation of Example Q.1 we have

1
9.6) y =g\ fun- (g = RN =N _ | et
: Y=o uX 92 1z14 1 —x3 11 —z5 1

1

b, |8
n|>~u|‘>u‘w

Remark 9.9. The map @,, : P — g§‘]) “Tun - (gé‘]))’1 -B(Ay) is a slight variation of
a similar embedding of [Snil0] which we denote @!,. We have @, (zP) = gg‘]) Tun -
gé‘]) - B(A4), and the corresponding matrix y' = ¢, (zP) := g%‘]) Tux -gé‘]) is given
by ([@5) except that —M; , should be replaced by M; . Thus ¢’ is obtained from
y by substituting z — —z and then changing the signs of all columns in u[k]. In
particular, ¢’ and y are related by an element of the affine torus from Section

Proposition is due to Snider [Snil0]. Theorem generalizes Snider’s
result to arbitrary G/P. The advantage of introducing the sign change in our map
Py is that it is better suited for applications to total positivity: for instance, the

analog of Theorem does not hold for the map @.,.

We give a standard convenient characterization of /'\(?’h using lattices. For each
z € GL,(A) and column a € Z, we introduce a Laurent polynomial x,(t) € C[t,t™!]
defined by 24(t) = Y_,c5 %; 4t", and an infinite-dimensional linear subspace Lq () C
Clt,t™ '] given by L, () := Span{x;(t) | j < a}, where Span denotes the space of all
finite linear combinations. For b € Z, define another linear subspace Ej, C C[t,t™!]
by E, := Span{t' | i > b}. Finally, for a,b € Z, define r,;(z) € Z to be the
dimension of L, (z) N Ep. In other words, 7, () is the dimension of the space of

Z x 1 vectors that have zeros in rows b — 1,b — 2, ... and can be obtained as finite
linear combinations of columns a — 1,a — 2,... of . Recall from Section that

for a,b € Z and h € S,,, we define o 4(h) := #{i < a | h(i) > b}.
Lemma 9.10. Let z € GLY(A) and h € Sy, for some d € Z. Then
(9.7) x-B(A}) € X if and only if rap(x) =rep(h) foralla,be Z.

Proof. Tt is clear that 744 () = 745 (h) when z = h. One can check that 7, 4(y_ 2y, )
= rap(z) for all z € GLY(A), y_ € B_(A_), y. € B(Ay), and a,b € Z. This

proves (0.7) since GL{® (A)/B(AL) = Unes, . X, by (B2). O

Remark 9.11. A lattice L is usually defined (see e.g. [Kum02), Section 13.2.13]) to
be a free C[[z]]-submodule of C((t)) = C((2))" (where z = t") satisfying £ ®c[jy
C((z)) = C((2))™. The C[[z]]-submodule generated by our L,(z) gives a lattice
L, (z) in the usual sense.

Definition 9.12. Suppose we are given an n X k matrix M in u[k]-echelon form.
Recall that we have defined the row M, for all a € Z in such a way that M., =
(=1)%~'M,. For a € Z and j € [k], denote by 0% ; € [a,a + n) the unique integer

that is equal to u(j) modulo n. Define the u-truncation M%™u of M to be the

[a,a + n) x k matrix M*a = (Mtr?‘) such that for i € [a,a +n) and j € [k], the

2
entry M:’;“ is equal to M; ; if @ < 67 ; and to 0 otherwise; see Example [0.18 Thus
M*u is obtained from the matrix with rows M,,..., M, ,_1 by setting an entry

to 0 if it is below the corresponding +1 in the same column, and we label its rows
by a,...,a+mn — 1 rather than by 1,...,n. For example, if z = (/)i and M = [z|

then Mt = [g@u ; cf. Example 0.1
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Lemma 9.13. Let 2 = ¢/ ¢ QUEJ), M :=[z|, and y := @, (xP). Then for all
a € Z, the space Lq(y) has a basis

(9.8)
at+n—1

{t'|i<a}U{Pi(t),..., Pu(t)}, where Py(t):= Y M*t" forsel[k].

Proof. For a subset S C Z, define S+ nZ :={j+in|j €S, i € Z}. The space
L (y) is the span of y; () for all j < a. If j ¢ u[k]+nZ then y;(t) = t/ by definition.
If j € ulk|+nZ then y; _,(t) =t/ +3°, ;. cit’, where ¢; is zero for i € ulk]+nZ.
It follows that L, (y) contains ¢ for all i < a. Moreover, the only indices j < a such
that y;(t) ¢ Span{t’ | i < a} are those that belong to [a — n,a) N (u[k] + nZ). Let
Jj € la—n,a) N (u[k] + nZ) be such an index, and let s € [k] be the unique index
such that u(s) € j + nZ. Then clearly y;(t) + Ps(t) € Span{t’ | i < a}, where the
sign depends on the parity of ﬁnﬂ € Z. Thus Ps(t) € L,(y) for all s € [k], and
Lo (y) is the span of {t* | i < a}U{Pyi(t),...,Pk(t)}. Since the Laurent polynomials
P,(t) have different degrees, they must be linearly independent. (Il

We give an alternative proof of Theorem [7.3(1)| for the case G/P = Gr(k,n).

Proposition 9.14. For h € Bound(k,n) such that 7,5 <°P h, the map @, gives
isomorphisms

Do Cq(;]) = /’é”*, Do C’&J) N lg[h = 702,:'“.

Proof. 1t is clear from (0.5]) that we have a biregular isomorphism Ul(‘]) X UQ(J) =
Uy (Tyn) sending (gg’]),gé’])) to gg’]) -%UA(géJ))_I%u}l. Thus the map (gg’]),gé‘])) —
g%J) “Tun - (gé‘]))_1 - B(A) gives a parametrization of X™*; see (ZH). Since i) =

UheBound(k,n)(C’fj]) N lglh), let us fix h € Bound(k,n) and z = ¢ € avt?).
Define M := [z| and y = ¢,(zP). By ([@3), we have M € 1T, if and only if
k —rank(M;a,b) = rqp(h) for all a < b € Z. By ([@1), we have y - B(Ay) € X, if
and only if r45(y) = rap(h) for all a,b € Z. If a > b then 745(y) = rap+1(y) + 1
by @8) and r,5(h) = r4p41(h) + 1 since h € Bound(k,n) satisfies h=1(b) < b, so
h~='(b) < a. We have shown that y- B(A4) € X, if and only if Tap(y) = rap(h) for
all a < b € Z. Thus it suffices to show

(9.9) rap(y) + rank(M;a,b) =k foralla <be Z.

By @8), rq(y) is the dimension of Span{P;(¢),..., Px(¢t)} N Ep. By the rank-
nullity theorem, k —r,5(y) is the rank of the submatrix of M with row set [a, ),

which is obtained by downward row operations from the submatrix of M with row
set [a,b). This shows ([@9). O

Remark 9.15. By Theorem the image of @, is &7y N X7ux | where ! =

m(w?)~L. But recall from Section @3] that 75 (w”)~! = 75, and since X;, is dense
in GL® (A)/B(A,), we find that XN Xrun = Xrun,

Example 9.16. Suppose that z = ¢(/)4 is given as in Example [@.1] so that y =
¢y (xP) is the matrix from Example It is clear that y € B(Ay) - Ty regardless
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of the values of x1, 9, 3, 24, and therefore y - B(A,) belongs to XTex . We can try
to factorize y as an element of B_(A_) -7 - B(A4):

1 r2 T4 rjrg—T2x3 _ x4 1
(@174 —w323)2 Z32 1 = z
1%4 2%3 3 = 2 2
1 1 x3 _ T
Yy = T4 1 R T1T4—T2T3 T T4—TTJ
2 ’ 1 1
5 — 1 1 3
T2 T1T4—T2T3 —x1z z To

This factorization makes sense only when all denominators on the right-hand side
are nonzero, which shows that y-B(A) € R7+* whenever the minors Aili; 8(z) = x2,
Ales — gy — wyw3, and AR — 1o are nonzero. Observe also that Aflas () = 1.
Thus y - B(A4) € R precisely when 2P € Il,,, where 7, = [3,4,5, 6] in window
notation. If zo = 0 then zP € ﬁh for h =[2,4,5,7]. In this case, we have

1 1 — 1 T4 1 —xq 1
. z z1z z3z z z3 1
— |1 — 1 1 z1T4 4
h 1 y‘ 0 1 : : 1
- 1] z2=U 7 1
z __*3 1 x3
1 T1T4 T4 1 1 —x3%z z x4

Therefore y|,,—0 belongs to 703,:“'* whenever x1, 3,24 # 0. Observe that the Grass-
mann necklace of h is given by Zp, = [{1, 3}, {2, 3}, {3, 4}, {4, 5}] in window notation,
and the corresponding flag minors of z|,,—¢ are given by A?gg = T4, Aggg = 1114,
Agzg = x3, and A?Zg =1, in agreement with Proposition

w =

9.8. Preimage of C,. For this section, we fix 7,5, <°? g € Bound(k,n). We would
like to understand the preimage of (2@'“* N Cg) C GL™W(A)/B(Ay) under the map

@y. For a set S C [a,a + n) of size k, define Atsr% (M) to be the determinant of
the k x k submatrix of M™% with row set S. Let Zy = (Ia)aez be the Grassmann
necklace of g.

Proposition 9.17. Suppose that P € C’&’]) and let M = [g(‘])ﬂ|. Then ¢, (zP) €
Cq if and only if Atlzi (M) #0 for all a € [n).

Proof. Let h € S, be the unique element such that ¢='@, (zP) belongs to /'@h, SO
that @,(zP) € C, if and only if h = id. Since val ,(zP) = k and val g~! =
—k, we get h € S'o,n- Hence h = id if and only if r,4(h) = 0 for all a € Z.
Let y := @, (xP) and 3 := g~ly. Then for a € Z, we get L,(y') = g 'La(y),
where g=1 acts on C[t,t!] as a linear map sending 7 to 97 G). In particular,
L.(y) N E, = (g7 La(y)) N E, has the same dimension as L,(y) N gE,. Let us
define H, := {t' | i > a}, so E, = Span(H,) and gE, = Span(gH,). Since g(i) > i
for all i € Z, it follows from ([@.2) that gH, = H, \ {}jer,. Therefore by (0.8),
La(y) N gE, = {0} if and only if Span{P;(t)},cpx N Span (Hy \ {t}jer,) = {0},
which happens precisely when the submatrix of M*u with row set I, is nonsingular,
i.e., A (M) # 0. O

Example 9.18. Suppose that x is the matrix from Example @I so that y :=
wu(zP) is given in Example We have

1 N 1 5 Ty T2 3 T3 T4 4 1
r3 T - —
M= gé ;;Z , Mtru — ;;Z , Mtru — 3 14 ’ Mtru =, 1 , Mtru — 1 .

1 1 -1
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Suppose that g = [2,4,5,7] as in Example so that its Grassmann necklace is
T, = [{1,3},{2,3},{3,4},{4,5}] in window notation. This gives
(9.10)
trl tr2 trd trd
Ayg' (M) = x4, Apg' (M) = 2124 — wax3,  Agy' (M) =33, Ay (M) = 1.

1

z

On the other hand, recall from Example that ¢ = [1 ] . Since y € Cy if
1

1
z

and only if 7'y € B_(A_) - B(A,), we can factorize it as

r— z2
X1 1 >
9.11) ¢ ly= :
. g y= z
1
L —X3%2 Z g
- 1 T2 _z®y—wo®3 1 _Zz2
T4z z4 T4
_ z 1 1 z3 _ z1
= T1T4—T2T3 T4z | - T1T4—T2T3 T1T4—T2T3
_ z4 Z4 q L
T1TYy—TQT3 T3 z3
L 1 —x32 z x4

Again, this is valid only when the denominators on the right-hand side are nonzero.
Thus we see that ¢~'y belongs to B_(A_) - B(A,) precisely when all minors
in [@I0) are nonzero, in agreement with Proposition [0.17]

9.9. Fomin—Shapiro atlas. The computation in @I can now be used to find
the maps 7, and ¥,. As in Section B3] denote by O, C C) the preimage of
CyN X7 under @u. Thus for our running example, O, is the subset of C,(j]) where
all minors in (@.I0) are nonzero. We are interested in the map vy = (74,1,74,2) :
0O, — (ﬁg N Oy) x Zg from (ZI), defined in Section B3l The first component
is g1 = g to Vg1 © @y, where 7y : Cg N X 7%;“* x X9 is the map from
Proposition In order to compute it, we consider the factorization ¢~ 'y =
y— -yt €U_ - B(A;) from [@TIT)). The group U;(g) is 1-dimensional since £(g) = 1,
and the corresponding element y; € U (g) from Propositioncan be computed
by factorizing gy_¢~' as an element of Uy (g) - Us(g):

1= = v o
) i mmrs ) et L ! *ﬁ was
qy—g = m14 = T’14 . R 1 )
_ z 1 9 1 ——% L
riry—TQW3 xy T1T4TE2E3 4
1 xT
1 —Z2
= T4 .
Y1 1
1
Therefore the map 7,1 sends y - B(A4) from (@.6) to
1 1
mymiomgws | wa _ayei-wgey
p— x x J— x
vy - B(AL) = ‘ t,, | - B(AL) = ! o | - B(AL).
—x3 1 =2 —x3 124
1 1
z z

Applying ¢! to the right-hand side, we see that the map Dy is given by

x T4
1 3

1
— © 9511 o T1T4—T2T3
Ug1:04 = 1I;NO, el I 7 .
1
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1

Similarly, factorizing gy_¢—"' as an element of Us(g) - U1 (g), we find that

! ED)
Pga(y- B(A+)) =y - B(AL) = | =i | -g-B(Ay).

1

1
We have Ny = ¢(g) = 1, and the map 7,2 : Oy = Z, = R sends {Il "”2} to %2

T3 Ta T4’
1

9.9.1. Torus action. We compute the maps from Section B2l Let p € Y(T) denote
the group homomorphism 5 : C* — C* x T sending t to p(t) := (¢, diag(t" 1, ...,
t,1)). If € GL,(A) is represented by a Z x Z matrix (Z;;) then the element
y = p(t)zp(t)~' € GL,(A) satisfies g; ; = t/~'7; ; for all i,j € Z.

Example 9.19. Continuing the example above, we find that

txg

1
p(t) - yoy - p(t)~ - B(AL) = [ 1 B |2|

+g-B(Ay), and |lyoy- B(A4)|l = zal’

1

Thus the action of ¥, on Z, is given by 9, (t, i—i) = %2 The pullback of this

. J) . . .
action to O, C CZS ) via v, I preserves x5, x4, and 124 — Tox3 (since it preserves

Ug.1(x)), but multiplies i—z by t. Therefore it is given by

T3 T4 T3 T4

l7g_1 o (id x 9,(t,-)) oy : Oy — Oy, [m xz] N lmﬁ(tl)%ﬁ tz2‘| )
1 1

9.10. The maps « and C,([]v) The subset ﬂGéJ) consists of matrices x € G such
that Ag?kg] (z) # 0. Suppose that z = ¢g()u € aU). Then the elements g@@ and
gé‘])u are obtained from x by setting some entries to zero; see Section [@.4l The map

r3 T4

1
& — kgx from Definition E223 sends z = ¢/ to g§%, e.g., if [z| = {‘”1 ’”2] then
1

n
1

M = [z] is in u[k]-echelon form then [k, z| is the u-truncation M.

Now let (v,w) € Q§(u’u), 80 Tyx <P g := fy 4, and define Z, := (I,)qez. The
set Gq(j]?, from (6J) consists of z € G such that Ai?,f] (z) # 0 and Ag;ﬁ(/{mx) # 0.
But recall from Example that v[k] = I. Thus

1
[kez| = [ “} as in Example Comparing this to Section [0.8] we see that if

(9.12) GY)

() — {x €q | Ai?,f](x) # 0 and Atlr;(M) # O}, where M := {g(‘])ﬂ‘.

Example 9.20. We compute the maps « and C,SJJ for our running example. Sup-

pose that = ¢/)4 is given as in Example @1} and let g = [2,4,5,7] as in Ex-

ample [0.I8 Then g = so7, so under the correspondence (@4), we have g = f,,

for v = 59 and w = w’ = $9515359; cf. Example Since v[k] = I, = {1, 3}, we
1

T2

x4 |0
1

1
so 0V k,x = { T4 1]. Factorizing the latter as an element of USJ) -L;-UY)

see that x € G&Jg whenever x4 # 0. We have just computed that [k,2| =

—I2 1
1
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568 PAVEL GALASHIN ET AL.

via (@), we get

1 1
1 b 1 ! 4 ' 1 1
. . 1| Sy N _ 1
U Rel = —;21 - T ag 1 ! 1_£ ' 1 4,
1 L 1 1 1
T4

1
en

71%;31']] — 1 —Z2

[0

Thus we have computed 7(x) = [0~ kx|, from Definition Since x € uUEJ),
we use Lemma |6.3(ii)| to find
1 1

) -1 o1 5% —1 - (D) (ryai—1 —l-w e 5
C ( ) = xn(x) = x3 1 —x4 9 S0 Cu,v (x)w = —x4 x3 1
1 1

z4 z4

Therefore the bottom-right principal minors of Q([Ig (x)w~1 are

(9.13)
AE(CD (@it = —, AECI @)Y = 22, AF(C) (@)oY =

Ty e 334 Ty

L1Tg — T2T3

By Proposition [0.17) the preimage of C, under @, is described by A'}? (M) #£0
for all @ € [n]. Alternatively, as we showed in Section [[7} the preimage of C, under
@y, is described by AF( 1([]3 (x)w™1) # 0 for all i € [n — 1]. The following result has
been computationally checked for all n < 5, k € [n], and (u,u) < (v,w) € Q:
Conjecture 9.21. Let (u,u) = (v,w) € Q. Define g := fyw, and let Ty = (I4)qez
be its Grassmann necklace. Suppose that x = g\ € G&Jg and let M := [z|. Then

AV (M
(9.14) A (D = S D i e .
Ap (M)
1

For example, compare (@I3) with (@I0). Also recall that when i = 1,
AE(¢ ) o (z)w™1) :=1, so in this case (@.I4) holds trivially.

9.11. Total positivity. We recall some background on the totally nonnegative
Grassmannian Gr>o(k,n) of [Pos07]. By a result of Whitney [Whi52], G>¢ is the

set of matrices in SL, (R) all of whose minors (of arbitrary sizes) are nonnegative.
We have the following characterizations:

(9.15) (G/B)so = {:cB € (G/B)r | A%8(2) > 0 for all § C [n]} ,
(9.16) Grso(k,n) = (G/P)so = {xP € (G/P)g | A8(z) > 0 for all S € ([;;])} .

The equality (@.I6) is due to Rietsch; see [Laml6, Remark 3.8] for a proof. The
equality ([@I58) can be proved using arguments from [Whi52] (cf. the proof of
Lemma [LI7). We caution the reader that the analogous statement can fail to
hold for other choices of J. For instance, when G = SLy and J = {2}, (G/P)>o
does not contain all zP € (G/P)g such that AF®(z) > 0 for all S € ([711]) U ([g]);
see [Chelll Section 10.1].

For f € Bound(k,n), we let H>0 HfﬁGr>0(k: n) and H* =1;NGr>g(k,n).
Thus for (v, w) € Q , we have H>O =1I;% and H>0 Hi?u by Theorem [0.3]

v, w
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Proposition 9.22. Let 7,5 <°° g <°? h € Bound(k,n), and let Z, = (I4)aez
be the Grassmann necklace of g. Suppose that a matriz M in u[k]-echelon form
belongs to 1170, Then

(9.17) M € Grso(k,n) and Atjiz (M)>0 forallacZ.

Proof. Applying Theorem 0.3, we have (u,u) =X (v,w) =X (v/,w') € Qy, where
g = fow and h = fi . By @22), we get v/ < vr’ < ur < wr’ < w' for some
r,r’ € Wjy.

First suppose that a = 1. Let z € G be such that M = [g(")u‘ and zP € H;O,
and define M’ := M%u. We may assume that 2B € Ri,?w,. By Corollary [G.10,

we find that k 2P € Hg,?u, where ¥’ := v/ <r ! for some r, € W satisfying
Tw > T; see Lemma This shows that M’ € Gr>o(k,n). Since ur < ur,, we
find that ur <7,! < u by Lemma [4.6(iii)| and therefore ur <7,! = u. Applying
aryt to v < vr' < wur via Lemma [{.6(iii)} we see that v/ < (vr/ <rjt) < u.
Let v = vivg for v; € WY and vo € W be the parabolic factorization of wv.
Then vr’ <r' € vyWy, and thus (vi,v1) < (?v/,u) € Qy, which is equivalent to

Aiffk](ﬁmx) > 0. From Example we have v[k] = I, and v1[k] = v[k] since
v € vWy, so Atlrl’l‘(M) = A?lag(ﬁmw) > 0. We have shown (@.I7) for a = 1.

Applying the cyclic shift x : Gr>o(k,n) — Grso(k,n) (which takes M to the
matrix with rows (May1)ae[n)), we obtain (.I7) for all a € Z. O

Note that our proof of Proposition [0.22] involves a lifting from G/P to G/B, so
it does not stay completely inside Gr(k, n).

Problem 9.23. Give a self-contained proof of Proposition [0.22]

Example 9.24. We now consider an example for the case G/P = Gr(2,5). Let
u = sy € W’ soul[k] = {1,3}. Consider (v/,w’) € Q; given by v’ := 51 and w’ :=
S251545352 as in Figure 2 so that h := fy/ . = [3,4,7,5,6]. We use Marsh-Rietsch
parametrizationsﬂ from Section 9.1l to compute x € G such that B € Ri?w, and
P eI

1
) 1
o= ya(t1)519a(t3)ys(ta)ya(ts) = ltl e ] ] ,
ats tg 1
tgtats taty t3 1

-
fov =
|~

o

[y
o~

[y

M = [gd| =

=

—tals
—tatats

where t = (t1,t3,t4,t5) € RY,. Observe that B € (G/B)> since all flag minors
of z are nonnegative. (For instance, the first column of = consists of nonnega-
tive entries.) In fact, flag minors of z are subtraction-free rational expressions
in t; cf. (BI9). The n x k matrix [z| is not in u[k]-echelon form, but the ma-
trix M = [g(‘])u’ is. Up to a common scalar, the 2 x 2 flag minors of M are
the same as the corresponding flag minors of x; however, other (i.e., 1 x 1) flag
minors of M are not necessarily nonnegative. The Grassmann necklace of h is
T, = [{1,2},{2,3},{3,4},{4,7},{5,7}]. Using Proposition we check that
indeed zP € I1;°.

2For the Grassmannian case, Marsh-Rietsch parametrizations are closely related to BCFW
bridge parametrizations; see [BCEWO05,AHBCT16|[Kar16].
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Let us choose (v, w) € Q7 with v := s251, W 1= 5251545352, s0 that g := fi, , =
[2,4,8,5,6]. The corresponding J-diagram is obtained from the one in Figure
(bottom left) by removing the dot in the bottom row. We have (u,u) <X (v,w) =<
(v, w’) and 7\ <°P g <°? h. We compute the elements k, = hé‘]) € UQ(J), Tap_(x),
n(z), and C&{? (x) = map_(x) -n(z)~! from Definition

_ 11 _ _ 1t B ?1
5 1 5 5
g('])i'l,: “ ot Ko = 0ot o — b
1 ) T 1 9 T t1 ts 1 9
—tats 1 tats 1 tg 1
L —t3tats 11 Ltstats 1 L tatg ts 1
r -1 . 7] Mt t15 r _tl
1 - AR |
_ ty _ a1 (J) _ |t t1
TP (.1?)— t1 s ) 77(95)— t1 ) C:u,v (‘T)_ 1
tats tg 1 tgy 1 tats 1
L tatats taty t3 1 L t3ts t3 1 L tatats 1

We see that all flag minors of k,x are nonnegative; cf. Lemma Observe
that k), = Kz by Lemma so by Lemma [6.3(ii), we could alternatively

compute ¢\’ (z) as the product ¢ - n(ga)~1:

—t4ts

1
1 e -1
. -1 . o o o7 L 1
n(g(‘”u)Z[ L 1 , () (@)=g (g u) " = P l Y ]
1 —tgtyts 1 1

Finally, we compute the bottom-right ¢ x ¢ principal minors of Q([Q (x)w~t and

observe that they are all nonzero subtraction-free expressions in t, agreeing with
Theorems and [6.14}

J 1 -1 5 -8
¢ (@)t = ! L
1 tatls
1 tatyts
Af(@% (z)w~") = tstats, A%(CI(LJ’L?(x)wil) = tt4t57
AT @)™ =tats, AT @) = 2.

tq

Let us check that this agrees with Conjecture The Grassmann necklace of
gis I, = [{1,3},{2,3},{3,4},{4,8},{5,8}] in window notation. We see that the
corresponding u-truncated minors of M = [g(‘] )d} are indeed given by
1 2 3
A;gu (M) =1, Agr?,u(M) = 1 A;i“(M) = tats,
trd tr51
A48” (M) = ty4ls, Assu (M) = t3ty4ls.

10. FURTHER DIRECTIONS

In addition to Theorem [Tl and Hersh’s result [Her14b] (cf. Corollary [[3]), we
expect the regularity theorem to hold for many other spaces occurring in total
positivity. The most natural immediate direction is total positivity for Kac-Moody
flag varieties.

Let g™ be a minimal Kac-Moody group, U™, /™in, Bmin Bmin he ynipotent
and Borel subgroups, and W be the Weyl group as in Appendix [Al Furthermore,
let P™in 5 B™in denote a standard parabolic subgroup of G™" (a group of the form
G™n N Py in the notation of [Kum02]).
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Definition 10.1. Define the totally nonnegative part US, of U™ to be the sub-
semigroup generated by {z,,(t) | t € Rsg, 1 < i < r}. Define the totally non-
negative part of the flag variety G™»/P™in to be the closure (GMn/Pmin)., =

We remark that our notion of U, coincides with the one studied recently by
Lusztig [Lus20,Lus19) in the simply laced case.

When G™" is an affine Kac-Moody group of type A, Definition [[0.1] agrees with
the definition of Lam and Pylyavskyy (cf. [LP12) Theorem 2.6]) for the polynomial
loop group.

Conjecture 10.2 (Regularity conjecture for Kac-Moody groups and flag varieties).

(1)

The intersection of U, with the Bruhat stratification {BmingyBmin | 4 €
W1 of G™* endows Us,, with an (infinite) cell decomposition with closure

partial order equal to the Bruhat order of W. Furthermore, the link of the
identity in any (closed) cell is a reqular CW complex homeomorphic to a
closed ball.

The intersection of (G™"/B™™) . with the open Richardson stratification
7023 of G™Min /BMIN endows (G /BMY)sq with the structure of a reqular CW
complezx. The closure partial order is the interval order of the Bruhat order
of W, and after adding a minimum, every interval of the closure partial
order is thin and shellable.

The intersection of (G™" /P™) o with the open projected Richardson strat-
ification 1S, of G™I™ /PN endows (G™M™ /P™IN) o with the structure of a
reqular CW complex. The closure partial order is the natural partial order
on P-Bruhat intervals of W, and after adding a minimum, every interval
of the closure partial order is thin and shellable.

Note that every interval in the Bruhat order of W is known to be thin and
shellable [BWR82]. The stratification IS, and the P-Bruhat order can be defined
analogously to [KLS14].

We include a list of some other spaces occurring in total positivity which we
expect to have a natural regular CW complex structure.

(1)

R

The totally nonnegative part of double Bruhat cells [FZ99]. It has been ex-
pected that a link of a double Bruhat cell inside another double Bruhat cell
is a regular CW complex homeomorphic to a closed ball. Our Theorem B.12]
confirms this in type A, since double Bruhat cells for GL,, embed in the
Grassmannian Gr(n, 2n); see [Pos07, Remark 3.11].

The compactified space of planar electrical networks [Lam18] and the space
of boundary correlations of planar Ising models [GP20, Conjecture 9.1].
These spaces are known to be homeomorphic to closed balls [GKLI7GP20],
and have cell decompositions [Laml18,[GP20] whose face poset is graded,
thin, and shellable [HK21].

Amplituhedra [AHT14] and, more generally, Grassmann polytopes [Lam16].
Grassmann polytopes generalize convex polytopes into the Grassmannian
Gr(k,n). The former are well known to be regular CW complexes home-
omorphic to closed balls. Some amplituhedra and Grassmann polytopes
have been shown to be homeomorphic to closed balls in [KW19,[GKLIT,
BGPZ19], though we caution that not all Grassmann polytopes are balls.
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(4) The totally nonnegative part of the wonderful compactification of a semisim-
ple algebraic group [He04]. A cell decomposition of this space was con-
structed in [He04].

We expect that most spaces in this list are (complexes of) shellable TNN spaces
that admit a Fomin—Shapiro atlas.

Finally, let us mention the analogy between totally nonnegative spaces and Te-
ichmiiller space [FG06./Gui08,[GW18|[Lab06]. Thurston’s compactification of the
Teichmiiller space of a compact surface of genus g > 2 is homeomorphic to a closed
ball of dimension 6g — 6 [Thu88], a result that could be compared to Theorem 1]

APPENDIX A. KAC-MOODY FLAG VARIETIES

We recall some background on Kac-Moody groups, and refer to [Kum02] for all
missing definitions. We start by introducing the minimal Kac-Moody group G™i®
and its flag variety G™in /B™inand then explain how they relate to the polynomial
loop group G and its flag variety G/B from Section [

A.1. Kac-Moody Lie algebras. Suppose that A is a generalized Cartan ma-
triz [Kum02, Definition 1.1.1]. Thus Ais an 7 x r integer matrix for some 7 > 1.
We assume A is symmetrizable, that is, there exists a diagonal matrix D € GL,(Q)
such that DA is a symmetric matrix. As in [Kum02], Section 1.1], denote by g the
Kac-Moody Lie algebra associated to A, and let h C g be its Cartan subalgebra,
whose dual is denoted by h*. Thus h and h* are vector spaces over C of dimension
7 := 2r — rank(A), and we let (-,-) : h x h* — C denote the natural pairing.

We let A C h* denote the root system of g, as defined in [Kum02l Section 1.2].
Let {a;}i_; C b* be the simple roots and {«)}'_; C b be the simple coroots.

Let A,c C A denote the set of real roots and A, C A denote the set of imaginary
roots, so0 A = A U Ay, Also let A = AT U A~ denote the decomposition
of A into positive and negative roots, and denote Af = AT N A, and A =
A.NA~. Denote by W the Weyl group associated to A as in [Kum02, Section 1.3].
Thus W acts on A, and preserves the subset A,.. Moreover, W is generated by
simple reflections s1,...,s, € W, and (W, {si}7_;) is a Coxeter group by [Kum02,
Proposition 1.3.21]. We let (W, <) denote the Bruhat order on W and £ : W — Zxg
denote the length function.

A.2. Kac-Moody groups. Let g™ be the minimal Kac-Moody group associ-
ated to A by Kac and Peterson [KPS3|[PK83]; see [Kum02, Section 7.4]. For each
real root @ € A, there is a one-parameter subgroup U, C G™* by [Kum02, Def-
inition 6.2.7]E For each a € Aye, we fix an isomorphism z, : C = U, of al-
gebraic groups. Similarly to the subgroups U,U_,T, B, B_ of G, we have sub-
groups Y™Min, ymin min pmin gmin of gmin - The subgroup U™ is generated by
{Ua}penr . and U™ is generated by {Ua}, . A=~ Next, 7™t is an 7-dimensional
algebraic torus defined in [Kum02) Section 6.1.6], B™® = 7™Mt x (f™it js the stan-
dard positive Borel subgroup and B™» = T™min p /it is the standard negative Borel
subgroup.

3The results in [Kum02] are usually stated for the mazimal Kac-Moody group which he denotes
by G. However, these results apply to G™" as well; see Remark [A3]
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We define a bracket closed subset © C A, in the same way as in Section 2]
and for a bracket closed subset © C A} (respectively, ©® C A ), we have a sub-
group U(O) C U™™ (respectively, U_(O) C U™™), generated by U, for a € ©;
see [Kum02, 6.1.1(6) and Section 6.2.7]. For w € W, Inv(w) := AT Nw 'A~ C A%
is a bracket closed subset of size £(w); cf. [Kum02, Example 6.1.5(b)]. We state the
Kac—Moody analog of Lemma
Lemma A.1 ([Kum02, Lemma 6.1.4]). Suppose that © =||'_, ©; and ©,01,...,
O, C A are finite bracket closed subsets. ThenU(©),U(O1),...,U(O,,) are finite-

dimensional unipotent algebraic groups, and the multiplication map gives a bireqular
isomorphism

(A1) UO) x - xU(O,) = U(O).

A.3. Kac-Moody flag varieties. The Weyl group W equals Ngmin (7™10) /7™
where Ngmin (T™%) is the normalizer of 7™ in Gmin; cf. [Kum02, Lemma 7.4.2).
For f € W, we denote by f € G™® an arbitrary representative of f in Ngmin (7).

By [Kum02, Lemma 7.4.2, Exercise 7.4.E(9), and Theorem 5.2.3(g)], we have
Bruhat and Birkhoff decompositions of G™in:

(AQ) gmin _ I_l ls)min.}élfj)min7 gmin _ I_l BTiniLBmin.
few heWw

We let G™in /B™in denote the Kac—Moody flag variety of G™®. For each h, f € W,
we have Schubert cells X/ = Bminmei“/Bmi“ and opposite Schubert cells /{’h =
BminjAmin /gmin_f f  f € W then by [Kum02, Lemma 7.1.22(b)], X, N X7 = 0.
For h < f, we define 7O€£ .= X, N X7, Therefore ([C3) follows from (A2). The
flag variety G™®/B™n is a projective ind-variety by [Kum02, Section 7.1]. The
Schubert cell X/ and Schubert variety X7 are finite-dimensional subvarieties, while
the opposite Schubert cell /'@h and opposite Schubert variety X}, are ind-subvarieties.

Proposition A.2. Let h < f € W. Then X, N X' is a closed irreducible (£(f) —
{(h))-dimensional subvariety of X/, and R}; is an open dense subset of X, N X7,

Proof. By ([CH), X7 s £(f)-dimensional, and by [Kum02, Lemma 7.3.10], )?h nx’f
has codimension £(h) in Xf. The rest follows by [KumI7, Proposition 6.6]. O

For g € W, let C, := gB™B™in /BMin We have
(A.3) guin/pnin = | | R and C,= || (€,NRY),
h<f h<g<f

where the unions are taken over h, f € W. The first part of (A.3) follows from (A.2),
and for the second part, see the proof of Proposition

Remark A.3. Let G D G™™ be the “maximal” Kac-Moody group (denoted G in
[Kum02]) associated to A, and let B D> B™" be its standard positive Borel subgroup.
Then the standard negative Borel subgroup of G is still B™". By [Kum02, 7.4.5(2)],
we may identify gmin /BN with G/B. By [Kum02, 7.4. 2(3)], X7 coincides with the
varlety BfB/B in [Kum02, Definition 7.1.13] for f € W. Similarly, for h € W,

= Bmin . jBmin /Bmin coincides with the variety Bj = B™nhB/B defined in the
last paragraph of [Kum02l Section 7.1.20].
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A 4. Affine Kac—Moody groups and polynomial loop groups. Suppose that
A is the affine Cartan matrix associated to a simple and simply-connected algebraic
group G. Thus we have r = |[I| + 1, 7 = |I| + 2, and A is defined by [Kum02,
13.1.1(7)]. Let G denote the polynomial loop group from Section [l Our goal is to
explain that the flag varieties G/B and G™® /B™" are isomorphic.

Let C € T C G be the center of G, and let C' C T™i» ¢ g™ he the center
of GMin; see [Kum02, Lemma 6.2.9(c)]. By [Kum02, Corollary 13.2.9], there exists
a surjective group homomorphism 1 : G™" — (C* x G)/C with kernel C, where
C* acts on G as in Section B2} see also [Kum02, Definition 13.2.1]. The groups
U,U_ C G are identified with the groups U™, Y™* C g™ and we have 7 /C =
T™in/C. Thus ¢ induces an isomorphism G™*/B™i* =5 G /B between the affine
Kac-Moody flag variety and the affine flag variety. The Weyl groups W of G
and G™" are isomorphic by [Kum02, Proposition 13.1.7], and the root systems A
coincide by [Kum02, Corollary 13.1.4]. Therefore the subsets x7 , 2%;“ 702£, and C,
of G/B get sent by 9 to the corresponding subsets of G™in /B™in Ag explained in
the last paragraph of [Kum02, Section 13.2.8], G can be viewed as a subset of G™in
as well, and the restriction of ¢ to G is the quotient map G — G/C.

We justify some of the other statements that we used in Sections [Z1] and
For (2)), see [Kum02, Section 13.1]. For (T.6]), see [Kum02, Section 6.1.13]. For a
description of Y(7") from Section B2] see [Kum02l, Section 13.2.2]. For a descrip-
tion of the pairing (-,-) : Y(7) x X(7) — Z in the same section, see [Kum02, Sec-
tion 13.1.1].

A.5. Gaussian decomposition and affine charts. By [Kum02, Theorem 7.4.14],
G™in is an affine ind-group. Similarly, Y™®, ™0, T, BMin and B™M are affine
ind-groups; see e.g. [Kum02, Section 7.4] and [Kum02, Corollary 7.3.8].

Let gmin := pmingmin and g € W. Recall the subgroups U;(g) and Us(g)
from (Z4). Then U;(g) is a closed ¢(g)-dimensional subgroup of U™ =2 I/, and
Us(g) is a closed ind-subgroup of U™ =1/ .

Proof of Lemma Bl For (i), see [Kum02, Proposition 7.4.11]. For (ii), we use an
argument given in [Will3, Proposition 2.5]. Both maps are bijective morphisms
by [Kum02, Lemma 6.1.3]. In particular, it follows that gU™"g=1 C G&" and
for x € gU™"¢~!, we have [z]p = 1. The inverse maps are given by ,u2_11 (z) =
([z]—, [2]4), pra (z) = (z~ Y1, [#71)Z"). They are regular morphisms by (i), which
proves (ii). O

Proof of (TH). The map gU™"g—t =5 C, is a biregular isomorphism for g = id
by [Kum02, Lemma 7.4.10]. Since W acts on G™*/B™" by left multiplication,
the case of general g € W follows as well. Since U (g), Us(g) are closed ind-
subvarieties of gU//™*¢g~1 and X9 ) /'é'g are closed ind-subvarieties of Cg, it suffices

to show that the image of U;(g) equals X9 while the image of Us(g) equals éé'g.
By [Kum02, Exercise 7.4.E(9) and 5.2.3(11)], we have

umin _ (umin n gugungfl) A (umin n gumingfl) ul (g) . (umin N gumingfl),
uElin _ (Z/{Elil‘l N gugling—l) . (Z/{Elin N guming—l) _ u2(g) . (uﬁlin ) guming—l)'
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Thus
BmingBmin _ ul (g) A (umin N0 gumingfl) A gBmin _ ul (g) g . Bmin’
BrilingBmin _ Z/[2(g) . (Z/{Elin I guming—l) . gBmin —_ Z/{Q(g) . g . Bmin. 0
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