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1. Introduction

Let G be a semisimple algebraic group, split over R, and let P ⊂ G be a parabolic
subgroup. Lusztig [Lus94] introduced the totally nonnegative part of the partial
flag variety G/P , denoted (G/P )≥0, which he called a “remarkable polyhedral
subspace”. He conjectured and Rietsch proved [Rie99] that (G/P )≥0 has a decom-
position into open cells. We prove the following conjecture of Williams [Wil07]:

Theorem 1.1. The cell decomposition of (G/P )≥0 forms a regular CW complex.
Thus the closure of each cell is homeomorphic to a closed ball.

A special case of particular interest is when G/P is the Grassmannian Gr(k, n)
of k-dimensional linear subspaces of Rn. In this case, (G/P )≥0 becomes the to-
tally nonnegative Grassmannian Gr≥0(k, n), introduced by Postnikov [Pos07] as
the subset of Gr(k, n) where all Plücker coordinates are nonnegative. He gave a
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514 PAVEL GALASHIN ET AL.

stratification of Gr≥0(k, n) into positroid cells according to which Plücker coordi-
nates are zero and which are strictly positive, and conjectured that the closure of
each positroid cell is homeomorphic to a closed ball. Postnikov’s conjecture follows
as a special case of Theorem 1.1:

Corollary 1.2. The decomposition of Gr≥0(k, n) into positroid cells forms a regular
CW complex. Thus the closure of each positroid cell is homeomorphic to a closed
ball.

When k = 1, Gr≥0(1, n) is the standard (n − 1)-dimensional simplex Δn−1 ⊂
Pn−1. Simplices, and more generally convex polytopes, are prototypical examples
of regular CW complexes. While the spaces (G/P )≥0 and Gr≥0(k, n) are not them-
selves homeomorphic to polytopes, our results confirm that they have the simplest
possible topology.

1.1. History and motivation. A matrix is called totally nonnegative if all its
minors are nonnegative. The theory of such matrices originated in the 1930’s [Sch30,
GK37]. Later, Lusztig [Lus94] was motivated by a question of Kostant to consider
connections between totally nonnegative matrices and his theory of canonical bases
for quantum groups [Lus90]. This led him to introduce the totally nonnegative
part G≥0 of a split semisimple G. Inspired by a result of Whitney [Whi52], he
defined G≥0 to be generated by exponentiated Chevalley generators with positive
real parameters, and generalized many classical results for G = SLn to this setting.
He introduced the totally nonnegative part (G/P )≥0 of a partial flag variety G/P ,
and showed [Lus98b, Section 4] that G≥0 and (G/P )≥0 are contractible.

Fomin and Shapiro [FS00] realized that Lusztig’s work may be used to address
a longstanding problem in poset topology. Namely, the Bruhat order of the Weyl
groupW of G had been shown to be shellable by Björner and Wachs [BW82], and by
general results of Björner [Bjö84] it followed that there exists a “synthetic” regular
CW complex whose face poset coincides with (W,≤). The motivation of [FS00]
was to answer a natural question due to Bernstein and Björner of whether such a
regular CW complex exists “in nature”. Let U ⊂ G be the unipotent radical of
the standard Borel subgroup, and let U≥0 := U ∩ G≥0 be its totally nonnegative
part. For G = SLn, U≥0 is the semigroup of upper-triangular unipotent matrices
with all minors nonnegative. The work of Lusztig [Lus94] implies that U≥0 has a
cell decomposition whose face poset is (W,≤). The space U≥0 is not compact, but
Fomin and Shapiro [FS00] conjectured that taking the link of the identity element in
U≥0, which also has (W,≤) as its face poset, gives the desired regular CW complex.
Their conjecture was confirmed by Hersh [Her14b]. Hersh’s theorem also follows as
a corollary to our proof of Theorem 1.1; see Remark 3.13.

Corollary 1.3 ([Her14b]). The link of the identity in U≥0 is a regular CW complex.

For recent related developments, see [DHM19].
Meanwhile, Postnikov [Pos07] defined the totally nonnegative Grassmannian

Gr≥0(k, n), decomposed it into positroid cells, and showed that each positroid cell is
homeomorphic to an open ball. Motivated by work of Fomin and Zelevinsky [FZ99]
on double Bruhat cells, he conjectured [Pos07, Conjecture 3.6] that this decom-
position forms a regular CW complex. It was later realized (see (9.16)) that the
space Gr≥0(k, n) and its cell decomposition coincide with the one studied by Lusztig
and Rietsch in the special case that G/P = Gr(k, n). Williams [Wil07, Section 7]
extended Postnikov’s conjecture from Gr≥0(k, n) to (G/P )≥0.
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REGULARITY THEOREM 515

There has been much progress towards proving these conjectures. Williams
[Wil07] showed that the face poset of (G/P )≥0 (and hence of Gr≥0(k, n)) is graded,
thin, and shellable, and therefore by [Bjö84] is the face poset of some regular CW
complex. Postnikov, Speyer, and Williams [PSW09] showed that Gr≥0(k, n) is a
CW complex, and their result was generalized to (G/P )≥0 by Rietsch and Williams
[RW08]. Rietsch and Williams [RW10] also showed that the closure of each cell
in (G/P )≥0 is contractible. In previous work [GKL17, GKL19], we showed that
the spaces Gr≥0(k, n) and (G/P )≥0 are homeomorphic to closed balls, which is
the special case of Theorem 1.1 for the top-dimensional cell of (G/P )≥0. We re-
mark that our proof of Theorem 1.1 uses different methods than those employed
in [GKL17,GKL19], in which we relied on the existence of a vector field on G/P
contracting (G/P )≥0 to a point in its interior. Singularities of lower-dimensional
positroid cells give obstructions to the existence of a continuous vector field with
analogous properties.

The topology of a regular CW complex is completely determined by the com-
binatorial structure of its associated cell closure poset, as observed by Björner
[Bjö84]. Therefore one may regard spaces such as U≥0 and Gr≥0(k, n) as canonical
topological realizations of natural posets arising in combinatorics. We expect this
phenomenon to hold more broadly for other spaces appearing in total positivity, as
we discuss in Section 10.

Totally positive spaces have also attracted a lot of interest due to their appear-
ances in other contexts such as cluster algebras [FZ02] and the physics of scat-
tering amplitudes [AHBC+16]. Our original motivation for studying the topology
of spaces arising in total positivity was to better understand the amplituhedra of
Arkani-Hamed and Trnka [AHT14], and more generally the Grassmann polytopes
of the third author [Lam16]. Faces of these geometric objects are linear projections
of closures of positroid cells, and we expect that Corollary 1.2 will play an essential
role in developing a theory of Grassmann polytopes.

1.2. Stars, links, and the Fomin–Shapiro atlas. Rietsch [Rie99,Rie06] defined
a certain poset (QJ ,�), and established the decomposition (G/P )≥0 =

⊔
g∈QJ

Π>0
g

into open balls Π>0
g indexed by g ∈ QJ . She showed that for h ∈ QJ , the closure

Π≥0
h of Π>0

h is given by Π≥0
h =

⊔
g�h Π

>0
h . When (G/P )≥0 is the totally nonnegative

Grassmannian Gr≥0(k, n), this is the positroid cell decomposition of [Pos07].
Given g ∈ QJ , define the star of g in (G/P )≥0 by

(1.1) Star≥0
g :=

⊔
h�g

Π>0
h .

In Section 3.1, we define another space Lk≥0
g (the link of g) stratified as Lk≥0

g =⊔
h�g Lk

>0
g,h. We later show in Theorem 3.12 that Lk≥0

g is a regular CW complex
homeomorphic to a closed ball.

At the core of our approach is a collection of (stratification-preserving) homeo-
morphisms

(1.2) ν̄g : Star≥0
g

∼−→ Π>0
g × Cone(Lk≥0

g ),

one for each g ∈ QJ . Here Cone(A) := (A×R≥0)/(A×{0}) denotes the open cone
over A. The homeomorphisms {ν̄g | g ∈ QJ} are part of the data of what we call
a Fomin–Shapiro atlas ; cf. Definition 2.3. Our construction is inspired by similar
maps introduced in [FS00] for the unipotent radical U≥0.
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id

s1 s2

s1s2s2s1

w0

Π>0
g

ν̄g−→

s1s2s1 Π>0
g

w0

s2 id

s1s2

Figure 1. The map ν̄g for the case G = SL3 and P = B from
Example 1.4

Example 1.4. When G = SLn and P = B is the standard Borel subgroup, G/B
is the complete flag variety consisting of flags in Rn, and the Weyl group W is the
group Sn of permutations of n elements. The face poset QJ of (G/B)≥0 is the
set {(v, w) ∈ Sn × Sn | v ≤ w} of Bruhat intervals in Sn, and the cell Π>0

(v,w) ⊂
(G/B)≥0 indexed by (v, w) ∈ QJ has dimension �(w) − �(v). For example, when
n = 3, this gives a cell decomposition of a 3-dimensional ball; see Figure 1(left).

For g := (s1, s2s1), Π
>0
g is an open line segment, and Star≥0

g consists of 4 cells:

a line segment Π>0
g = Π>0

(s1,s2s1)
, two open square faces Π>0

(s1,w0)
and Π>0

(id,s2s1)
,

and an open 3-dimensional ball Π>0
(id,w0)

. This union is indeed homeomorphic to

Π>0
g × Cone(Lk≥0

g ) shown in Figure 1(right). Here Lk≥0
g is a closed line segment

whose endpoints are Lk>0
g,(s1,w0)

and Lk>0
g,(id,s2s1)

, and whose interior is Lk>0
g,(id,w0)

.

In Definition 2.1, we introduce the abstract notion of a (shellable) totally non-
negative space, which captures several known combinatorial and geometric prop-
erties of (G/P )≥0 used in our proof. This includes the shellability of QJ due to
Williams [Wil07], and some topological results [Rie06,KLS14] on Richardson vari-
eties.

In Section 3, we prove (Theorem 2.4) that every shellable totally nonnegative
space that admits a Fomin–Shapiro atlas is a regular CW complex. Our argument
proceeds by induction on the dimension of Lk>0

g,h, and depends on a delicate interplay
between objects in smooth and topological categories. We use crucially that the
maps (1.2) in a Fomin–Shapiro atlas are restrictions of smooth maps. On the
topological level, we rely on the generalized Poincaré conjecture [Sma61, Fre82,
Per02] combined with some general results on poset topology.

The bulk of the paper is devoted to the construction of the Fomin–Shapiro at-
las. For each g ∈ QJ we give an isomorphism ϕ̄u between an open dense subset
Og ⊂ G/P and a certain subset of the affine flag variety G/B of the loop group
G associated to G. The map ϕ̄u, which we call an affine Bruhat atlas, sends the
projected Richardson stratification [KLS14] of G/P to the affine Richardson strat-
ification of its image inside G/B. The hardest part of the proof consists of showing

that the subset Og ⊂ G/P contains Star≥0
g . See Section 2.2 for a more in-depth

overview of the construction of ϕ̄u.
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Remark 1.5. The map ϕ̄u generalizes the map of Snider [Sni10] from Gr(k, n) to
all G/P ; see Remark 9.9. A different approach to give such a generalization is due
to He, Knutson, and Lu [HKL], which led them to the notion of a Bruhat atlas.
See [Ele16] for the definition. We call our map ϕ̄u an affine Bruhat atlas since
its target space is always an affine flag variety, while the Bruhat atlases of [HKL]
necessarily involve more general Kac–Moody flag varieties. A similar map has been
independently constructed by Huang [Hua19].

Remark 1.6. The method of link induction that we use in Section 3.3 has ap-
peared before in e.g. [GLMS08, Her14a]. When applied to the problem at hand,
this method immediately runs into the difficulty of showing that the closure of each
cell is a topological manifold. Our strategy for overcoming this issue is based on
combining technical topological results in Section 3 with the approach of [FS00].
The crucial new algebraic ingredient is that the factorizations of [FS00] happen
inside the unipotent group U , while we utilize an embedding into the affine flag
variety for that purpose. This embedding is defined on an open dense subset of
G/P , but surprisingly, this subset turns out to contain the whole totally nonneg-
ative part of the star of the corresponding cell. In order to show this result, we
develop a toolbox of subtraction-free parametrizations in Section 5. This machinery
also reveals intriguing properties of (G/P )≥0 such as Proposition 9.22, which may
be interesting to explore further in their own right.

1.3. Outline. In Section 2, we introduce totally nonnegative spaces and define
Fomin–Shapiro atlases. We state in Theorem 2.4 that every shellable totally non-
negative space that admits a Fomin–Shapiro atlas is a regular CW complex, and
prove it in Section 3. We give background on G/P in Section 4, and study
subtraction-free Marsh–Rietsch parametrizations in Section 5. We then apply our
results on such parametrizations to prove Theorem 6.4, which will later imply that
the above open subset Og contains Star≥0

g . We introduce affine Bruhat atlases in
Section 7 and use them to construct a Fomin–Shapiro atlas for G/P in Section 8.
Theorem 2.5 (which implies our main result Theorem 1.1) is proved in Section 8.3.
Section 9 is devoted to specializing our construction to type A (when G = SLn),
with a special focus on the totally nonnegative Grassmannian Gr≥0(k, n). We il-
lustrate many of our constructions by examples in Section 9, and we encourage the
reader to consult this section while studying other parts of the paper. We discuss
some conjectures and further directions in Section 10. Finally, we give additional
background on Kac–Moody flag varieties in Appendix A.

2. Overview of the proof

We formulate our results in the abstract language of totally nonnegative spaces,
since we expect that they can be applied in other contexts; see Section 10.

2.1. Totally nonnegative spaces. We refer the reader to Section 3.2 for back-
ground on posets and regular CW complexes. For a finite poset (Q,�), we denote

by Q̂ := Q � {0̂} the poset obtained from Q by adjoining a minimum 0̂. Björner

showed [Bjö84, Proposition 4.5(a)] that if Q̂ is graded, thin, and shellable, then Q is

isomorphic to the face poset of some regular CW complex. If Q̂ is a graded poset,
we let dim : Q → Z≥0 denote the rank function of Q.
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Definition 2.1. We say that a triple (Y ,Y≥0, Q) is a totally nonnegative space (or
TNN space for short) if the following conditions are satisfied.

(TNN1) The poset (Q̂,�) is graded and contains a unique maximal element 1̂.
(TNN2) Y is a smooth manifold, stratified into embedded submanifolds Y =⊔

g∈Q

◦
Yg, and for each h ∈ Q,

◦
Yh has dimension dim(h) and closure

Yh :=
⊔

g�h

◦
Yg.

(TNN3) Y≥0 is a compact subset of Y .

(TNN4) For g ∈ Q, Y>0
g :=

◦
Yg∩Y≥0 is a connected component of

◦
Yg diffeomorphic

to R
dim(g)
>0 .

(TNN5) The closure of Y>0
h inside Y equals Y≥0

h :=
⊔

g�h Y>0
g .

We say that a TNN space (Y ,Y≥0, Q) is shellable if it additionally satisfies the
following.

(TNN1’) The poset (Q̂,�) is thin and shellable.

For the case Y = G/P , the smooth submanifolds
◦
Yg are the open projected

Richardson varieties of [KLS14].

Definition 2.2. Let N ≥ 0, and denote by ‖ · ‖ the Euclidean norm on RN . We
say that a pair (Z, ϑ) is a smooth cone if Z ⊂ RN is a closed embedded submanifold
and ϑ : R>0 × RN → RN a smooth map such that

(SC1) ϑ gives an (R>0, ·)-action on RN that restricts to an (R>0, ·)-action on Z.
(SC2) ∂

∂t‖ϑ(t, x)‖ > 0 for all t ∈ R>0 and x ∈ RN \ {0}.
The map ϑ is a smooth analog of a contractive flow of [GKL17]; see Lemma 3.4.

For g ∈ Q, define Starg :=
⊔

h�g

◦
Yh and Star≥0

g := Starg ∩Y≥0 =
⊔

h�g Y>0
h ;

cf. (1.1).

Definition 2.3. We say that a TNN space (Y ,Y≥0, Q) admits a Fomin–Shapiro
atlas if for each g ∈ Q, there exists an open subset Og ⊂ Starg, a smooth cone
(Zg, ϑg), and a diffeomorphism

(2.1) ν̄g : Og
∼−→ (

◦
Yg ∩ Og)× Zg

satisfying the following conditions.

(FS1) For all h � g, we are given
◦
Zg,h ⊂ Zg such that Zg =

⊔
h�g

◦
Zg,h and

◦
Zg,g = {0}.

(FS2) For all h � g and t ∈ R>0, we have ϑg(t,
◦
Zg,h) =

◦
Zg,h.

(FS3) For all h � g, we have ν̄g(
◦
Yh ∩Og) = (

◦
Yg ∩ Og)×

◦
Zg,h.

(FS4) For all y ∈
◦
Yg ∩ Og, we have ν̄g(y) = (y, 0).

(FS5) Star≥0
g ⊂ Og.

We will prove the following result in Section 3.3, using link induction.

Theorem 2.4. Suppose that (Y ,Y≥0, Q) is a shellable TNN space that admits
a Fomin–Shapiro atlas. Then Y≥0 =

⊔
h∈Q Y>0

h is a regular CW complex. In

particular, for each h ∈ Q, Y≥0
h is homeomorphic to a closed ball of dimension

dim(h).

Thus Theorem 1.1 follows as a corollary of Theorem 2.4 and the following result:
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Theorem 2.5. (G/P, (G/P )≥0, QJ) is a shellable TNN space that admits a Fomin–
Shapiro atlas.

2.2. Plan of the proof. We give a brief outline of the proof of Theorem 2.5. See
Section 4 for background on G/P , and see Section 7 and Appendix A for background
on G/B. We deduce that (G/P, (G/P )≥0, QJ ) is a shellable TNN space from known
results in Corollary 4.20. In order to construct a Fomin–Shapiro atlas, we consider
the (infinite-dimensional) affine flag variety G/B associated to G. It is stratified

into (finite-dimensional) affine Richardson varieties G/B =
⊔

h̃≤f̃∈W̃

◦
Rf̃

h̃
, where W̃

is the affine Weyl group and ≤ denotes its Bruhat order. There exists an order-
reversing injective map ψ : QJ → W̃ , defined in [HL15]; see (7.7). The set of
minimal elements of QJ equals {(u, u) | u ∈ W J}, where W J is the set of minimal
length parabolic coset representatives of the Weyl group; see Section 4.6. For each
minimal element f := (u, u) ∈ QJ , ψ identifies the interval [f, 1̂] of QJ with (the

dual of) a certain interval [τJλ , τuλ] ⊂ W̃ . For the case G/P = Gr(k, n), elements of
QJ are in bijection with L-diagrams of [Pos07], and ψ sends a L-diagram indexing
a positroid cell to the corresponding bounded affine permutation of [KLS14]; see
Example 9.6.

In Section 7.3, we lift ψ to the geometric level: given a minimal element f :=

(u, u) ∈ QJ , we introduce a map ϕ̄u : C
(J)
u → G/B defined on an open dense subset

C
(J)
u ⊂ G/P . We show in Theorem 7.3 that for g ∈ QJ such that g � f , ϕ̄u sends

C
(J)
u ∩

◦
Πg isomorphically to the affine Richardson cell

◦
Rψ(f)

ψ(g) .

For every g̃ ∈ W̃ , we consider an open dense subset Cg̃ ⊂ G/B defined by Cg̃ :=

g̃ · B− · B/B, as well as affine Schubert and opposite Schubert cells
◦
X g̃ =

⊔
h̃≤g̃

◦
Rg̃

h̃
,

◦
Xg̃ =

⊔
g̃≤f̃

◦
Rf̃

g̃ . In Proposition 8.2, we give a natural isomorphism

(2.2)

Cg̃ ∼−→
◦
Xg̃ ×

◦
X g̃, which restricts to (Cg̃ ∩

◦
Rf̃

h̃
)

∼−→
◦
Rf̃

g̃ ×
◦
Rg̃

h̃
for all h̃ ≤ g̃ ≤ f̃ .

A finite-dimensional analog of this map is due to [KWY13], and similar maps have

been considered in [KL79, FS00]. The action of ϑ on
◦
X g̃ essentially amounts to

multiplying by an element of the affine torus, and thus preserves
◦
Rg̃

h̃
for all h̃ ≤ g̃.

Let us now fix g ∈ QJ , and choose some minimal element f := (u, u) ∈ QJ

such that f � g. Then the map ϕ̄u is defined on an open dense subset C
(J)
u ⊂

G/P , and let us denote by Og ⊂ C
(J)
u the preimage of Cψ(g) under ϕ̄u. The

diffeomorphism (2.1) is obtained by conjugating the isomorphism (2.2) by the map
ϕ̄u. The smooth cone (Zg, ϑg) is extracted from the corresponding structure on
◦
Xψ(g). As we have already mentioned, the hardest step in the proof consists of
showing (FS5). To achieve this, we study subtraction-free parametrizations of
partial flag varieties in Section 5, and then use them to show that some generalized

minors of a particular group element ζ
(J)
u,v (x) from Section 6 do not vanish for all

x ∈ Star≥0
g . The definition of ζ

(J)
u,v (x) is quite technical, but we conjecture in

Section 9 that in the Grassmannian case, these generalized minors specialize to
simple functions on Gr(k, n) that we call u-truncated minors. We complete the
proof of Theorem 2.5 in Section 8.3.

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun  2 15:40:28 EDT 2022 for download from IP 169.232.149.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



520 PAVEL GALASHIN ET AL.

3. Topological results

Throughout this section, we assume that (Y ,Y≥0, Q) is a TNN space that admits
a Fomin–Shapiro atlas. Thus for each g ∈ Q, we have the objects Og, Zg, ϑg, and
ν̄g from Definition 2.3. Additionally, we assume some familiarity with basic theory
of smooth manifolds; see e.g. [Lee13].

3.1. Links. Throughout, we denote the two components of the map ν̄g from (2.1)

by ν̄g = (ν̄g,1, ν̄g,2), where ν̄g,1 : Og →
◦
Yg ∩ Og and ν̄g,2 : Og → Zg. We set

Star≥0
g,h := Y≥0

h ∩ Star≥0
g =

⊔
g�g′�h Y>0

g′ . Let Ng be the integer from Definition 2.2

such that Zg ⊂ RNg .

Definition 3.1. Let g � h ∈ Q. Denote

Z≥0
g := ν̄g,2

(
Star≥0

g

)
, Z≥0

g,h := ν̄g,2

(
Star≥0

g,h

)
, Z>0

g,h := Z≥0
g ∩

◦
Zg,h,

Sg := {x ∈ RNg : ‖x‖ = 1}, Lk≥0
g,h := Z≥0

g,h ∩ Sg, Lk>0
g,h := Z>0

g,h ∩ Sg.

Note that by (FS3), we have

Z≥0
g,h =

⊔
g�g′�h

Z>0
g,g′ , Lk≥0

g,h =
⊔

g≺g′�h

Lk>0
g,g′ .(3.1)

In the latter disjoint union, we have Lk>0
g,g = ∅ since

◦
Zg,g = {0} by (FS1).

Lemma 3.2. Let g ≺ h ∈ Q.

(i) For all x ∈ Og, we have x ∈ Y>0
h if and only if ν̄g(x) ∈ Y>0

g × Z>0
g,h.

(ii) Z>0
g,h is an embedded submanifold of Zg of dimension dim(h) − dim(g) that

intersects Sg transversely. For all t ∈ R>0 and x ∈ Z>0
g,h, we have ϑ(t, x) ∈

Z>0
g,h.

(iii) Lk>0
g,h is a contractible smooth manifold of dimension dim(h)− dim(g)− 1.

(iv) Lk≥0
g,h is a compact subset of Zg.

Before we prove these properties, let us state some preliminary results on smooth
manifolds. Given smooth manifolds A,B and a smooth map f : A → B, a point
a ∈ A is called a regular point of f if the differential of f at a is surjective. Similarly,
b ∈ B is called a regular value of f if f−1(b) consists of regular points. In this case
f−1(b) is a closed embedded submanifold of A of dimension dim(A)−dim(B) [Lee13,
Corollary 5.14].

Lemma 3.3. Suppose that A,B are smooth manifolds and B′ ⊂ B is such that
A×B′ is an embedded submanifold of A×B. Then B′ is an embedded submanifold
of B.

Proof. Choose a ∈ A. Clearly a is a regular value of the projection A × B′ → A,
so {a} ×B′ is an embedded submanifold of A×B′, and hence of {a} ×B. �

We also recall some facts about ϑ from [GKL17].

Lemma 3.4. Let ϑ : R>0×RN → RN be a smooth map satisfying (SC1) and (SC2).

(i) We have ϑ(t, 0) = 0 for all t ∈ R>0.
(ii) We have limt→0+ ϑ(t, x) = 0 for all x ∈ RN .
(iii) For all x ∈ RN \ {0}, there exists a unique t ∈ R>0 such that ‖ϑ(t, x)‖ = 1,

which we denote by t1(x). The function t1 : RN \ {0} → R>0 is continuous.
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Proof. The function f : R× RN → RN defined by f(t, x) = ϑ(e−t, x) is a contrac-
tive flow, as defined in [GKL17, Definition 2.1]. Therefore the statements follow
from [GKL17, Lemma 2.2] and the claim in the proof of [GKL17, Lemma 2.3]. �

Proof of Lemma 3.2. (i): We prove this more generally for g � h. The set Star≥0
g is

connected since it contains a connected dense subset Y>0
1̂

. Therefore ν̄g,1(Star
≥0
g )

is a connected subset of
◦
Yg ∩ Og. By (FS4), it contains Y>0

g , and therefore

ν̄g,1(Star
≥0
g ) = Y>0

g by (TNN4). By definition, ν̄g,2(Star
≥0
g,h) = Z≥0

g,h, and thus

ν̄g(Star
≥0
g,h) ⊂ Y>0

g × Z≥0
g,h. By (FS3), we get ν̄g(Y>0

h ) ⊂ Y>0
g × Z>0

g,h. In partic-

ular, Z>0
g,h = ν̄g,2(Y>0

h ) is a connected subset of
◦
Zg,h. Let C be the connected

component of
◦
Zg,h containing Z>0

g,h. By (FS3), ν̄−1
g (Y>0

g × C) is a connected sub-

set of
◦
Yh ∩ Og, which contains Y>0

h as we have just shown. Therefore we must
have ν̄−1

g (Y>0
g × C) = Y>0

h by (TNN4), which shows that Z>0
g,h = C is a connected

component of
◦
Zg,h. Thus indeed ν̄g(Y>0

h ) = Y>0
g × Z>0

g,h.

(ii): By (TNN4) and (TNN2), Y>0
h is an embedded submanifold of Y . Applying

ν̄g and using (i), we get that Y>0
g ×Z>0

g,h is an embedded submanifold of Y>0
g ×Zg,

of dimension dim(h) − dim(g). By Lemma 3.3, Z>0
g,h is an embedded submanifold

of Zg. Moreover, it follows from (FS2) that ϑg(t, Z
>0
g,h) = Z>0

g,h for all t ∈ R>0, since

Z>0
g,h is a connected component of

◦
Zg,h. Thus 1 is a regular value of the restriction

‖ · ‖ : Z>0
g,h → R>0, so the manifolds Sg and Z>0

g,h intersect transversely inside RNg .

(iii): By (ii), Lk>0
g,h = Z>0

g,h ∩ Sg is an embedded submanifold of Zg of dimension

dim(h)−dim(g)−1. To show that it is contractible, we use the fact that a retract of
a contractible space is contractible [Hat02, Exercise 0.9]. Since Y>0

h is contractible

(by (TNN4)), so is ν̄g(Y>0
h ) = Y>0

g ×Z>0
g,h. Then {x}×Z>0

g,h is a retract of Y>0
g ×Z>0

g,h

for any x ∈ Y>0
g , so Z>0

g,h is contractible. Finally, by (ii) and Lemma 3.4(iii), the

map x �→ ϑg(t1(x), x) gives a retraction Z>0
g,h → Lk>0

g,h.

(iv): By (FS5), Star≥0
g,h = Y≥0

h ∩Star≥0
g = Y≥0

h ∩Og is a closed subset of Og. Thus

ν̄g(Star
≥0
g,h) is a closed subset of Y>0

g × Zg. Since ν̄g(Star
≥0
g,h) = Y>0

g × Z≥0
g,h (by (i)

and (3.1)), we get that Z≥0
g,h is a closed subset of Zg. It follows that Lk

≥0
g,h = Z≥0

g,h∩Sg

is a closed and bounded subset of Zg, which is closed in RNg by Definition 2.2. �

Recall that Cone(A) := (A×R≥0)/(A×{0}) is the open cone over A. We denote
by c := (∗, 0) ∈ Cone(A) its cone point.

Proposition 3.5. Let g ≺ h ∈ Q.

(i) We have a homeomorphism Z≥0
g,h

∼−→ Cone(Lk≥0
g,h) sending 0 to the cone

point c, and sending Z>0
g,g′ to Lk>0

g,g′ ×R>0 for all g ≺ g′ � h.

(ii) We have a homeomorphism Star≥0
g,h

∼−→ Y>0
g × Cone(Lk≥0

g,h) sending Y>0
g to

Y>0
g × {c}.

Proof. (i): Define a map ξ : Z≥0
g,h → Cone(Lk≥0

g,h) sending 0 to c and x to(
ϑg(t1(x), x),

1
t1(x)

)
for x ∈ Z≥0

g,h \ {0}, where t1(x) is defined in Lemma 3.4(iii)

and ϑg(t1(x), x) ∈ Lk≥0
g,h by Lemma 3.2(ii). We claim that ξ is a homeomor-

phism. Note that ξ has an inverse ξ−1, which sends c to 0 and (y, t) to ϑg(t, y)
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for (y, t) ∈ Cone(Lk≥0
g,h) \ {c} = Lk≥0

g,h ×R>0. By Lemma 3.4(iii), ξ is continuous

on Z≥0
g,h \ {0} and ξ−1 is continuous on Lk≥0

g,h ×R>0. It remains to show that ξ is

continuous at 0 and that ξ−1 is continuous at c.

Suppose that (xn)n≥0 is a sequence in Z≥0
g,h \ {0} converging to 0. We claim

that t1(xn) → ∞ as n → ∞. Otherwise, after passing to a subsequence, we may
assume that there exists R ∈ R>0 such that t1(xn) ≤ R for all n ≥ 0. Then (SC2)
implies that ‖ϑg(R, xn)‖ ≥ ‖ϑg(t1(xn), xn)‖ = 1 for all n ≥ 0. Taking n → ∞ gives
‖ϑg(R, 0)‖ ≥ 1, contradicting Lemma 3.4(i). This shows that ξ is continuous at 0.

Suppose now that ((yn, tn))n≥0 is a sequence in Lk≥0
g,h ×R>0 converging to c, i.e.,

tn → 0. The function D(t) := maxx∈Sg
‖ϑg(t, x)‖ is increasing in t, by compactness

of Sg and (SC2). We have limt→0+ D(t) = 0 by Lemma 3.4(ii) and compactness
of Sg (more precisely, by Dini’s theorem). Therefore ξ−1(yn, tn) = ϑg(tn, yn) con-
verges to 0 as n → ∞, showing that ξ−1 is continuous at c.

(ii): By Lemma 3.2(i), ν̄g restricts to a homeomorphism Star≥0
g,h

∼−→ Y>0
g × Z≥0

g,h,

which by (FS4) sends Y>0
g to Y>0

g × {0}. The result follows from (i). �

Our next aim is to analyze the local structure of the space Lk≥0
g,h. For two

topological spaces A and B and a ∈ A, b ∈ B, a local homeomorphism between
(A, a) and (B, b) is a homeomorphism from an open neighborhood of a in A to an
open neighborhood of b in B which sends a to b.

Lemma 3.6. Let g ≺ p � h ∈ Q, xp ∈ Lk>0
g,p, and set d := dim(p) − dim(g) −

1. Then there exists a local homeomorphism between
(
Lk≥0

g,h, xp

)
and

(
Z≥0
p,h × Rd ,

(0, 0)) .

Proof. Choose some xg ∈ Y>0
g and consider the open subset Hp ⊂ Zg defined by

Hp := {x ∈ Zg | ν̄−1
g (xg, x) ∈ Op}. Introduce a map

θg,p : Hp ∩ Sg → Zp, x �→ ν̄p,2(ν̄
−1
g (xg, x)).

Since xp ∈ Lk>0
g,p ⊂ Z>0

g,p and xg ∈ Y>0
g , we get x̄p := ν̄−1

g (xg, xp) ∈ Y>0
p by

Lemma 3.2(i). By (FS5), we have Y>0
p ⊂ Star≥0

p ⊂ Op, and thus xp ∈ Hp. Since
Hp is open in Zg, Hp ∩ Sg is an open subset of Zg ∩ Sg, which is nonempty since it
contains xp. We have θg,p(xp) = 0 by (FS4).

We claim that xp is a regular point of θg,p. By (FS4), the differential of ν̄p,2 :

Op → Zp is surjective at x̄p, and its kernel is the tangent space of
◦
Yp at x̄p.

By (TNN4) and (FS5), Y>0
p is a connected component of

◦
Yp ∩Op, and it contains

x̄p = ν̄−1
g (xg, xp) as we have shown above. Therefore xp is a regular point of

θg,p if and only if the manifolds Y>0
p and F := ν̄−1

g ({xg} × (Hp ∩ Sg)) intersect

transversely at x̄p. By Lemma 3.2(i), we have ν̄g(Y>0
p ) = Y>0

g × Z>0
g,p , and clearly

ν̄g(F ) = {xg} × (Hp ∩ Sg). These two manifolds intersect transversely at (xg, xp)
by Lemma 3.2(ii). We have shown that xp is a regular point of θg,p.

By the submersion theorem (see e.g. [Kos93, Corollary A(1.3)]), there exist local
coordinates centered at xp ∈ Hp∩Sg and at 0 ∈ Zp in which θg,p is just the canonical

projection Rdim(Hp∩Sg) → Rdim(Zp). Recall that Q contains a unique maximal
element 1̂, and by (2.1) we have dim(Zg) = codim(g) := dim(1̂) − dim(g). Thus
dim(Hp∩Sg) = codim(g)−1, dim(Zp) = codim(p), and dim(Hp∩Sg)−dim(Zp) = d.
We have shown that there exist open neighborhoods U of xp in Hp ∩ Sg and V of
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0 in Zp and a diffeomorphism β : U
∼−→ V × Rd sending xp to (0, 0) such that the

first component of β coincides with the restriction θg,p : U → V .

In order to complete the proof, we need to show that the image β(U ∩ Lk≥0
g,h)

equals (V ∩Z≥0
p,h)×Rd. We may assume that U is connected. Suppose we are given

x ∈ U , and let r ∈ Q be such that x′ := ν̄−1
g (xg, x) ∈

◦
Yr. Since U ⊂ Hp, x

′ belongs
to Op ⊂ Starp by Definition 2.3, and therefore p � r. By Lemma 3.2(i), we have

x ∈ U ∩ Lk>0
g,r if and only if x′ ∈ Y>0

r . On the other hand, ν̄p,1(ν̄
−1
g ({xg}×U)) is a

connected subset of
◦
Yp∩Op that contains ν̄p,1(x̄p) ∈ Y>0

p . Thus ν̄p,1(ν̄
−1
g (xg, U)) ⊂

Y>0
p by (TNN4). It follows that x′ ∈ Y>0

r if and only if θg,p(x) = ν̄p,2(x
′) belongs

to Z>0
p,r . The result follows by taking the union over all p � r � h, using (3.1). �

3.2. Topological background.

3.2.1. Regular CW complexes. We refer to [Hat02, LW69] for background on CW
complexes.

Definition 3.7. Let X be a Hausdorff space. We call a finite disjoint union X =⊔
α∈Q Xα a regular CW complex if it satisfies the following two properties.

(CW1) For each α ∈ Q, there exists a homeomorphism from the closure Xα to a
closed ball B which sends Xα to the interior of B.

(CW2) For each α ∈ Q, there exists Q′ ⊂ Q such that Xα =
⊔

β∈Q′ Xβ.

The face poset of X is the poset (Q,�), where β � α if and only if Xβ ⊂ Xα.

The condition (CW2) is often omitted from the definition of a regular CW com-
plex, but is necessary in order to apply the arguments of [Bjö84]. We remark that
the cell decomposition of Y≥0 satisfies (CW2) by (TNN5).

3.2.2. Posets. We review the definitions of graded, thin, and shellable for finite
posets, though we will not need to work with them in our arguments. We refer
to [Bjö80,Sta12] for background.

A finite poset (Q,�) is called graded if every maximal chain in Q has the same
length �, in which case we denote rank(Q) := �. For x ≤ z ∈ Q, we denote by
[x, z] := {y ∈ Q | x ≤ y ≤ z} the corresponding interval. Note that the intervals in
a graded poset Q are also graded, and we call Q thin if every interval of rank 2 has
exactly 4 elements.

The order complex of a graded poset Q is the pure (rank(Q) − 1)-dimensional
simplicial complex whose vertices are the elements of Q, and whose faces are the
chains in Q. We say that Q is shellable if its order complex is shellable, i.e., its

maximal faces can be ordered as F1, . . . , Fn so that for 2 ≤ k ≤ n, Fk∩
(⋃

1≤i<k Fi

)
is a nonempty union of (rank(Q)− 2)-dimensional faces of Fk.

Proposition 3.8 ([Bjö80, Proposition 4.2]). If a graded poset is shellable, then so
are each of its intervals.

See [Bjö84, Sections 2 and 3] for the proof of the following result.

Theorem 3.9 ([LW69, DK74, Bjö84]). Suppose that X is a regular CW complex

with face poset Q. If Q�{0̂, 1̂} (obtained by adjoining a minimum 0̂ and a maximum

1̂ to Q) is graded, thin, and shellable, then X is homeomorphic to a sphere of
dimension rank(Q)− 1.
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3.2.3. Poincaré conjecture. Recall that an n-dimensional topological manifold with
boundary is a Hausdorff space C such that every point x ∈ C has an open neighbor-
hood homeomorphic either to Rn or to R≥0 × Rn−1 via a homeomorphism which
takes x to a point in {0} × Rn−1. In the latter case, we say that x belongs to the
boundary of C, denoted ∂C.

The following is a well-known consequence of the (generalized) Poincaré con-
jecture due to Smale [Sma61], Freedman [Fre82], and Perelman [Per02]. We refer
to [Dav08, Theorem 10.3.3(ii)] for this formulation.

Theorem 3.10 ([Sma61, Fre82, Per02]). Let C be a compact contractible n-
dimensional topological manifold with boundary, such that its boundary ∂C is home-
omorphic to an (n − 1)-dimensional sphere. Then C is homeomorphic to an n-
dimensional closed ball.

For n ≥ 6, Theorem 3.10 can be proved using the topological h-cobordism the-
orem [Mil65, KS77]. We sketch another standard argument for deducing Theo-
rem 3.10 from the Poincaré conjecture when n is arbitrary. The boundary of C is
collared by [Bro62, Theorem 2], i.e., there exists a homeomorphism from an open
neighborhood of ∂C in C to ∂C × [0, 1), which takes ∂C to ∂C × {0}. Thus we
can attach the (collared) boundary of an n-dimensional closed ball to the (collared)
boundary of C, obtaining a topological manifold C ′. By van Kampen’s theorem,
C ′ is simply connected. It is easy to see from the Mayer–Vietoris sequence that C ′

is a homology sphere. Thus C ′ must be homeomorphic to a sphere by the Poincaré
conjecture. Therefore C is homeomorphic to a closed ball by Brown’s Schoenflies
theorem [Bro60].

The following is also a consequence of Brown’s collar theorem [Bro62, Theo-
rem 2].

Proposition 3.11. Suppose that C is a topological manifold with boundary ∂C.
Then C is homotopy equivalent to its interior C \ ∂C.

3.3. Link induction.

Theorem 3.12. Suppose that (Y ,Y≥0, Q) is a shellable TNN space that admits a

Fomin–Shapiro atlas, and let g ≺ h ∈ Q. Then Lk≥0
g,h =

⊔
g≺g′�h Lk

>0
g,g′ (cf. (3.1))

is a regular CW complex homeomorphic to a closed ball of dimension dim(h) −
dim(g)− 1.

Proof. We proceed by induction on d := dim(h) − dim(g) − 1. For the base case

d = 0, we have Lk≥0
g,h = Lk>0

g,h, which is a 0-dimensional contractible manifold by

Lemma 3.2(iii). Thus Lk≥0
g,h is a point, and we are done with the base case. Assume

now that d > 0 and that the result holds for all d′ < d. We need to verify (CW1)
and (CW2) whenXα = Lk>0

g,h (the other cases follow from the induction hypothesis).

We claim that Lk≥0
g,h is a topological manifold with boundary ∂ Lk≥0

g,h, where

∂ Lk≥0
g,h =

⊔
g≺g′≺h

Lk>0
g,g′ .(3.2)

Let x ∈ Lk≥0
g,h. By (3.1), we have x ∈ Lk>0

g,g′ for a unique g ≺ g′ � h. If g′ = h,

then x has an open neighborhood in Lk≥0
g,h homeomorphic to Rd by Lemma 3.2(iii).

If g′ ≺ h, then by Lemma 3.6 we have a local homeomorphism (Lk≥0
g,h, x)

∼−→
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(Z≥0
g′,h × Rd′

, (0, 0)), where d′ := dim(g′) − dim(g) − 1. By Proposition 3.5(i), we

have a homeomorphism Z≥0
g′,h

∼−→ Cone(Lk≥0
g′,h) which sends 0 to the cone point c.

By the induction hypothesis, Lk≥0
g′,h is homeomorphic to a (d− d′ − 1)-dimensional

closed ball, and so we have a homeomorphism Cone(Lk≥0
g′,h)

∼−→ R≥0 × Rd−d′−1

which sends c to (0, 0). Composing gives a local homeomorphism (Lk≥0
g,h, x)

∼−→
(R≥0 × Rd−d′−1 × Rd′

, (0, 0, 0)). Thus indeed Lk≥0
g,h is a topological manifold with

boundary given by (3.2).

By Lemma 3.2(iv), Lk≥0
g,h is compact. By Lemma 3.2(iii) and Proposition 3.11,

Lk≥0
g,h is contractible. Thus Lk≥0

g,h is a compact contractible topological manifold

with boundary. In addition, the boundary ∂ Lk≥0
g,h is a regular CW complex by

the induction hypothesis. Its face poset is the interval (g, h) := [g, h] \ {g, h} in
Q. The interval [g, h] is graded, thin, and shellable by (TNN1), (TNN1’), and

Proposition 3.8, and thus ∂ Lk≥0
g,h is homeomorphic to a (d− 1)-dimensional sphere

by Theorem 3.9. By Theorem 3.10, we get a homeomorphism from Lk≥0
g,h to a

d-dimensional closed ball B. By (3.2), it sends the interior Lk>0
g,h to the interior

of B. This proves (CW1), and (CW2) follows from (3.2). This completes the
induction. �

Proof of Theorem 2.4. The proof follows the same structure as the proof of Theo-
rem 3.12. We proceed by induction on dim(h). If dim(h) = 0, then Y≥0

h = Y>0
h is

a point by (TNN4), which finishes the base case.

Let dim(h) > 0. We want to show that Y≥0
h is a topological manifold with

boundary

(3.3) ∂Y≥0
h =

⊔
g≺h

Y>0
g .

Let x ∈ Y≥0
h . By (TNN5), we have x ∈ Y>0

g for a unique g � h. If g = h,

then x has an open neighborhood in Y≥0
h homeomorphic to Rdim(h) by (TNN4).

If g ≺ h, then Star≥0
g is an open subset of Y≥0 (its complement is

⋃
g′ 
�g Y

≥0
g′ ,

which is closed by (TNN5)). Thus Star≥0
g,h is an open neighborhood of x in Y≥0

h .

By Proposition 3.5(ii), (TNN4), and Theorem 3.12, we get a homeomorphism

Star≥0
g,h

∼−→ R≥0 × Rdim(h)−1 whose first component sends x ∈ Y>0
g to 0 ∈ R≥0.

This shows that Y≥0
h is a topological manifold with boundary given by (3.3).

By (TNN3) and (TNN5), Y≥0
h is compact. By (TNN4) and Proposition 3.11,

Y≥0
h is contractible. Thus Y≥0

h is a compact contractible topological manifold with

boundary. In addition, the boundary ∂Y≥0
h is a regular CW complex by the in-

duction hypothesis. Its face poset is the interval (0̂, h) in Q̂. The interval [0̂, h]
is graded, thin, and shellable by (TNN1), (TNN1’), and Proposition 3.8, and thus

∂Y≥0
h is homeomorphic to a (d − 1)-dimensional sphere by Theorem 3.9. We are

done by Theorem 3.10, as in the proof of Theorem 3.12. �

Remark 3.13. We note that Theorems 2.5 and 3.12 imply the result of Hersh
[Her14b] (see Corollary 1.3) that the link of the identity in the Bruhat decom-
position of U≥0 is a regular CW complex. (Recall that U is the unipotent radical
of the standard Borel subgroup B ⊂ G.) Indeed, let B− ⊂ G denote the opposite
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Borel subgroup. Then the natural inclusion U ↪→ G/B− sends U to the opposite
Schubert cell Star(id,id) indexed by id ∈ W , and the composition of this map with

ν̄(id,id) sends the link of the identity in Uw
>0 homeomorphically to Lk≥0

(id,id),(id,w) for

all w ∈ W .

4. G/P : Preliminaries

We give some background on partial flag varieties. Throughout, K denotes an
algebraically closed field of characteristic 0, and K∗ := K \ {0} denotes its multi-
plicative group.

4.1. Pinnings. We recall some standard notions that can be found in e.g. [Lus94,
Section 1]. Suppose that G is a simple and simply connected algebraic group over
K, with T ⊂ G a maximal torus. Let B,B− be opposite Borel subgroups satisfying
T = B ∩ B−. We identify G with its set of K-valued points. When K = C, we
assume that G and T are split over R, and denote by G(R) ⊂ G and T (R) ⊂ T
the sets of their R-valued points. (Thus what was denoted by G in Section 1 is
from now on denoted by G(R). We are also assuming that G is a simple algebraic
group, rather than semisimple; our results for the case of a general semisimple group
reduce to the simple case by taking products.)

Let X(T ) := Hom(T,K∗) be the weight lattice, and for a weight γ ∈ X(T ) and
a ∈ T , we denote the value of γ on a by aγ . Let Φ ⊂ X(T ) be the set of roots.
We have a decomposition Φ = Φ+ � Φ− of Φ as a union of positive and negative
roots corresponding to the choice of B; see [Hum75, Section 27.3]. For α ∈ Φ, we
write α > 0 if α ∈ Φ+ and α < 0 if α ∈ Φ−. Let {αi}i∈I be the simple roots
corresponding to the choice of Φ+. For every i ∈ I, we have a homomorphism
φi : SL2 → G, and denote
(4.1)

xi(t) :=φi

(
1 t
0 1

)
, yi(t) :=φi

(
1 0
t 1

)
, ṡi :=φi

(
0 −1
1 0

)
= yi(1)xi(−1)yi(1).

The data (T,B,B−, xi, yi; i ∈ I) is called a pinning for G. Let W := NG(T )/T
be the Weyl group, and for i ∈ I, let si ∈ W be represented by ṡi above. Then W
is generated by {si}i∈I , and (W, {si}i∈I) is a finite Coxeter group. For w ∈ W , the
length �(w) is the minimal n such that w = si1 · · · sin for some i1, . . . , in ∈ I. When
n = �(w), we call i := (i1, . . . , in) a reduced word for w. The representatives {ṡi}i∈I

satisfy the braid relations [Spr98, Proposition 9.3.2], so we set ẇ := ṡi1 · · · ṡin ∈ G,
and this representative does not depend on the choice of i.

Let Y (T ) := Hom(K∗, T ) be the coweight lattice. For i ∈ I, we have a simple

coroot α∨
i (t) := φi

(
t 0
0 t−1

)
∈ Y (T ). Denote by 〈·, ·〉 : Y (T ) × X(T ) → Z the

natural pairing so that for γ ∈ X(T ), β ∈ Y (T ), and t ∈ K∗, we have (β(t))γ =
t〈β,γ〉. Let {ωi}i∈I ⊂ X(T ) be the fundamental weights. They form a dual basis to
{α∨

i }i∈I : 〈α∨
j , ωi〉 = δij for i, j ∈ I.

The Weyl group W acts on T by conjugation, which induces an action on Y (T ),
X(T ), and Φ. For γ ∈ X(T ), t ∈ K∗, a ∈ T , and w ∈ W , we have [FZ99, (1.2)
and (2.5)]

(4.2) (ẇ−1aẇ)γ = awγ , axi(t)a
−1 = xi(a

αit), ayi(t)a
−1 = yi(a

−αit).

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun  2 15:40:28 EDT 2022 for download from IP 169.232.149.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY THEOREM 527

Following [BZ97, (1.6) and (1.7)] (see also [FZ99, (2.1) and (2.2)]), we define two
involutive anti-automorphisms x �→ xT and x �→ xι of G by

(xi(t))
T = yi(t), (yi(t))

T = xi(t), ẇT = ẇ−1, aT = a,(4.3)

(xi(t))
ι = xi(t), (yi(t))

ι = yi(t), ẇι = ż, aι = a−1(4.4)

for all i ∈ I, t ∈ K∗, a ∈ T , and w ∈ W , where z := w−1. We note that when
z = w−1 ∈ W and i = (i1, . . . , in) is a reduced word for w then ẇ−1 = ṡ−1

in
· · · ṡ−1

i1
while ż = ṡin · · · ṡi1 .

4.2. Subgroups of U . We say that a subset Θ ⊂ Φ is bracket closed if whenever
α, β ∈ Θ are such that α+ β ∈ Φ, we have α+ β ∈ Θ. For a bracket closed subset
Θ ⊂ Φ+, define U(Θ) ⊂ U to be the subgroup generated by {Uα | α ∈ Θ}, where
Uα is a root subgroup of G; see [Hum75, Theorem 26.3]. For a bracket closed subset
Θ ⊂ Φ−, let U−(Θ) := U(−Θ)T ⊂ U−.

Given closed subgroups H1, . . . , Hn of an algebraic group H, we say that H1, · · · ,
Hn directly span H if the multiplication map H1 × · · · × Hn → H is a biregular
isomorphism.

Lemma 4.1 ([Hum75, Proposition 28.1]). Let Θ ⊂ Φ+ be a bracket closed subset.

(i) If Θ =
⊔n

i=1 Θi and Θ,Θ1, . . . ,Θn ⊂ Φ+ are bracket closed then U(Θ) is
directly spanned by U(Θ1), . . . , U(Θn).

(ii) In particular, U(Θ) is directly spanned by {Uα | α ∈ Θ} in any order, and
therefore U(Θ) ∼= K|Θ|.

For α ∈ Φ and w ∈ W , we have ẇUαẇ
−1 = Uwα. For w ∈ W , define Inv(w) :=

(w−1Φ−) ∩ Φ+. The subsets Inv(w) and Φ+ \ Inv(w) are bracket closed [Hum75,
Section 28.1], and

(4.5) U(Inv(w)) = ẇ−1U−ẇ ∩ U.

4.3. Bruhat projections. Let Θ ⊂ Φ+ be bracket closed, and let w ∈ W . Define
Θ1 := Θ ∩ Inv(w) and Θ2 := Θ \ Inv(w). Thus both sets are bracket closed and

ẇU(Θ)ẇ−1 ∩ U− = U−(wΘ1), ẇU(Θ)ẇ−1 ∩ U = U(wΘ2).

Denote U1 := U−(wΘ1) and U2 := U(wΘ2). Then by Lemma 4.1(i), the multipli-
cation map gives isomorphisms μ12 : U1 × U2 → ẇU(Θ)ẇ−1 and μ21 : U2 × U1 →
ẇU(Θ)ẇ−1. Denote by ν1 : ẇU(Θ)ẇ−1 → U1 and ν2 : ẇU(Θ)ẇ−1 → U2 the second
component of μ−1

21 and μ−1
12 , respectively. In other words, given g ∈ ẇU(Θ)ẇ−1,

ν1(g) is the unique element in U1∩U2g and ν2(g) is the unique element in U2∩U1g.

Lemma 4.2 ([KWY13, Lemma 2.2]). The map (ν1, ν2) : ẇU(Θ)ẇ−1 → U1 ×U2 is
a biregular isomorphism.

4.4. Commutation relations. Let a, b ∈ W be such that �(ab) = �(a) + �(b).
Then
(4.6)

Inv(b) ⊂ Inv(ab), b−1 Inv(a) ⊂ Φ+, and Inv(ab) =
(
b−1 Inv(a)

)
� Inv(b).

Thus by Lemma 4.1(i), the multiplication map gives an isomorphism

(4.7) ḃ−1U(Inv(a))ḃ× U(Inv(b))
∼−→ U(Inv(ab)).
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We will later need the following consequences of (4.7): if �(ab) = �(a) + �(b) then

ḃ−1 · (U− ∩ ȧ−1Uȧ) ⊂ (U− ∩ (ȧḃ)−1Uȧḃ) · ḃ−1,(4.8)

(U ∩ ȧ−1U−ȧ) · ḃ ⊂ ḃ · (U ∩ (ȧḃ)−1U−ȧḃ).(4.9)

Multiplying both sides of (4.9) by ḃ−1 on the left, we get ḃ−1U(Inv(a))ḃ ⊂
U(Inv(ab)), which follows from (4.6). We obtain (4.8) from (4.9) by applying the
map x �→ xT ; see (4.3).

Lemma 4.3. Let α ∈ Φ+ and i ∈ I be such that α �= αi. Let Ψ ⊂ Φ denote the set
of all roots of the form mα − rαi for integers m > 0, r ≥ 0. Then Ψ is a bracket
closed subset of Φ+, and for all t ∈ K we have yi(t)Uαyi(−t) ⊂ U(Ψ).

Proof. Let x ∈ Uα and x′ := ṡ−1
i xṡi ∈ Usiα. By [BB05, Lemma 4.4.3], si permutes

Φ+ \ {αi} (in particular, siα > 0). Write

yi(t) · x · yi(−t) = ṡixi(−t)ṡ−1
i · x · ṡixi(t)ṡ

−1
i = ṡixi(−t) · x′ · xi(t)ṡ

−1
i .

Denote by Ψ′ ⊂ Φ the set of all roots of the form msiα + rαi for integers m, r >
0. It is clear that Ψ′ ⊂ Φ+ \ {αi, siα} is a bracket closed subset. By [Hum75,
Lemma 32.5], we have xi(−t)x′xi(t)x

′−1 ∈ U(Ψ′), so xi(−t)x′xi(t) ∈ U(Ψ′)x′.
Thus Ψ′′ := siΨ

′ is also a bracket closed subset of Φ+ \ {αi, α}, and we have
ṡiU(Ψ′)x′ṡ−1

i = U(Ψ′′)x. Clearly, Ψ = Ψ′′ � {α}. We thus have yi(t)Uαyi(−t) ⊂
U(Ψ′′)Uα = U(Ψ). �

4.5. Flag variety and Bruhat decomposition. Let G/B be the flag variety of
G (over K). We recall some standard properties of the Bruhat decomposition that
can be found in e.g. [Hum75, Section 28]. Define open Schubert, opposite Schubert,
and Richardson varieties:

(4.10)
◦
Xw := BẇB/B,

◦
Xv := B−v̇B/B,

◦
Rv,w :=

◦
Xv∩

◦
Xw (for v ≤ w ∈ W ).

Recall the Bruhat and Birkhoff decompositions:

G =
⊔

w∈W

BẇB =
⊔

v∈W

B−v̇B, where(4.11)

B−v̇B ∩BẇB = ∅ and
◦
Xv ∩

◦
Xw = ∅ for v �≤ w ∈ W.(4.12)

Let Xv denote the (Zariski) closure of
◦
Xv. Similarly, let Xw denote the closure

of
◦
Xw, and then Rv,w = Xv ∩Xw is the closure of

◦
Rv,w in G/B. We have

Xv =
⊔
v≤v′

◦
Xv′ , Xw =

⊔
w′≤w

◦
Xw′

,(4.13)

G/B =
⊔
v≤w

◦
Rv,w, Rv,w =

⊔
v≤v′≤w′≤w

◦
Rv′,w′ .(4.14)
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For any w ∈ W , i ∈ I, and t ∈ K∗, we have

xi(t) ∈ B−ṡiB−, yi(t) ∈ BṡiB,(4.15)

BṡiB ·BẇB ⊂
{
BṡiẇB, if siw > w,

BṡiẇB �BẇB, if siw < w,
(4.16)

B−ṡiB− ·B−ẇB ⊂
{
B−ṡiẇB, if siw < w,

B−ṡiẇB �B−ẇB, if siw > w,
(4.17)

Bv̇B ·BẇB ⊂ Bv̇ẇB for v ∈ W such that �(vw) = �(v) + �(w).(4.18)

For t = (t1, . . . , tn) ∈ (K∗)n and a reduced word i = (i1, . . . , in) for w ∈ W , define

(4.19) xi(t) := xi1(t1) · · ·xin(tn), and yi(t) := yi1(t1) · · · yin(tn).
It follows from (4.15), (4.16), and (4.3) that

(4.20) xi(t) ∈ B−ẇB−, yi(t) ∈ BẇB.

4.6. Parabolic subgroup WJ of W . We give a description of the posetQJ studied
in [Rie06,GY09,KLS14,HL15] in a form adapted to our needs in this paper.

Let J ⊂ I, and denote by WJ ⊂ W the subgroup generated by {si}i∈J . Let W
J

be the set of minimal-length coset representatives ofW/WJ ; see [BB05, Section 2.4].
Let wJ be the longest element of WJ , and wJ := w0wJ be the maximal element of
W J . Let ΦJ ⊂ Φ consist of roots that are linear combinations of {αi}i∈J . Define

Φ+
J := ΦJ ∩ Φ+, Φ−

J := ΦJ ∩ Φ−, Φ
(J)
+ := Φ+ \ Φ+

J , Φ
(J)
− := Φ− \ Φ−

J .

The sets Φ+
J , Φ

(J)
+ , Φ−

J , Φ
(J)
− are clearly bracket closed, so consider subgroups

UJ = U(Φ+
J ), U−

J = U−(Φ
−
J ), U (J) = U(Φ

(J)
+ ), U

(J)
− = U−(Φ

(J)
− ).

In fact, we have

(4.21) Φ+
J = Inv(wJ), Φ

(J)
+ = Inv(wJ ), ẇJU

−
J ẇ−1

J = UJ .

Let W J
max := {wwJ | w ∈ W J}. By [BB05, Proposition 2.4.4], every w ∈ W

admits a unique parabolic factorization w = w1w2 for w1 ∈ W J and w2 ∈ WJ , and
this factorization is length-additive. We state some standard facts on parabolic
factorizations for later use.

Lemma 4.4.

(i) If u ∈ W J and siu < u, then siu ∈ W J .
(ii) Given u ∈ W J and r, r′ ∈ WJ , we have ur ≤ ur′ if and only if r ≤ r′.

Proof. For (i) suppose that siu /∈ W J , so that siusj < siu for some j ∈ J . Then
siusj < siu < u < usj , which contradicts �(usj) = �(siusj)±1. For (ii), see [BB05,
Exercise 2.21]. �

Lemma 4.5. For any w ∈ W J , we have Inv(w) ⊂ Φ
(J)
+ . In particular, wΦ+

J ⊂ Φ+,

ẇUJ ẇ
−1 ⊂ U , and ẇU−

J ẇ−1 ⊂ U−.

Proof. Let α ∈ Φ+ be a positive root. Then it can be written as α =
∑

i∈I ciαi for

ci ∈ Z≥0. Since w ∈ W J , we have wαi > 0 for all i ∈ J . Thus if wα < 0, we must

have ci �= 0 for some i /∈ J , so α ∈ Φ
(J)
+ . �

Lemma 4.6 ([He09]). Let x, y ∈ W .
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(i) The set {uv | u ≤ x, v ≤ y} contains a unique maximal element, denoted
x∗y. The set {xv | v ≤ y} contains a unique minimal element, denoted x�y.

(ii) There exist elements u′ ≤ x and v′ ≤ y such that x∗y = xv′ = u′y, and these
factorizations are both length-additive.

(iii) If x′ ≤ x, then x′ ∗ y ≤ x ∗ y and x′ � y ≤ x � y.
(iv) If xy is length-additive, then x ∗ y = xy and (xy) � y−1 = x.

The operations ∗ and � are called the Demazure product and downwards De-
mazure product.

Proof. The first three parts were shown in [He09, Section 1.3], with the caveat that
our � is the ‘mirror image’ of He’s �. Part (iv) follows from the definitions of ∗ and
�. �

Definition 4.7. Let QJ = {(v, w) ∈ W×W J | v ≤ w}. We define an order relation
� on QJ as follows: for (v, w), (v′, w′) ∈ QJ , we write (v, w) � (v′, w′) if and only
if there exists r ∈ WJ such that vr is length-additive and v′ ≤ vr ≤ wr ≤ w′. For
(v, w) ∈ QJ , define

Q
�(v,w)
J := {(v′, w′) ∈ QJ | (v, w) � (v′, w′)},

Q
�(v,w)
J := {(v′, w′) ∈ QJ | (v′, w′) � (v, w)}.

Lemma 4.8.

(i) Let (v, w), (v′, w′) ∈ QJ , r ∈ WJ , and v′ ≤ vr ≤ wr ≤ w′. Then (v, w) �
(v′, w′).

(ii) Let (u, u), (v, w), (v′, w′) ∈ QJ . Then (u, u) � (v, w) � (v′, w′) if and only if

v′ ≤ vr′ ≤ ur ≤ wr′ ≤ w′ for some r, r′ ∈ WJ such that vr′ is length-additive.

(4.22)

Proof. (i): By Lemma 4.6, there exists r′ ≤ r such that v ∗ r = vr′ ≥ vr, and
vr′ is length-additive. We have vr′ ≤ wr′ by Lemma 4.6(iii), and wr′ ≤ wr by
Lemma 4.4(ii). Therefore v′ ≤ vr ≤ vr′ ≤ wr′ ≤ wr ≤ w′, so (v, w) � (v′, w′).

(ii) (⇒): Suppose that (u, u) � (v, w) � (v′, w′). Then by Definition 4.7, there
exist r′, r′′ ∈ WJ such that vr′ is length-additive, v′ ≤ vr′ ≤ wr′ ≤ w′, and
v ≤ ur′′ ≤ w. Define r ∈ WJ by the equality (ur′′) ∗ r′ = ur. Then applying ∗ r′
on the right to v ≤ ur′′ ≤ w, by Lemma 4.6(iii)–(iv), we obtain vr′ ≤ ur ≤ wr′.
Therefore (4.22) holds.

(ii) (⇐): Suppose that (4.22) holds. Then (v, w) � (v′, w′). Define r′′ ∈ WJ by
the equality (ur)�r′−1 = ur′′. Then applying �(r′)−1 on the right to vr′ ≤ ur ≤ wr′,
by Lemma 4.6(iii)–(iv), we obtain v ≤ ur′′ ≤ w. Therefore (u, u) � (v, w). �

Remark 4.9. By Lemma 4.8(i), Definition 4.7 remains unchanged if we omit the
condition that vr is length-additive. It follows that QJ coincides with the poset
studied in [HL15, Section 2.4]. Therefore by [HL15, Appendix], QJ is also isomor-
phic to the posets studied in [Rie06,GY09,KLS14].

4.7. Partial flag variety G/P . Fix J ⊂ I as before. Let P ⊂ G be the subgroup
generated by B and {yi(t) | t ∈ K∗, i ∈ J}. We denote by G/P the partial flag
variety corresponding to J , and let πJ : G/B → G/P be the natural projection
map. Let LJ ⊂ P be the Levi subgroup of P . It is generated by T and {xi(t), yi(t) |
i ∈ J, t ∈ K∗}. Let P− be the parabolic subgroup opposite to P , with LJ = P ∩P−.
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For (v, w) ∈ QJ we introduce
◦
Πv,w := πJ (

◦
Rv,w) ⊂ G/P , and define the projected

Richardson variety Πv,w ⊂ G/P to be the closure of
◦
Πv,w in the Zariski topology.

By [KLS14, Proposition 3.6], we have

(4.23) G/P =
⊔

(v,w)∈QJ

◦
Πv,w, and Πv,w =

⊔
(v′,w′)∈Q

�(v,w)
J

◦
Πv′,w′ .

Now let K = C. The varieties
◦
Xw,

◦
Xv, X

w, Xv,
◦
Rv,w, and Rv,w are defined over

R. The map πJ is defined over R as well, and thus so are
◦
Πv,w and Πv,w. We let

(G/B)R:={gB |g∈G(R)}⊂G/B,
◦
RR

v,w:=(G/B)R∩
◦
Rv,w, RR

v,w:=(G/B)R∩Rv,w,

(G/P )R:={xP |x∈G(R)}⊂G/P,
◦
ΠR

v,w:=
◦
Πv,w∩(G/P )R, ΠR

v,w:=Πv,w∩(G/P )R.

It follows that the decomposition (4.23) is valid over R:

(G/P )R =
⊔

(v,w)∈QJ

◦
ΠR

v,w, ΠR

v,w =
⊔

(v′,w′)∈Q
�(v,w)
J

◦
ΠR

v′,w′ .(4.24)

4.8. Total positivity. Assume K = C in this section. Recall from Section 4.1 that
for each i ∈ I, we have elements xi(t), yi(t) (for t ∈ C) and α∨

i (t) (for t ∈ C∗).

Definition 4.10 ([Lus94]). Let G≥0 ⊂ G(R) be the submonoid generated by xi(t),
yi(t), and α∨

i (t) for t ∈ R>0. Define (G/B)≥0 to be the closure of (G≥0/B) ⊂
(G/B)R in the analytic topology. For v ≤ w ∈ W , let R≥0

v,w denote the closure of

R>0
v,w :=

◦
Rv,w ∩ (G/B)≥0 inside (G/B)≥0.

Definition 4.11 ([Lus98a, Rie99]). Set (G/P )≥0 := πJ ((G/B)≥0). For (v, w) ∈
QJ , let Π

≥0
v,w denote the closure of Π>0

v,w := πJ(R
>0
v,w) inside (G/P )≥0.

Thus we denote by Π>0
v,w what was denoted by Π>0

(v,w) in Example 1.4. We have

decompositions

(G/P )≥0 =
⊔

(v,w)∈QJ

Π>0
v,w, Π≥0

v,w =
⊔

(v′,w′)∈Q
�(v,w)
J

Π>0
v′,w′ .(4.25)

As a special case of (4.25), for J = ∅ we have

(G/B)≥0 =
⊔
v≤w

R>0
v,w, R≥0

v,w =
⊔

v≤v′≤w′≤w

R>0
v′,w′ .(4.26)

Lemma 4.12. (Assume K = C.) Let (v, w) ∈ QJ and r ∈ WJ be such that vr is
length-additive. Then

◦
Πv,w = πJ(

◦
Rv,w) = πJ(

◦
Rvr,wr), Π>0

v,w = πJ (R
>0
v,w) = πJ(R

>0
vr,wr),(4.27)

Πv,w = πJ(Rv,w) = πJ(Rvr,wr), Π≥0
v,w = πJ (R

≥0
v,w) = πJ(R

≥0
vr,wr).(4.28)

Proof. By [KLS14, Lemma 3.1], we have πJ(
◦
Rv,w) = πJ (

◦
Rvr,wr) =

◦
Πv,w, and

πJ restricts to isomorphisms
◦
Rv,w

∼−→
◦
Πv,w,

◦
Rvr,wr

∼−→
◦
Πv,w. Thus πJ (R

>0
v,w) =

πJ(R
>0
vr,wr) = Π>0

v,w follows from the equality πJ((G/B)≥0) = (G/P )≥0, prov-

ing (4.27). To show (4.28), note that Ra,b and R≥0
a,b are compact for any a ≤ b, and

therefore their images under πJ are closed. �

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun  2 15:40:28 EDT 2022 for download from IP 169.232.149.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



532 PAVEL GALASHIN ET AL.

Recall the definition of xi(t) and yi(t) from (4.19). Choose a reduced word
i = (i1, . . . , in) for w ∈ W and define

U>0(w) := {xi(t) | t ∈ Rn
>0}, U−

>0(w) := {yi(t) | t ∈ Rn
>0}.

Let U≥0 ⊂ U(R) (respectively, U−
≥0 ⊂ U−(R)) be the submonoid generated by

xi(t) (respectively, by yi(t)) for t ∈ R>0. Then U≥0 =
⊔

w∈W U>0(w) and U−
≥0 =⊔

w∈W U−
>0(w). We have U>0(w) = U≥0∩B−ẇB− and U−

>0(w) = U−
≥0∩BẇB, and

these sets do not depend on the choice of the reduced word i for w; see [Lus94,
Proposition 2.7].

4.9. Marsh–Rietsch parametrizations. Assume that K is algebraically closed.
Given w ∈ W , an expression w for w is a sequence w = (w(0), . . . , w(n)) such that
w(0) = id, w(n) = w, and for j = 1, . . . , n, either w(j) = w(j−1) or w(j) = w(j−1)sij
for some ij ∈ I. In the latter case we require w(j−1) < w(j), unlike in [MR04]. We

define J+
w := {1 ≤ j ≤ n | w(j−1) < w(j)} and J◦

w := {1 ≤ j ≤ n | w(j−1) = w(j)}
so that J+

w � J◦
w = {1, 2, . . . , n}. Every reduced word i = (i1, . . . , in) for w gives

rise to a reduced expression w = w(i) = (w(0), . . . , w(n)) with w(j) = w(j−1)sij for
j = 1, . . . , n.

Lemma 4.13 ([MR04, Lemma 3.5]). Let v ≤ w ∈ W , and consider a reduced ex-
pression w = (w(0), . . . , w(n)) for w corresponding to a reduced word i = (i1, . . . , in).
Then there exists a unique positive subexpression v for v inside w, i.e., an expres-
sion v = (v(0), . . . , v(n)) for v such that for j = 1, . . . , n, we have v(j−1) < v(j−1)sij .
This positive subexpression can be constructed inductively by setting v(n) := v and

(4.29) v(j−1) :=

{
v(j)sij , if v(j)sij < v(j),

v(j), otherwise,
for j = n, . . . , 1.

Corollary 4.14. In the setting above, if v(1) = si for some i ∈ I then v �≤ siw.

Proof. Indeed, if v ≤ siw < w then there exists a positive subexpression v′ =
(v′(0), . . . , v

′
(n−1)) for v inside w(i′), where i′ = (i2, . . . , in). By (4.29), we have

v′(j) = v(j+1) for j = 0, 1, . . . , n − 1, which contradicts the fact that v′(0) = 1 while

v(1) = si. �

For w ∈ W , let Red(w) := {w | w is a reduced expression for w}. For v ≤ w ∈
W , let

Red(v, w) := {(v,w) | w ∈ Red(w), v is a positive subexpression for v inside w}.

Thus for all v ≤ w, the sets Red(w) and Red(v, w) have the same cardinality. Let

v ≤ w ∈ W and (v,w) ∈ Red(v, w). Given a collection t = (tk)k∈J◦
v
∈ (K∗)J

◦
v ,

define

gv,w(t) := g1 · · · gn, where gk :=

{
yik(tk), if k ∈ J◦

v,

ṡik , if k ∈ J+
v .

(4.30)

4.9.1. Marsh–Rietsch parametrizations of (G/B)≥0. In this section, we assume K =
C. Let v, w, v, and w be as above. Define a subset G>0

v,w ⊂ G(R) by

G>0
v,w := {gv,w(t) | t ∈ R

J◦
v

>0}.
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Theorem 4.15 ([MR04, Theorem 11.3]). The map G(R) → (G/B)R sending g to
gB restricts to an isomorphism of real semialgebraic varieties

G>0
v,w

∼−→ R>0
v,w.

Proposition 4.16 ([Lus94, Proposition 8.12]). We have G≥0·(G/B)≥0⊂(G/B)≥0.

Lemma 4.17. Suppose that g ∈ G≥0 and x ∈ G are such that xB ∈ R>0
v,w for some

v ≤ w ∈ W . Then gxB ∈ R>0
v′,w′ for some v′ ≤ v ≤ w ≤ w′.

Proof. By Proposition 4.16, we have gxB ∈ (G/B)≥0, so it suffices to show that
gx ∈ Bẇ′B ∩ B−v̇

′B for some v′ ≤ v ≤ w ≤ w′. Note that we have x ∈ BẇB ∩
B−v̇B. By Definition 4.10, it is enough to consider the cases g = xi(t) and g = yi(t)
for i ∈ I and t ∈ R>0.

Suppose that g = yi(t). We clearly have gx ∈ B−v̇B. If siw > w then
by (4.16) we have gx ∈ BṡiẇB. Thus we may assume that siw < w. By The-

orem 4.15, we can also assume x = gv,w(t) = g1 · · · gn for t ∈ R
J◦
v

>0 and some
choice of (v,w) ∈ Red(v, w) such that w = (w(0), . . . , w(n)) satisfies w(1) = si. Let

v = (v(0), . . . , v(n)). If v(1) �= si then g1 = yi(t
′), so gx ∈ G>0

v,w and we are done.
If v(1) = si then by Corollary 4.14 we have v �≤ siw. Recall that gx ∈ B−v̇B and
by (4.16), gx ∈ BṡiẇB � BẇB. But B−v̇B ∩ BṡiẇB = ∅ by (4.12). Therefore we
must have gx ∈ BẇB, finishing the proof in this case.

The case g = xi(t) follows similarly using a “dual” Marsh–Rietsch parametriza-
tion [Rie06, Section 3.4], where for (v,w) ∈ Red(v, w), every element of R>0

ww0,vw0

is parametrized as

g1 · · · gnẇ0B, where gk :=

{
xik(tk), if k ∈ J◦

v,

ṡ−1
ik

, if k ∈ J+
v .

�

We will use the following consequence of Theorem 4.15 in Section 9.11.

Corollary 4.18 (cf. [KLS14, Proposition 3.3]). Let u ∈ W J , r ∈ WJ , and v ∈ W
be such that v ≤ ur. Then

πJ(R
>0
v,ur) = πJ(R

>0
v
r−1,u) = Π>0

v
r−1,u.

Proof. Let i = (i1, . . . , in) be a reduced word for w := ur, such that (i�(u)+1, . . . , in)
is a reduced word for r. Let (v,w) ∈ Red(v, w) be such that w corresponds to i.
Then it is clear from Lemma 4.13 that after setting v′ := (v(0), . . . , v(�(u))) and

u := (w(0), . . . , w(�(u))), we get (v′,u) ∈ Red(v � r−1, u). Moreover, the indices

i�(u)+1, . . . , in clearly belong to J , so if g1 · · · gn ∈ G>0
v,w then g1 · · · g�(u) ∈ G>0

v′,u

and πJ (g1 · · · gnB) = πJ(g1 · · · g�(u)B). We are done by Theorem 4.15. �

4.10. G/P is a shellable TNN space. We show that the triple ((G/P )R,
(G/P )≥0, QJ ) is a shellable TNN space in the sense of Definition 2.1. We start
by recalling several known results.

Theorem 4.19.

(i) The poset Q̂J := QJ � {0̂} is graded, thin, and shellable.

(ii) (G/P )R is a smooth manifold. Each
◦
ΠR

v,w is a smooth embedded locally closed
submanifold of (G/P )R.

(iii) For (v, w) ∈ QJ , Π
>0
v,w is a connected component of

◦
ΠR

v,w.
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Proof. Part (i) is due to Williams [Wil07]. For (ii), (G/P )R is a smooth manifold

because it is a homogeneous space of a real Lie group. Each
◦
ΠR

v,w is a smooth
embedded manifold because it is the set of real points of a smooth algebraic subva-

riety
◦
Πv,w of G/P ; see [KLS14, Corollary 3.2] or [Lus98a,Rie06]. Part (iii) is due

to Rietsch [Rie99]. �
Corollary 4.20. ((G/P )R, (G/P )≥0, QJ ) is a shellable TNN space.

Proof. Let us check each part of Definition 2.1.
(TNN1) and (TNN1’): These follow from Theorem 4.19(i). The maximal element

1̂ ∈ QJ is given by (id, wJ ); see Section 4.6.
(TNN2): This follows from Theorem 4.19(ii) and (4.24).
(TNN3): This holds since (G/P )R is compact and Π≥0

v,w ⊂ G/P is closed.
(TNN4): This follows from Theorem 4.19(iii) combined with Theorem 4.15.
(TNN5): This result is due to Rietsch [Rie06]; see (4.25). �

4.11. Gaussian decomposition. Assume K is algebraically closed. Let us define

G∓
0 := B−B, G±

0 := BB−.

For i ∈ I, let Δ∓
i : G∓

0 → K and Δ±
i : G±

0 → K be defined as follows. Given
(x−, x0, x+) ∈ U− × T × U , we have x−x0x+ ∈ G∓

0 and x+x0x− ∈ G±
0 , and we set

Δ∓
i (x−x0x+) := xωi

0 , Δ±
i (x+x0x−) := xw0ωi

0 . For a finite set A, let PA denote the
(|A|−1)-dimensional projective space over K, with coordinates indexed by elements
of A.

Lemma 4.21.

(i) The multiplication map gives biregular isomorphisms

U− × T × U
∼−→ G∓

0 , U × T × U−
∼−→ G±

0 .

(ii) The maps Δ∓
i and Δ±

i extend to regular functions G → K.
(iii) G∓

0 = {x ∈ G | Δ∓
i (x) �= 0 for all i ∈ I}, G±

0 = {x ∈ G | Δ±
i (x) �=

0 for all i ∈ I}.
(iv) Fix i ∈ I and let Wωi := {wωi | w ∈ W} denote the W -orbit of the corre-

sponding fundamental weight. Then there exists a regular map Δflag
i : G/B →

PWωi such that for w ∈ W and x ∈ G, the wωi-th coordinate of Δflag
i (xB)

equals Δ∓
i (ẇ

−1x).

Proof. For (i), see [Hum75, Proposition 28.5]. Parts (ii) and (iii) are well known
when K = C; see [FZ99, Proposition 2.4 and Corollary 2.5]. We give a proof for
arbitrary algebraically closed K, using a standard argument that relies on repre-
sentation theory. We refer to [Hum75, Section 31] for the necessary notation and
background.

We have G±
0 = ẇ−1

0 G∓
0 ẇ0 and Δ±

i (ẇ
−1
0 gẇ0) = Δ∓

i (g) for all g ∈ G∓
0 . Thus it

suffices to give a proof for Δ∓
i and G∓

0 . For i ∈ I, there exists a regular function
cωi

: G → K that coincides with Δ∓
i on G∓

0 ; see [Hum75, Section 31.4]. This
shows (ii). Explicitly, cωi

is given as follows: consider the highest weight module Vωi

for G, and let v+ ∈ Vωi
be its highest weight vector. We have a direct sum of vector

spaces Vωi
= Kv+ ⊕ V ′, where V ′ is spanned by weight vectors of weights other

than ωi. Letting r+ : Vωi
→ K denote the linear function such that r+(v+) = 1

and r+(V ′) = {0}, we have cωi
(g) := r+(gv+) for all g ∈ G. The decomposition

Vωi
= Kv+ ⊕ V ′ is such that for (x−, x0, x+) ∈ U− × T × U and w ∈ W , we have
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x+v+ = v+, x0v+ = Mv+ for some M ∈ K∗, x−v+ ∈ v+ + V ′, x−V
′ ⊂ V ′, and

ẇv+ ∈ V ′ if wωi �= ωi. Thus if g ∈ G∓
0 then cωi

(g) �= 0 for all i ∈ I. Conversely, if
g /∈ G∓

0 then by (4.11), there exists a unique w �= id ∈ W such that g ∈ U−ẇTU .
For i ∈ I such that wωi �= ωi, we get cωi

(g) = 0. This proves (iii). For (iv), let
Vωi

= V1⊕V2 where V1 is spanned by all weight vectors of weights in Wωi, and V2 is
spanned by the remaining weight vectors. Let π1 : Vωi

→ V1 denote the projection

along V2. It follows that for all g ∈ G, π1(gv+) �= 0. Then Δflag
i is the natural

morphism G/B → P(V1), sending gB to [π1(gv+)]. �

Lemma 4.22. Define G
(J)
0 := P−P (with notation as in Section 4.7).

(i) We have G
(J)
0 = P−B and P =

⊔
r∈WJ

BṙB.

(ii) For p ∈ P , we have pU (J)p−1 = U (J). Similarly, for p ∈ P−, we have

pU
(J)
− p−1 = U

(J)
− . In particular, for p ∈ LJ , we have pU (J)p−1 = U (J) and

pU
(J)
− p−1 = U

(J)
− .

(iii) The multiplication map gives a biregular isomorphism U
(J)
− × LJ × U (J) ∼−→

G
(J)
0 . In particular, every element x ∈ G

(J)
0 can be uniquely factorized as

[x]
(J)
− · [x]J · [x](J)+ ∈ U

(J)
− · LJ · U (J). The map G

(J)
0 → LJ sending x to [x]J

satisfies [p−xp+]J = [p−]J [x]J [p+]J for all x ∈ G
(J)
0 , p− ∈ P−, and p+ ∈ P .

(iv) The map b �→ [b]J gives group homomorphisms U → UJ and U− → U−
J , such

that

xi(t) �→ [xi(t)]J =

{
xi(t), if i ∈ J ,

1, otherwise,
yi(t) �→ [yi(t)]J =

{
yi(t), if i ∈ J ,

1, otherwise.

Proof. By [Hum75, Section 30.2], U (J) is the unipotent radical (in particular, a

normal subgroup) of P and U
(J)
− is the unipotent radical of P−. This shows (ii).

It follows that P = LJU
(J) = LJB, and therefore G

(J)
0 = P−B. By [Hum75,

Section 30.1] and (4.11), P =
⊔

r∈WJ
BṙB, which proves (i).

By [Bor91, Proposition 14.21(iii)], the multiplication map gives a biregular iso-

morphism U
(J)
− × P → G

(J)
0 . By [Hum75, Section 30.2], the multiplication map

gives a biregular isomorphism LJ × U (J) → P . Thus we get a biregular isomor-

phism U
(J)
− × LJ × U (J) ∼−→ G

(J)
0 . It is clear from the definition that [p−xp+]J =

[p−]J [x]J [p+]J , since we can factorize p− = [p−]
(J)
− [p−]J and p+ = [p+]J [p+]

(J)
+ .

Thus we are done with (iii), and (iv) follows by repeatedly applying (iii). �

4.12. Affine charts. For u ∈ W J , define C
(J)
u := u̇G

(J)
0 /P ⊂ G/P . The following

maps are biregular isomorphisms for u ∈ W J and v, w ∈ W (see [Bor91, Proposi-
tion 14.21(iii)], [Spr98, Proposition 8.5.1(ii)], and [FH91, Corollary 23.60]):

u̇U
(J)
− u̇−1 ∼−→ C(J)

u , g(J) �→ g(J)u̇P,(4.31)

v̇U−v̇
−1 ∩ U−

∼−→
◦
Xv, g �→ gv̇B,(4.32)

ẇU−ẇ
−1 ∩ U

∼−→
◦
Xw, g �→ gẇB.(4.33)

As a consequence of (4.32) and (4.33), we get

(4.34) B−v̇B = (v̇U− ∩ U−v̇) ·B, BẇB = (ẇU− ∩ Uẇ) ·B.
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The isomorphism in (4.31) identifies an open dense subset C
(J)
u of G/P with the

group u̇U
(J)
− u̇−1. We now combine this with Lemma 4.2.

Definition 4.23. Let U
(J)
1 := u̇U

(J)
− u̇−1 ∩ U and U

(J)
2 := u̇U

(J)
− u̇−1 ∩ U−. For

x ∈ u̇G
(J)
0 , consider the element g(J) ∈ u̇U

(J)
− u̇−1 such that g(J)u̇ ∈ xP ∩ u̇U

(J)
− ,

which is unique by (4.31). Further, let h
(J)
1 , g

(J)
1 ∈ U

(J)
1 and h

(J)
2 , g

(J)
2 ∈ U

(J)
2

be the elements such that h
(J)
2 g(J) = g

(J)
1 and h

(J)
1 g(J) = g

(J)
2 . By (4.31), the

map x �→ g(J) is regular, and the map g(J) �→ (g
(J)
1 , g

(J)
2 , h

(J)
1 , h

(J)
2 ) is regular by

Lemma 4.2. Let us denote by κ : u̇G
(J)
0 → U

(J)
2 the map x �→ κx := h

(J)
2 . It

descends to a regular map κ : C
(J)
u → U

(J)
2 sending xP to κx.

5. Subtraction-free parametrizations

We study subtraction-free analogs of Marsh–Rietsch parametrizations [MR04] of
(G/B)≥0.

5.1. Subtraction-free subsets. Given some fixed collection t of variables of size
|t|, let R[t] be the ring of polynomials in t, and R>0[t] ⊂ R[t] be the semiring of
nonzero polynomials in t with positive real coefficients. Let F := R(t) be the field
of rational functions in t. Define

F∗
sf := {R(t)/Q(t) | R(t), Q(t) ∈ R>0[t]}, Fsf := {0} � F∗

sf ,

F� := {R(t)/Q(t) | R(t) ∈ R[t], Q(t) ∈ R>0[t]}.
We call elements of Fsf subtraction-free rational expressions in t. In this section,
we assume that K = F is the algebraic closure of F .

Definition 5.1. Let T sf ⊂ T be the subgroup generated by α∨
i (t) for i ∈ I and

t ∈ F∗
sf . Let G

� ⊂ G be the subgroup generated by

{xi(t), yi(t) | i ∈ I, t ∈ F�} ∪ {ẇ | w ∈ W} ∪ T sf .

We define subgroups U� := U ∩ G�, U�
− := U− ∩ G�, B� := T sfU� = U�T sf and

B�
− := T sfU�

− = U�
−T

sf (cf. Lemma 5.2). We also put U�(Θ) := U� ∩U(Θ) (respec-
tively, U�

−(Θ) := U�
− ∩U−(Θ)) for a bracket closed subset Θ of Φ+ (respectively, of

Φ−). Given a reduced word i for w ∈ W , define

(5.1) Usf(w) := {xi(t
′) | t′ ∈ (F∗

sf)
n}, U−

sf (w) := {yi(t
′) | t′ ∈ (F∗

sf)
n}.

These subsets do not depend on the choice of i; see [BZ97, Section 3].
For two subsets H1 and H2 of G, we say that H1 commutes setwise with H2 if

H1 ·H2 = H2 ·H1. We say that H1 commutes setwise with g ∈ G if H1 · g = g ·H1.

Lemma 5.2. T sf commutes setwise with B�, U , U−, U�(Θ), U�
−(Θ), Usf(w),

U−
sf (w), and ẇ.

Proof. It follows from (4.2) that T sf commutes setwise with B�, U , U−, Usf(w),
U−
sf (w), and ẇ. For U�(Θ), U�

−(Θ), we use a generalization of (4.2): for α ∈ Φ+,
i ∈ I, and w ∈ W such that wαi = α, write xα(t) := ẇxi(t)ẇ

−1 ∈ U�({α}) and
yα(t) := ẇyi(t)ẇ

−1 ∈ U�
−({−α}) for t ∈ F�. Then (4.2) implies axα(t)a

−1 =
xα(a

αt) and ayα(t)a
−1 = yα(a

−αt). �
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Let us now introduce subtraction-free analogs of Marsh–Rietsch parametriza-
tions. Let v ≤ w ∈ W and (v,w) ∈ Red(v, w). Recall that for t′ = (t′k)k∈J◦

v
∈

(K∗)J
◦
v , gv,w(t′) = g1 · · · gn is defined in (4.30). Define Gsf

v,w := {gv,w(t′) | t′ ∈
(F∗

sf)
J◦
v} ⊂ G�. The following result is closely related to [MR04, Lemma 11.8].

Lemma 5.3. Let v ≤ w ∈ W and (v,w) ∈ Red(v, w). Let gv,w(t′) be as in (4.30)

for t′ ∈ (F∗
sf)

J◦
v . Then for each k = 0, 1, . . . , n and for all x ∈ U� ∩ v̇−1

(k)U−v̇(k), we

have

(5.2) g1 · · · gk · x · gk+1 · · · gn ∈ g1 · · · gn · U�.

Proof. We prove this by induction on k. For k = n, the result is trivial, so suppose
that k < n. Let x ∈ U� ∩ v̇−1

(k)U−v̇(k). If gk+1 = ṡi for some i ∈ I then �(v(k+1)) =

�(v(k)) + �(si), so we use (4.9) to show that x · gk+1 = gk+1 · x′ for some x′ ∈
U ∩ v̇−1

(k+1)U−v̇(k+1). Since x′ = ṡ−1
i xṡi and each term belongs to G�, we see that

x′ ∈ U� ∩ v̇−1
(k+1)U−v̇(k+1), so we are done by induction.

Suppose now that gk+1 = yi(t) for some i ∈ I and t ∈ F∗
sf . Write

x · gk+1 = gk+1 · g−1
k+1xgk+1 = gk+1 · yi(−t)xyi(t).

By (4.5), U� ∩ v̇−1
(k)U−v̇(k) = U�(Inv(v(k))). Clearly again yi(−t)xyi(t) ∈ G�, and

we claim that yi(−t)xyi(t) ∈ U(Inv(v(k))) for all x ∈ U(Inv(v(k))). First, using
Lemma 4.1(ii), we can assume that x ∈ Uα for some α ∈ Inv(v(k)). Since v(k)si >

v(k), we have αi /∈ Inv(v(k)), so α �= αi. Let Ψ = {mα−rαi} ⊂ Φ+ be the set of roots
as in Lemma 4.3. Our goal is to show that Ψ ⊂ Inv(v(k)). Let γ := mα − rαi ∈ Ψ
for some m > 0 and r ≥ 0. We now show that γ ∈ Inv(v(k)), which is equivalent
to saying that v(k)γ < 0. Indeed, v(k)γ = mv(k)α − rv(k)αi. Since α ∈ Inv(v(k)),
v(k)α < 0. Since αi /∈ Inv(v(k)), v(k)αi > 0. Thus v(k)γ < 0, because −v(k)γ is a
positive linear combination of positive roots. We have shown that Ψ ⊂ Inv(v(k)),
and thus by Lemma 4.3, we find yi(−t)xyi(t) ∈ U(Inv(v(k))). Since v(k) = v(k+1),
we get

yi(−t)xyi(t) ∈ U�(Inv(v(k))) = U� ∩ v̇−1
(k)U−v̇(k) = U� ∩ v̇−1

(k+1)U−v̇(k+1),

and we are done by induction. �

Proposition 5.4. For v ≤ w ∈ W , the set Gsf
v,w ·U� ⊂ G� does not depend on the

choice of (v,w) ∈ Red(v, w). In other words: let (v0,w0), (v1,w1) ∈ Red(v, w).

Then for any t0 ∈ (F∗
sf)

J◦
v0 there exist t1 ∈ (F∗

sf)
J◦
v1 and x ∈ U� such that

gv0,w0
(t0) = gv1,w1

(t1) · x.

Proof. Recall that for each w0 ∈ Red(w) there exists a unique positive subexpres-
sion v0 for v such that (v0,w0) ∈ Red(v, w). We need to show that choosing
a different reduced expression w1 for w results in a subtraction-free coordinate
change t0 �→ t1 of the parameters in Theorem 4.15. Any two reduced expressions
for w are related by a sequence of braid moves, so it suffices to assume that w0 and
w1 differ by a single braid move.

The explicit formulae for the corresponding coordinate transformations can be
found in the proof of [Rie08, Proposition 7.2]; however, an extra step is needed to
show that those formulae indeed give the correct coordinate transformations. More
precisely, suppose that Φ′ is a root subsystem of Φ of rank 2, and let W ′ be its Weyl
group. Then it was checked in the proof of [Rie08, Proposition 7.2] that for any
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v′ ≤ w′ ∈ W ′, any (v′
0,w

′
0), (v

′
1,w

′
1) ∈ Red(v′, w′), and any t′0 ∈ (F∗

sf)
J◦
v′
0 , there

exist t′1 ∈ (F∗
sf)

J◦
v′
1 and x ∈ U such that gv′

0,w
′
0
(t′0) = gv′

1,w
′
1
(t′1) · x.

Let us now complete the proof of Proposition 5.4 (as well as of [Rie08, Propo-
sition 7.2]).1 Suppose that w0 and w1 differ by a braid move along a subword
gk+1 · · · gk+m of g1 · · · gn. Here gk+1 · · · gk+m = gv′

0,w
′
0
(t′0) as above. Applying a

move from [Rie08], we transform gk+1 · · · gk+m into g′k+1 · · · g′k+mx for some x ∈ U
and g′k+1 · · · g′k+m = gv′

1,w
′
1
(t′1). Thus

g1 · · · gn = g1 · · · gk · g′k+1 · · · g′k+m · x · gk+m+1 · · · gn.
By [MR04, Proposition 5.2], the elements h := g1 · · · gk+m and h′ := g1 · · · gk ·
g′k+1 · · · g′k+m belong to U−v̇(k+m). Since h = h′x, we get x ∈ v̇−1

(k+m)U−v̇(k+m).

Moreover, since h, h′ ∈ G� and x ∈ U , we must have x ∈ U�. Thus by Lemma 5.3,
we have

g1 · · · gn ∈ g1 · · · gk · g′k+1 · · · g′k+m · gk+m+1 · · · gn · U�. �

Definition 5.5. From now on we denote Rsf
v,w := Gsf

v,wB� ⊂ G�. By Proposi-

tion 5.4, the set Rsf
v,w does not depend on the choice of (v,w) ∈ Red(v, w). As we

discuss in Section 5.4, Rsf
v,w is the “subtraction-free” analog of R>0

v,w.

5.2. Collision moves. Assume K = F . By [FZ99, (2.13)], for each t ∈ F∗
sf there

exist t+ ∈ F∗
sf , a+ ∈ T sf , and t− ∈ F� satisfying

(5.3) ṡixi(t) = a+xi(t−)yi(t+), xi(t)ṡi = yi(t+)xi(t−)a+,

(5.4) ṡ−1
i yi(t) = a+yi(t−)xi(t+), yi(t)ṡ

−1
i = xi(t+)yi(t−)a+.

(Here, each of the four moves yields different t+, a+, t−.) By [FZ99, (2.11)], for
each t, t′ ∈ F∗

sf there exist t+, t
′
+ ∈ F∗

sf and a+ ∈ T sf satisfying

(5.5) xi(t)yi(t
′) = yi(t

′
+)xi(t+)a+, yi(t

′)xi(t) = xi(t+)yi(t
′
+)a+.

By [FZ99, (2.9)], we have

(5.6) xi(t)yj(t
′) = yj(t

′)xi(t), for i �= j.

As a direct consequence of (5.5), (5.6), and Lemma 5.2, for any v, w ∈ W we get

(5.7) Usf(v) · U−
sf (w) · T sf = U−

sf (w) · Usf(v) · T sf .

Lemma 5.6.

(i) Let w ∈ W . Then

B�
− · ẇ−1 · U−

sf (w) = B�
− · Usf(w

−1) and U−
sf (w) · ẇ−1 ·B�

− = Usf(w
−1) ·B�

−.

(5.8)

(ii) If v, w ∈ W are such that �(vw) = �(v) + �(w), then

(5.9) ẇ−1v̇−1 · U−
sf (v) ⊂ B�

− · ẇ−1 · Usf(v
−1).

(iii) Let w1, . . . , wk ∈ W be such that �(w1 · · ·wk) = �(w1) + · · · + �(wk). Then
for any h ∈ U−

sf (w1 · · ·wk) there exist b1 ∈ Usf(w
−1
1 ), . . . , bk ∈ Usf(w

−1
k ) such

that for each 1 ≤ i ≤ k, we have

(5.10) ẇ−1
i · · · ẇ−1

1 · h ∈ B�
− · bi · · · b1.

1Alternatively, the proof of [Rie08, Proposition 7.2] can be completed using [MR04, Theo-
rem 7.1]. We thank Konni Rietsch for pointing this out to us.
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(iv) Let v ≤ w ∈ W . Then

(5.11) v̇−1 · U−
sf (w) ⊂ B�

− · Usf(v
−1).

Proof. Let us prove the following claim: if vv1 = w and �(w) = �(v) + �(v1), then

(5.12) v̇−1U−
sf (w) ⊂ T sf · (U�

− ∩ v̇−1Uv̇) · U−
sf (v1) · Usf(v

−1).

We prove this by induction on �(v). If �(v) = 0 then v = id and (5.12) is trivial.
Otherwise there exists an i ∈ I such that v′ := siv < v and thus w′ := siw < w.
Let yi(t

′) ∈ U−
sf (w). Using (5.4), we see that for some t1 ∈ F∗

sf , t+ ∈ F∗
sf and

t− ∈ F�,

v̇−1 · yi(t
′) ∈ v̇′−1 · ṡ−1

i yi(t1) · U−
sf (w

′) ⊂ T sf v̇′−1 · yi(t−)xi(t+) · U−
sf (w

′).

By (5.7), xi(t+) · U−
sf (w

′) ⊂ T sf · U−
sf (w

′) · Usf(si). Clearly siv
′ > v′, so y′ :=

v̇′−1yi(t−)v̇
′ ∈ U−. On the other hand, v̇y′v̇−1 = ṡ−1

i yi(t−)ṡi = xi(−t−) ∈ U .
Thus y′ ∈ U− ∩ v̇−1Uv̇, and it is also clear that y′ ∈ G�. We have shown that

(5.13) v̇−1 · yi(t
′) ∈ T sf · y′ · v̇′−1 · U−

sf (w
′) · Usf(si)

⊂ T sf · (U�
− ∩ v̇−1Uv̇) · v̇′−1 · U−

sf (w
′) · Usf(si).

We have v′v1 = w′, so by induction,

v̇′−1 · U−
sf (w

′) ⊂ T sf · (U�
− ∩ v̇′−1Uv̇′) · U−

sf (v1) · Usf(v
′−1).

Since Usf(v
′−1) · Usf(si) = Usf(v

−1), we have shown that

v̇−1yi(t
′) ∈ T sf · (U�

− ∩ v̇−1Uv̇) · (U�
− ∩ v̇′−1Uv̇′) · U−

sf (v1) · Usf(v
−1).

By (4.6) applied to a = si, b = v′, ab = v, we get Inv(v′) ⊂ Inv(v), so (U�
− ∩

v̇′−1Uv̇′) ⊂ (U�
− ∩ v̇−1Uv̇), and we have finished the proof of (5.12).

Combining (5.12) with (4.8), we obtain (5.9). Next, (5.10) can be shown by
induction: the case k = 0 is trivial. For k ≥ 1, we can write h = h1 · · ·hk ∈
U−
sf (w1) · · ·U−

sf (wk). By (5.9), we have

ẇ−1
i · · · ẇ−1

1 · h1 · · ·hk ∈ B�
− · ẇ−1

i · · · ẇ−1
2 · b′1 · h2 · · ·hk

for some b′1 ∈ Usf(w1) that does not depend on i. Using (5.7), we write b′1·h2 · · ·hk =
h′
2 · · ·h′

k · b1 ∈ U−
sf (w2) · · ·U−

sf (wk) · Usf(w1), and then proceed by induction.
Let us state several further corollaries of (5.12):

ẇ−1 · U−
sf (w) ⊂ T sf · (U�

− ∩ ẇ−1Uẇ) · Usf(w
−1),(5.14)

U−
sf (w) · ẇ−1 ⊂ Usf(w

−1) · (U�
− ∩ ẇUẇ−1) · T sf ,(5.15)

ẇ · Usf(w
−1) ⊂ (U� ∩ ẇU−ẇ

−1) · U−
sf (w) · T sf .(5.16)

Indeed, specializing (5.12) to v = w, we obtain (5.14). We obtain (5.15) from (5.14)
by replacing w with z := w−1 and then applying the involution x �→ xι of (4.4),
while (5.16) is obtained from (5.15) by applying the involution x �→ xT of (4.3).

To show (5.8), observe that the inclusion B�
− · ẇ−1 · U−

sf (w) ⊂ B�
− · Usf(w

−1)
follows from (5.14). To show the reverse inclusion, we use (5.16) to write

B�
− · Usf(w

−1) = B�
− · ẇ−1 · ẇ · Usf(w

−1) ⊂ B�
− · ẇ−1 · (U� ∩ ẇU−ẇ

−1) · U−
sf (w).

Since ẇ−1 ·(U�∩ ẇU−ẇ
−1) ⊂ U�

−ẇ
−1, we obtain B�

− · ẇ−1 ·U−
sf (w) = B�

− ·Usf(w
−1),

which is the first part of (5.8). The second part follows by applying the involution
x �→ xι of (4.4).
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It remains to show (5.11). We argue by induction on �(w), and the base case
�(w) = 0 is clear. Suppose that v ≤ w, and let w′ := siw < w for some i ∈ I. If
v′ := siv < v then by the same argument as in the proof of (5.13), we get

v̇−1 · U−
sf (w) ⊂ B�

− · v̇′−1 · U−
sf (w

′) · Usf(si).

Since v′ ≤ w′, we can apply the induction hypothesis to write v̇′−1 · U−
sf (w

′) ⊂
B�

− · Usf(v
′−1). We thus obtain

v̇−1 · U−
sf (w) ⊂ B�

− · Usf(v
′−1) · Usf(si) = B�

− · Usf(v
−1),

finishing the induction step in the case siv < v. But if siv > v then v̇−1yi(t1)v̇ ∈
U�
−, so in this case we have v̇−1U−

sf (w) ⊂ U�
− · v̇−1 · U−

sf (w
′), and the result follows

by applying the induction hypothesis to the pair v ≤ w′. �

5.3. Alternative parametrizations for the top cell. The following two lemmas
are subtraction-free versions of [Rie06, Lemmas 4.2 and 4.3].

Lemma 5.7. Let v ∈ W . Then we have

Rsf
v,w0

= Usf(vw0) · ẇ0 ·B�.

Proof. Recall from Definition 5.5 that Rsf
v,w = Gsf

v,w · B�. We have w = w0, so

choose a reduced expression w0 for w0 that ends with v. With this choice, Gsf
v,w0

=

U−
sf (w0v

−1) · v̇. Thus we can write

Rsf
v,w0

= Gsf
v,w0

·B� = U−
sf (w0v

−1) · v̇ ·B� = U−
sf (w0v

−1) · v̇ẇ−1
0 · ẇ0 ·B�.

Let z := w0v
−1. Using (5.8) and B�

− · ẇ0 = ẇ0 ·B�, we have

U−
sf (w0v

−1) · v̇ẇ−1
0 · ẇ0 ·B� = U−

sf (z) · ż−1 · ẇ0 ·B� = Usf(z
−1) · ẇ0 ·B�.

Combining the above equations, we find Rsf
v,w0

= Usf(z
−1) · ẇ0 ·B�, and it remains

to note that z−1 = vw−1
0 = vw0. �

Lemma 5.8. Let v ≤ w ∈ W . Then we have

(5.17) Usf(v
−1) · U−

sf (w0w
−1) ·Rsf

v,w = Rsf
id,w0

= U−
sf (w0) ·B�.

Proof. It follows from the definition of Gsf
v,w that if w′w is length-additive then

U−
sf (w

′)Rsf
v,w = Rsf

v,w′w. Applying this to w′ = w0w
−1, we get U−

sf (w0w
−1) ·Rsf

v,w =

Rsf
v,w0

. By Lemma 5.7, we have Rsf
v,w0

· B� = Usf(vw0) · ẇ0 · B�. Thus Usf(v
−1) ·

Usf(vw0) · ẇ0 · B� = Usf(w0) · ẇ0 · B�, so applying Lemma 5.7 again, we find
Usf(w0) · ẇ0 ·B� = Rsf

id,w0
·B�. The result follows since Rsf

id,w0
= U−

sf (w0) ·B�. �

5.4. Evaluation. We explain the relationship between Rsf
v,w and R>0

v,w. Given t′ ∈
R

|t|
>0, we denote by evalt′ : Fsf → R>0 the evaluation homomorphism (of semifields)

sending f(t) to f(t′). It extends to a well-defined group homomorphism evalt′ :
G� → G(R), and it follows from Theorem 4.15 that {evalt′(g)B | g ∈ Rsf

v,w} = R>0
v,w

as subsets of (G/B)R. It is clear that the following diagram is commutative.

(5.18)

F G� F

R G(R) R

evalt′

Δ±
iΔ∓

i

evalt′ evalt′

Δ±
iΔ∓

i
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Here solid arrows denote regular maps, and dashed arrows denote maps defined on
a subset F ′ ⊂ F given by F ′ := {R(t)/Q(t) | R(t), Q(t) ∈ R[t], Q(t′) �= 0}. Since
the diagram (5.18) is commutative, it follows that the images Δ∓

i (G
�) and Δ±

i (G
�)

belong to F ′.
Let t = (t′, t′′). Observe that any f(t′, t′′) ∈ F∗

sf gives rise to a continuous

function R
|t′|
>0 × R

|t′′|
>0 → R>0. Moreover, if sending t′′ → 0 in f(t′, t′′) gives rise

to a well-defined subtraction-free rational expression, then f(t′, t′′) extends to a

continuous function R
|t′|
>0 × R

|t′′|
≥0 → R≥0. Surprisingly, the converse is also true, as

our next result shows.

Lemma 5.9. Suppose that f(t′, t′′) ∈ F∗
sf is such that the corresponding function

R
|t′|
>0 × R

|t′′|
>0 → R>0 extends to a continuous function R

|t′|
>0 × R

|t′′|
≥0 → R≥0. Then

limt′′→0 f(t
′, t′′) can be represented (as a function R

|t′|
>0 → R≥0) by a subtraction-

free rational expression in t′.

Proof. By induction, it is enough to prove this when |t′′| = 1, where t′′ = t′′ is
a single variable. In this case, f(t′, t′′) = R(t′, t′′)/Q(t′, t′′) where R and Q have
positive coefficients. Let us consider R and Q as polynomials in t′′ only. After
dividing R and Q by (t′′)k for some k, we may assume that one of them is not
divisible by t′′. Then Q cannot be divisible by t′′, since otherwise f would not

give rise to a continuous function R
|t′|
>0 × R

|t′′|
≥0 → R≥0. We can write Q(t′, t′′) =

Q1(t
′, t′′)t′′ +Q2(t

′) and R(t′, t′′) = R1(t
′, t′′)t′′ +R2(t

′), where R1, R2, Q1, Q2 are
polynomials with nonnegative coefficients and Q2(t

′) �= 0. Thus limt′′→0 f(t
′, t′′)

can be represented by R2(t
′)/Q2(t

′), which is a subtraction-free rational expression
in t′. �
Lemma 5.10. (Assume K = C.) Suppose that a ≤ b ≤ c ∈ W . Then Δ∓(ḃ−1x) �=
0 for some x ∈ G(R) such that xB ∈ R>0

a,c.

Proof. Suppose that Δ∓(ḃ−1x) = 0 for all x ∈ G(R) such that xB ∈ R>0
a,c. Consider

the map Δflag
i : G/B → PWωi from Lemma 4.21(iv). We get that the bωi-th

coordinate of Δflag
i is identically zero on R>0

a,c. Therefore it must be zero on the

Zariski closure of R>0
a,c inside G/B, which is Ra,c. By (4.14), Ra,c contains ḃB =

◦
Rb,b, and thus Δ∓

i (ḃ
−1ḃ) must be zero. We get a contradiction since by definition

Δ∓
i (ḃ

−1ḃ) = 1. �
5.5. Applications to the flag variety. We use the machinery developed in the
previous sections to obtain some natural statements about (G/B)≥0.

Lemma 5.11. (Assume K = F .) Suppose that a ≤ c ∈ W and b ∈ W . Then for
any x ∈ Rsf

a,c and i ∈ I,

(5.19) Δ∓
i (ḃ

−1x) ∈ Fsf .

Moreover, if a ≤ b ≤ c then

(5.20) Δ∓
i (ḃ

−1x) ∈ F∗
sf , and x ∈ ḃB−B.

Proof. Let t = (t1, t2, t3) with |t1| = �(a), |t2| = �(w0) − �(c), |t3| = �(c) − �(a).
Choose reduced words i for a−1 and j for w0c

−1, and let (a, c) ∈ Red(a, c). Suppose
that x ∈ ga,c(t3)B

� and let

g := xi(t1) · yj(t2) · ga,c(t3) ∈ Usf(a
−1) · U−

sf (w0c
−1) ·Rsf

a,c.
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By Lemma 5.8, g ∈ U−
sf (w0) · B� = U−

sf (b) · U
−
sf (b

−1w0) · B�. By (5.8), we have

ḃ−1 · U−
sf (b) ⊂ B�

− · Usf(b
−1). Therefore

ḃ−1g ∈ B�
− · Usf(b

−1) · U−
sf (b

−1w0) ·B�.

By (5.7), we get ḃ−1g ∈ B�
− · U−

sf (b
−1w0) · Usf(b

−1) · B� = B�
− · B�, and by defini-

tion, Δ∓
i (y) ∈ F∗

sf for any y ∈ B�
− · B�. Since Δ∓

i is a regular function on G by

Lemma 4.21(ii), the function f(t1, t2, t3) := Δ∓
i (ḃ

−1g) ∈ F∗
sf extends to a continu-

ous function on R
|t1|
≥0 ×R

|t2|
≥0 ×R

|t3|
>0 . Therefore by Lemma 5.9, limt1,t2→0 f(t1, t2, t3)

is a subtraction-free rational expression in t3. Since limt1,t2→0 g = ga,c(t3), we get

that Δ∓
i (ḃ

−1ga,c(t3)) ∈ Fsf . Since x ∈ ga,c(t3)B
�, (5.19) follows.

Suppose now that a ≤ b ≤ c. We would like to show (5.20), so assume that

for some i ∈ I and x ∈ Rsf
a,c, we have Δ∓

i (ḃ
−1x) = 0. Let t′ ∈ (F∗

sf)
|t| and

(a, c) ∈ Red(a, c) be such that x ∈ ga,c(t
′)B�, and let y(t) := ga,c(t). Then we

have Δ∓
i (ḃ

−1y(t)) ∈ Fsf by (5.19). If Δ∓
i (ḃ

−1y(t)) were a nonzero rational function

in t then clearly substituting t �→ t′ for t′ ∈ (F∗
sf)

|t| would also produce a nonzero

rational function. Since substituting t �→ t′ yields Δ∓
i (ḃ

−1x) = 0, we must have

Δ∓
i (ḃ

−1y(t)) = 0. Therefore Δ∓
i (ḃ

−1x′) = 0 for all x′ ∈ Rsf
a,c.

Now let t′ ∈ R
|t|
>0. Recall from Section 5.4 that the image of Rsf

a,c in (G/B)R

under the map evalt′ equals R
>0
a,c. Thus by (5.18), Δ∓

i (ḃ
−1x′) = 0 for all x′ ∈ G(R)

such that x′B ∈ R>0
a,c, which contradicts Lemma 5.10. Hence Δ∓

i (ḃ
−1x) ∈ F∗

sf , and

therefore x ∈ ḃB−B follows from Lemma 4.21(iii), finishing the proof of (5.20). �

Corollary 5.12. (Assume K = C.) Suppose that a ≤ c ∈ W and b ∈ W . Then for

any (a, c) ∈ Red(a, c) and t′ ∈ R
J◦
a

>0, we have

(5.21) Δ∓
i (ḃ

−1ga,c(t
′)) ≥ 0.

Moreover, if a ≤ b ≤ c then

(5.22) Δ∓
i (ḃ

−1ga,c(t
′)) > 0, and R>0

a,c ⊂ ḃB−B/B.

Proof. By (5.19), we know that Δ∓
i (ḃ

−1ga,c(t)) ∈ Fsf for all i ∈ I. Evaluating

at t = t′ (cf. Section 5.4), we find that Δ∓
i (ḃ

−1ga,c(t
′)) ≥ 0 for all i ∈ I, show-

ing (5.21). Similarly, (5.22) follows from (5.20). �

Proposition 5.13. (Assume K = F .) For all v, w, v′, w′ ∈ W and x ∈ Usf(v
′) ·

T sf · U−
sf (w

′), we have Δ±
i (v̇xẇ

−1) ∈ Fsf .

Proof. Let t = (t1, t2, t
′
1, t

′
2) with |t1| = �(v′), |t2| = �(w′), |t′1| = �(w0) − �(v′),

and |t′2| = �(w0) − �(w′). Let tv := (t′1, t1) and tw := (t2, t
′
2). Choose reduced

words i, j for w0 such that i ends with a reduced word for v′ and j starts with a
reduced word for w′. Set g = g(t1, t2, tv, tw) := xi(tv) ·a ·yj(tw) for some arbitrary
element a ∈ T sf . We get

v̇gẇ−1 ∈ v̇ · Usf(w0) · T sf · U−
sf (w0) · ẇ−1

⊂ v̇ · Usf(v
−1) · Usf(vw0) · T sf · U−

sf (w0w
−1) · U−

sf (w) · ẇ−1.

By (5.16), (5.7), and (5.8), we get v̇gẇ−1 ∈ B� ·U−
sf (v) ·Usf(w

−1) ·B�
−. By (5.7), we

can permute U−
sf (v) and Usf(w

−1), showing v̇gẇ−1 ∈ B� ·B�
−. Thus Δ

±
i (v̇gẇ

−1) ∈
F∗

sf . It gives rise to a continuous function on R
|t1|
>0 ×R

|t2|
>0 ×R

|t′1|
≥0 ×R

|t′2|
≥0 , so sending
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t′1, t
′
2 → 0 via Lemma 5.9 and varying t1, t2, and a, we get Δ±

i (v̇xẇ
−1) ∈ Fsf for

all x ∈ Usf(v
′) · T sf · U−

sf (w
′). �

6. Bruhat projections and total positivity

In this section, we prove a technical result (Theorem 6.4) which later will be
used to finish the proof of Theorem 2.5. Assume K is algebraically closed and fix
u ∈ W J .

6.1. The map ζ
(J)
u,v . Retain the notation from Definition 4.23. Given v ∈ W and

u ∈ W J , let us introduce a subset

(6.1) G(J)
u,v := {x ∈ u̇G

(J)
0 | κxx ∈ v̇G

(J)
0 } ⊂ G.

Note that if x ∈ G
(J)
u,v then xP ⊂ G

(J)
u,v; see Lemma 6.2(iii).

Definition 6.1. Define a map η : G
(J)
u,v → LJ sending x ∈ G

(J)
u,v to η(x) :=

[v̇−1κxx]J . Also define a map πu̇P− : u̇G
(J)
0 → u̇P− sending x ∈ u̇G

(J)
0 to the

unique element πu̇P−(x) ∈ u̇P− ∩ xU (J). Explicitly (cf. Lemma 4.22(iii)), we put

(6.2) πu̇P−(x) := u̇[u̇−1x]
(J)
− [u̇−1x]J = x · ([u̇−1x]

(J)
+ )−1.

Finally, define ζ
(J)
u,v : G

(J)
u,v → G by ζ

(J)
u,v (x) := πu̇P−(x) · η(x)−1.

Lemma 6.2.

(i) The maps κ and πu̇P− are regular on u̇G
(J)
0 .

(ii) The maps η and ζ
(J)
u,v are regular on G

(J)
u,v ⊂ u̇G

(J)
0 .

(iii) If x ∈ u̇G
(J)
0 and x′ ∈ xP then κx′ = κx.

(iv) If x ∈ G
(J)
u,v and x′ ∈ xP then ζ

(J)
u,v (x) = ζ

(J)
u,v (x′).

Proof. Parts (i) and (ii) are clear since each map is a composition of regular maps.
Part (iii) follows from Definition 4.23, since by construction the map κ starts by

applying the isomorphism in (4.31), which gives a regular map C
(J)
u → u̇U

(J)
− u̇−1.

To prove (iv), suppose that x ∈ G
(J)
u,v and x′ ∈ xP is given by x′ = xp for p ∈ P .

Then πu̇P−(x
′) = πu̇P−(x)[p]J by Lemma 4.22(iii). By (iii), κx′ = κx, and η(x′) =

[v̇−1κx′x′]J = [v̇−1κxx]J [p]J = η(x)[p]J . Thus

ζ(J)u,v (x
′) = πu̇P−(x

′) · η(x′)−1 = πu̇P−(x)[p]J · [p]−1
J η(x)−1 = ζ(J)u,v (x). �

Lemma 6.3. Let x ∈ u̇P−.

(i) We have πu̇P−(x) = x.

(ii) If x ∈ G
(J)
u,v then ζ

(J)
u,v (x) = xη(x)−1.

Proof. Both parts follow from Definition 6.1. �

The ultimate goal of this section is to prove the following result.

Theorem 6.4. (Assume K = C.) Let (u, u) � (v, w) � (v′, w′) ∈ QJ and x ∈ G

be such that xB ∈ R>0
v′,w′ . Then x ∈ G

(J)
u,v and ζ

(J)
u,v (x) ∈ BB−ẇ.
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6.2. Properties of κ. We further investigate the element κxx. Denote ũ := uwJ ∈
W J

max.

Lemma 6.5. The groups U (J), U
(J)
1 , and U

(J)
2 from Definition 4.23 satisfy

u̇U
(J)
− u̇−1 = ˙̃uU

(J)
− ˙̃u−1,(6.3)

U
(J)
1 = u̇U

(J)
− u̇−1 ∩ U = u̇U−u̇

−1 ∩ U,(6.4)

U
(J)
2 = u̇U

(J)
− u̇−1 ∩ U− = ˙̃uU− ˙̃u−1 ∩ U−.(6.5)

Proof. By Lemma 4.22(ii), we see that ẇJU
(J)
− ẇ−1

J = U
(J)
− , which shows (6.3).

For (6.4), U
(J)
1 = u̇U

(J)
− u̇−1 ∩ U by definition. By Lemma 4.5, we have u̇U−

J u̇−1 ⊂
U−, so (6.4) follows from (4.5). For (6.5), observe that wJΦ

+
J = Φ−

J , so ũΦ+
J ⊂ Φ−

by (4.6). We thus have ˙̃uU− ˙̃u−1 = ( ˙̃uU−
J
˙̃u−1) · ( ˙̃uU (J)

− ˙̃u−1) where ( ˙̃uU−
J
˙̃u−1) ⊂ U ,

and hence ˙̃uU− ˙̃u−1 ∩ U− = ˙̃uU
(J)
− ˙̃u−1 ∩ U− = U

(J)
2 by the definition of U

(J)
2 . �

Lemma 6.6. For x ∈ u̇G
(J)
0 , there exists a unique element h ∈ U

(J)
2 such that

hx ∈ U
(J)
1 u̇P , and we have h = κx.

Proof. Let g(J) ∈ U (J) and p ∈ P be such that g(J)u̇ = xp. We first show that

such an h ∈ U
(J)
2 exists. By Definition 4.23, κx is an element of U

(J)
2 such that

κxg
(J) ∈ U

(J)
1 . In particular, κxx = κxg

(J)u̇p−1 ∈ U
(J)
1 u̇P , which shows existence.

To show uniqueness, observe that the action of u̇U
(J)
− u̇−1 on u̇G

(J)
0 /P ⊂ G/P is

free by (4.31), and in particular the action of U
(J)
2 is also free. �

Lemma 6.7. If x ∈ u̇G
(J)
0 ∩Bu̇ṙB for some r ∈ WJ , then κx = 1.

Proof. By Lemma 6.6, it suffices to show that Bu̇ṙB ⊂ U
(J)
1 uP . Write

Bu̇ṙB ⊂ Bu̇P ⊂ (Bu̇B) · P.
By (4.34), Bu̇B ⊂ (u̇U− ∩ Uu̇) ·B, and therefore we find

Bu̇ṙB ⊂ (u̇U− ∩ Uu̇) · P = (u̇U−u̇
−1 ∩ U)u̇P = U

(J)
1 u̇P,

where the last equality follows from (6.4). �

Lemma 6.8. Let a ∈ T .

(i) The subgroups u̇U (J)u̇−1, U
(J)
1 , and U

(J)
2 are preserved under conjugation by

a.
(ii) If x ∈ u̇G

(J)
0 , then ax ∈ u̇G

(J)
0 and κaxax = aκxx.

(iii) (Assume K = C.) For each w ∈ W , there exists ρ∨w ∈ Y (T ) such that for
all x ∈ ẇB−B, limt→0 ρ

∨
w(t) · xB = ẇB in G/B. If w ∈ W J , then for all

x ∈ ẇG
(J)
0 , limt→0 ρ

∨
w(t) · xP = ẇP in G/P .

Proof. Since u̇ ∈ NG(T ), there exists b ∈ T such that au̇ = u̇b. Thus au̇U (J)u̇−1a−1

= u̇bU (J)b−1u̇−1 = u̇U (J)u̇−1, which shows (i), and (ii) is a simple consequence
of (i). To show (iii), assume K = C and choose ρ∨ ∈ Y (T ) such that 〈ρ∨, αi〉 < 0
for all i ∈ I. Then limt→0 ρ

∨(t)yρ∨(t)−1 = 1 for all y ∈ U−, and in particular for all

y ∈ U
(J)
− . Set ρ∨w := w−1ρ∨, so that for t ∈ C∗, ρ∨w(t) = ẇρ∨(t)ẇ−1 by (4.2). Every

x ∈ ẇB−B belongs to ẇyB for some y ∈ U−, so ρ∨w(t)·x·B = ẇρ∨(t)yρ∨(t)−1 ·B →
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ẇB as t → 0. Similarly, if w ∈ W J then every x ∈ ẇG
(J)
0 belongs to ẇyP for some

y ∈ U
(J)
− by (4.31), so ρ∨w(t) · xP → ẇP as t → 0. �

Lemma 6.9. Suppose that v′′ ≤ ur ≤ w′′ for some v′′, w′′ ∈ W and r ∈ WJ , and
let x ∈ G.

(i) (Assume K = F .) If x ∈ Rsf
v′′,w′′ , then x ∈ u̇G

(J)
0 .

(ii) (Assume K = C.) If xB ∈ R>0
v′′,w′′ , then x ∈ u̇G

(J)
0 and κxxB ∈ R>0

v′′,urw
for

some rw ∈ WJ such that rw ≥ r.

Proof. When K = F , (5.20) implies Rsf
v′′,w′′ ⊂ u̇ṙB−B ⊂ u̇P−B, and by

Lemma 4.22(i), P−B = G
(J)
0 , which shows (i). Similarly (for K = C), by Corol-

lary 5.12, we have x ∈ u̇ṙB−B for any x ∈ R>0
v′′,w′′ , so R>0

v′′,w′′ ⊂ u̇G
(J)
0 .

Assume now that K = C and xB ∈ R>0
v′′,w′′ . Let p ∈ P and g(J) ∈ u̇U

(J)
− u̇−1

be such that xp = g(J)u̇. Then κxxp = g
(J)
1 u̇ for g

(J)
1 ∈ U

(J)
1 . By (6.4), U

(J)
1 u̇ ⊂

Uu̇ ⊂ Bu̇B. By Lemma 4.22(i), we have p−1 ∈ BṙwB for some rw ∈ WJ . We get

κxx = g
(J)
1 u̇ · p−1 ∈ Bu̇B ·BṙwB ⊂ Bu̇ṙwB by (4.18). On the other hand, κx ∈ U−

and x ∈ B−v
′′B, so κxx ∈ B−v

′′B. Therefore κxxB ∈
◦
Rv′′,urw .

We now show rw ≥ r. By (5.22), x ∈ u̇ṙB−B, so by Lemma 6.8(iii), we have

ρ∨ur(t) · xB → u̇ṙB as t → 0 in G/B. Since u̇ṙ ∈ u̇G
(J)
0 , κ is regular at u̇ṙB, and

by Lemma 6.7, we have κu̇ṙ = 1. Thus κρ∨
ur(t)x

ρ∨ur(t)xB → u̇ṙB as t → 0. By

Lemma 6.8(ii), κρ∨
ur(t)x

ρ∨ur(t)xB = ρ∨ur(t) · κxxB, which belongs to
◦
Rv′′,urw for all

t ∈ C∗. We see that the closure of
◦
Rv′′,urw contains u̇ṙB, and so v′′ ≤ ur ≤ urw

by (4.14). Thus r ≤ rw by Lemma 4.4(ii).
Finally, we show κxxB ∈ (G/B)≥0. First, clearly the map κ is defined over R,

so κxxB ∈ (G/B)R. Consider the subset R>0
v′′,[ũ,w0]

:=
⊔

w′′≥ũ R
>0
v′′,w′′ ⊂ (G/B)≥0.

It contains R>0
v′′,w0

as an open dense subset, and therefore R>0
v′′,[ũ,w0]

is connected.

We have already shown that for any x′ ∈ R>0
v′′,[ũ,w0]

, κx′x′B ∈
◦
RR

v′′,ũ (because

we have rw ≥ r = wJ ). Thus the image of the set R>0
v′′,[ũ,w0]

under the map

x′ �→ κx′x′ must lie inside a single connected component of
◦
RR

v′′,ũ. However, if

x′ ∈ R>0
v′′,ũ ⊂ R>0

v′′,[ũ,w0]
then κx′ = 1 by Lemma 6.7, so in this case κx′x′ ∈ R>0

v′′,ũ.

We conclude that the image of R>0
v′′,[ũ,w0]

is contained inside R>0
v′′,ũ ⊂ (G/B)≥0. It

follows by continuity that for arbitrary v′′ ≤ ur ≤ w′′ and x ∈ R>0
v′′,w′′ , we have

κxxB ∈ (G/B)≥0. �

We will use the following consequence of Lemma 6.9(ii) in Section 9.11.

Corollary 6.10. (Assume K = C.) In the notation of Lemma 6.9(ii), we have
κxxP ∈ Π>0

v̄′′,u for v̄′′ := v′′ � r−1
w .

Proof. Lemma 6.9(ii) says that κxxB ∈ R>0
v′′,urw

, so applying Corollary 4.18, we

find that πJ (κxxB) = κxxP ∈ Π>0
v̄′′,u. �

6.3. Proof via subtraction-free parametrizations. In this section, we fix some
set t of variables and assume K = F . Also fix u ∈ W J and recall that ũ = uwJ ∈
W J

max.
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By Definition 4.23, the map κ is defined on u̇G
(J)
0 . By Lemma 6.9(i), we have

Rsf
v′′,w′′ ⊂ u̇G

(J)
0 whenever v′′ ≤ ur ≤ w′′ for some r ∈ WJ . In particular, κ is

defined on U−
sf (w

′′) ⊂ Rsf
id,w′′ for all w′′ ≥ ũ.

Proposition 6.11. Let q ∈ W be such that �(ũq) = �(ũ) + �(q). Then for h ∈
U−
sf (ũq), we have κhh ∈ U−

sf (ũ).

Proof. Write h ∈ U−
sf (ũq) = U−

sf (ũ) · U
−
sf (q). Using (5.8), we find

h ∈ ˙̃u · ˙̃u−1 · U−
sf (ũ) · U

−
sf (q) ⊂ ˙̃u ·B�

− · Usf(ũ
−1) · U−

sf (q).

By (5.7), B�
− · Usf(ũ

−1) · U−
sf (q) = B�

− · U−
sf (q) · Usf(ũ

−1) ⊂ B�
− · Usf(ũ

−1). Writing

B�
− ⊂ U− · T sf , we get

h ∈ ˙̃u · U− · T sf · Usf(ũ
−1) = T sf · ˙̃uU− ˙̃u−1 · ˙̃u · Usf(ũ

−1).

Applying (5.16), we find

h ∈ T sf · ˙̃uU− ˙̃u−1 · T sf · (U� ∩ ˙̃uU− ˙̃u−1) · U−
sf (ũ) ⊂ ˙̃uU− ˙̃u−1 · T sf · U−

sf (ũ).

Let g ∈ ˙̃uU− ˙̃u−1 be such that h ∈ g · T sf · U−
sf (ũ). Recall from (6.5) that U

(J)
2 =

˙̃uU− ˙̃u−1∩U−. By Lemma 4.1(i), there exists h′ ∈ U
(J)
2 such that h′g ∈ ˙̃uU− ˙̃u−1∩U .

Thus
h′h ∈ ( ˙̃uU− ˙̃u−1 ∩ U) · T sf · U−

sf (ũ) ⊂ U · T sf · U−
sf (ũ).

But observe that both h and h′ belong to U−. Since the factorization of h′h as
an element of U · T · U− is unique by Lemma 4.21(i), it follows that h′h ∈ U−

sf (ũ).

By (4.20), U−
sf (ũ) ⊂ B ˙̃uB. By Lemma 6.7, κh′h = 1, so κh = h′, and thus κhh ∈

U−
sf (ũ). �

Corollary 6.12. For q ∈ W such that �(ũq) = �(ũ) + �(q) and v ≤ ũ, we have

Rsf
id,ũq ⊂ G

(J)
u,v.

Proof. As we have already mentioned, Lemma 6.9(i) shows that Rsf
id,ũq ⊂ u̇G

(J)
0 .

Let x ∈ Rsf
id,ũq = U−

sf (ũq) ·B�, and let b ∈ B� and h ∈ U−
sf (ũq) be such that x = hb.

By Lemma 6.2(iii), we have κx = κh. By Proposition 6.11, κhh ∈ U−
sf (ũ), and

therefore κxx ∈ U−
sf (ũ) ·B� = Rsf

id,ũ. By (5.20), we get κxx ∈ v̇B−B. �

Corollary 6.12 shows that the map ζ
(J)
u,v is defined on the whole Rsf

id,ũq.

Lemma 6.13. Suppose that u0 ∈ W J and v0 ≤ ũ0 := u0wJ . Let h ∈ U−
sf (ũ0), and

let bu, bv ∈ U be such that ˙̃u−1
0 h ∈ B−·bu and v̇−1

0 h ∈ B−·bv. Then [bub
−1
v ]J ∈ Usf(r)

for some r ∈ WJ .

Proof. First, recall from Lemma 4.21(i) and (5.11) that bu and bv are uniquely
defined and satisfy bu ∈ Usf(ũ

−1
0 ), bv ∈ Usf(v

−1
0 ). Let h = h1h2 for h1 ∈ U−

sf (u0)

and h2 ∈ U−
sf (wJ ). Our first goal is to show that [bu]J ∈ UJ satisfies (and is

uniquely defined by) ẇ−1
J h2 ∈ B− · [bu]J . Letting b′u ∈ UJ be uniquely defined by

ẇ−1
J h2 ∈ B− · b′u, we thus need to show that [bu]J = b′u.

By (5.9), there exists d ∈ Usf(u
−1
0 ) such that

ẇ−1
J u̇−1

0 h1 ∈ B�
− · ẇ−1

J · d.

Since d ∈ U , we can use Lemma 4.22(iii) to factorize it as d = [d]J [d]
(J)
+ . Since h2 ∈

U−
J ⊂ LJ , Lemma 4.22(ii) shows that there exists d′ ∈ U (J) such that [d]

(J)
+ h2 =

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun  2 15:40:28 EDT 2022 for download from IP 169.232.149.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



REGULARITY THEOREM 547

h2d
′. Since [d]J ∈ UJ by Lemma 4.22(iv), (4.21) shows that ẇ−1

J [d]J ∈ U−ẇ
−1
J .

Combining the pieces together, we get

˙̃u−1
0 h = ẇ−1

J u̇−1
0 h1h2 ∈ B�

− · ẇ−1
J · [d]J [d](J)+ · h2 ⊂ B− · ẇ−1

J h2d
′ = B− · b′ud′.

On the other hand, ˙̃u−1
0 h ∈ B− · bu, so bu = b′ud

′, where b′u ∈ UJ and d′ ∈ U (J). It
follows that [bu]J = b′u, and thus we have shown that ẇ−1

J h2 ∈ B− · [bu]J .
We now prove the result by induction on �(u0). When �(u0) = 0, we have

ũ0 = wJ and v0 ∈ WJ . Thus there exists v1 ∈ WJ such that wJ = v0 · v1 with
�(wJ) = �(v0)+�(v1). We have bu, bv ∈ UJ , so [bub

−1
v ]J = bub

−1
v by Lemma 4.22(iv).

By (5.10), there exist b0 ∈ Usf(v
−1
0 ) and b1 ∈ Usf(v

−1
1 ) such that

v̇−1
0 h ∈ B�

− · b0, ẇ−1
J h ∈ B�

− · b1b0.

In particular, we have bv = b0 and bu = b1b0. Thus [bub
−1
v ]J = b1 ∈ Usf(v

−1
1 ), and

we are done with the base case.
Assume �(u0) > 0, and let i ∈ I be such that u1 := siu0 < u0. By Lemma 4.4(i),

u1 ∈ W J , so define ũ1 := u1wJ ∈ W J
max. Let h ∈ U−

sf (ũ0) be factorized as h =

hih
′
1h2 for hi = yi(t) ∈ U−

sf (si), h
′
1 ∈ U−

sf (u1), and h2 ∈ U−
sf (wJ).

Suppose that siv0 > v0, in which case we have v0 ≤ ũ1. Let h′ := h′
1h2 and

b′u ∈ U be defined by ˙̃u−1
1 h′ ∈ B− ·b′u. Since siv0 > v0, we see that v̇

−1
0 hi ∈ B− ·v̇−1

0 ,
so v̇−1

0 h′ ∈ B− · v̇−1
0 h = B− ·bv. By the induction hypothesis applied to v0 ≤ ũ1 and

h′ ∈ U−
sf (ũ1), we have [b′ub

−1
v ]J ∈ Usf(r) for some r ∈ WJ . On the other hand, we

have shown above that [bu]J satisfies ẇ−1
J h2 ∈ B− · [bu]J . But since h′ = h′

1h2 for

h2 ∈ U−
sf (wJ), we get that [b

′
u]J satisfies ẇ−1

J h2 ∈ B− · [b′u]J , and thus [bu]J = [b′u]J .
Therefore using Lemma 4.22(iv), we get

[bub
−1
v ]J = [bu]J [b

−1
v ]J = [b′u]J [b

−1
v ]J = [b′ub

−1
v ]J ∈ Usf(r),

finishing the induction step in the case siv0 > v0.
Suppose now that v1 := siv0 < v0. Let h = hih

′
1h2 ∈ U−

sf (ũ0) be as above.

By (5.8), ṡ−1
i hi ∈ B�

− · Usf(si), so let di ∈ Usf(si) be such that ṡ−1
i hi ∈ B�

− · di.
By (5.7), Usf(si) · U−

sf (ũ1) = U−
sf (ũ1) · Usf(si), so let bi ∈ Usf(si) and h′ ∈ U−

sf (ũ1)
be such that dih

′
1h2 = h′bi. We check using (5.9) that

(6.6) ˙̃u−1
0 h ∈ B�

− · ˙̃u−1
1 h′ · bi, v̇−1

0 h ∈ B�
− · v̇−1

1 h′ · bi.

Let b′u, b
′
v ∈ U be defined by ˙̃u−1

1 h′ ∈ B− · b′u and v̇−1
1 h′ ∈ B− · b′v. Then by the

induction hypothesis applied to v1 ≤ ũ1 and h′ ∈ U−
sf (ũ1), we find [b′ub

′−1
v ]J ∈ Usf(r)

for some r ∈ WJ . But it is clear from (6.6) that bu = b′ubi and bv = b′vbi. Therefore
[bub

−1
v ]J ∈ Usf(r). �

Theorem 6.14. For all v ≤ ũ, w ∈ W J , i ∈ I, and x ∈ Rsf
id,w0

, we have

(6.7) Δ±
i (ζ

(J)
u,v (x)ẇ

−1) ∈ Fsf .

Proof. Let q ∈ W be such that w0 = ũq, so �(ũq) = �(ũ) + �(q). Let x ∈ Rsf
id,w0

=

U−
sf (w0) · B� be written as x = h · b, where h = h1h2h3 ∈ U−

sf (w0) for h1 ∈ U−
sf (u),

h2 ∈ U−
sf (wJ ), h3 ∈ U−

sf (q), and b ∈ B�. By (5.10), there exist b1 ∈ Usf(u
−1),

b2 ∈ Usf(wJ), and b3 ∈ Usf(q
−1) such that

(6.8) u̇−1h ∈ B�
− · b1, ˙̃u−1h ∈ B�

− · b2b1, ẇ−1
0 h ∈ B�

− · b3b2b1.
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Let x′ := hb−1
1 . We have x′ = xb−1b−1

1 ∈ xB ⊂ xP , and therefore x′ ∈ G
(J)
u,v and

ζ
(J)
u,v (x′) = ζ

(J)
u,v (x) by Lemma 6.2(iv). On the other hand, by (6.8), x′ ∈ u̇B�

− ⊂
u̇P−, so Lemma 6.3(ii) implies ζ

(J)
u,v (x′) = x′η(x′)−1.

Let us now compute η(x′) = [v̇−1κx′x′]J . By Lemma 6.2(iii), κx = κx′ = κh,
and by Proposition 6.11, κhh ∈ U−

sf (ũ). Thus by (5.11), v̇−1κhh ∈ B�
− · Usf(v

−1),
so let d0 ∈ B�

− and b0 ∈ Usf(v
−1) be such that v̇−1κhh = d0b0. By definition,

κh ∈ U
(J)
2 , so by (6.5), ˙̃u−1κh

˙̃u ∈ U−, and therefore using (6.8) we find

˙̃u−1κhh = ˙̃u−1κh
˙̃u · ˙̃u−1h ∈ U− · ˙̃u−1h ⊂ B− · b2b1.

We can now apply Lemma 6.13: we have v ≤ ũ, κhh ∈ U−
sf (ũ),

˙̃u−1κhh ∈
B− · b2b1, and v̇−1κhh ∈ B− · b0. Let bu := b2b1 ∈ U and bv := b0 ∈ U . By
Lemma 6.13, [bub

−1
v ]J = [b2b1b

−1
0 ]J ∈ Usf(r) for some r ∈ WJ .

Recall that v̇−1κhh = d0b0 for d0 ∈ B�
− and b0 ∈ Usf(v

−1). Thus

η(x′) = [v̇−1κx′x′]J = [v̇−1κhx
′]J = [v̇−1κhhb

−1
1 ]J = [d0b0b

−1
1 ]J .

By Lemma 4.22(iii), we get [d0b0b
−1
1 ]J = [d0]J [b0b

−1
1 ]J . Thus

ζ(J)u,v (x) = ζ(J)u,v (x
′) = x′η(x′)−1 = x′[b0b

−1
1 ]−1

J [d0]
−1
J .

By (6.8), we have ẇ−1
0 x′ ∈ B�

− · b3b2, so x′ ∈ B�ẇ0b3b2. Using Lemma 4.22(iv), we
thus get

ζ(J)u,v (x) = x′[b0b
−1
1 ]−1

J [d0]
−1
J ∈ B� · ẇ0b3[b2b1b

−1
0 ]J [d0]

−1
J .

We are interested in the element ζ
(J)
u,v (x)ẇ−1. We know that d0 ∈ B�

−, so [d0]J ∈
T sfU−

J , and by Lemma 4.5, ẇ[d0]J ẇ
−1 ∈ T sf · U−. Hence

ζ(J)u,v (x)ẇ
−1 ∈ B� · ẇ0b3[b2b1b

−1
0 ]J [d0]

−1
J ẇ−1 ⊂ B� · ẇ0b3[b2b1b

−1
0 ]J ẇ

−1 · T sf · U−.

In particular, Δ±
i (ζ

(J)
u,v (x)ẇ−1) ∈ Fsf if and only if Δ±

i (ẇ0b3[b2b1b
−1
0 ]J ẇ

−1) ∈ Fsf .

Recall that b3 ∈ Usf(q
−1) and [b2b1b

−1
0 ]J ∈ Usf(r) for some r ∈ WJ . Thus

b3[b2b1b
−1
0 ]J ∈ Usf(q

−1r), so we are done by Proposition 5.13. �

Proof of Theorem 6.4. Our strategy will be very similar to the one we used in the
proof of Corollary 5.12.

Fix (u, u) � (v, w) � (v′, w′) ∈ QJ . Let t = (t1, t2, t3) with |t1| = �(v′),
|t2| = �(w0)− �(w′), and |t3| := �(w′)− �(v′), and assume K = F . Choose reduced
words i for v′−1 and j for w0w

′−1, and let (v′,w′) ∈ Red(v′, w′). Suppose that
x ∈ gv′,w′(t3) ·B�. Then

g(t1, t2, t3) := xi(t1) · yj(t2) · gv′,w′(t3) ∈ Usf(v
′−1) · U−

sf (w0w
′−1) ·Rsf

v′,w′ .

By Lemma 5.8, we have g(t1, t2, t3) ∈ Rsf
id,w0

. Thus by Theorem 6.14, for all i ∈ I

we have Δ±
i (ζ

(J)
u,v (g(t1, t2, t3))ẇ

−1) ∈ Fsf . Denote by

f(t1, t2, t3) := Δ±
i (ζ

(J)
u,v (g(t1, t2, t3))ẇ

−1)

the corresponding subtraction-free rational expression, which yields a continuous

function R
|t1|
>0 × R

|t2|
>0 × R

|t3|
>0 → R≥0. We claim that f extends to a continuous

function R
|t1|
≥0 ×R

|t2|
≥0 ×R

|t3|
>0 → R≥0. Indeed, fix some (t′1, t

′
2, t

′
3) ∈ R

|t1|
≥0 ×R

|t2|
≥0 ×R

|t3|
>0

and let K = C. The element x′ := g(t′1, t
′
2, t

′
3) (obtained by evaluating at (t′1, t

′
2, t

′
3);

see Section 5.4) belongs to G≥0 ·R>0
v′,w′ , and by Lemma 4.17 there exist v′′, w′′ ∈ W
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such that v′′ ≤ v′ ≤ w′ ≤ w′′ and x′ ∈ R>0
v′′,w′′ . Recall from Lemma 4.8(ii) that we

have

v′′ ≤ v′ ≤ vr′ ≤ ur ≤ wr′ ≤ w′ ≤ w′′

for some r′, r ∈ WJ such that �(vr′) = �(v)+ �(r′). In particular, by Lemma 6.9(ii),

x′ ∈ u̇G
(J)
0 and κx′x′ ∈ R>0

v′′,urw
for some rw ∈ WJ such that rw ≥ r. By

Corollary 5.12, κx′x′ ∈ v̇ṙ′B−B ⊂ v̇G
(J)
0 , which shows that x′ ∈ G

(J)
u,v. The

map ζ
(J)
u,v is therefore regular at x′ by Lemma 6.2(ii). The map Δ±

i is regular

on G by Lemma 4.21(ii), so in particular it is regular at ζ
(J)
u,v (x′)ẇ−1. We have

shown that the map x′′ �→ Δ±
i (ζ

(J)
u,v (x′′)ẇ−1) is regular at x′ = g(t′1, t

′
2, t

′
3) for

all (t′1, t
′
2, t

′
3) ∈ R

|t1|
≥0 × R

|t2|
≥0 × R

|t3|
>0 . Thus the map f(t1, t2, t3) extends to a

continuous function R
|t1|
≥0 × R

|t2|
≥0 × R

|t3|
>0 → R≥0. By Lemma 5.9, we find that

f(0, 0, t3) := limt1,t2→0 f(t1, t2, t3) belongs to Fsf , i.e., it can be represented by a
subtraction-free rational expression in the variables t3. On the other hand, it is

clear that f(0, 0, t3) = Δ±
i (ζ

(J)
u,v (gv′,w′(t3))ẇ

−1).
Our next goal is to show that f(0, 0, t3) ∈ F∗

sf . Indeed, suppose otherwise that

f(0, 0, t3) = 0 (as an element of F). By Lemma 6.2(iv), ζ
(J)
u,v descends to a regular

map G
(J)
u,v/P → G (still assuming K = C). Therefore the map f̄ : G

(J)
u,v/P → C

sending x′P to Δ±
i (ζ

(J)
u,v (x′)ẇ−1) is also regular. If f(0, 0, t3) = 0 then f̄ vanishes

on πJ(R
>0
v′,w′) = Π>0

v′,w′ , and therefore it vanishes on its Zariski closure, which is

Πv′,w′ . We have πJ(R
>0
v,w) = Π>0

v,w ⊂ Πv′,w′ , so f̄(x) = 0 for any x ∈ G
(J)
u,v such that

xB ∈ R>0
v,w. Let us show that this leads to a contradiction.

Let x ∈ G be such that xB ∈ R>0
v,w. By (4.27), there exists x′ ∈ xP such that

x′B ∈ R>0
vr′,wr′ . By Lemma 6.9(ii), we have x′ ∈ u̇G

(J)
0 , and thus x ∈ u̇G

(J)
0 . Having

xB ∈ R>0
v,w implies x ∈ B−v̇B∩BẇB. Since κx ∈ U

(J)
2 ⊂ U−, we have κxx ∈ B−v̇B.

By (4.34), B−v̇B = (v̇U− ∩ U−v̇)B ⊂ v̇B−B, so κxx ∈ v̇B−B, and therefore

x ∈ G
(J)
u,v. Moreover, v̇−1κxx ∈ B−B, and thus η(x) = [v̇−1κxx]J ∈ U−

J TUJ . On

the other hand, πu̇P−(x) ∈ xU (J) ⊂ xB ⊂ BẇB; see Definition 6.1. Thus

ζ(J)u,v (x) = πu̇P−(x)η(x)
−1 ∈ BẇB · UJTU

−
J = BẇB · U−

J .

Recall that because w ∈ W J , we have U−
J ẇ−1 ⊂ ẇ−1U− by Lemma 4.5. Hence

ζ(J)u,v (x)ẇ
−1 ∈ BẇB · U−

J · ẇ−1 ⊂ BẇBẇ−1B−.

By (4.34) (after taking inverses of both sides), BẇB = B · (U−ẇ ∩ ẇU), so

ζ(J)u,v (x)ẇ
−1 ∈ B · (U− ∩ ẇUẇ−1) ·B− ⊂ B ·B−.

In particular, Δ±
i (ζ

(J)
u,v (x)ẇ−1) �= 0 for all i ∈ I. This gives a contradiction, showing

f(0, 0, t3) ∈ F∗
sf . But then evaluating f at any t′3 ∈ R

�(w′)−�(v′)
>0 yields a positive

real number. We have shown that Δ±
i (ζ

(J)
u,v (x)ẇ−1) �= 0 for all x ∈ G such that

xB ∈ R>0
v′,w′ . We are done by Lemma 4.21(iii). �

7. Affine Bruhat atlas for the projected Richardson stratification

In this section, we embed the stratification (4.23) of G/P inside the affine
Richardson stratification of the affine flag variety. Throughout, we work over
K = C.
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7.1. Loop groups and affine flag varieties. Recall that G is a simple and simply
connected algebraic group. LetA := C[z, z−1] andA+,A− ⊂ A denote the subrings
given by A+ := C[z], A− := C[z−1]. Then we have ring homomorphisms ēv0 :
A+ → C (respectively, ēv∞ : A− → C), sending a polynomial in z (respectively, in
z−1) to its constant term. Let G := G(A) denote the polynomial loop group of G.

Remark 7.1. The group G is closely related to the (minimal) affine Kac–Moody
group Gmin associated to G, introduced by Kac and Peterson [KP83,PK83]. Below
we state many standard results about G without proof. We refer the reader unfa-
miliar with Kac–Moody groups to Appendix A, where we give some background
and explain how to derive these statements from Kumar’s book [Kum02].

We introduce opposite Iwahori subgroups

B := {g(z) ∈ G(A+) | ēv0(g) ∈ B}, B− := {g(z−1) ∈ G(A−) | ēv∞(g) ∈ B−}

of G, and denote by

U := {g(z) ∈ G(A+) | ēv0(g) ∈ U}, U− := {g(z−1) ∈ G(A−) | ēv∞(g) ∈ U−}

their unipotent radicals. There exists a tautological embedding G ↪→ G, and we
treat G as a subset of G.

We let T := C∗ × T ⊂ C∗ � G be the affine torus, where C∗ acts on G via
loop rotation; see Section 8.2. The affine root system Δ of G is the subset of
X(T ) := Hom(T ,C∗) ∼= X(T )⊕ Zδ given by

Δ = Δre�Δim, where Δre := {β+jδ | β ∈ Φ, j ∈ Z}, Δim := {jδ | j ∈ Z\{0}}

are the real and imaginary roots, and the set of positive roots Δ+ ⊂ Δ has the form

(7.1) Δ+ = {jδ | j > 0} � {β + jδ | β ∈ Φ, j > 0} � {β | β ∈ Φ+}.

We let Δ+
re := Δ+ ∩ Δre and Δ−

re := Δ− ∩ Δre. For each α ∈ Δ+
re (respectively,

α ∈ Δ−
re), we have a one-parameter subgroup Uα ⊂ U (respectively, Uα ⊂ U−). The

group U (respectively, U−) is generated by {Uα}α∈Δ+
re

(respectively, {Uα}α∈Δ−
re
),

and for each α ∈ Δre, we fix a group isomorphism xα : C
∼−→ Uα.

Let Q∨
Φ :=

⊕
i∈I Zα

∨
i denote the coroot lattice of Φ. The affine Weyl group

W̃ = W � Q∨
Φ is a semidirect product of W and Q∨

Φ, i.e., as a set we have W̃ =
W×Q∨

Φ, and the product rule is given by (w1, λ1)·(w2, λ2) := (w1w2, λ1+w1λ2). For

λ ∈ Q∨
Φ, we denote the element (id, λ) ∈ W̃ by τλ. The group W̃ is isomorphic to

NC∗�G(T )/T , and for f ∈ W̃ , we choose a representative ḟ ∈ G of f in NC∗�G(T ),
with the assumption that for w ∈ W , the representative ẇ ∈ G ⊂ G is given by
(4.1). Thus W̃ is a Coxeter group with generators s0 � {si}i∈I , length function

� : W̃ → Z≥0, and affine Bruhat order ≤. The group W̃ acts on Δ, and for α ∈ Φ,
β ∈ Δre, λ ∈ Q∨

Φ, and w ∈ W , we have

(7.2) wτλw
−1 = τwλ, τλα = α+ 〈λ, α〉δ, τλδ = δ, τ̇λUβ τ̇

−1
λ = Uτλβ.

Let G/B denote the affine flag variety of G. This is an ind-variety that is
isomorphic to the flag variety of the corresponding affine Kac–Moody group Gmin;

see Appendix A.4. For each h, f ∈ W̃ we have Schubert cells
◦
X f := BḟB/B and

opposite Schubert cells
◦
Xh := B−ḣB/B. If h �≤ f ∈ W̃ then

◦
Xh ∩

◦
X f = ∅. For
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h ≤ f , we denote
◦
Rf

h :=
◦
Xh ∩

◦
X f . For all g ∈ W̃ , we have

◦
X g =

⊔
h≤g

◦
Rg

h,
◦
Xg =

⊔
g≤f

◦
Rf

g , X g :=
⊔
h≤g

◦
X h, Xg :=

⊔
g≤f

◦
Xf .(7.3)

For g ∈ W̃ , let

(7.4) Cg := ġB−B/B, U1(g) := ġU−ġ
−1 ∩ U , and U2(g) := ġU−ġ

−1 ∩ U−.

As we explain in Appendix A.5, the map x �→ xġB gives biregular isomorphisms

(7.5) ġU−ġ
−1 ∼−→ Cg, U1(g)

∼−→
◦
X g, U2(g)

∼−→
◦
Xg.

Let U (I) ⊂ U be the subgroup generated by {Uα}α∈Δ+
re\Φ+ . Similarly, let U (I)

− ⊂
U− be the subgroup generated by {Uα}α∈Δ−

re\Φ− . For x ∈ G ⊂ G, we have

(7.6) x · U (I) · x−1 = U (I), x · U (I)
− · x−1 = U (I)

− .

7.2. Combinatorial Bruhat atlas for G/P . We fix an element λ ∈ Q∨
Φ such

that 〈λ, αi〉 = 0 for i ∈ J and 〈λ, αi〉 ∈ Z<0 for i ∈ I \ J . Thus λ is anti-dominant
and the stabilizer of λ in W is equal to WJ . Following [HL15], define a map

(7.7) ψ : QJ → W̃ , (v, w) �→ vτλw
−1.

By [HL15, Theorem 2.2], the map ψ gives an order-reversing bijection between QJ

and a subposet of W̃ . More precisely, let τJλ := τλ(w
J)−1, and recall from (7.2)

that uτλu
−1 = τuλ. By [HL15, Section 2.3], for all (v, w) ∈ QJ we have

(7.8) vτλw
−1 = v · τJλ · wJw−1, �(vτλw

−1) = �(v) + �(τJλ ) + �(wJw−1);

see Figure 2 for an example. By [HL15, Theorem 2.2], for all u ∈ W J we have

ψ(Q
�(u,u)
J ) = {g ∈ W̃ | τJλ ≤ g ≤ τuλ},(7.9)

ψ(QJ ) = {g ∈ W̃ | τJλ ≤ g ≤ τwλ for some w ∈ W J}.(7.10)

Remark 7.2. The construction of [HL15] can be applied in the more general setting
where λ is an anti-dominant coweight, and thus ψ sends QJ to the extended affine
Weyl group. This is especially natural when λ is a minuscule coweight, and thus
G/P is a cominuscule Grassmannian. In this case, the image of ψ is a lower order

ideal in affine Bruhat order. The map ϕ̄u below then sends C
(J)
u to the Schubert

cell
◦
X τuλ as opposed to the more complicated intersection XτJ

λ
∩

◦
X τuλ .

7.3. Bruhat atlas for the projected Richardson stratification of G/P . Let
u ∈ W J . Recall that λ ∈ Q∨

Φ has been fixed. We further assume that the represen-
tatives τ̇λ and τ̇uλ satisfy the identity u̇τ̇λu̇

−1 = τ̇uλ.
Our goal is to construct a geometric lifting of the map ψ. Recall the maps

x �→ g
(J)
1 and x �→ g

(J)
2 from Definition 4.23. We define maps

ϕu : C(J)
u → G, xP �→ g

(J)
1 u̇ · τ̇λ · (g(J)2 u̇)−1 = g

(J)
1 · τ̇uλ · (g(J)2 )−1, and

(7.11)

ϕ̄u : C(J)
u → G/B, xP �→ ϕu(xP ) · B.

(7.12)

The main result of this section is Theorem 7.3.

Theorem 7.3.
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(1) The map ϕ̄u is a biregular isomorphism

ϕ̄u : C(J)
u

∼−→ XτJ
λ
∩

◦
X τuλ =

⊔
(v,w)∈Q

�(u,u)
J

◦
Rτuλ

vτλw−1 ,

and for all (v, w) � (u, u) ∈ QJ , ϕ̄u restricts to a biregular isomorphism

ϕ̄u : C(J)
u ∩

◦
Πv,w

∼−→
◦
Rτuλ

vτλw−1 .

(2) Suppose that (u, u) � (v, w) � (v′, w′) ∈ QJ . Then

ϕ̄u

(
Π>0

v′,w′
)
⊂ Cvτλw−1 .

The remainder of this section will be devoted to the proof of Theorem 7.3.

7.4. An alternative definition of ϕ̄u. Recall the notation from Definition 4.23,
and that we have fixed u ∈ W J and λ ∈ Q∨

Φ satisfying 〈λ, αi〉 = 0 for i ∈ J and
〈λ, αi〉 ∈ Z<0 for i ∈ I \ J . We list the rules for conjugating elements of G ⊂ G by
τ̇λ.

Lemma 7.4. We have

τ̇λ · p = p · τ̇λ for all p ∈ LJ ,(7.13)

τ̇λ · U (J) · τ̇−1
λ ⊂ U (I)

− , τ̇λ · U (J)
− · τ̇−1

λ ⊂ U (I),(7.14)

τ̇−1
λ · U (J) · τ̇λ ⊂ U (I), τ̇−1

λ · U (J)
− · τ̇λ ⊂ U (I)

− ,(7.15)

τ̇uλ · U (J)
2 · τ̇−1

uλ ⊂ U (I), τ̇−1
uλ · U (J)

1 · τ̇uλ ⊂ U (I)
− .(7.16)

Proof. Recall that LJ is generated by T , UJ , and U−
J , and since τλα = α for all

α ∈ ΦJ , we see that (7.13) follows from (7.2). By (7.2), we find τλα ∈ Δ+
re \ Φ+

for α ∈ Φ
(J)
− and τλα ∈ Δ−

re \ Φ− for α ∈ Φ
(J)
+ , which shows (7.14). Similarly,

τ−1
λ α ∈ Δ+

re\Φ+ for α ∈ Φ
(J)
+ and τ−1

λ α ∈ Δ−
re\Φ− for α ∈ Φ

(J)
− , which shows (7.15).

To show (7.16), we use (7.6), (7.14), (7.15), and U
(J)
1 , U

(J)
2 ⊂ u̇U

(J)
− u̇−1 to get

τ̇uλ · U (J)
2 · τ̇−1

uλ = u̇τ̇λu̇
−1 · U (J)

2 · u̇τ̇−1
λ u̇−1⊂ u̇τ̇λ · U (J)

− · τ̇−1
λ u̇−1⊂ u̇U (I)u̇−1=U (I),

τ̇−1
uλ · U (J)

1 · τ̇uλ= u̇τ̇−1
λ u̇−1 · U (J)

1 · u̇τ̇λu̇−1⊂ u̇τ̇−1
λ · U (J)

− · τ̇λu̇−1⊂ u̇U (I)
− u̇−1=U (I)

− . �

The map ϕ̄u can alternatively be characterized as follows. Recall from Defini-

tion 4.23 that we have a regular map κ : u̇G
(J)
0 → U

(J)
2 that descends to a regular

map κ : C
(J)
u → U

(J)
2 by Lemma 6.2(iii). Recall also from Lemma 4.22(i) that

u̇G
(J)
0 = u̇P− ·B.

Lemma 7.5. Let x ∈ u̇P−. Then

(7.17) ϕ̄u(xP ) = κxx · τ̇λ · x−1 · B.

Proof. We continue using the notation of Definition 4.23. Let p ∈ LJ and g(J) ∈
u̇U

(J)
− u̇−1 be such that xp = g(J)u̇. Note that g

(J)
2 u̇ = h

(J)
1 g(J)u̇ = h

(J)
1 xp, and

since h
(J)
1 ∈ U

(J)
1 ⊂ U ⊂ B, we see that (g

(J)
2 u̇)−1 · B = (xp)−1 · B. On the other

hand, κxxp = h
(J)
2 g(J)u̇ = g

(J)
1 u̇. Since p commutes with τ̇λ by (7.13), we find

ϕ̄u(xP ) = g
(J)
1 u̇ · τ̇λ · (g(J)2 u̇)−1 · B = κxxp · τ̇λ · (xp)−1 · B = κxx · τ̇λ · x−1 · B. �
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7.5. The affine Richardson cell of ϕ̄u.

Lemma 7.6. We have

(7.18) C(J)
u =

⊔
(v,w)∈Q

�(u,u)
J

(C(J)
u ∩

◦
Πv,w).

Proof. The torus T acts on G/P by left multiplication and preserves the sets C
(J)
u

and
◦
Πv,w for all (v, w) ∈ QJ . By (4.23), Πv,w contains u̇P if and only if (u, u) �

(v, w). Suppose that xP ∈ C
(J)
u ∩

◦
Πv,w for some (v, w) ∈ QJ . Then TxP/P ⊂ C

(J)
u ,

and by Lemma 6.8(iii), the closure of this set contains u̇P . On the other hand, the
closure of this set is contained inside Πv,w, and thus (u, u) � (v, w). �

Lemma 7.7. Let (v, w) ∈ Q
�(u,u)
J . Then

(7.19) ϕ̄u(C
(J)
u ∩

◦
Πv,w) ⊂

◦
Rτuλ

vτλw−1 .

Proof. Let x ∈ u̇G
(J)
0 be such that xP ∈

◦
Πv,w. Let us first show that ϕ̄u(xP ) ∈

◦
X τuλ . By (7.12), we have

(7.20) ϕ̄u(xP ) = g
(J)
1 · τ̇uλ · (g(J)2 )−1 · τ̇−1

uλ · τ̇uλ · B.

Observe that g
(J)
1 ∈ U

(J)
1 ⊂ U , and by (7.16), τ̇uλ · (g(J)2 )−1 · τ̇−1

uλ ∈ U (I). We get

(7.21) ϕu(xP ) · τ̇−1
uλ ∈ U , so ϕu(xP ) ∈ B · τ̇uλ · B.

This proves that ϕ̄u(xP ) ∈
◦
X τuλ .

We now show ϕ̄u(xP ) ∈
◦
Xvτλw−1 . Recall that

◦
Πv,w = πJ(

◦
Rv,w), so assume that

x ∈ B−v̇B ∩ BẇB. Since u̇G
(J)
0 = u̇P−B by Lemma 4.22(i), we may assume that

x ∈ u̇P−, in which case ϕ̄u(xP ) is given by (7.17). We have κxx ∈ B−v̇B and
x−1 ∈ Bẇ−1B, so it suffices to show

(7.22) B−v̇B · τ̇λ ·Bẇ−1B ⊂ B− · v̇τ̇λẇ−1 · B.

Clearly we have

B−v̇B · τ̇λ ·Bẇ−1B ⊂ B− · v̇ · U (J) · UJ · τ̇λ · U (J) · UJ · ẇ−1 · B.

By (7.13) and Lemma 4.22(ii), UJ can be moved to the right past τ̇λ and U (J). We
can then move U (J) to the left past τ̇λ using (7.14), which gives

B−v̇B · τ̇λ ·Bẇ−1B ⊂ B− · v̇ · U (J) · U (I)
− · τ̇λ · UJ · ẇ−1 · B.

By (7.6), U (I)
− can be moved to the left past v̇ · U (J), and then U (J) can be moved

to the right past τ̇λ using (7.15), yielding

B−v̇B · τ̇λ ·Bẇ−1B ⊂ B− · v̇ · τ̇λ · U (I) · UJ · ẇ−1 · B.

By (7.6), U (I) can be moved to the right past UJ · ẇ−1. Since w ∈ W J , Lemma 4.5
implies that UJ · ẇ−1 ⊂ ẇ−1U , so (7.22) follows. �
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7.6. Proof of Theorem 7.3(1). Observe that XτJ
λ
∩

◦
X τuλ=

⊔
(v,w)∈Q

�(u,u)
J

◦
Rτuλ

vτλw−1

by (7.3) and (7.9). By (7.19), ϕ̄u(C
(J)
u ) ⊂ XτJ

λ
∩

◦
X τuλ . Let us identify

◦
X τuλ with the

affine variety U1(τuλ) via (7.5), and denote by ϕ̄†
u : C

(J)
u → U1(τuλ) the composition

of (7.5) and ϕ̄u.

We claim that ϕ̄†
u gives a biregular isomorphism between C

(J)
u and a closed

subvariety of U1(τuλ). Let x ∈ u̇G
(J)
0 and let g(J), g

(J)
1 , g

(J)
2 be as in Definition 4.23.

Let y := ϕu(xP ) · τ̇−1
uλ , so ϕ̄u(xP ) = y · τ̇uλ · B. Thus ϕ̄†

u(xP ) = y if and only if
y ∈ U1(τuλ). By (7.21), we have y ∈ U . Hence in order to prove y ∈ U1(τuλ), we
need to show y ∈ τ̇uλU−τ̇

−1
uλ . Conjugating both sides by τ̇uλ, we get

τ̇−1
uλ · y · τ̇uλ = τ̇−1

uλ g
(J)
1 τ̇uλ · (g(J)2 )−1,

which belongs to U− since (g
(J)
2 )−1 ∈ U

(J)
2 ⊂ U− by definition and τ̇−1

uλ g
(J)
1 τ̇uλ ∈

U (I)
− by (7.16). Thus y ∈ U1(τuλ) and ϕ̄†

u(xP ) = y. By Lemma 4.2, we may identify

C
(J)
u with U

(J)
1 × U

(J)
2 , so let ϕ̄‡

u : U
(J)
1 × U

(J)
2 → U1(τuλ) be the map sending

(g
(J)
1 , g

(J)
2 ) to y := g

(J)
1 · τ̇uλ(g(J)2 )−1τ̇−1

uλ .

Let Θ1 := uΦ
(J)
− ∩Φ+ and Θ2 := uΦ

(J)
− ∩Φ−, so U

(J)
1 = U(Θ1), U

(J)
2 = U−(Θ2),

and Θ1 �Θ2 = uΦ
(J)
− . By the proof of (7.16), τuλΘ2 ⊂ Δ+

re \Φ+ and τ−1
uλ Θ1 ⊂ Δ−

re,

and thus Θ1 � τuλΘ2 ⊂ Inv(τ−1
uλ ). Let Θ3 ⊂ Δ+

re be defined by Θ3 := Inv(τ−1
uλ ) \

(Θ1�τuλΘ2). By Lemma A.1, the multiplication map gives a biregular isomorphism

(7.23) U(Θ1)× U(τuλΘ2)×
∏

α∈Θ3

Uα
∼−→ U(Inv(τ−1

uλ )) = U1(τuλ),

where U(Θ) denotes the subgroup generated by {Uα}α∈Θ. In particular, U(Θ1) ·
U(τuλΘ2) is a closed subvariety of U1(τuλ) isomorphic to C|Θ1|+|Θ2| = C�(wJ ). Ob-

serve that U(τuλΘ2) = τ̇uλU
(J)
2 τ̇−1

uλ , and hence ϕ̄‡
u essentially coincides with the re-

striction of the map (7.23) to U(Θ1)×U(τuλΘ2)×{1}. We have thus shown that ϕ̄‡
u

gives a biregular isomorphism between U
(J)
1 ×U

(J)
2 and a closed �(wJ)-dimensional

subvariety of U1(τuλ). Therefore ϕ̄u gives a biregular isomorphism between C
(J)
u

and a closed �(wJ )-dimensional subvariety ϕ̄u(C
(J)
u ) of

◦
X τuλ . By Proposition A.2,

XτJ
λ
∩

◦
X τuλ is a closed irreducible subvariety of

◦
X τuλ , and by (7.8) and Proposi-

tion A.2, it has dimension �(wJ ). Since ϕ̄u(C
(J)
u ) ⊂ XτJ

λ
∩

◦
X τuλ , it follows that

ϕ̄u(C
(J)
u ) = XτJ

λ
∩

◦
X τuλ . We are done with the proof of Theorem 7.3(1).

Remark 7.8. Alternatively, the proof of Theorem 7.3(1) could be deduced from

Deodhar-type parametrizations [Had84,Had85,BD94] of
◦
Rτuλ

vτλw−1 , by observing that

any reduced word for τuλ that is compatible with the length-additive factorization
τuλ = u · τJλ · wJu−1 in (7.8) contains a unique reduced subword for τJλ .

7.7. Proof of Theorem 7.3(2). We use the notation and results from Section 6.
Let x ∈ G be such that xP ∈ Π>0

v′,w′ . Since Π>0
v′,w′ = πJ(R

>0
v′,w′), we may assume that

xB ∈ R>0
v′,w′ . Then x ∈ u̇G

(J)
0 by Lemma 6.9(ii), so ϕ̄u(xP ) is defined. In addition,

by Lemma 4.22(i) we may assume that x ∈ u̇P−. By definition, ϕ̄u(xP ) ∈ Cvτλw−1

if and only if ẇτ̇−1
λ v̇−1ϕ̄u(xP ) ∈ B−B/B. By (7.17), this is equivalent to

(7.24) ẇτ̇−1
λ v̇−1 · κxx · τ̇λ · x−1 ∈ B−B.
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By Theorem 6.4, x ∈ G
(J)
u,v, so v̇−1κxx ∈ G

(J)
0 . Let us factorize y := v̇−1κxx as

y = [y]
(J)
− [y]J [y]

(J)
+ using Lemma 4.22(iii). By (7.13) and (7.15), we get

ẇτ̇−1
λ v̇−1 · κxx · τ̇λ · x−1

= ẇ · τ̇−1
λ [y]

(J)
− τ̇λ · τ̇−1

λ [y]J τ̇λ · τ̇−1
λ [y]

(J)
+ τ̇λ · x−1 ∈ ẇ · U (I)

− · [y]J · U (I) · x−1.

Using (7.6), we can move U (I)
− to the left and U (I) to the right, so we see that (7.24)

is equivalent to ẇ[y]Jx
−1 ∈ B−B. By Definition 6.1, we have [y]J = η(x), and by

Lemma 6.3(ii), we have ζ
(J)
u,v (x) = xη(x)−1 = x[y]−1

J . By Theorem 6.4, ζ
(J)
u,v (x) ∈

BB−ẇ, and after taking inverses, we obtain ẇ[y]Jx
−1 ∈ B−B ⊂ B−B, finishing the

proof. �

8. From Bruhat atlas to Fomin–Shapiro atlas

We use Theorem 7.3 to prove Theorem 2.5.

8.1. Affine Bruhat projections. We first define the affine flag variety version of
the map ν̄g from (2.1). We will need some results on the Gaussian decomposition
inside G; see Appendix A.5 for a proof.

Lemma 8.1. Let G0 := B− · B.
(i) The multiplication map gives a biregular isomorphism of ind-varieties

(8.1) U− × T × U ∼−→ G0.

For x ∈ G0, we denote by [x]− ∈ U−, [x]0 ∈ T , and [x]+ ∈ U the unique
elements such that x = [x]−[x]0[x]+.

(ii) For g ∈ W̃ , the multiplication map gives biregular isomorphisms of ind-
varieties

(8.2) μ12 : U1(g)× U2(g)
∼−→ ġU−ġ

−1, μ21 : U2(g)× U1(g)
∼−→ ġU−ġ

−1.

The group ġU−ġ
−1, as well as its subgroups U1(g) and U2(g), acts on Cg. The

following result, which we state for the polynomial loop group G, holds in Kac–
Moody generality.

Proposition 8.2. Let g ∈ W̃ .

(i) For x ∈ G such that xB ∈ Cg, there exist unique elements y1 ∈ U1(g) and

y2 ∈ U2(g) such that y1xB ∈
◦
Xg and y2xB ∈

◦
X g.

(ii) The map ν̃g : Cg ∼−→
◦
Xg ×

◦
X g sending xB to (y1xB, y2xB) is a biregular

isomorphism of ind-varieties.
(iii) For all h, f ∈ W̃ satisfying h ≤ g ≤ f , the map ν̃g restricts to a biregular

isomorphism Cg ∩
◦
Rf

h
∼−→

◦
Rf

g ×
◦
Rg

h of finite-dimensional varieties.

Proof. Let us first prove an affine analog of Lemma 4.2. Let ν1 : ġU−ġ
−1 → U2(g),

ν2 : ġU−ġ
−1 → U1(g) denote the second component of μ−1

12 and μ−1
21 (cf. (8.2)),

respectively, and let ν := (ν1, ν2) : ġU−ġ
−1 → U2(g) × U1(g). We claim that ν

is a biregular isomorphism. By Lemma 8.1(ii), ν is a regular morphism. Let us
now compute the inverse of ν. Given x1 ∈ U1(g) and x2 ∈ U2(g), we claim that
there exist unique y1 ∈ U1(g) and y2 ∈ U2(g) such that y1x2 = y2x1. Indeed, this
equation is equivalent to y−1

2 y1 = x1x
−1
2 , so we must have y2 = [x1x

−1
2 ]−1

− and

y1 = [x1x
−1
2 ]+. Clearly, ν

−1(x2, x1) = y1x2 = y2x1, and by Lemma 8.1(i), the map
ν−1 is regular. Applying (7.5) finishes the proof of 8.2(i) and 8.2(ii).
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We now prove 8.2(iii). Observe that if xB ∈ Cg ∩
◦
Rf

h for some h ≤ f ∈ W̃ then

x ∈ B−ḣB ∩ BḟB. Let y1, y2 be as in 8.2(ii). Then y1 ∈ U1(g) ⊂ U , so y1x ∈ BḟB.
Similarly, y2 ∈ U2(g) ⊂ U−, so y2x ∈ B−ḣB. It follows that if xB ∈ Cg ∩

◦
Rf

h then

ν̃g(xB) ∈
◦
Rg

h ×
◦
Rf

g . In particular, we must have h ≤ g ≤ f , and we are done
by (7.3). �

8.2. Torus action. Recall that T = C∗ ×T is the affine torus. The group C∗ acts
on G via loop rotation as follows. For t ∈ C∗, we have t · g(z) = g(tz). We form the
semidirect product C∗ � G with multiplication given by (t1, x1(z)) · (t2, x2(z)) :=
(t1t2, x1(z)x2(t1z)) for (t1, x1(z)), (t2, x2(z)) ∈ C∗×G. Let Y (T ) := Hom(C∗, T ) ∼=
Zd⊕ Y (T ). For λ ∈ Y (T ), t ∈ C∗, t′ ∈ C, and α ∈ Δre, we have

(8.3) λ(t)xα(t
′)λ(t)−1 = xα(t

〈λ,α〉t′),

where xα : C
∼−→ Uα is as in Section 7.1, and 〈·, ·〉 : Y (T )×X(T ) → Z extends the

pairing from Section 4.1 in such a way that 〈d, δ〉 = 1 and 〈d, αi〉 = 〈α∨
i , δ〉 = 0 for

i ∈ I.
Let g ∈ W̃ and define N := �(g). If Inv(g) = {α(1), . . . , α(N)}, then by

Lemma A.1, the map xg : CN → U1(g) given by

(8.4) xg(t1, . . . , tN ) := xα(1)(t1) · · ·xα(N)(tN )

is a biregular isomorphism. For t = (t1, . . . , tN ) ∈ CN , define

‖t‖ :=
(
|t1|2 + · · ·+ |tN |2

) 1
2 ∈ R≥0,

and let ‖ · ‖ : U1(g) → R≥0 be defined by ‖y‖ := ‖x−1
g (y)‖. Identifying U1(g) with

◦
X g via (7.5), we get a function ‖ · ‖ :

◦
X g → R≥0.

We say that ρ̃ ∈ Y (T ) is a regular dominant integral coweight if 〈ρ̃, δ〉 ∈ Z>0 and
〈ρ̃, αi〉 ∈ Z>0 for all i ∈ I. In this case, we have 〈ρ̃, α〉 ∈ Z>0 for any α ∈ Δ+

re. Let us
choose such a coweight ρ̃, and define ϑg : R>0×G/B → G/B by ϑg(t, xB) := ρ̃(t)xB.

It follows from (8.3) that if g ∈ W̃ and y ∈ U1(g) is such that x−1
g (y) =

(t1, . . . , tN ) then there exist k1, . . . , kN ∈ Z>0 satisfying

(8.5) ‖ϑg(t, yġB)‖ =
(
tk1 |t1|2 + · · ·+ tkN |tN |2

) 1
2 for all t ∈ R>0.

8.3. Proof of Theorem 2.5. By Corollary 4.20, ((G/P )R, (G/P )≥0, QJ ) is a
shellable TNN space in the sense of Definition 2.1. Thus it suffices to construct a
Fomin–Shapiro atlas.

Let (u, u) � (v, w) ∈ QJ , and define f := (u, u), g := (v, w). Thus we have

ψ(f) = τuλ and ψ(g) = vτλw
−1. Moreover, for the maximal element 1̂ = (id, wJ ) ∈

QJ , we have ψ(1̂) = τJλ . By Theorem 7.3(1), the map ϕ̄u gives an isomorphism

C
(J)
u

∼−→ Xψ(1̂) ∩
◦
Xψ(f). Let OC

g ⊂ C
(J)
u be the preimage of Cψ(g) ∩ Xψ(1̂) ∩

◦
Xψ(f)

under ϕ̄u, and denote by Og := OC
g ∩ (G/P )R. Since Cψ(g) is open in G/B, we see

that OC
g is open in C

(J)
u which is open in G/P , so Og is an open subset of (G/P )R.

By Theorem 7.3(2), Og contains Star≥0
g , which shows (FS5). Moreover, we claim

that Og ⊂ Starg. Indeed, if h � f but h �� g then ψ(h) �≤ ψ(g). The map ϕ̄u sends
◦
Πh ∩ C

(J)
u to

◦
Rψ(f)

ψ(h), which does not intersect Cψ(g) by (A.3).

We now define the smooth cone (Zg, ϑg). Throughout, we identify
◦
Xψ(g) with

CNg for Ng := �(ψ(g)) via (8.4). We set ZC
g := Xψ(1̂) ∩

◦
Xψ(g) and

◦
ZC

g,h :=
◦
Rψ(g)

ψ(h)
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for g � h ∈ QJ . We let Zg := ZC
g ∩ RNg and

◦
Zg,h :=

◦
ZC

g,h ∩ RNg denote the

corresponding sets of real points. Thus (FS1) follows. The action ϑg restricts to
RNg , and by (8.5), it satisfies (SC2). As we discussed in Section 8.2, the action of

ϑg also preserves both Zg (showing (SC1)) and
◦
Zg,h (showing (FS2)).

Finally, we define a map ν̄g : OC
g → (

◦
Πg ∩ OC

g ) × CNg as follows. Let ν̃g =

(ν̃g,1, ν̃g,2) : Cg ∼−→
◦
Xg×

◦
X g be the map from Proposition 8.2. We let ν̄g,2 := ν̃g,2◦ϕ̄u,

so it sends OC
g → Cψ(g) →

◦
Xψ(g) ∼= CNg . By Proposition 8.2(iii), the image of ν̄g,2

is precisely ZC
g . We also let ν̄g,1 := ϕ̄−1

u ◦ ν̃g,1 ◦ ϕ̄u, so it sends

OC

g
∼−→ Cψ(g) ∩ Xψ(1̂) ∩

◦
Xψ(f) →

◦
Rψ(f)

ψ(g)

∼−→
◦
Πg ∩OC

g .

It follows from Theorem 7.3(1) and Proposition 8.2 that ν̄g := (ν̄g,1, ν̄g,2) gives a

biregular isomorphism OC
g

∼−→ (
◦
Πg ∩OC

g )×ZC
g . All maps in the definition of ZC

g are

defined over R, so ν̄g gives a smooth embedding Og → (
◦
ΠR

g ∩Og)×RNg with image

(
◦
ΠR

g ∩ Og) × Zg. By Lemma 3.3, we find that Zg is an embedded submanifold of

RNg , so we get a diffeomorphism

ν̄g : Og
∼−→ (

◦
ΠR

g ∩ Og)× Zg.

By Theorem 7.3(1) and Proposition 8.2(iii), we find that for h � g, ν̄g sends
◦
Πh∩Og

to (
◦
Πg ∩ Og) ×

◦
Zg,h, showing (FS3). When xP ∈

◦
Πg ∩ Og, we have ϕ̄u(xP ) ∈

◦
Rψ(f)

ψ(g) , so ν̃g,1(ϕ̄u(xP )) = ϕ̄u(xP ) and ν̃g,2(ϕ̄u(xP )) ∈
◦
Rψ(g)

ψ(g). Thus ν̄g,1(xP ) =

x and ν̄g,2(xP ) = 0, showing (FS4). We have checked all the requirements of
Definitions 2.1, 2.2, and 2.3. �

9. The case G = SLn

In this section, we illustrate our construction in type A. We mostly focus on the
case when G/P is the Grassmannian Gr(k, n) so that (G/P )≥0 is the totally non-
negative Grassmannian Gr≥0(k, n) of Postnikov [Pos07]. Throughout, we assume
K = C.

9.1. Preliminaries. Fix an integer n ≥ 1 and denote [n] := {1, 2, . . . , n}. For

0 ≤ k ≤ n, let
(
[n]
k

)
denote the set of all k-element subsets of [n].

Let G = SLn be the group of n× n matrices over C of determinant 1. We have
subgroups B,B−, T, U, U− ⊂ G consisting of upper triangular, lower triangular,
diagonal, upper unitriangular, and lower unitriangular matrices of determinant 1,
respectively. The Weyl group W is the group Sn of permutations of [n], and for
i ∈ I = [n − 1], si ∈ W is the simple transposition of elements i and i + 1. If
w ∈ W is written as a product w = si1 . . . sil , then the action of w on [n] is given
by w(j) = si1(· · · (sil(j)) · · · ) for j ∈ [n]. For S ⊂ [n], we set wS := {w(j) | j ∈ S}.
For example, if n = 3 and w = s2s1 then w(1) = 3, w(2) = 1, w(3) = 2, and
w{1, 3} = {2, 3}.

For i ∈ [n − 1], the homomorphism φi : SL2 → G just sends a matrix A ∈ SL2

to the n × n matrix φi(A) ∈ SLn which has a 2 × 2 block equal to A in rows and

columns i, i+ 1. Thus if n = 3 then ṡ1 =
[
0 −1 0
1 0 0
0 0 1

]
, ṡ2 =

[
1 0 0
0 0 −1
0 1 0

]
, and if w = s2s1

then ẇ =
[
0 −1 0
0 0 −1
1 0 0

]
. In general, given w ∈ Sn, ẇ contains a ±1 in row w(j) and

column j for each j ∈ [n], and the sign of this entry is −1 if and only if the number
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of ±1’s strictly below and to the left of it is odd. In other words, the (w(j), j)-th
entry of ẇ equals (−1)#{i<j|w(i)>w(j)}.

For x ∈ SLn, x
T is just the matrix transpose of x, and xι defined in (4.4) is the

“positive inverse” given by (xι)i,j = (−1)i+j(x−1)i,j for all i, j.
For i ∈ [n− 1], the function Δ∓

i : SLn → C is the top-left i× i principal minor,
while Δ±

i : SLn → C is the bottom-right i × i principal minor. The subset G∓
0 =

B−B consists precisely of matrices x ∈ SLn all of whose top-left principal minors
are nonzero, in agreement with Lemma 4.21(iii). We define Δ∓

n (x) = Δ±
n (x) :=

detx = 1.

9.2. Flag variety. The group B acts on G = SLn by right multiplication, and
G/B is the complete flag variety in Cn. It consists of flags {0} = V0 ⊂ V1 ⊂
· · · ⊂ Vn = Cn in Cn such that dimVi = i for i ∈ [n]. For a matrix x ∈ SLn, the
element xB ∈ G/B gives rise to a flag V0 ⊂ V1 ⊂ · · · ⊂ Vn such that Vi is the

span of columns 1, . . . , i of x. For k ∈ [n], S ∈
(
[n]
k

)
, and x ∈ SLn, we denote by

Δflag
S the determinant of the k × k submatrix of x with row set S and column set

[k]. Thus for each k ∈ [n], we have a map Δflag
k : G/B → CP(

n
k)−1 sending xB to

(Δflag
S (x))

S∈([n]
k )

. Here
(
[n]
k

)
is identified with the set Wωk from Lemma 4.21(iv).

9.3. Partial flag variety. For J ⊂ [n], we have a parabolic subgroup P ⊂ G, and
the partial flag variety G/P consists of partial flags {0} = V0 ⊂ Vj1 ⊂ · · · ⊂ Vjl ⊂
Vn = Cn, where {j1 < · · · < jl} := [n−1]\J and dimVji = ji for i ∈ [l]. The projec-
tion πJ : G/B → G/P sends a flag (V0, V1, . . . , Vn) to (V0, Vj1 , . . . , Vjl , Vn). When
J = ∅, we have P = B and G/P = G/B. We will focus on the “complementary”
special case:

Unless otherwise stated, we assume that J=[n− 1]\{k} for some fixed k∈ [n− 1].

In this case, G/P is the (complex) Grassmannian Gr(k, n), which we will identify
with the space of n× k full rank matrices modulo column operations. Let us write
matrices in SLn in block form

[
A B
C D

]
, where A is of size k × k and D is of size

(n−k)×(n−k). For a matrix x =
[

A B
C D

]
∈ SLn, we denote by [x| :=

[
A
C

]
the n×k

submatrix consisting of the first k columns of x. Thus every x ∈ SLn gives rise to
an element xP of G/P which is a k-dimensional subspace Vk ⊂ Cn equal to the

column span of [x|. The map Δflag
k in this case is the classical Plücker embedding

Δflag
k : Gr(k, n) ↪→ CP(

n
k)−1.

The set W J from Section 4.6 consists of Grassmannian permutations : we have
w ∈ W J if and only if w = id or every reduced word for w ends with sk. Equiv-
alently, w ∈ W J if and only if w(1) < · · · < w(k) and w(k + 1) < · · · < w(n),

so the map w �→ w[k] gives a bijection W J →
(
[n]
k

)
. The parabolic subgroup WJ

(generated by {sj}j∈J ) consists of permutations w ∈ Sn such that w[k] = [k], and
the longest element wJ ∈ WJ is given by (wJ(1), . . . , wJ(n)) = (k, . . . , 1, n, . . . , k+
1). The maximal element wJ of W J is given by (wJ(1), . . . , wJ (n)) = (n − k +
1, . . . , n, 1, . . . , n− k). We have

UJ =

{[
Uk 0
0 Un−k

]}
, U

(J)
− =

{[
Ik 0
C In−k

]}
,

LJ =

{[
A 0
0 D

]}
, P =

{[
A B
0 D

]}
,
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where Ur is an r × r upper unitriangular matrix, Ir is the r × r identity matrix,
A ∈ SLk, D ∈ SLn−k, and B, C are arbitrary k× (n− k) and (n− k)× k matrices,
respectively.

9.4. Affine charts. We have G
(J)
0 := {x ∈ G | Δflag

[k] (x) �= 0}, and for x =
[

A B
C D

]
∈

G
(J)
0 (such that detA = Δflag

[k] (x) �= 0), the factorization x = [x]
(J)
− [x]

(J)
0 [x]

(J)
+ from

Lemma 4.22(iii) is given by

(9.1)

[
A B
C D

]
=

[
Ik 0

CA−1 In−k

]
·
[

A 0
0 D − CA−1B

]
·
[

Ik A−1B
0 In−k

]
.

The matrix D − CA−1B is called the Schur complement of A in x.

For u ∈ W J , the set C
(J)
u ⊂ G/P from Section 4.12 consists of elements xP such

that Δflag
u[k](x) �= 0. The (inverse of the) isomorphism (4.31) essentially amounts to

computing the reduced column echelon form of an n × k matrix: if x ∈ G is such

that xP ∈ C
(J)
u is sent to g(J) ∈ u̇U

(J)
− u̇−1 via (4.31), then the n × k matrices [x|

and
[
g(J)u̇

∣∣ have the same column span, and the submatrix of
[
g(J)u̇

∣∣ with row
set u[k] is the k × k identity matrix. Let us say that an n × k matrix M is in
u[k]-echelon form if its submatrix with row set u[k] is the k × k identity matrix.

The matrices g
(J)
1 u̇ and g

(J)
2 u̇ from Definition 4.23 are obtained from g(J)u̇ simply

by replacing some entries with 0. Explicitly, let (Mi,j) :=
[
g(J)u̇

∣∣, (M ′
i,j) :=

[
g
(J)
1 u̇

∣∣∣,
and (M ′′

i,j) :=
[
g
(J)
2 u̇

∣∣∣ be the corresponding n× k matrices. Thus Mi,j = δi,u(j) for

all i ∈ u[k] and j ∈ [k], and we have

M ′
i,j =

{
Mi,j , if i ≤ u(j),

0, otherwise,
M ′′

i,j =

{
Mi,j , if i ≥ u(j),

0, otherwise,

for all i ∈ [n] and j ∈ [k]. The operation M �→ M ′, which we call u-truncation, will
play an important role.

Example 9.1. Let G/P = Gr(2, 4) and u = s3s2 ∈ W J , so u[k] = {1, 4}. We have

x = g(J)u̇ =

[
1
x1 x2 −1
x3 x4 −1

1

]
, [x| =

[
1
x1 x2
x3 x4

1

]
,
[
g
(J)
1 u̇

∣∣∣ = [
1
x2
x4
1

]
,
[
g
(J)
2 u̇

∣∣∣ = [
1
x1
x3

1

]
,

where blank entries correspond to zeros.

9.5. Positroid varieties. We review the background on positroid varieties in-
side Gr(k, n), which were introduced in [KLS13], building on the work of Post-

nikov [Pos07]. Let S̃n be the group of affine permutations, i.e., bijections f : Z → Z

such that f(i+n) = f(i)+n for all i ∈ Z. We have a function av : S̃n → Z sending

f to av(f) := 1
n

∑n
i=1(f(i) − i), which is an integer for all f ∈ S̃n. For j ∈ Z,

denote S̃j,n := {f ∈ S̃n | av(f) = j}. Every f ∈ S̃n is determined by the sequence
f(1), . . . , f(n), and we write f in window notation as f = [f(1), . . . , f(n)]. For

λ ∈ Zn, define τλ ∈ S̃n by τλ := [d1, . . . , dn], where di = i+ nλi for all i ∈ [n]. Let

Bound(k, n) ⊂ S̃k,n be the set of bounded affine permutations, which consists of all

f ∈ S̃n satisfying av(f) = k and i ≤ f(i) ≤ i+ n for all i ∈ Z. The subset S̃0,n is a
Coxeter group with generators s1, . . . , sn−1, sn = s0, where for i ∈ [n], si : Z → Z

sends i to i+ 1, i+ 1 to i, and j to j for all j �≡ i, i+ 1 (mod n). We let ≤ denote

the Bruhat order on S̃0,n, and � : S̃0,n → Z≥0 denote the length function. We
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have a bijection S̃0,n → S̃k,n sending (i �→ f(i)) to (i �→ f(i) + k), which induces a

poset structure and a length function on S̃k,n. When f ≤ g, we write g ≤op f , and
we will be interested in the poset (Bound(k, n),≤op), which has a unique maximal
element τk := [1 + k, 2 + k, . . . , n + k]. It is known that Bound(k, n) is a lower

order ideal of (S̃k,n,≤op). We fix λ = 1k0n−k := (1, . . . , 1, 0, . . . , 0) ∈ Zn (with k

1’s). Then τλ = [1 + n, . . . , k + n, k + 1, . . . , n] is one of the
(
[n]
k

)
minimal elements

of (Bound(k, n),≤op). The group Sn is naturally a subset of S̃0,n, and we have
τk = τλ(w

J)−1 = τJλ , where τJλ was introduced in Section 7.2. Note that λ is
cominuscule; see Remark 7.2.

Given an n × k matrix M and i ∈ [n], we let Mi denote the ith row of M . We
extend this to all i ∈ Z in such a way that Mi+n = (−1)k−1Mi for all i ∈ Z. Thus
we view M as a periodic Z × k matrix. (The sign (−1)k−1 is chosen so that if
M ∈ Gr≥0(k, n), then the matrix with rows Mi, . . . ,Mi+n−1 belongs to Gr≥0(k, n)
for all i ∈ Z; see Section 9.11.) Every n× k matrix M of rank k gives rise to a map
fM : Z → Z sending i ∈ Z to the minimal j ≥ i such that Mi belongs to the linear
span of Mi+1, . . . ,Mj . It is easy to see that fM ∈ Bound(k, n) and fM depends
only on the column span of M . For h ∈ Bound(k, n), the (open) positroid variety
◦
Πh ⊂ Gr(k, n) is the subset

◦
Πh := {M ∈ Gr(k, n) | fM = h}. Its Zariski closure

inside Gr(k, n) is Πh =
⊔

g≤oph

◦
Πg; see [KLS13, Theorem 5.10].

For h ∈ Bound(k, n), define the Grassmann necklace Ih = (Ia)a∈Z of h by

(9.2) Ia := {h(i) | i < a, h(i) ≥ a} for a ∈ Z.

Then Ia is a k-element subset of [a, a + n), where for a ≤ b ∈ Z we set [a, b) :=
{a, a + 1, . . . , b − 1}. For a ≤ b ∈ Z and M ∈ Gr(k, n), define rank(M ; a, b) to be

the rank of the submatrix of M with row set [a, b). For a, b ∈ Z and h ∈ S̃n, define
ra,b(h) := #{i < a | h(i) ≥ b}. We describe two well-known characterizations of
open positroid varieties; see [KLS13, Section 5.2].

Proposition 9.2. Let h ∈ Bound(k, n) and let Ih = (Ia)a∈Z be its Grassmann
necklace.

(i) The set
◦
Πh consists of all M ∈ Gr(k, n) such that for each a ∈ Z, Ia is the

lexicographically minimal k-element subset S of [a, a+ n) such that the rows
(Mi)i∈S are linearly independent.

(ii) For M ∈ Gr(k, n), we have M ∈
◦
Πh if and only if

(9.3) k − rank(M ; a, b) = ra,b(h) for all a ≤ b ∈ Z.

We use window notation for Grassmann necklaces as well, i.e., we write Ih =
[I1, . . . , In].

Recall that we have fixed λ = 1k0n−k ∈ Zn. For (v, w) ∈ QJ , define fv,w ∈ S̃n

by

(9.4) fv,w := vτλw
−1.

Theorem 9.3 ([KLS13, Propositions 3.15 and 5.4]). The map (v, w) �→ fv,w gives
a poset isomorphism

(QJ ,�)
∼−→ (Bound(k, n),≤op).

For (v, w) ∈ QJ , we have
◦
Πv,w =

◦
Πfv,w

and Πv,w = Πfv,w
as subsets of G/P =

Gr(k, n).
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Example 9.4. There are n positroid varieties of codimension 1, each given by the

condition Δflag
{i−k+1,...,i} = 0 for some i ∈ [n]. Indeed, the top element (id, wJ ) ∈ QJ

covers n elements, namely (si, w
J) for i ∈ [n−1], together with (id, sn−kw

J ). In the

former case we have fsi,wJ = siτ
J
λ , which corresponds to the variety Δflag

{i−k+1,...,i} =

0. In the latter case we have fid,sn−kwJ = τJλ sn−k, which corresponds to the variety

Δflag
{n−k+1,...,n} = 0.

Example 9.5. One can check directly from (9.4) and (9.2) that the first element of
the Grassmann necklace of fv,w is I1 = v[k]. Similarly, w[k] = {i ∈ [n] | fv,w(i) >
n}.
Example 9.6. Elements of Bound(k, n) and QJ are in bijection with L-diagrams
of [Pos07]. The bijection between QJ and the set of L-diagrams is described
in [Pos07, Section 19]: the pair (v, w) ∈ QJ gives rise to a L-diagram whose shape is
a Young diagram inside a k× (n− k) rectangle, corresponding to the set w[k]. The
squares of the L-diagram correspond to the terms in a reduced expression for w, as
shown in Figure 2 (top left): the box with coordinates (i, j) in matrix notation is

s2 s3 s4

s1 s2

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

−1

−1

0

0

w−1

τλ

v

· · ·· · ·

· · ·· · ·

Figure 2. A L-diagram (bottom left), the labeling of its squares
by simple transpositions (top left), and the result of applying the
bijection of Theorem 9.3 (right). See Example 9.6 for details.

labeled by sk+j−i, and we form the expression by reading boxes from right to left,
bottom to top. The terms in the positive subexpression for v inside w correspond
to the squares of the L-diagram that are not filled with dots; see Figure 2 (bottom
left). Thus the bijection of Theorem 9.3 can be pictorially represented as in Fig-
ure 2 (right). We refer to [Pos07, Section 19] or [Wil07, Appendix A] for the precise
description. For the example in Figure 2, we have v = s1, w = s2s1s4s3s2, and
fv,w = [3, 4, 7, 5, 6] in window notation, which is obtained by following the strands
in Figure 2 (right) from top to bottom.

9.6. Polynomial loop group. We explain how the construction in Section 7 ap-
plies to the case G/P = Gr(k, n). Recall that A := C[z, z−1]. Let GLn(A) de-
note the polynomial loop group of GLn, consisting of n × n matrices with entries
in A whose determinant is a nonzero Laurent monomial in z, i.e., an invertible

Licensed to Univ of Calif, Los Angeles. Prepared on Thu Jun  2 15:40:28 EDT 2022 for download from IP 169.232.149.130.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



562 PAVEL GALASHIN ET AL.

element of A. (We use GLn(A) instead of SLn(A) as the constructions are com-
binatorially more elegant.) We have a group homomorphism val : GLn(A) → Z

sending x ∈ GLn(A) to j ∈ Z such that detx = cz−j for some c ∈ C∗, and we let

GL(j)
n (A) := {x ∈ GLn(A) | val x = j}. The subgroups GLn(A+) and GLn(A−)

are contained inside the group GL(0)
n (A) of matrices whose determinant belongs

to C∗. We have subgroups U(A+) := ēv−1
0 (U), U−(A−) := ēv−1

∞ (U−), B(A+) :=

ēv−1
0 (B) and B−(A−) := ēv−1

∞ (B−) of GL(0)
n (A). Thus in the notation of Section 7

for G = SLn, we have G = SLn(A) � GL(0)
n (A), B = SLn(A) ∩ B(A+) � B(A+),

U = U(A+), and U− = U−(A−).
To each matrix x ∈ GLn(A), we associate a Z× Z matrix x̃ = (x̃i,j)i,j∈Z that is

uniquely defined by the conditions

(1) x̃i,j = x̃i+n,j+n for all i, j ∈ Z, and
(2) the entry xi,j(z) equals the finite sum

∑
d∈Z

x̃i,j+dnz
d for all i, j ∈ [n].

One can check that if x = x1x2, then x̃ = x̃1x̃2. With this identification, the
subgroups U , U−, B(A+), and B−(A−) have a very natural meaning. For example,
x ∈ GLn(A) belongs to U if and only if x̃i,j = 0 for i > j and x̃i,i = 1 for all i ∈ Z.
Similarly, B(A+) consists of all elements x ∈ GLn(A) such that x̃i,j = 0 for i > j
and x̃i,i �= 0 for all i ∈ Z.

To each affine permutation f ∈ S̃k,n, we associate an element ḟ ∈ GLn(A) so

that the corresponding Z × Z matrix f̃ satisfies f̃i,j = 1 if i = f(j) and f̃i,j = 0
otherwise, for all i, j ∈ Z. In other words, if for i, j ∈ [n] there exists d ∈ Z such

that f(j) = i + dn then ḟi,j(z) := z−d, and otherwise ḟi,j(z) := 0. Observe that

val ḟ = k for all f ∈ S̃k,n, and thus ḟ ∈ GL(k)
n (A). Recall that we have fixed

λ = 1k0n−k ∈ Zn. We obtain τ̇λ = diag
(
1
z , . . . ,

1
z , 1, . . . , 1

)
with k entries equal

to 1
z , and for u ∈ W J , we therefore get τ̇uλ = diag(c1, . . . , cn), where ci = 1

z for
i ∈ u[k] and ci = 1 for i /∈ u[k].

9.7. Affine flag variety. The quotient GL(k)
n (A)/B(A+) is isomorphic to the

affine flag variety G/B of Section 7 for the case G = SLn. Indeed, GL(0)
n (A) acts

simply transitively on GL(k)
n (A) and we clearly have GL(0)

n (A)/B(A+) ∼= G/B. For
f ≤op h ∈ S̃k,n and g ∈ S̃k,n, we have subsets

◦
X f ,

◦
Xh,

◦
Rf

h, Cg ⊂ GL(k)
n (A)/B(A+)

defined by
◦
X f := B(A+) · ḟ ·B(A+)/B(A+),

◦
Xh := B−(A−) · ḣ ·B(A+)/B(A+),

◦
Rf

h :=
◦
Xh ∩

◦
X f , Cg := ġ ·B−(A−) ·B(A+)/B(A+).

Let us now calculate the map ϕu from (7.11). Recall that it sends xP ∈ C
(J)
u

to g
(J)
1 · τ̇uλ · (g(J)2 )−1. Assuming as before that x = g(J)u̇ ∈ u̇U

(J)
− , consider the

corresponding n× k matrix (Mi,j) := [x| in u[k]-echelon form.

Proposition 9.7. The matrix y := ϕu(xP ) ∈ GL(k)
n (A) is given for all i, j ∈ [n]

by

(9.5) yi,j(z) =

⎧⎪⎨⎪⎩
δi,j , if j /∈ u[k],

−Mi,s, if i > j and j = u(s) for some s ∈ [k],
Mi,s

z , if i ≤ j and j = u(s) for some s ∈ [k].

Proof. This follows by directly computing the product g
(J)
1 · τ̇uλ · (g(J)2 )−1. �
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Example 9.8. In the notation of Example 9.1, we have

(9.6) y = g
(J)
1 · τ̇uλ ·(g(J)2 )−1 =

[
1
1 x2
1 x4

1

]
·
[

1
z

1
1

1
z

]
·
[

1
−x1 1
−x3 1

1

]
=

⎡⎣ 1
z

−x1 1
x2
z

−x3 1
x4
z
1
z

⎤⎦ .

Remark 9.9. The map ϕ̄u : xP �→ g
(J)
1 · τ̇uλ · (g(J)2 )−1 ·B(A+) is a slight variation of

a similar embedding of [Sni10] which we denote ϕ̄′
u. We have ϕ̄′

u(xP ) = g
(J)
1 · τ̇uλ ·

g
(J)
2 ·B(A+), and the corresponding matrix y′ = ϕ′

u(xP ) := g
(J)
1 · τ̇uλ · g(J)2 is given

by (9.5) except that −Mi,s should be replaced by Mi,s. Thus y′ is obtained from
y by substituting z �→ −z and then changing the signs of all columns in u[k]. In
particular, y′ and y are related by an element of the affine torus from Section 8.2.

Proposition 9.14 is due to Snider [Sni10]. Theorem 7.3(1) generalizes Snider’s
result to arbitrary G/P . The advantage of introducing the sign change in our map
ϕ̄u is that it is better suited for applications to total positivity: for instance, the
analog of Theorem 7.3(2) does not hold for the map ϕ̄′

u.

We give a standard convenient characterization of
◦
Xh using lattices. For each

x ∈ GLn(A) and column a ∈ Z, we introduce a Laurent polynomial xa(t) ∈ C[t, t−1]
defined by xa(t) :=

∑
i∈Z

x̃i,at
i, and an infinite-dimensional linear subspace La(x) ⊂

C[t, t−1] given by La(x) := Span{xj(t) | j < a}, where Span denotes the space of all
finite linear combinations. For b ∈ Z, define another linear subspace Eb ⊂ C[t, t−1]
by Eb := Span{ti | i ≥ b}. Finally, for a, b ∈ Z, define ra,b(x) ∈ Z to be the
dimension of La(x) ∩ Eb. In other words, ra,b(x) is the dimension of the space of
Z× 1 vectors that have zeros in rows b− 1, b− 2, . . . and can be obtained as finite
linear combinations of columns a − 1, a− 2, . . . of x̃. Recall from Section 9.5 that
for a, b ∈ Z and h ∈ S̃n, we define ra,b(h) := #{i < a | h(i) ≥ b}.
Lemma 9.10. Let x ∈ GL(d)

n (A) and h ∈ S̃d,n for some d ∈ Z. Then

(9.7) x ·B(A+) ∈
◦
Xh if and only if ra,b(x) = ra,b(h) for all a, b ∈ Z.

Proof. It is clear that ra,b(x) = ra,b(h) when x = ḣ. One can check that ra,b(y−xy+)

= ra,b(x) for all x ∈ GL(d)
n (A), y− ∈ B−(A−), y+ ∈ B(A+), and a, b ∈ Z. This

proves (9.7) since GL(d)
n (A)/B(A+) =

⊔
h∈S̃d,n

◦
Xh by (A.2). �

Remark 9.11. A lattice L is usually defined (see e.g. [Kum02, Section 13.2.13]) to
be a free C[[z]]-submodule of C((t)) ∼= C((z))n (where z = tn) satisfying L ⊗C[[z]]

C((z)) ∼= C((z))n. The C[[z]]-submodule generated by our La(x) gives a lattice
La(x) in the usual sense.

Definition 9.12. Suppose we are given an n × k matrix M in u[k]-echelon form.
Recall that we have defined the row Ma for all a ∈ Z in such a way that Ma+n =
(−1)k−1Ma. For a ∈ Z and j ∈ [k], denote by θua,j ∈ [a, a + n) the unique integer

that is equal to u(j) modulo n. Define the u-truncation M trau of M to be the

[a, a + n) × k matrix M trau = (M
trau
i,j ) such that for i ∈ [a, a + n) and j ∈ [k], the

entry M
trau
i,j is equal to Mi,j if i ≤ θua,j and to 0 otherwise; see Example 9.18. Thus

M trau is obtained from the matrix with rows Ma, . . . ,Ma+n−1 by setting an entry
to 0 if it is below the corresponding ±1 in the same column, and we label its rows
by a, . . . , a+ n− 1 rather than by 1, . . . , n. For example, if x = g(J)u̇ and M = [x|
then M tr1u =

[
g
(J)
1 u̇

∣∣∣; cf. Example 9.1.
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Lemma 9.13. Let x = g(J)u̇ ∈ u̇U
(J)
− , M := [x|, and y := ϕu(xP ). Then for all

a ∈ Z, the space La(y) has a basis
(9.8)

{ti | i < a} � {P1(t), . . . , Pk(t)}, where Ps(t) :=
a+n−1∑
i=a

M
trau
i,s ti for s ∈ [k].

Proof. For a subset S ⊂ Z, define S + nZ := {j + in | j ∈ S, i ∈ Z}. The space
La(y) is the span of yj(t) for all j < a. If j /∈ u[k]+nZ then yj(t) = tj by definition.
If j ∈ u[k]+nZ then yj−n(t) = tj+

∑
j−n<i<j cit

i, where ci is zero for i ∈ u[k]+nZ.

It follows that La(y) contains t
i for all i < a. Moreover, the only indices j < a such

that yj(t) /∈ Span{ti | i < a} are those that belong to [a− n, a) ∩ (u[k] + nZ). Let
j ∈ [a − n, a) ∩ (u[k] + nZ) be such an index, and let s ∈ [k] be the unique index
such that u(s) ∈ j + nZ. Then clearly yj(t) ± Ps(t) ∈ Span{ti | i < a}, where the

sign depends on the parity of j−u(s)
n ∈ Z. Thus Ps(t) ∈ La(y) for all s ∈ [k], and

La(y) is the span of {ti | i < a}�{P1(t), . . . , Pk(t)}. Since the Laurent polynomials
Ps(t) have different degrees, they must be linearly independent. �

We give an alternative proof of Theorem 7.3(1) for the case G/P = Gr(k, n).

Proposition 9.14. For h ∈ Bound(k, n) such that τuλ ≤op h, the map ϕ̄u gives
isomorphisms

ϕ̄u : C(J)
u

∼−→
◦
X τuλ , ϕ̄u : C(J)

u ∩
◦
Πh

∼−→
◦
Rτuλ

h .

Proof. It is clear from (9.5) that we have a biregular isomorphism U
(J)
1 × U

(J)
2

∼−→
U1(τuλ) sending (g

(J)
1 , g

(J)
2 ) to g

(J)
1 · τ̇uλ(g(J)2 )−1τ̇−1

uλ . Thus the map (g
(J)
1 , g

(J)
2 ) �→

g
(J)
1 · τ̇uλ · (g(J)2 )−1 ·B(A+) gives a parametrization of

◦
X τuλ ; see (7.5). Since C

(J)
u =⊔

h∈Bound(k,n)(C
(J)
u ∩

◦
Πh), let us fix h ∈ Bound(k, n) and x = g(J)u̇ ∈ u̇U

(J)
− .

Define M := [x| and y := ϕu(xP ). By (9.3), we have M ∈
◦
Πh if and only if

k − rank(M ; a, b) = ra,b(h) for all a ≤ b ∈ Z. By (9.7), we have y · B(A+) ∈
◦
Xh if

and only if ra,b(y) = ra,b(h) for all a, b ∈ Z. If a > b then ra,b(y) = ra,b+1(y) + 1
by (9.8) and ra,b(h) = ra,b+1(h) + 1 since h ∈ Bound(k, n) satisfies h−1(b) ≤ b, so

h−1(b) < a. We have shown that y ·B(A+) ∈
◦
Xh if and only if ra,b(y) = ra,b(h) for

all a ≤ b ∈ Z. Thus it suffices to show

(9.9) ra,b(y) + rank(M ; a, b) = k for all a ≤ b ∈ Z.

By (9.8), ra,b(y) is the dimension of Span{P1(t), . . . , Pk(t)} ∩ Eb. By the rank-

nullity theorem, k− ra,b(y) is the rank of the submatrix of M trau with row set [a, b),
which is obtained by downward row operations from the submatrix of M with row
set [a, b). This shows (9.9). �

Remark 9.15. By Theorem 7.3(1), the image of ϕ̄u is XτJ
λ
∩

◦
X τuλ , where τJλ =

τλ(w
J )−1. But recall from Section 9.5 that τλ(w

J)−1 = τk, and since
◦
Xτk is dense

in GL(k)
n (A)/B(A+), we find that XτJ

λ
∩

◦
X τuλ =

◦
X τuλ .

Example 9.16. Suppose that x = g(J)u̇ is given as in Example 9.1, so that y =
ϕu(xP ) is the matrix from Example 9.8. It is clear that y ∈ B(A+) · τ̇uλ regardless
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of the values of x1, x2, x3, x4, and therefore y ·B(A+) belongs to
◦
X τuλ . We can try

to factorize y as an element of B−(A−) · τ̇k ·B(A+):

y =

⎡⎣ 1
x2

(x1x4−x2x3)z

x4
x3z

1
x4
x2

1
1
x2

x1
x1x4−x2x3

1

⎤⎦ ·
[

1
z

1
z

1
1

]
·

⎡⎢⎣
x1x4−x2x3

x2
− x4

x2
1

x3
x1x4−x2x3

− x1
x1x4−x2x3

1
x3

−x1z z x2

⎤⎥⎦ .

This factorization makes sense only when all denominators on the right-hand side

are nonzero, which shows that y·B(A+) ∈
◦
Rτuλ

τk
whenever the minors Δflag

12 (x) = x2,

Δflag
23 = x1x4 − x2x3, and Δflag

34 = x3 are nonzero. Observe also that Δflag
14 (x) = 1.

Thus y · B(A+) ∈
◦
Rτuλ

τk
precisely when xP ∈

◦
Πτk , where τk = [3, 4, 5, 6] in window

notation. If x2 = 0 then xP ∈
◦
Πh for h = [2, 4, 5, 7]. In this case, we have

ḣ =

[
1
z

1
1
z

1

]
, y|x2=0 =

[
1 − 1

x1z
x4
x3z

1
1

− x3
x1x4

1
x4

1

]
·
[

1
z

1
1
z

1

]
·

⎡⎣ −x1 1
x3

x1x4
− 1

x4
1
x3

−x3z z x4

⎤⎦ .

Therefore y|x2=0 belongs to
◦
Rτuλ

h whenever x1, x3, x4 �= 0. Observe that the Grass-
mann necklace of h is given by Ih = [{1, 3}, {2, 3}, {3, 4}, {4, 5}] in window notation,

and the corresponding flag minors of x|x2=0 are given by Δflag
13 = x4, Δ

flag
23 = x1x4,

Δflag
34 = x3, and Δflag

14 = 1, in agreement with Proposition 9.14.

9.8. Preimage of Cg. For this section, we fix τuλ ≤op g ∈ Bound(k, n). We would

like to understand the preimage of
( ◦
X τuλ ∩ Cg

)
⊂ GL(k)

n (A)/B(A+) under the map

ϕ̄u. For a set S ⊂ [a, a + n) of size k, define Δ
trau
S (M) to be the determinant of

the k × k submatrix of M trau with row set S. Let Ig = (Ia)a∈Z be the Grassmann
necklace of g.

Proposition 9.17. Suppose that xP ∈ C
(J)
u and let M :=

[
g(J)u̇

∣∣. Then ϕ̄u(xP ) ∈
Cg if and only if Δ

trau
Ia

(M) �= 0 for all a ∈ [n].

Proof. Let h ∈ S̃n be the unique element such that ġ−1ϕ̄u(xP ) belongs to
◦
Xh, so

that ϕ̄u(xP ) ∈ Cg if and only if h = id. Since val ϕu(xP ) = k and val ġ−1 =

−k, we get h ∈ S̃0,n. Hence h = id if and only if ra,a(h) = 0 for all a ∈ Z.
Let y := ϕu(xP ) and y′ := ġ−1y. Then for a ∈ Z, we get La(y

′) = g−1La(y),

where g−1 acts on C[t, t−1] as a linear map sending tj to tg
−1(j). In particular,

La(y
′) ∩ Ea = (g−1La(y)) ∩ Ea has the same dimension as La(y) ∩ gEa. Let us

define Ha := {ti | i ≥ a}, so Ea = Span(Ha) and gEa = Span(gHa). Since g(i) ≥ i
for all i ∈ Z, it follows from (9.2) that gHa = Ha \ {tj}j∈Ia . Therefore by (9.8),
La(y) ∩ gEa = {0} if and only if Span{Pj(t)}j∈[k] ∩ Span

(
Ha \ {tj}j∈Ia

)
= {0},

which happens precisely when the submatrix of M trau with row set Ia is nonsingular,

i.e., Δ
trau
Ia

(M) �= 0. �

Example 9.18. Suppose that x is the matrix from Example 9.1, so that y :=
ϕu(xP ) is given in Example 9.8. We have

M=

[
1
x1 x2
x3 x4

1

]
, M tr1u =

[
1
x2
x4
1

]
, M tr2u =

[ x1 x2
x3 x4

1
−1

]
, M tr3u =

[
x3 x4

1
−1

]
, M tr4u =

[
1

−1

]
.
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Suppose that g = [2, 4, 5, 7] as in Example 9.16, so that its Grassmann necklace is
Ig = [{1, 3}, {2, 3}, {3, 4}, {4, 5}] in window notation. This gives
(9.10)

Δ
tr1u
13 (M) = x4, Δ

tr2u
23 (M) = x1x4 − x2x3, Δ

tr3u
34 (M) = x3, Δ

tr4u
45 (M) = 1.

On the other hand, recall from Example 9.16 that ġ =

[
1
z

1
1
z

1

]
. Since y ∈ Cg if

and only if ġ−1y ∈ B−(A−) ·B(A+), we can factorize it as

ġ−1y =

[ −x1 1
x2
z
1
z

1
−x3z z x4

]
(9.11)

=

⎡⎣ 1
x2
x4z

− x3
x1x4−x2x3

1 1
x4z

− x4
x1x4−x2x3

x4
x3

1

1

⎤⎦·
⎡⎢⎣− x1x4−x2x3

x4
1 −x2

x4
x3

x1x4−x2x3
− x1

x1x4−x2x3
1
x3

−x3z z x4

⎤⎥⎦ .

Again, this is valid only when the denominators on the right-hand side are nonzero.
Thus we see that ġ−1y belongs to B−(A−) · B(A+) precisely when all minors
in (9.10) are nonzero, in agreement with Proposition 9.17.

9.9. Fomin–Shapiro atlas. The computation in (9.11) can now be used to find

the maps ν̄g and ϑg. As in Section 8.3, denote by Og ⊂ C
(J)
u the preimage of

Cg ∩
◦
X τuλ under ϕ̄u. Thus for our running example, Og is the subset of C

(J)
u where

all minors in (9.10) are nonzero. We are interested in the map ν̄g = (ν̄g,1, ν̄g,2) :

Og → (
◦
Πg ∩ Og) × Zg from (2.1), defined in Section 8.3. The first component

is ν̄g,1 = ϕ̄−1
u ◦ ν̃g,1 ◦ ϕ̄u, where ν̃g : Cg ∩

◦
X τuλ

∼−→
◦
Rτuλ

g ×
◦
X g is the map from

Proposition 8.2(ii). In order to compute it, we consider the factorization ġ−1y =
y− · y+ ∈ U− ·B(A+) from (9.11). The group U1(g) is 1-dimensional since �(g) = 1,
and the corresponding element y1 ∈ U1(g) from Proposition 8.2(ii) can be computed
by factorizing ġy−ġ

−1 as an element of U1(g) · U2(g):

ġy−ġ
−1 =

⎡⎣ 1 − x4
(x1x4−x2x3)z

x4
x3z

1
x2
x4
1

− x3
x1x4−x2x3

1
x4

1

⎤⎦ =

[
1
1

x2
x4
1

1

]
·
[

1 − x4
(x1x4−x2x3)z

x4
x3z

1
1

− x3
x1x4−x2x3

1
x4

1

]
,

y1 =

[
1
1 − x2

x4
1

1

]
.

Therefore the map ν̃g,1 sends y ·B(A+) from (9.6) to

y1y ·B(A+) =

⎡⎢⎣
1
z

−x1x4−x2x3
x4

1 − x2
x4

−x3 1
x4
z
1
z

⎤⎥⎦ ·B(A+) =

⎡⎢⎣
1
z

−x1x4−x2x3
x4

1

−x3 1
x4
z
1
z

⎤⎥⎦ ·B(A+).

Applying ϕ̄−1
u to the right-hand side, we see that the map ν̄g,1 is given by

ν̄g,1 : Og →
◦
Πg ∩Og,

[
1
x1 x2
x3 x4

1

]
�→
[

1
x1x4−x2x3

x4
x3 x4

1

]
.
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Similarly, factorizing ġy−ġ
−1 as an element of U2(g) · U1(g), we find that

ν̃g,2(y ·B(A+)) = y2y ·B(A+) =

[
1
1

x2
x4
1

1

]
· ġ ·B(A+).

We have Ng = �(g) = 1, and the map ν̄g,2 : Og → Zg = R sends

[
1
x1 x2
x3 x4

1

]
to x2

x4
.

9.9.1. Torus action. We compute the maps from Section 8.2. Let ρ̃ ∈ Y (T ) denote
the group homomorphism ρ̃ : C∗ → C∗ × T sending t to ρ̃(t) := (tn, diag(tn−1, . . . ,
t, 1)). If x ∈ GLn(A) is represented by a Z × Z matrix (x̃i,j) then the element
y := ρ̃(t)xρ̃(t)−1 ∈ GLn(A) satisfies ỹi,j = tj−ix̃i,j for all i, j ∈ Z.

Example 9.19. Continuing the example above, we find that

ρ̃(t) · y2y · ρ̃(t)−1 ·B(A+) =

[
1
1

tx2
x4
1

1

]
· ġ ·B(A+), and ‖y2y ·B(A+)‖ =

|x2|
|x4|

.

Thus the action of ϑg on Zg is given by ϑg

(
t, x2

x4

)
= tx2

x4
. The pullback of this

action to Og ⊂ C
(J)
u via ν̄−1

g preserves x3, x4, and x1x4 − x2x3 (since it preserves
ν̄g,1(x)), but multiplies x2

x4
by t. Therefore it is given by

ν̄−1
g ◦ (id× ϑg(t, ·)) ◦ ν̄g : Og → Og,

[
1
x1 x2
x3 x4

1

]
�→
[

1
x1+(t−1)

x2x3
x4

tx2

x3 x4
1

]
.

9.10. The maps κ and ζ
(J)
u,v . The subset u̇G

(J)
0 consists of matrices x ∈ G such

that Δflag
u[k](x) �= 0. Suppose that x = g(J)u̇ ∈ u̇U

(J)
− . Then the elements g

(J)
1 u̇ and

g
(J)
2 u̇ are obtained from x by setting some entries to zero; see Section 9.4. The map

x �→ κxx from Definition 4.23 sends x = g(J)u̇ to g
(J)
1 u̇, e.g., if [x| =

[
1
x1 x2
x3 x4

1

]
then

[κxx| =
[
1
x2
x4
1

]
as in Example 9.1. Comparing this to Section 9.8, we see that if

M = [x| is in u[k]-echelon form then [κxx| is the u-truncation M tr1u .

Now let (v, w) ∈ Q
�(u,u)
J , so τuλ ≤op g := fv,w, and define Ig := (Ia)a∈Z. The

set G
(J)
u,v from (6.1) consists of x ∈ G such that Δflag

u[k](x) �= 0 and Δflag
v[k](κxx) �= 0.

But recall from Example 9.5 that v[k] = I1. Thus

(9.12) G(J)
u,v =

{
x ∈ G | Δflag

u[k](x) �= 0 and Δ
tr1u
I1

(M) �= 0
}
, where M :=

[
g(J)u̇

∣∣∣.
Example 9.20. We compute the maps κ and ζ

(J)
u,v for our running example. Sup-

pose that x = g(J)u̇ is given as in Example 9.1, and let g = [2, 4, 5, 7] as in Ex-
ample 9.18. Then g = s2τk, so under the correspondence (9.4), we have g = fv,w
for v = s2 and w = wJ = s2s1s3s2; cf. Example 9.4. Since v[k] = I1 = {1, 3}, we
see that x ∈ G

(J)
u,v whenever x4 �= 0. We have just computed that [κxx| =

[
1
x2
x4
1

]
,

so v̇−1κxx =

[
1

x4 −1
−x2 1
1

]
. Factorizing the latter as an element of U

(J)
− · LJ · U (J)
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via (9.1), we get

v̇−1κxx =

[
1

x4 −1
−x2 1
1

]
=

[ 1
1

− x2
x4

1
1
x4

1

]
·

⎡⎣ 1
x4

1 −x2
x4
1
x4

⎤⎦ ·
[

1
1 − 1

x4
1

1

]
,

[v̇−1κxx]J =

⎡⎣ 1
x4

1 − x2
x4
1
x4

⎤⎦ .

Thus we have computed η(x) = [v̇−1κxx]J from Definition 6.1. Since x ∈ u̇U
(J)
− ,

we use Lemma 6.3(ii) to find

ζ(J)u,v (x) = xη(x)−1 =

⎡⎣ 1
x1

x2
x4

−1 −x2

x3 1 −x4
1
x4

⎤⎦ , so ζ(J)u,v (x)ẇ
−1 =

⎡⎣ 1
−1 −x2 x1

x2
x4

−x4 x3 1
1
x4

⎤⎦ .

Therefore the bottom-right principal minors of ζ
(J)
u,v (x)ẇ−1 are

(9.13)

Δ±
1 (ζ

(J)
u,v (x)ẇ

−1) =
1

x4
, Δ±

2 (ζ
(J)
u,v (x)ẇ

−1) =
x3

x4
, Δ±

3 (ζ
(J)
u,v (x)ẇ

−1) =
x1x4 − x2x3

x4
.

By Proposition 9.17, the preimage of Cg under ϕ̄u is described by Δ
trau
Ia

(M) �= 0
for all a ∈ [n]. Alternatively, as we showed in Section 7.7, the preimage of Cg under

ϕ̄u is described by Δ±
i (ζ

(J)
u,v (x)ẇ−1) �= 0 for all i ∈ [n− 1]. The following result has

been computationally checked for all n ≤ 5, k ∈ [n], and (u, u) � (v, w) ∈ QJ :

Conjecture 9.21. Let (u, u) � (v, w) ∈ QJ . Define g := fv,w, and let Ig = (Ia)a∈Z

be its Grassmann necklace. Suppose that x = g(J)u̇ ∈ G
(J)
u,v and let M := [x|. Then

(9.14) Δ±
n+1−i(ζ

(J)
u,v (x)ẇ

−1) =
Δ

triu
Ii

(M)

Δ
tr1u
I1

(M)
for all i ∈ [n].

For example, compare (9.13) with (9.10). Also recall that when i = 1,

Δ±
n (ζ

(J)
u,v (x)ẇ−1) := 1, so in this case (9.14) holds trivially.

9.11. Total positivity. We recall some background on the totally nonnegative
Grassmannian Gr≥0(k, n) of [Pos07]. By a result of Whitney [Whi52], G≥0 is the
set of matrices in SLn(R) all of whose minors (of arbitrary sizes) are nonnegative.
We have the following characterizations:

(G/B)≥0 =
{
xB ∈ (G/B)R | Δflag

S (x) ≥ 0 for all S ⊂ [n]
}
,(9.15)

Gr≥0(k, n) = (G/P )≥0 =
{
xP ∈ (G/P )R | Δflag

S (x) ≥ 0 for all S ∈
(
[n]
k

)}
.(9.16)

The equality (9.16) is due to Rietsch; see [Lam16, Remark 3.8] for a proof. The
equality (9.15) can be proved using arguments from [Whi52] (cf. the proof of
Lemma 4.17). We caution the reader that the analogous statement can fail to
hold for other choices of J . For instance, when G = SL4 and J = {2}, (G/P )≥0

does not contain all xP ∈ (G/P )R such that Δflag
S (x) ≥ 0 for all S ∈

(
[n]
1

)
∪
(
[n]
3

)
;

see [Che11, Section 10.1].

For f ∈ Bound(k, n), we let Π>0
f :=

◦
Πf ∩Gr≥0(k, n) and Π≥0

f := Πf ∩Gr≥0(k, n).

Thus for (v, w) ∈ QJ , we have Π>0
fv,w

= Π>0
v,w and Π≥0

fv,w
= Π≥0

v,w by Theorem 9.3.
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Proposition 9.22. Let τuλ ≤op g ≤op h ∈ Bound(k, n), and let Ig = (Ia)a∈Z

be the Grassmann necklace of g. Suppose that a matrix M in u[k]-echelon form
belongs to Π>0

h . Then

(9.17) M trau ∈ Gr≥0(k, n) and Δ
trau
Ia

(M) > 0 for all a ∈ Z.

Proof. Applying Theorem 9.3, we have (u, u) � (v, w) � (v′, w′) ∈ QJ , where
g = fv,w and h = fv′,w′ . By (4.22), we get v′ ≤ vr′ ≤ ur ≤ wr′ ≤ w′ for some
r, r′ ∈ WJ .

First suppose that a = 1. Let x ∈ G be such that M =
[
g(J)u̇

∣∣ and xP ∈ Π>0
h ,

and define M ′ := M tr1u . We may assume that xB ∈ R>0
v′,w′ . By Corollary 6.10,

we find that κxxP ∈ Π>0
v̄′,u, where v̄′ := v′ � r−1

w for some rw ∈ WJ satisfying

rw ≥ r; see Lemma 6.9(ii). This shows that M ′ ∈ Gr≥0(k, n). Since ur ≤ urw, we
find that ur � r−1

w ≤ u by Lemma 4.6(iii), and therefore ur � r−1
w = u. Applying

� r−1
w to v′ ≤ vr′ ≤ ur via Lemma 4.6(iii), we see that v̄′ ≤ (vr′ � r−1

w ) ≤ u.
Let v = v1v2 for v1 ∈ W J and v2 ∈ WJ be the parabolic factorization of v.
Then vr′ � r−1

w ∈ v1WJ , and thus (v1, v1) � (v̄′, u) ∈ QJ , which is equivalent to

Δflag
v1[k]

(κxx) > 0. From Example 9.5 we have v[k] = I1, and v1[k] = v[k] since

v ∈ v1WJ , so Δ
tr1u
I1

(M) = Δflag
I1

(κxx) > 0. We have shown (9.17) for a = 1.
Applying the cyclic shift χ : Gr≥0(k, n) → Gr≥0(k, n) (which takes M to the
matrix with rows (Ma+1)a∈[n]), we obtain (9.17) for all a ∈ Z. �

Note that our proof of Proposition 9.22 involves a lifting from G/P to G/B, so
it does not stay completely inside Gr(k, n).

Problem 9.23. Give a self-contained proof of Proposition 9.22.

Example 9.24. We now consider an example for the case G/P = Gr(2, 5). Let
u := s2 ∈ W J , so u[k] = {1, 3}. Consider (v′, w′) ∈ QJ given by v′ := s1 and w′ :=
s2s1s4s3s2 as in Figure 2, so that h := fv′,w′ = [3, 4, 7, 5, 6]. We use Marsh–Rietsch
parametrizations2 from Section 4.9.1 to compute x ∈ G such that xB ∈ R>0

v′,w′ and

xP ∈ Π>0
h :

x := y2(t1)ṡ1y4(t3)y3(t4)y2(t5) =

[ −1
1
t1 t5 1

t4t5 t4 1
t3t4t5 t3t4 t3 1

]
,

M :=
[
g(J)u̇

∣∣∣ =
⎡⎣ 1

t5
t1

1
t1
1

−t4t5
−t3t4t5

⎤⎦ ,

where t = (t1, t3, t4, t5) ∈ R4
>0. Observe that xB ∈ (G/B)≥0 since all flag minors

of x are nonnegative. (For instance, the first column of x consists of nonnega-
tive entries.) In fact, flag minors of x are subtraction-free rational expressions
in t; cf. (5.19). The n × k matrix [x| is not in u[k]-echelon form, but the ma-
trix M :=

[
g(J)u̇

∣∣ is. Up to a common scalar, the 2 × 2 flag minors of M are
the same as the corresponding flag minors of x; however, other (i.e., 1 × 1) flag
minors of M are not necessarily nonnegative. The Grassmann necklace of h is
Ih = [{1, 2}, {2, 3}, {3, 4}, {4, 7}, {5, 7}]. Using Proposition 9.2(i), we check that
indeed xP ∈ Π>0

h .

2For the Grassmannian case, Marsh–Rietsch parametrizations are closely related to BCFW
bridge parametrizations; see [BCFW05,AHBC+16,Kar16].
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Let us choose (v, w) ∈ QJ with v := s2s1, w := s2s1s4s3s2, so that g := fv,w =
[2, 4, 8, 5, 6]. The corresponding L-diagram is obtained from the one in Figure 2
(bottom left) by removing the dot in the bottom row. We have (u, u) � (v, w) �
(v′, w′) and τuλ ≤op g ≤op h. We compute the elements κx = h

(J)
2 ∈ U

(J)
2 , πu̇P−(x),

η(x), and ζ
(J)
u,v (x) = πu̇P−(x) · η(x)−1 from Definition 6.1:

g(J)u̇=

⎡⎣ 1
t5
t1

1
t1

−1

1
−t4t5 1
−t3t4t5 1

⎤⎦, κx=

⎡⎣ 1
− t5

t1
1

1
t4t5 1
t3t4t5 1

⎤⎦, κxx=

⎡⎣ −1

1
t5
t1

t1 t5 1
t4 1
t3t4 t3 1

⎤⎦,
πu̇P−(x)=

⎡⎣ −1
1 − 1

t1
t1 t5

t4t5 t4 1
t3t4t5 t3t4 t3 1

⎤⎦, η(x)=

⎡⎣ t1 t5
1

1
t1
t4 1
t3t4 t3 1

⎤⎦, ζ(J)u,v (x)=

⎡⎣ −1
1
t1

− t5
t1

−1

1
t4t5 1
t3t4t5 1

⎤⎦.
We see that all flag minors of κxx are nonnegative; cf. Lemma 6.9(ii). Observe
that κg(J)u̇ = κx by Lemma 6.2(iii), so by Lemma 6.3(ii), we could alternatively

compute ζ
(J)
u,v (x) as the product g(J)u̇ · η(g(J)u̇)−1:

η(g(J)u̇)=

[
1

−1
1
1
1

]
, ζ(J)u,v (x)=g

(J)u̇·η(g(J)u̇)−1=

⎡⎣ 1
t5
t1

1
t1

−1

1
−t4t5 1
−t3t4t5 1

⎤⎦·[ −1
1

1
1
1

]
.

Finally, we compute the bottom-right i × i principal minors of ζ
(J)
u,v (x)ẇ−1 and

observe that they are all nonzero subtraction-free expressions in t, agreeing with
Theorems 6.4 and 6.14:

ζ(J)u,v (x)ẇ
−1 =

⎡⎣ −1

−1 1
t1

− t5
t1

1
1 t4t5

−1 t3t4t5

⎤⎦ ,

Δ±
1 (ζ

(J)
u,v (x)ẇ

−1) = t3t4t5, Δ±
2 (ζ

(J)
u,v (x)ẇ

−1) = t4t5,

Δ±
3 (ζ

(J)
u,v (x)ẇ

−1) = t4t5, Δ±
4 (ζ

(J)
u,v (x)ẇ

−1) =
t5
t1
.

Let us check that this agrees with Conjecture 9.21. The Grassmann necklace of
g is Ig = [{1, 3}, {2, 3}, {3, 4}, {4, 8}, {5, 8}] in window notation. We see that the

corresponding u-truncated minors of M =
[
g(J)u̇

∣∣ are indeed given by

Δ
tr1u
13 (M) = 1, Δ

tr2u
23 (M) =

t5
t1
, Δ

tr3u
34 (M) = t4t5,

Δ
tr4u
48 (M) = t4t5, Δ

tr5u
58 (M) = t3t4t5.

10. Further directions

In addition to Theorem 1.1 and Hersh’s result [Her14b] (cf. Corollary 1.3), we
expect the regularity theorem to hold for many other spaces occurring in total
positivity. The most natural immediate direction is total positivity for Kac–Moody
flag varieties.

Let Gmin be a minimal Kac–Moody group, Umin,Umin
− ,Bmin,Bmin

− be unipotent

and Borel subgroups, and W̃ be the Weyl group as in Appendix A. Furthermore,
let Pmin ⊃ Bmin denote a standard parabolic subgroup of Gmin (a group of the form
Gmin ∩ PY in the notation of [Kum02]).
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Definition 10.1. Define the totally nonnegative part U−
≥0 of Umin

− to be the sub-

semigroup generated by {xαi
(t) | t ∈ R>0, 1 ≤ i ≤ r}. Define the totally non-

negative part of the flag variety Gmin/Pmin to be the closure (Gmin/Pmin)≥0 :=

U−
≥0Pmin/Pmin.

We remark that our notion of U−
≥0 coincides with the one studied recently by

Lusztig [Lus20,Lus19] in the simply laced case.
When Gmin is an affine Kac–Moody group of type A, Definition 10.1 agrees with

the definition of Lam and Pylyavskyy (cf. [LP12, Theorem 2.6]) for the polynomial
loop group.

Conjecture 10.2 (Regularity conjecture for Kac–Moody groups and flag varieties).

(1) The intersection of U−
≥0 with the Bruhat stratification {BminẇBmin | w ∈

W̃} of Gmin endows U−
≥0 with an (infinite) cell decomposition with closure

partial order equal to the Bruhat order of W̃ . Furthermore, the link of the
identity in any (closed) cell is a regular CW complex homeomorphic to a
closed ball.

(2) The intersection of (Gmin/Bmin)≥0 with the open Richardson stratification
◦
Rv

u of Gmin/Bmin endows (Gmin/Bmin)≥0 with the structure of a regular CW
complex. The closure partial order is the interval order of the Bruhat order
of W̃ , and after adding a minimum, every interval of the closure partial
order is thin and shellable.

(3) The intersection of (Gmin/Pmin)≥0 with the open projected Richardson strat-
ification Π◦

v,w of Gmin/Pmin endows (Gmin/Pmin)≥0 with the structure of a
regular CW complex. The closure partial order is the natural partial order
on P-Bruhat intervals of W̃ , and after adding a minimum, every interval
of the closure partial order is thin and shellable.

Note that every interval in the Bruhat order of W̃ is known to be thin and
shellable [BW82]. The stratification Π◦

v,w and the P-Bruhat order can be defined
analogously to [KLS14].

We include a list of some other spaces occurring in total positivity which we
expect to have a natural regular CW complex structure.

(1) The totally nonnegative part of double Bruhat cells [FZ99]. It has been ex-
pected that a link of a double Bruhat cell inside another double Bruhat cell
is a regular CW complex homeomorphic to a closed ball. Our Theorem 3.12
confirms this in type A, since double Bruhat cells for GLn embed in the
Grassmannian Gr(n, 2n); see [Pos07, Remark 3.11].

(2) The compactified space of planar electrical networks [Lam18] and the space
of boundary correlations of planar Ising models [GP20, Conjecture 9.1].
These spaces are known to be homeomorphic to closed balls [GKL17,GP20],
and have cell decompositions [Lam18, GP20] whose face poset is graded,
thin, and shellable [HK21].

(3) Amplituhedra [AHT14] and, more generally, Grassmann polytopes [Lam16].
Grassmann polytopes generalize convex polytopes into the Grassmannian
Gr(k, n). The former are well known to be regular CW complexes home-
omorphic to closed balls. Some amplituhedra and Grassmann polytopes
have been shown to be homeomorphic to closed balls in [KW19,GKL17,
BGPZ19], though we caution that not all Grassmann polytopes are balls.
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(4) The totally nonnegative part of the wonderful compactification of a semisim-
ple algebraic group [He04]. A cell decomposition of this space was con-
structed in [He04].

We expect that most spaces in this list are (complexes of) shellable TNN spaces
that admit a Fomin–Shapiro atlas.

Finally, let us mention the analogy between totally nonnegative spaces and Te-
ichmüller space [FG06, Gui08, GW18, Lab06]. Thurston’s compactification of the
Teichmüller space of a compact surface of genus g ≥ 2 is homeomorphic to a closed
ball of dimension 6g− 6 [Thu88], a result that could be compared to Theorem 1.1.

Appendix A. Kac–Moody flag varieties

We recall some background on Kac–Moody groups, and refer to [Kum02] for all
missing definitions. We start by introducing the minimal Kac–Moody group Gmin

and its flag variety Gmin/Bmin, and then explain how they relate to the polynomial
loop group G and its flag variety G/B from Section 7.

A.1. Kac–Moody Lie algebras. Suppose that Ã is a generalized Cartan ma-
trix [Kum02, Definition 1.1.1]. Thus Ã is an r × r integer matrix for some r ≥ 1.

We assume Ã is symmetrizable, that is, there exists a diagonal matrix D ∈ GLr(Q)

such that DÃ is a symmetric matrix. As in [Kum02, Section 1.1], denote by g the

Kac–Moody Lie algebra associated to Ã, and let h ⊂ g be its Cartan subalgebra,
whose dual is denoted by h∗. Thus h and h∗ are vector spaces over C of dimension
r̃ := 2r − rank(Ã), and we let 〈·, ·〉 : h× h∗ → C denote the natural pairing.

We let Δ ⊂ h∗ denote the root system of g, as defined in [Kum02, Section 1.2].
Let {αi}ri=1 ⊂ h∗ be the simple roots and {α∨

i }ri=1 ⊂ h be the simple coroots.
Let Δre ⊂ Δ denote the set of real roots and Δim ⊂ Δ denote the set of imaginary

roots, so Δ = Δre � Δim. Also let Δ = Δ+ � Δ− denote the decomposition
of Δ into positive and negative roots, and denote Δ+

re := Δ+ ∩ Δre and Δ−
re :=

Δre∩Δ−. Denote by W̃ the Weyl group associated to Ã as in [Kum02, Section 1.3].

Thus W̃ acts on Δ, and preserves the subset Δre. Moreover, W̃ is generated by
simple reflections s1, . . . , sr ∈ W̃ , and (W̃ , {si}ri=1) is a Coxeter group by [Kum02,

Proposition 1.3.21]. We let (W̃ ,≤) denote the Bruhat order on W̃ and � : W̃ → Z≥0

denote the length function.

A.2. Kac–Moody groups. Let Gmin be the minimal Kac–Moody group associ-
ated to Ã by Kac and Peterson [KP83,PK83]; see [Kum02, Section 7.4]. For each
real root α ∈ Δre, there is a one-parameter subgroup Uα ⊂ Gmin by [Kum02, Def-

inition 6.2.7].3 For each α ∈ Δre, we fix an isomorphism xα : C
∼−→ Uα of al-

gebraic groups. Similarly to the subgroups U,U−, T, B,B− of G, we have sub-
groups Umin,Umin

− , T min,Bmin,Bmin
− of Gmin. The subgroup Umin is generated by

{Uα}α∈Δ+
re
, and Umin

− is generated by {Uα}α∈Δ−
re
. Next, T min is an r̃-dimensional

algebraic torus defined in [Kum02, Section 6.1.6], Bmin = T min � Umin is the stan-
dard positive Borel subgroup and Bmin

− = T min�Umin
− is the standard negative Borel

subgroup.

3The results in [Kum02] are usually stated for the maximal Kac–Moody group which he denotes
by G. However, these results apply to Gmin as well; see Remark A.3.
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We define a bracket closed subset Θ ⊂ Δre in the same way as in Section 4.2,
and for a bracket closed subset Θ ⊂ Δ+

re (respectively, Θ ⊂ Δ−
re), we have a sub-

group U(Θ) ⊂ Umin (respectively, U−(Θ) ⊂ Umin
− ), generated by Uα for α ∈ Θ;

see [Kum02, 6.1.1(6) and Section 6.2.7]. For w ∈ W̃ , Inv(w) := Δ+∩w−1Δ− ⊂ Δ+
re

is a bracket closed subset of size �(w); cf. [Kum02, Example 6.1.5(b)]. We state the
Kac–Moody analog of Lemma 4.1(i).

Lemma A.1 ([Kum02, Lemma 6.1.4]). Suppose that Θ =
⊔n

i=1 Θi and Θ,Θ1, . . . ,
Θn ⊂ Δ+

re are finite bracket closed subsets. Then U(Θ),U(Θ1), . . . ,U(Θn) are finite-
dimensional unipotent algebraic groups, and the multiplication map gives a biregular
isomorphism

(A.1) U(Θ1)× · · · × U(Θn)
∼−→ U(Θ).

A.3. Kac–Moody flag varieties. The Weyl group W̃ equals NGmin(T min)/T min,
where NGmin(T min) is the normalizer of T min in Gmin; cf. [Kum02, Lemma 7.4.2].

For f ∈ W̃ , we denote by ḟ ∈ Gmin an arbitrary representative of f in NGmin(T min).
By [Kum02, Lemma 7.4.2, Exercise 7.4.E(9), and Theorem 5.2.3(g)], we have

Bruhat and Birkhoff decompositions of Gmin:

(A.2) Gmin =
⊔

f∈W̃

BminḟBmin, Gmin =
⊔

h∈W̃

Bmin
− ḣBmin.

We let Gmin/Bmin denote the Kac–Moody flag variety of Gmin. For each h, f ∈ W̃ ,

we have Schubert cells
◦
X f := BminḟBmin/Bmin and opposite Schubert cells

◦
Xh :=

Bmin
− ḣBmin/Bmin. If h �≤ f ∈ W̃ then by [Kum02, Lemma 7.1.22(b)],

◦
Xh ∩

◦
X f = ∅.

For h ≤ f , we define
◦
Rf

h :=
◦
Xh ∩

◦
X f . Therefore (7.3) follows from (A.2). The

flag variety Gmin/Bmin is a projective ind-variety by [Kum02, Section 7.1]. The

Schubert cell
◦
X f and Schubert variety X f are finite-dimensional subvarieties, while

the opposite Schubert cell
◦
Xh and opposite Schubert variety Xh are ind-subvarieties.

Proposition A.2. Let h ≤ f ∈ W̃ . Then Xh ∩ X f is a closed irreducible (�(f)−
�(h))-dimensional subvariety of X f , and

◦
Rf

h is an open dense subset of Xh ∩ X f .

Proof. By (7.5),
◦
X f is �(f)-dimensional, and by [Kum02, Lemma 7.3.10],

◦
Xh ∩X f

has codimension �(h) in X f . The rest follows by [Kum17, Proposition 6.6]. �

For g ∈ W̃ , let Cg := ġBmin
− Bmin/Bmin. We have

(A.3) Gmin/Bmin =
⊔
h≤f

◦
Rf

h and Cg =
⊔

h≤g≤f

(Cg ∩
◦
Rf

h),

where the unions are taken over h, f ∈ W̃ . The first part of (A.3) follows from (A.2),
and for the second part, see the proof of Proposition 8.2(iii).

Remark A.3. Let Ĝ ⊃ Gmin be the “maximal” Kac–Moody group (denoted G in

[Kum02]) associated to Ã, and let B̂ ⊃ Bmin be its standard positive Borel subgroup.

Then the standard negative Borel subgroup of Ĝ is still Bmin
− . By [Kum02, 7.4.5(2)],

we may identify Gmin/Bmin with Ĝ/B̂. By [Kum02, 7.4.2(3)],
◦
X f coincides with the

variety B̂f B̂/B̂ in [Kum02, Definition 7.1.13] for f ∈ W̃ . Similarly, for h ∈ W̃ ,
◦
Xh = Bmin

− · ḣBmin/Bmin coincides with the variety Bh
∅ := Bmin

− hB̂/B̂ defined in the
last paragraph of [Kum02, Section 7.1.20].
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A.4. Affine Kac–Moody groups and polynomial loop groups. Suppose that
Ã is the affine Cartan matrix associated to a simple and simply-connected algebraic
group G. Thus we have r = |I| + 1, r̃ = |I| + 2, and Ã is defined by [Kum02,
13.1.1(7)]. Let G denote the polynomial loop group from Section 7. Our goal is to
explain that the flag varieties G/B and Gmin/Bmin are isomorphic.

Let C ⊂ T ⊂ G be the center of G, and let C̃ ⊂ T min ⊂ Gmin be the center
of Gmin; see [Kum02, Lemma 6.2.9(c)]. By [Kum02, Corollary 13.2.9], there exists

a surjective group homomorphism ψ : Gmin → (C∗ � G)/C with kernel C̃, where
C∗ acts on G as in Section 8.2; see also [Kum02, Definition 13.2.1]. The groups
U ,U− ⊂ G are identified with the groups Umin,Umin

− ⊂ Gmin, and we have T /C ∼=
T min/C̃. Thus ψ induces an isomorphism Gmin/Bmin ∼−→ G/B between the affine

Kac–Moody flag variety and the affine flag variety. The Weyl groups W̃ of G
and Gmin are isomorphic by [Kum02, Proposition 13.1.7], and the root systems Δ

coincide by [Kum02, Corollary 13.1.4]. Therefore the subsets
◦
X f ,

◦
Xh,

◦
Rf

h, and Cg
of G/B get sent by ψ to the corresponding subsets of Gmin/Bmin. As explained in
the last paragraph of [Kum02, Section 13.2.8], G can be viewed as a subset of Gmin

as well, and the restriction of ψ to G is the quotient map G → G/C.
We justify some of the other statements that we used in Sections 7.1 and 8.2.

For (7.2), see [Kum02, Section 13.1]. For (7.6), see [Kum02, Section 6.1.13]. For a
description of Y (T ) from Section 8.2, see [Kum02, Section 13.2.2]. For a descrip-
tion of the pairing 〈·, ·〉 : Y (T )×X(T ) → Z in the same section, see [Kum02, Sec-
tion 13.1.1].

A.5. Gaussian decomposition and affine charts. By [Kum02, Theorem 7.4.14],
Gmin is an affine ind-group. Similarly, Umin, Umin

− , T , Bmin, and Bmin
− are affine

ind-groups; see e.g. [Kum02, Section 7.4] and [Kum02, Corollary 7.3.8].

Let Gmin
0 := Bmin

− Bmin and g ∈ W̃ . Recall the subgroups U1(g) and U2(g)

from (7.4). Then U1(g) is a closed �(g)-dimensional subgroup of Umin ∼= U , and
U2(g) is a closed ind-subgroup of Umin

−
∼= U−.

Proof of Lemma 8.1. For (i), see [Kum02, Proposition 7.4.11]. For (ii), we use an
argument given in [Wil13, Proposition 2.5]. Both maps are bijective morphisms
by [Kum02, Lemma 6.1.3]. In particular, it follows that ġUmin

− ġ−1 ⊂ Gmin
0 and

for x ∈ ġUmin
− ġ−1, we have [x]0 = 1. The inverse maps are given by μ−1

21 (x) =

([x]−, [x]+), μ
−1
12 (x) = ([x−1]−1

+ , [x−1]−1
− ). They are regular morphisms by (i), which

proves (ii). �

Proof of (7.5). The map ġUmin
− ġ−1 ∼−→ Cg is a biregular isomorphism for g = id

by [Kum02, Lemma 7.4.10]. Since W̃ acts on Gmin/Bmin by left multiplication,

the case of general g ∈ W̃ follows as well. Since U1(g), U2(g) are closed ind-

subvarieties of ġUmin
− ġ−1 and

◦
X g,

◦
Xg are closed ind-subvarieties of Cg, it suffices

to show that the image of U1(g) equals
◦
X g while the image of U2(g) equals

◦
Xg.

By [Kum02, Exercise 7.4.E(9) and 5.2.3(11)], we have

Umin = (Umin ∩ ġUmin
− ġ−1) · (Umin ∩ ġUminġ−1) = U1(g) · (Umin ∩ ġUminġ−1),

Umin
− = (Umin

− ∩ ġUmin
− ġ−1) · (Umin

− ∩ ġUminġ−1) = U2(g) · (Umin
− ∩ ġUminġ−1).
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Thus

BminġBmin = U1(g) · (Umin ∩ ġUminġ−1) · ġBmin = U1(g) · ġ · Bmin,

Bmin
− ġBmin = U2(g) · (Umin

− ∩ ġUminġ−1) · ġBmin = U2(g) · ġ · Bmin. �
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