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ABSTRACT
Sparse matrix-sparse matrix multiplication (spMspM) is at the heart
of a wide range of scienti!c and machine learning applications.
spMspM is ine"cient on general-purpose architectures, making
accelerators attractive. However, prior spMspM accelerators use
inner- or outer-product data#ows that su$er poor input or output
reuse, leading to high tra"c and poor performance. These prior
accelerators have not explored Gustavson’s algorithm, an alterna-
tive spMspM data#ow that does not su$er from these problems but
features irregular memory access patterns that prior accelerators
do not support.

We presentGamma, an spMspM accelerator that uses Gustavson’s
algorithm to address the challenges of prior work.Gamma performs
spMspM’s computation using specialized processing elements with
simple high-radix mergers, and performs many merges in parallel
to achieve high throughput. Gamma uses a novel on-chip storage
structure that combines features of both caches and explicitly man-
aged bu$ers. This structure captures Gustavson’s irregular reuse
patterns and streams thousands of concurrent sparse !bers (i.e.,
lists of coordinates and values for rows or columns) with explicitly
decoupled data movement. Gamma features a new dynamic sched-
uling algorithm to achieve high utilization despite irregularity. We
also present new preprocessing algorithms that boost Gamma’s
e"ciency and versatility. As a result, Gamma outperforms prior
accelerators by gmean 2.1×, and reduces memory tra"c by gmean
2.2× and by up to 13×.
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1 INTRODUCTION
Scienti!c and machine learning applications are increasingly com-
puting on sparse data, i.e., data where a large fraction of values are
zeros. In this work, we focus on accelerating sparse matrix-sparse
matrix multiplication (spMspM), a key kernel that lies at the heart of
many sparse algorithms, like sparse deep neural networks [18, 39],
sparse linear and tensor algebra [29, 57], graph analytics [16, 27],
and simulation [6].

spMspM has two key characteristics that make it challenging
to accelerate. First, spMspM is bottlenecked by memory tra!c and
data movement: it requires far fewer arithmetic operations per
input element than dense matrix multiplication, and its inputs and
outputs typically use a compressed representation that omits zeros
but is more complicated to traverse, requiring irregular and indirect
accesses. Thus, to be e$ective, accelerators must minimize data
movement, rather than compute operations. Second, spMspM has a
rich algorithmic diversity: it admits a wide range of data"ows (i.e.,
computation schedules) with di$erent tradeo$s, and some data#ows
have asymptotically worse performance on particular inputs. Thus,
accelerators must achieve e"ciency though specialization while
avoiding the ine"ciencies of using an inadequate spMspM data#ow.

Prior work has proposed spMspM accelerators that greatly im-
prove performance over CPUs and GPUs. And yet, these accel-
erators have focused on one of two spMspM data#ows, inner-
product [20, 43] or outer-product [37, 59], which have signi!cant
drawbacks (Sec. 2). Inner-product maximizes output reuse but sac-
ri!ces reuse of input matrices, and is ine"cient with highly sparse
matrices, as it is dominated by the cost of intersections that do
not produce output values. By contrast, outer-product maximizes
input reuse, but sacri!ces output reuse, as it su$ers from the cost
and memory tra"c of merging large partial output matrices. Prior
accelerators have missed a third spMspM data#ow, Gustavson’s
algorithm [17],1 which is often the most e"cient data#ow and is
widely used in CPUs and GPUs [15, 29, 52]. Gustavson’s algorithm
often achieves the least amount of memory tra"c and requires
simpler operations because it avoids the extremes of inner- and
outer-product. However, Gustavson’s algorithm has more irregular
reuse across data structures, demanding a storage organization that
can exploit that reuse to reduce memory tra"c.

1MatRaptor [48], which was published after the submission of this work, is an acceler-
ator that exploits Gustavson’s algorithm. We discuss it brie#y in Sec. 7.

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702


ASPLOS ’21, April 19–23, 2021, Virtual, USA Guowei Zhang, Nithya A!aluri, Joel S. Emer, and Daniel Sanchez

To unlock the potential of spMspM acceleration, we propose
Gamma, the Gustavson-AlgorithmMatrix-MultiplicationAccelerator
(Sec. 3). Gamma combines three key features:

(1) Gamma uses simple processing elements (PEs) that linearly
combine sparse input rows to produce each output row. PEs
implement high-radix mergers that combine many input
rows (e.g., 64 in our design) in a single pass, reducing work
and memory accesses. Instead of expensive high-throughput
mergers as in prior work [59], Gamma uses simple scalar
mergers, and relies on Gustavson’s row-level parallelism
to achieve high throughput e"ciently, using tens of PEs to
perform many combinations in parallel. Thus, Gamma con-
currently processes thousands of compressed sparse #bers,
variable-sized rows from inputs or partial outputs.

(2) Gamma uses a novel storage structure, FiberCache, to e"-
ciently bu$er the thousands of !bers required by PEs. Fiber-
Cache is organized as a cache to capture Gustavson’s ir-
regular reuse patterns. However, FiberCache is managed
explicitly, like a large collection of bu$ers, to fetch missing
!bers ahead of time and avoid PE stalls. This savesmegabytes
of dedicated on-chip bu$ers.

(3) Gamma dynamically schedules work across PEs to ensure
high utilization and minimize memory tra"c despite the
irregular nature of Gustavson’s algorithm.

While Gustavson’s algorithm is an improvement over other
data#ows, it still incurs excessive tra"c on some inputs. To ad-
dress this issue, we propose a preprocessing technique (Sec. 4).
that combines row reordering and selective tiling of one matrix
input. Preprocessing improves Gamma’s performance and avoids
pathologies across the full range of inputs.

We synthesize Gamma and evaluate its performance on a wide
range of sparse matrices (Sec. 6). Compared to state-of-the-art ac-
celerators, with a similar hardware budget, Gamma reduces total
DRAM tra"c by 2.2× on average, non-compulsory DRAM tra"c
by 12× on average, and achieves signi!cantly higher DRAM band-
width utilization. Moreover, Gamma is e$ective on a much broader
range of sparse matrices.

In summary, we make the following contributions:
• We show that prior spMspM accelerators have missed a key
data#ow, Gustavson’s, which is often more e"cient but has
less regular access patterns than previously used data#ows.

• We build Gamma, a novel spMspM accelerator that combines
specialized PEs, a novel cache-based structure to capture Gus-
tavson’s irregular reuse, and dynamic scheduling to achieve
high utilization despite irregularity.

• We propose preprocessing techniques that boost Gamma’s
e$ectiveness and avoid Gustavson’s pathologies.

• We evaluate Gamma under a broad range of matrices, show-
ing large performance gains and memory tra"c reductions
over prior systems, as well as higher versatility.

2 BACKGROUND AND MOTIVATION
Sparse matrix-sparse matrix multiplication (spMspM) is widely used
in deep learning inference [18, 39, 54], linear algebra [5, 29, 57],
and graph analytics [16, 27] (including breadth-!rst search [16],
maximummatching [44], cycle detection [58], triangle counting [2],
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Figure 1: Compressed sparse matrix formats.

clustering [50], and all-pair shortest paths [7]). It is also a key
building block for many other workloads, such as parsing [41],
searching [25], and optimization [26].

We !rst describe the data structures used by spMspM and the
basic spMspM data#ows; then, we review prior accelerators, the
optimizations they introduce, and their limitations, motivating the
need for a Gustavson-based accelerator.

2.1 Compressed Sparse Data Structures
spMspM operates on compressed sparse data structures, i.e., struc-
tures where only nonzeros are represented. Fig. 1 shows a sparse
matrix encoded in two commonly used formats, compressed sparse
row (CSR) and compressed sparse column (CSC). In CSR, rows are
stored in a compressed format: each row is an ordered list of coor-
dinates (in this case, column indexes) and nonzero values, stored
contiguously. Indexing into a particular row is achieved through the
o$sets array, which stores the starting position of each row. CSC is
analogous to CSR, but stores the matrix by compressed columns. In
general, we call each compressed row or column a #ber, represented
by a list of coordinates and values, sorted by coordinate.

Compressed sparse data structures introduce two challenges.
First, certain kinds of traversals, called concordant traversals [49],
are more e"cient than others. For example, a CSR matrix can be
traversed row by row, but traversing it by columns or accessing
elements at random coordinates is ine"cient. Thus, to be e"cient,
di$erent spMspM data#ows impose di$erent constraints on the pre-
ferred representation of input and output matrices. Second, spMspM

relies on indirect accesses (through the o$sets array) to variable-
sized !bers, and requires combining or intersecting those !bers.
These operations are ine"cient on CPUs and GPUs.

2.2 spMspM Data!ows
Fig. 2 shows the three basic data#ows for spMspM: inner-product,
outer-product, and Gustavson. Fig. 2 also shows the abstract loop
nest corresponding to each data#ow (for simplicity, these loop
nests assume dense matrices; with compressed sparse matrices,
operations are more complex). spMspM computes!!"# = "!"$ ×
#$"# using a triply-nested loop that iterates over "’s and #’s
independent dimensions,$ and % , and co-iterates over their shared
dimension, & . The data#ow is determined by the level of this co-
iteration: in inner-product, co-iteration happens at the innermost
loop; in outer-product, at the outermost loop; and in Gustavson’s,
at the middle loop.2

2While Fig. 2 shows three loop nest orders, there are six possible orders. The remaining
three stem from swapping the! and # loops; this merely switches the dimensions
in which inputs are traversed, but results in an otherwise identical data#ow. For
example, Fig. 2 shows an inner-product data#ow where% is traversed by rows and &
by columns; swapping the outer two loops results in an inner-product data#ow where
% is traversed by columns and & by rows.
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for k in [0, K)
for m in [0, M)
for n in [0, N)
C[m,n] += A[m,k] * B[k,n]

Mfor m in [0, M)
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dataflow =x

Figure 2: Comparison of basic spMspM data!ows.

Inner-product is an output-stationary3 data#ow: it computes the
output matrix one element at a time, simultaneously traversing (i.e.,
co-iterating) rows (') of" and columns (() of #. This achieves good
output reuse, but poor input reuse. Since " and # are sparse, this
traversal requires an intersection, as only nonzeros with matching
) coordinates contribute towards the output. Inner-product is rela-
tively e"cient when the input matrices are nearly dense. But with
highly sparse matrices, inner-product is dominated by the cost of
intersections, which are ine"cient because all elements of the rows
and columns must be traversed, even though there are few e$ectual
intersections, i.e., cases where both elements are nonzero. For ex-
ample, in Fig. 2, intersecting row "1 and column #2 is completely
ine$ectual, as they have no nonzeros with the same coordinate.
Outer-product, by contrast, is an input-stationary data#ow: it com-
putes the output one partial matrix at a time, traversing each col-
umn of " ()) and row of # ()) once and computing a full $ × %
matrix that incorporates all their contributions to the output. Then,
all & partial output matrices are combined to produce the !nal out-
put matrix. Outer-product achieves good reuse of input matrices.
Additionally, outer-product avoids inner-product’s ine"ciencies of
ine$ectual intersections: each co-iteration of a column of " and a
row of # is ine$ectual only when either is all-zeros, which is un-
likely. However, outer-product is limited by poor output reuse: the
combined size of the partial output matrices is often much larger
than the !nal output, so they cause signi!cant tra"c. Moreover,
combining these partial output matrices is a complex operation.
Gustavson, !nally, is a row-stationary data#ow: it computes the
output matrix one row at a time, by traversing a row of " (') and
scaling and reducing, i.e., linearly combining, the rows of # ()) for
which the row of " has nonzero coordinates. Speci!cally, given a
row "' with nonzeros *' ( , output row !' is produced by linearly
combining #’s rows # ( , i.e., !' =

∑
( *' (# ( . Gustavson is more

e"cient because it avoids the extremes of inner- and outer-product
data#ows. While Gustavson does not get as much reuse of a single
value as either inner- or outer-product data#ows, it gets reuse of

3We use the *-stationary terminology from Chen et al. [9].

modestly sized rows. Unlike outer-product, Gustavson requires
combining partial output rows rather than partial output matrices,
a simpler operation on much smaller intermediates that more easily
!t on-chip; and unlike inner-product, Gustavson avoids ine$ectual
intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other
data#ows: its inputs and outputs are all in a consistent format,
CSR.4 By contrast, inner- or outer-product require one input to
be in CSR and the other in CSC, to support e"cient concordant
traversals. We do not evaluate this issue further, but for compound
operations (e.g., matrix exponentiation), having di$erent formats
requires expensive operand transformations, e.g., converting CSC
to CSR, that rival the cost of accelerated spMspM [11].

2.3 spMspM Accelerators
Despite the advantages of Gustavson’s algorithm, prior spMspM

accelerators have focused on inner- and outer-product data#ows,
seeking to maximize reuse of one operand. These designs incorpo-
rate di$erent optimizations over the basic data#ow they adopt to
mitigate its ine"ciencies.

Accelerators like UCNN [20] and SIGMA [43] implement inner-
product spMspM. These designs are built around hardware support
to accelerate intersections: UCNN traverses compressed sparse data
structures, while SIGMA uses a hardware-friendly bitmap-based
!ber representation to further accelerate intersections. To counter
poor input reuse, some designs also tile input matrices [19] to !t
on-chip. While these designs achieve much higher throughput than
CPUs and GPUs when matrices are relatively dense (as is typical
in e.g. deep learning inference), they su$er from the algorithmic
ine"ciencies of ine$ectual intersections on sparse matrices.

By contrast, accelerators includingOuterSPACE [37], SpArch [59],
and SCNN [39] implement an outer-product data#ow, and take dif-
ferent approaches to mitigate its ine"ciencies. To reduce merge
complexity, OuterSPACE divides partial output matrices in rows,
then merges rows individually. However, OuterSPACE produces
a large amount of o$-chip tra"c due to partial outputs, which do
not !t on-chip. SpArch, by contrast, is built around a very complex
high-throughput, high-radix merger that can merge up to 64 partial
matrices per pass, and two main techniques to use this merger well:
pipelining the production of the partial output matrices and their
merging to avoid spilling them o$-chip, and using a matrix condens-
ing technique that reduces the number and size of partial output
matrices. Scaling up SpArch is ine"cient because its throughput is
bottlenecked by the merger, and scaling up the merger’s throughput
incurs quadratic area and energy costs. Instead, Gamma achieves
high throughput with linear cost by performing many indepen-
dent merges in parallel. On highly sparse matrices, SpArch often
achieves nearly perfect o$-chip tra"c because it can produce fewer
than 64 partial output matrices; however, on large or less-sparse
matrices, SpArch incurs high tra"c as it needs to spill many par-
tial outputs o$-chip. SpArch’s matrix condensing technique also
sacri!ces reuse of the # matrix, which can add signi!cant tra"c.

Finally, some prior work adopts a hybrid of inner- and outer-
product: ExTensor [19] is a #exible accelerator for tensor algebra
that combines outer-product at the chip level, and inner-product

4Or CSC in the alternative Gustavson data#ow; see footnote 2.
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within individual PEs. This approach requires tiling to be used well,
and though this hierarchical design eliminates more ine$ectual
work than a pure inner-product design (by skipping entire ine$ec-
tual tiles when possible), it still su$ers from the drawbacks of the
data#ows it adopts.

Despite these optimizations, prior spMspM accelerators are sad-
dled by the fundamental ine"ciencies of the data#ows they adopt.
Fig. 3 shows this by comparing the memory tra"c of di$erent
accelerators when squaring (multiplying by itself) two represen-
tative sparse matrices: gupta2 (49MB, density 1 × 10−3), which
is relatively dense, and web-Google (58MB, density 6 × 10−6),
which is highly sparse. We compare !ve accelerators with simi-
lar hardware budgets (see Sec. 5 for methodology details): (1) IP
uses an inner-product data#ow with optimally tiled input matrices;
(2) OS is OuterSPACE; (3) S is SpArch; (4) G is Gamma without
preprocessing; and (5) GP is Gamma with preprocessing. Each bar
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shows tra"c normalized to
compulsory tra"c (i.e., the traf-
!c all designs would incur with
unbounded on-chip memory,
equivalent to reading the in-
puts and writing the output
matrix). Tra"c is broken down
by data structure: reads of "
and #, writes of the !nal out-
put ! , and writes and reads of
partial outputs.

Fig. 3 shows that, despite
their optimizations, prior accel-
erators have signi!cant draw-
backs: IP works reasonably
well on the denser matrix, but
is ine"cient on the sparser one
because of many sparse tiles
resulting from the hard-to-predict distribution of nonzeros. Out-
erSPACE su$ers from partial outputs, while SpArch incurs less
tra"c on partial outputs, but more on matrix #. They both perform
well on the sparser matrix, but not on the denser one. Even with-
out preprocessing, Gamma outperforms them all solely by virtue
of using Gustavson’s data"ow. But Gamma supports matrix tiling
and reordering techniques like prior work, as we will see in Sec. 4.
With these preprocessing techniques, Gamma achieves even larger
tra"c reductions. Finally, since spMspM is memory-bound, this
lower bandwidth translates to higher performance (Sec. 6).

3 GAMMA
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Figure 4: Gamma overview.

Fig. 4 shows an overview of
Gamma.Gamma consists of multi-
ple processing elements (PEs) that
linearly combine sparse !bers;
a scheduler that adaptively dis-
tributes work across PEs; and a
FiberCache that captures irregu-
lar reuse of !bers.

Fig. 5 illustrates Gamma’s op-
eration through a simple example
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Figure 5: Example showing Gamma’s operation.

that shows how the !rst few elements of an output row are pro-
duced. Gamma always operates on #bers, i.e., streams of nonzero
values and their coordinates sorted by coordinate. First, the sched-
uler fetches row !bers from matrix " and dispatches them to PEs.
Each PE then computes a linear combination of row !bers of # to
produce a row !ber of output! . For example, in Fig. 5, the scheduler
dispatches row "1 to PE 0. Row "1 has only two nonzeros, at coor-
dinates 3 and 5. Therefore, PE 0 linearly combines rows #3 and #5.
Fig. 5 shows how the !rst few elements of each row are combined.
First, the #3 and #5 !bers are streamed from the FiberCache. (The
FiberCache retains these !bers, so subsequent uses do not incur
o$-chip tra"c.) Then, these !bers are merged into a single !ber,
with elements ordered by their shared (column, i.e., % -dimension)
coordinate. Each element in the merged !ber is then scaled by the
coe"cient of "’s row corresponding to the !ber element’s row (& )
coordinate. Finally, consecutive values with the same column (% )
coordinate are summed up, producing the output !ber. Fig. 5 shows
the values of these intermediate !bers needed to produce the !rst
three elements of output row !1.
Gamma PEs have a bounded radix, +: PEs can linearly combine
up to + input !bers in a single pass (though Fig. 5 illustrates the
combination of only two !bers, Gamma PEs have a higher radix, 64
in our implementation). When a row of" has more than + nonzeros,
the scheduler breaks the linear combination into multiple rounds.
For example, with + = 64, processing a row of" with 256 nonzeros
would be done using four 64-way linear combinations followed by
a 4-way linear combination. Each of the initial linear combinations
produces a partial output #ber, which is then consumed by the !nal
linear combination. The FiberCache bu$ers these partial output
!bers, avoiding o$-chip tra"c when possible.
GammaPEsusehigh-radix,modest-throughputmergers: PEs
have two key design parameters: radix, i.e., how many input !bers
they can take; and throughput, i.e., how many input and output ele-
ments they can consume and produce per cycle. These parameters
are given by the radix and throughput of the PE’s hardware merger,
which takes + input !bers and produces a sequence sorted by co-
ordinate (with repeats) as a step in creating a single output !ber
from all the elements of all the input !bers. Radix and throughput
choices have a substantial impact on PE and system e"ciency, and
on memory system design, so we discuss them !rst.

Implementing high-radix merges is cheap, since merger area
grows linearly with radix. A high radix in turn makes computa-
tion more e"cient: it allows many linear combinations to be done
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in a single pass, and increasing the radix reduces the number of
merge rounds and partial output !bers needed. For example, lin-
early combining 4096 !bers with radix-64 PEs would require 65
PE invocations in a depth-2 tree; using radix-2 PEs would require
4095 PE invocations in a depth-12 tree. The radix-64 PEs would
produce one set of partial output !bers, whereas the radix-2 PEs
would produce 11, increasing FiberCache tra"c by about an order
of magnitude.5

Since higher-radix mergers are larger, there is a tradeo$ between
the size and power cost of the merger and both PE performance
(measured in number of passes required) and FiberCache tra"c
(due to partial output !bers). With current technology, the sweet
spot balancing overall PE cost and performance occurs around
+ = 64.

Another consideration is the throughput of the merger. Imple-
menting high-throughput mergers is costly, since merger area and
energy grow quadratically with throughput. Producing % output el-
ements per cycle requires the merger to consume up to % elements
from a single input, and to perform up to % 2 comparisons. Thus,
Gamma uses simple pipelined merge units that produce one output
and consume one input per cycle, and achieves high throughput by
doing many independent linear combinations in parallel, e.g., by
using multiple PEs to process distinct rows of ".

This design tradeo$ stands in contrast to SpArch [59], the spM-

spM accelerator that comes closest to Gamma’s e"ciency. Because
SpArch merges partial output matrices rather than !bers, it can-
not exploit row-level parallelism, and implements a single high-
throughput merger that dominates area and limits throughput.
Gamma and SpArch both implement radix-64 mergers. However,
while in Gamma each PE’s merger is about the same area as its
#oating-point multiplier, SpArch spends 38× more area on the
merger than on multipliers.
Gamma’s on-chip storage captures irregular reuse acrossmany
$bers: Although Gamma’s PEs are e"cient, the combination of
high-radix and many PEs to achieve high throughput means that
Gamma’s memory system must support e"cient accesses to a large
number of concurrent !bers. For example, a system using 32 radix-
64 PEs can fetch 2048 input !bers concurrently. Gamma relies on a
novel on-chip storage idiom, FiberCache, to support the irregular
reuse patterns of Gustavson’s algorithm e"ciently. FiberCache
takes two key design decisions: sharing a single structure for all
!bers that may have reuse, and combining caching and explicit
decoupled data orchestration [40] to avoid large fetch bu$ers.

Gamma processes four types of !bers: rows of A and B, and
partial and !nal output rows of C. Rows of A and !nal output rows
of C have no reuse, so they are streamed from/to main memory.
Rows of B and partial output rows of C have reuse, but di$erent
access patterns: rows of B are read-only and are accessed potentially
multiple times (depending on A’s nonzeros), whereas partial output
!bers, which need to be further merged to produce a !nal output
row, are produced and consumed by PEs, typically within a short
period of time. The FiberCache bu$ers both types of !bers within
a single structure, instead of having separate bu$ers for inputs and

5In highly sparse matrices, !bers rarely have matching coordinates, so the size of the
linear combination of ) !bers is close to the sum of the size of the partial output !bers
(whereas for dense !bers, the !nal output would be a factor of ) smaller).

outputs. Sharing capacity across !ber types helps because di$erent
matrices demand a widely varying share of footprint for partial
outputs, but requires careful management to maximize reuse.

FiberCache is organized as a highly banked cache, which allows
it to #exibly share its capacity amongmany !bers or !ber fragments.
However, FiberCache is managed using the explicit data orchestra-
tion idioms common in accelerators [40]: the !bers needed by each
PE are fetched ahead of time, so that when the PE reads each input
!ber element, the data is served from the FiberCache. This avoids
PE stalls and lets the FiberCache pull double duty as a latency-
decoupling bu$er. This feature is important because, due to the
large number of concurrent !bers processed, implementing such
bu$ering separately would be ine"cient: with 32 radix-64 PEs and
an 80 ns main memory, implementing these bu$ers would require
about 2MB of storage, a large fraction of the 3MB FiberCache we
implement (Sec. 5).

3.1 Processing Element
Fig. 6 details the design of Gamma’s PE. The PE linearly combines
up to + !bers incrementally. Operation begins with a request from
the scheduler, which streams up to + input !ber descriptors: for
each input, the scheduler speci!es its starting location, size, and a
scaling factor. If the input !ber is a row of #, #* , the scaling factor
is value *+* ; otherwise, the input !ber is a previously generated
partial output, and its scaling factor is 1.0. The PE stores scaling
factors in a register !le, and input !ber locations in the !ber fetcher.

The !ber fetcher then begins streaming input !bers from the
FiberCache. The read elements are streamed into two sets of cir-
cular bu$ers: coordinates (% ) are staged as inputs to the high-radix
merger, while values are bu$ered separately. Each set has + bu$ers,
one for each way of the merger. Since the FiberCache ensures low
access latency, these bu$ers are small and incur low overheads.
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Figure 6: Gamma’s PE architecture.

The merger consumes the minimum coordinate (% ) among the
heads of its + input bu$ers, and outputs the coordinate together
with its way index, i.e., a value between 0 and + − 1 that identi!es
which input !ber this coordinate came from.

The way index is used to read both the corresponding value from
the value bu$er and the scaling factor. The PE then multiplies these
values. Finally, the coordinate and value are processed by an accu-
mulator that bu$ers and sums up the values of same-coordinate
inputs. If the accumulator receives an input with a di$erent coordi-
nate, it emits the currently bu$ered element, which is part of the
output !ber.
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Fig. 7 shows the implementation
of the merger. The merger is orga-
nized as a balanced binary tree of sim-
ple compute units. Each unit has an
integer comparator for coordinates,
and merges coordinate streams incre-
mentally. This design achieves a small
area cost, e.g., 55% of a 64-bit #oat-
ing point multiplier for a radix of 64,
and achieves an adequately high fre-
quency.

Unlike prior mergers [45, 59] with
throughputs that are high on average
but are very sensitive to coordinate
distribution, Gamma’s merger main-
tains a constant 1-element-per-cycle
throughput. Thus, in steady state, the
PE consumes one input !ber element per cycle and performs one
scaling operation. This achieves high utilization of its most expen-
sive components, the multiplier and the merger.

3.2 FiberCache

Fig. 8 shows the FiberCache design and interface. FiberCache
builds upon a cache: it has data and tag arrays, organizes data in
lines, and uses a replacement policy tailored to !ber access patterns.
But FiberCache has two key distinct features. First, FiberCache
extends the usual read-write access interface with primitives
that manage data movement more explicitly: fetch and consume.
fetch enables decoupled data orchestration by fetching data from
memory ahead of execution. Second, to ensure that read’s hit in
most cases, FiberCache ensures that fetched data is unlikely to
be evicted. This is achieved through the replacement policy. This
e$ectively turns a dynamic portion of FiberCache into bu$er-
like storage, but without incurring the high overheads of separate,
statically sized bu$ers.
Reading rows of # that are not cached incurs a long latency,
stalling the PE and hurting performance. FiberCache addresses
this issue by decoupling PE data accesses into two steps: fetch
and read. A fetch request is sent ahead of execution and places
the data into the FiberCache, accessing main memory if needed,
and a read request directs the actual data movement from Fiber-

Cache to the PE. This decouples the accesses to memory and the
computation on PEs.

Unlike speculative prefetching, a fetch is non-speculative: the
data accessed by a fetch is guaranteed to have a short reuse dis-
tance. FiberCache exploits this property through the replacement
policy. FiberCache assigns each line a priority in replacement.
The priority is managed as a counter: e.g., a 5-bit counter for 32
PEs. A fetch request increments the priority, while a read request
decrements it. Lower-priority lines are selected for eviction. This
guarantees that most read’s hit in the cache; e$ectively, the prior-
ity is a soft lock on lines that are about to be used. FiberCache uses
simple 2-bit SRRIP [22] to break ties among same-priority lines.
Reading andwriting partial outputs use the other two primitive
requests: write and consume. Both write and consume exploit
the fact that partial output !bers need not be backed up by memory.
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Upon a write, FiberCache allocates a line without fetching it
from memory, updates the data, and sets a dirty bit. A consume
is similar to a read, but instead of retaining the line after the
access, FiberCache invalidates the line, without writing it back
even though it is dirty.
Banks and interconnect: Since FiberCache must accommodate
concurrent accesses from multiple PEs, we use a highly banked
design (e.g., 48 banks for 32 PEs). Banks are connected with PEs
and memory controllers using crossbars.

3.3 Scheduler
The scheduler assigns compute tasks to PEs to ensure high utiliza-
tion and minimize memory tra"c.
From A to tasks: The scheduler assigns work by traversing the
rows of ". Each row of " with fewer nonzeros than the PE radix
results in a single task that produces the corresponding output row
and writes it directly to main memory.

When a row of " has more nonzeros % than the PE radix +,
the scheduler produces a task tree that performs an radix-% linear
combination in multiple radix-+ steps. Fig. 9 shows an example
of a task tree that combines 18 !bers using radix-3 mergers. Each
node represents a !ber: the root is the output; leaves are rows of #;
and intermediate nodes are the partial output !bers. Edges denote
which input !bers (children) contribute to a partial or !nal output
!ber (parent).

The scheduler produces a balanced, top-full tree. Balance im-
proves merge e"ciency: in the common case, the rows of # have
similar nonzeros, so a balanced tree results in similarly sized input
!bers at each tree level. This is more e"cient than a linear tree,
which would build an overlong !ber. Moreover, a balanced tree
enables more PEs to work on the same row in parallel. (SpArch [59]
uses more sophisticated dynamic selection of merge inputs based
on their lengths; this is helpful in SpArch because it purposefully
constructs uneven partial output matrices, but does not help in
Gamma.) Top-fullness keeps footprints of partial output !bers low:
by keeping the radix of the top levels full, and allowing only the
lowest level to have empty input !bers, partial !bers are kept small,
reducing the pressure on FiberCache storage.

empty B fibers

Partial output fibers

Output fiber

Figure 9: Example schedule tree (balanced and top-full) to
combine 18 input $bers on PEs with radix 3.
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Mapping tasks to PEs: The scheduler dynamically maps tasks to
PEs: when a PE becomes ready to receive a new task, the scheduler
assigns is the next available one. Tasks are prioritized for execution
in row order, to produce the output in an ordered fashion. For
multi-task rows, the scheduler follows a data#ow (i.e., data-driven)
schedule: it schedules asmany leaf tasks from a single row as needed
to !ll PEs, and schedules each higher-level task as soon as its input
!bers become available. The scheduler prioritizes higher-level tasks
over lower-level ones to reduce the footprint of partial outputs.
Staging tasks and data: To avoid stalls when starting up a linear
combination, PEs can accept a new task while processing the exist-
ing one. When a PE receives a new task, it starts staging its data
into its merge bu$ers, so that it can switch from processing the old
task to the new task in a single cycle.

The main data structure in a scheduler implementation is a
scoreboard that bu$ers tasks not ready to dispatch and monitors
partial !bers that have not been produced. Additional logic and
bu$ers are required to !ll tasks in the scoreboard by running the
outermost loop of Gustavson’s algorithm. The scheduler is 0.4% of
total chip area.

3.4 Memory Management
Prior to the execution, matrices " and # are loaded into memory,
and a su"ciently wide range of address space is allocated for! and
partial output !bers.

Since the lengths of partial output !bers are unknown ahead of
time, Gamma allocates them dynamically. Upon scheduling a merge
that produces a partial output !ber, the scheduler estimates the
number of nonzeros of the !ber conservatively, by using the sum of
the numbers of nonzeros in all its input !bers. The scheduler then
assigns and records the address range of the partial output !ber.
This space is only used if the FiberCache needs to evict a partial
output, a rare occurrence. The scheduler deallocates the memory
when the partial output !ber is consumed. The number of partial
outputs is limited to twice the number of PEs, so this dynamic
memory management requires negligible on-chip memory.

4 PREPROCESSING FOR GAMMA
Though Gustavson is a more e"cient data#ow than inner- and
outer-product, it can incur high tra"c. Consider Gustavson on
dense operands: processing each row of " requires a complete
traversal of every row of #, and results in high memory tra"c. This
phenomenon is mitigated for sparse operands, because processing
a sparse row of " only touches a subset of rows of #, and reuse
across those subsets makes the FiberCache e$ective. Speci!cally,
rows of # enjoy reuse in the FiberCache when multiple nonzeros
in " with the same column coordinate appear in nearby rows of ".
However, there are two reasons this may not happen: either nearby
rows of " contain largely disjoint sets of column coordinates (the
matrix lacks structure), so there is minimal reuse of rows of #; or a
single row of " has many nonzeros, which requires many rows of
#, thrashing the FiberCache.

Prior work has addressed improving such problematic memory
access patterns in sparse matrices and graphs using preprocessing
techniques like tiling and reordering [21, 23, 42]. Similarly, Gamma,

like prior accelerators, can exploit preprocessing tailored to its
memory system and data#ow to further reduce data movement.

To improve data reference behavior, we design two preprocess-
ing techniques for rows of ". A!nity-based row-reordering targets
disparate adjacent rows of " by reordering rows so that similar
rows are processed consecutively. Selective coordinate-space tiling
breaks (only) dense rows of " into subrows to avoid thrashing,
and is applied before row-reordering to extract a"nity among the
subrows. Both techniques can be implemented by either relying
on auxiliary data for indirections or by modifying the memory
layout of ". These techniques improve the reuse of sets of rows of
#, achieving better versatility and e"ciency.

4.1 A#nity-Based Row Reordering
Problem de$nition: We use a score function , (-, .) to represent
the a"nity of two rows "' and " ( . , (-, .) is the number of coordi-
nates for which both "' and " ( have a nonzero value.

Because on-chip storage can hold rows of # corresponding to
several rows of ", we are interested in maximizing the a"nity of a
row with the previous/ adjacent rows:

0 (-) =
'−1∑

(=+," (0,'−- )

, (-, .) (1)

We set the window size/ to capture the number of rows of # that
!t in the FiberCache on average:

/ =

'*1 ((2 -( FiberCache

((2 345 567% · ((2 345 567&
(2)

The goal of the algorithm is to !nd a proper permutation of rows
to maximize the a"nity of the whole matrix, which we call 0 :

0 =

!−1∑

'=1

0 (-) =
!−1∑

'=1

'−1∑

(=+," (0,'−- )

, (-, .) (3)

Algorithm: Algorithm 1 shows the pseudocode for the a"nity-
based reordering algorithm. This algorithm is greedy and uses a
priority queue (8) to e"ciently !nd the row with highest a"nity.
The algorithm produces a permutation 9 of A’s rows. This algorithm
has complexity : (+;6<+ · % 2), where + is the number of rows and
% is the average number of nonzeros per row, so it scales well to
large matrices as long as they are sparse.

Algorithm 1: A"nity-based row reordering.

Result: Permutation . of row indices
for / ∈ /012 do 3 .insert(/ , 0);

select some / to start, . [0] ← / ,3 .remove(/ );

for ' ∈ [1,!) do
for 4 ∈ column coords of row . [' − 1] do

for / ∈ row coords of column 4 do
if / ∈ 3 then 3 .incKey(/ );

if ' >- then
for 4 ∈ column coords of row . [' −- − 1] do

for / ∈ row coords of column 4 do
if / ∈ 3 then 3 .decKey(/ );

. [' ] ← 3 .505 () ;
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4.2 Selective Coordinate-Space Tiling
Tiling improves input reuse (as each input tile is sized to !t on-
chip) at the expense of additional intermediate outputs that must be
merged. Tiling dense matrices is nearly always a good tradeo$ [8,
38] because each input contributes to many outputs, and tiling
introduces a large gain in input locality for a few extra fetches of
intermediate outputs. However, this no longer holds with sparse
matrices, because output tra"c often dominates. In other words,
tiling sparse rows may reduce tra"c to # but produce many partial
output !bers that must be spilled o$-chip and then brought back
to be merged.

Therefore, we apply tiling selectively, only to extremely dense
rows of ". Speci!cally, we split rows of " whose footprint to hold
rows of # is estimated to be above 25% of the FiberCache capacity
(the estimated footprint is the length of "’s row times the average
number of nonzeros per row of #). Each subrow resulting from this
split contributes to a partial output !ber that must be combined
eventually. Because these partial output !bers are not accessed close
in time, they are likely to be spilled. To ensure that the partial output
!bers generated by subrows can be combined in just one round,
we use the merger’s radix + as the tiling factor, i.e., the number of
subrows. Rather than splitting rows into evenly-sized subrows, we
perform coordinate-space tiling [49]: we split evenly in coordinate
space, so if column coordinates are in the range [0,&), we create
up to + subrows with the -th subrow having the nonzeros within
an even subrange [-&/+, (- + 1)&/+). Experimentally, we !nd this
creates subrows with higher a"nity, improving performance. In
large matrices, the resulting subrows may still be large, so this
process is repeated recursively.

5 METHODOLOGY
System:We evaluate a Gamma system sized to make good use of
high-bandwidth memory and consume similar levels of resources
compared to prior accelerators [37, 59], in order to make fair com-
parisons. Our system has 32 radix-64 PEs, a 3MB FiberCache, and
a 128GB/s High-Bandwidth Memory (HBM) interface. The system
runs at 1GHz. Table 1 details the system’s parameters. We built
a cycle-accurate simulator to evaluate Gamma’s performance and
resource utilization.

Table 1: Con$guration of the evaluated Gamma system.

PEs 32 radix-64 PEs; 1 GHz

FiberCache 3MB, 48 banks, 16-way set-associative

Crossbars 48×48 and 48×16, swizzle-switch based

Main memory 128GB/s, 16 64-bit HBM channels, 8 GB/s/channel

Table 2: Area breakdown of Gamma (left) and one PE (right).

Area (''2) PE component Area (''2) % PE

32 PEs 4.8 Merger 0.045 30%
Scheduler 0.11 FP Mul 0.082 55%

FiberCache 22.6 FP Add 0.015 10%
Crossbars 3.1 Others 0.008 5%

Total 30.6 PE total 0.15 100%

WemeasureGamma’s area by writing RTL for the PEs and sched-
uler. We then synthesize this logic using Synopsys Design Compiler
and yosys [55] on the 45 nm FreePDK45 standard cell library [35],
with a target frequency of 1GHz at 1.25V. We use CACTI 7.0 [3] to
model the FiberCache at 45('. Wemodel the same swizzle-switch
networks [46] as in prior work [37]. Table 2 shows Gamma’s area
breakdown, which we contrast with prior work in Sec. 6.
Baselines:We compare Gamma with two state-of-the-art acceler-
ators, OuterSPACE and SpArch. We built detailed memory tra"c
models for OuterSPACE and SpArch to understand their key opera-
tional di$erences. We use the same approach as prior work [59] to
compare end-to-end performance, by using the same set of matrices
used in their evaluations. We use the original designs proposed in
OuterSPACE and SpArch papers, rather than scaling them to con-
duct iso-area or iso-power comparisons. This is because the correct
scaling strategy for each baseline is unclear. For instance, scaling
SpArch requires carefully tuning various bu$er and comparator
array sizes. As a result, both baselines used in the comparisons have
larger area than Gamma at the same technology.

Each accelerator uses inputs in the right format for its data#ow
(e.g., CSC and CSR inputs for outer-product), and SpArch uses
preprocessed inputs as described by Zhang et al. [59]. We use 32-
bit integer coordinates and 64-bit, double-precision #oating-point

Table 3: Characteristics of the common set of matrices (all square).

Matrix Nnz/row Rows Matrix Nnz/row Rows Matrix Nnz/row Rows

patents_main 2.33 240,547 web-Google 5.57 916,428 2cubes_sphere 16.23 101,492
p2p-Gnutella31 2.36 62,586 scircuit 5.61 170,998 o$shore 16.33 259,789

roadNet-CA 2.81 1,971,281 amazon0312 7.99 400,727 cop20k_A 21.65 121,192
webbase-1M 3.11 1,000,005 ca-CondMat 8.08 23,133 !lter3D 25.43 106,437

m133-b3 4.00 200,200 email-Enron 10.02 36,692 poisson3Da 26.10 13,514
cit-Patents 4.38 3,774,768 wiki-Vote 12.50 8,297
mario002 5.38 389,874 cage12 15.61 130,228

Table 4: Characteristics of the extended set of matrices.

Matrix Nnz/row Rows Cols Matrix (Square) Nnz/row Rows Matrix (Square) Nnz/row Rows

NotreDame_actors 3.75 392,400 127,823 gupta2 68.45 62,064 x104 80.4 108,384
relat8 3.86 345,688 12,347 vsp_bcsstk30_500 69.12 58,348 m_t1 99.96 97,578

Maragal_7 25.63 46,845 26,564 Ge87H76 69.85 112,985 ship_001 111.58 34,920
degme 43.81 185,501 659,415 raefsky3 70.22 21,200 msc10848 113.36 10,848

EternityII_Etilde 116.42 10,054 204,304 sme3Db 71.6 29,067 opt1 124.97 15,449
nemsemm1 267.17 3,945 75,352 Ge99H100 74.8 112,985 ramage02 170.31 16,830
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values. Because the outer-product baselines and Gamma always
consume coordinates and values, we store them together, as shown
in Fig. 1. For the memory tra"c comparison in Fig. 3, the inner-
product accelerator (IP) uses separate coordinate and value arrays,
and values are only fetched on a matching intersection, since this
reduces tra"c.

We also compare Gamma against the spMspM implementation
from Intel MKL [52] (mkl_sparse_spmm function), running on a
4-core, 8-thread Skylake Xeon E3-1240 v5, with two DDR4-2400
channels. We do not include GPU results because existing GPU
spMspM implementations perform similarly to MKL on CPUs [59].
Inputs:We use two sets of matrices. First, the Common set of ma-
trices is the set used in the evaluations of OuterSPACE and SpArch,
as shown in Table 3. We use the Common set for direct performance
comparisons with these accelerators. However, the Common set
covers only a fraction of the space of possible inputs: these matrices
are square, and most are very sparse, with a maximum mean of 26
nonzeros per row. This is not representative of other commonly
used matrices, and masks the ine!ciencies of outer-product designs.
To evaluate the designs with a broader range of inputs, we construct
the Extended set of matrices, which includes 18 matrices from the
SuiteSparse Matrix Collection [30]. Table 4 lists these matrices,
which include non-square and square matrices with a wider range
of sparsities and sizes. We evaluate " ×" for square matrices (like
prior work), and " ×"6 for non-square matrices.

6 EVALUATION

6.1 Performance on Common-Set Matrices
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Figure 10: Gmean speedup
vs. MKL on common-set ma-
trices for OuterSPACE (OS),
SpArch (S), and Gamma with-
out and with preprocessing
(G/GP).

Fig. 10 reports the perfor-
mance of all accelerators on
common-setmatrices. Each bar
shows the gmean speedup over
our software baseline, MKL.
Note that common-set matri-
ces are highly sparse and thus
well suited for OuterSPACE
and SpArch. On these matri-
ces, Gamma (with preprocess-
ing) is gmean 2.1× faster than
SpArch, 7.7× faster than Out-
erSPACE, and 38× faster than
MKL. Even without prepro-
cessing, which makes Gamma
gmean 16% faster, Gamma

outperforms SpArch by 1.84×,
OuterSPACE by 6.6×, and MKL
by 33×.

Fig. 11 further shows the per-matrix speedups of Gamma (with
preprocessing) over MKL. Gamma outperforms MKL by up to 184×.

Fig. 12 and Fig. 13 explain how Gamma outperforms SpArch and
OuterSPACE: through a combination of reducing memory tra"c
and improving memory bandwidth utilization.

Fig. 12 reports the memory tra"c of OuterSPACE, SpArch, and
Gamma without and with preprocessing. Each group of bars shows
results for one matrix. Tra"c is normalized to the compulsory
tra"c, which would be incurred with unbounded on-chip storage:
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Figure 11: Speedups of Gammawith preprocessing overMKL
on common-set matrices.

fetching", the needed rows of #, and writing! . Each bar is broken
down into four categories: reads of " or #, writes of ! , and reads
and writes of partial outputs.

Fig. 12 shows that Gamma incurs close-to-optimal tra"c: across
all inputs, it is only 7% higher than the compulsory (i.e., minimum)
tra"c with preprocessing, and 26% higher without preprocessing.
By contrast, SpArch is 59% higher, and OuterSPACE is 4× higher.
OuterSPACE su$ers writes and reads to partial matrices. SpArch
reduces partial output tra"c over OuterSPACE, but incurs high
tra"c on # for two reasons. First, to reduce partial output tra"c,
SpArch preprocesses " to produce a schedule that worsens the
access pattern to #. Second, SpArch splits its storage resources
across data types (e.g., merge and prefetch bu$ers), leaving only
part of its on-chip storage (around half a megabyte) to exploit reuse
of #. By contrast, Gamma’s shared FiberCache allows #’s rows
to use more on-chip storage when bene!cial. Because Gamma’s
partial outputs are rows, it has negligible partial output tra"c, and
its main overhead comes from imperfect reuse of #.

Fig. 13 further illustrates how memory bandwidth translates to
performance. Because Gamma’s PEs achieve very high throughput
(processing inputs and outputs at a peak rate of 768GB/s) and Gus-
tavson’s algorithm does not have compute-bound execution phases,
Gamma almost always saturates the available 128GB/s memory
bandwidth. By contrast, OuterSPACE and SpArch su$er from the
compute bottleneck of merging all the partial matrices, and hence
achieve lower bandwidth utilizations of 48.3% and 68.6%, respec-
tively, on the same matrices. Gamma’s higher performance stems
from its lower memory tra"c and higher bandwidth utilization.

To further illustrate how FiberCache is utilized, for each ap-
plication, we sample the utilization of FiberCache every 10,000
cycles. Fig. 14 shows the average utilization of FiberCache. On
these matrices, # !bers are dominant in FiberCache, while par-
tial result !bers consume non-negligible capacity on some inputs,
including wiki-Vote, email-Enron, and webbase-1M.

6.2 Performance on Extended-Set Matrices
To further evaluate the versatility of Gamma, we use the extended
set of matrices, which includes non-square matrices and square
matrices more diverse than the common set (Sec. 5).

Fig. 15 shows the speedups of Gamma (with preprocessing) over
MKL. By exploiting hardware specialization, Gamma outperforms
MKL by gmean 17× and by up to 50×.
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(G/GP) (lower is better).
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Figure 13: Memory bandwidth utilization on common-set
matrices of Gamma without and with preprocessing (G/GP).

Fig. 16 compares Gamma with SpArch and OuterSPACE. The
o$-chip tra"c of SpArch and OuterSPACE are are 3× and 14×
greater than Gamma, respectively. This di$erence is much larger
than that in Fig. 12, because the extended set includes matrices
that are denser and have more nonzeros per row. Outer-product
struggles on these matrices, as it su$ers from excessive memory
tra"c caused by writing and reading partial output matrices. For
instance, on matrices that are relatively dense, such as msc10848
and ramage02, such memory tra"c is dominant, reaching 54× over
compulsory in OuterSPACE.

Fig. 17 shows the memory bandwidth utilization of the extended-
set matrices. Compared to the extremely sparse matrices in the
common set, denser matrices are more bounded by compute. There-
fore, some matrices in the extended set do not saturate memory
bandwidth. The memory bandwidth utilization can be improved by
adding more PEs to the system, as shown in Sec. 6.7.

Fig. 18 shows the utilization of FiberCache on the extended-
set matrices. These matrices demand a widely varying share of
footprint for partial results. For instance, ND_actors does not need
capacity for partial results, while Maragal_7 spends 35% of the
capacity on partial result !bers. Having a single storage structure
for both # !bers and partial result !bers improves the versatility of
the system.
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Figure 14: Cache utilization on common-set matrices of
Gamma without and with preprocessing (G/GP).

6.3 E"ectiveness of Gamma Preprocessing
Preprocessing improves the performance of Gamma by 18% on
average. Fig. 19 further illustrates the e$ects of a"nity-based row re-
ordering and selective coordinate-space tiling in two cases. A"nity-
based row reordering improves the reuse of #. For instance, it con-
tributes to a 6× reduction of tra"c on sme3Db. As Sec. 4.2 explained,
tiling all rows of " (+T in Fig. 19) may hurt: it does little harm to
Maragal_7 but causes 13× extra tra"c on sme3Db due to excessive
partial outputs. This is why Gamma selectively tiles long rows only.
Selective coordinate-space tiling reduces tra"c of # drastically by
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Figure 15: Speedups of Gammawith preprocessing overMKL
on extended-set matrices.
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Figure 17: Memory bandwidth utilization on extended-set
matrices of Gamma without and with preprocessing (G/GP).

tiling dense rows (e.g, on Maragal_7), and also avoids performance
pathologies by not tiling sparse rows (e.g., on sme3Db).

Preprocessing takes an average time of 44 seconds and 208 sec-
onds on the common-set matrices and the extended-set matrices,
respectively. On average, the preprocessing time for a matrix is
4600× longer than using Gamma to execute spMspM on the same
matrix. Thus, preprocessing is bene!cial only when the " matrix
will be reused frequently.

6.4 Gamma Scheduling
Gamma’s scheduling algorithm (Sec. 3.3) uses multiple PEs to pro-
cess the tasks produced by the same row of " (or, if preprocessing
tiles the row, the same subrow of "). To demonstrate its e$ective-
ness, we compare it against a less dynamic algorithm that always
uses a single PE to process all the tasks for each row of ". Fig. 20
shows the o$-chip memory tra"c on input matrix email-Enron.
With the single-PE approach, all the tasks from the same row
are serialized, so partial result !bers stay resident in FiberCache

for a longer time. By contrast, Gamma’s multi-PE algorithm al-
lows partial result !bers to be consumed as early as possible. On
email-Enron, this multi-PE scheduling algorithm reduces memory
tra"c by 18%, and hence improves performance by 17%.

6.5 Gamma Roo!ine Analysis
To show that Gamma uses resources well, Fig. 21 presents its
roo#ine analysis plot. The plot presents arithmetic intensity (x-axis)
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Figure 18: Cache utilization on extended-set matrices of
Gamma without and with preprocessing (G/GP).
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in FLOPs per byte of o$-chip memory tra"c, and performance (y-
axis) in GFLOPs (as is usual, one multiply-accumulate is counted as
a single FLOP, despite being performed by a separate multiplier and
adder in Gamma PEs). Note that the plot uses a logarithmic scale
for both axes. Each dot represents a single matrix; results without
preprocessing are shown in blue, while results with preprocessing
are shown in yellow. The plot also shows the design’s roo#ine at
32GFLOPs, which caps the maximum achievable performance: the
sloped (left) part of the roo#ine is set by memory bandwidth, while
the #at (right) part is set by compute (PE) throughput.

Fig. 21 shows that most matrices have low arithmetic intensi-
tiy and are memory bandwidth-bound, while some have higher
arithmetic intensity and are compute-bound. More importantly,
this shows that Gamma uses its resources well: almost all matrices
are right at or very close to the roo"ine, showing that the system is
driven to saturation all the time. Only three matrices are noticeably
below the roo#ine (gupta2, Ge87H76, and Ge99H100). By inspec-
tion, we have found that these matrices have memory-bound and
compute-bound phases, so while their average compute intensity
falls past the sloped part of the roo#ine, they do not saturate PEs all
the time due to memory-bound phases. Nonetheless, compared to
prior accelerators, which have memory-bound and compute-bound
phases (e.g., partial output matrix generation vs. merging in Out-
erSPACE and SpArch), this result shows that Gustavson’s algorithm
yields a more consistent behavior that uses resource better.

6.6 Gamma Area Analysis

As shown in Table 2, the total area of Gamma is 30.6''2, syn-
thesized with a 45 nm standard cell library. Scaled down to 40 nm,
Gamma’s area is 24.2''2, smaller than the 28.5''2 of SpArch
at 40 nm and the 87''2 of OuterSPACE at 32 nm. The vast major-
ity of area is used by the FiberCache. This is a good tradeo$ for
spMspM, since the key bottleneck is memory tra"c and data move-
ment. The PEs are simple, taking 16% of chip area, and the merger
and multiplier are its main components. By contrast, SpArch and
OuterSPACE spend far more area on compute resources, e.g., 60%
on SpArch’s merger.
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Figure 22: Results on common-set matrices of Gamma with
di"erent number of PEs.
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Figure 23: Results on extended-set matrices of Gamma with
di"erent number of PEs.
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Figure 24: Results on common-set matrices of Gamma with
di"erent FiberCache sizes (in MB).
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Figure 25: Results on extended-set matrices of Gamma with
di"erent FiberCache sizes (in MB).

6.7 Scalability Studies
Fig. 22 and Fig. 23 show Gamma’s performance and tra"c on
common-set and extended-set matrices, respectively, when the num-
ber of PEs is swept from 8 to 128 (the default is 32 PEs). For common-
set matrices, 32 PEs are the right tradeo$, as all are memory-bound
at 32 PEs. Since some extended-set matrices have higher reuse
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and thus arithmetic intensity, Gamma continues to improve perfor-
mance past 32 PEs: at 128 PEs (which would increase accelerator
area by about 50%), Gamma is gmean 65% faster than at 32 PEs.

Fig. 24 and Fig. 25 show Gamma’s performance and tra"c on
common-set and extended-set matrices, respectively, when Fiber-

Cache size is swept from 0.75MB to 12MB (the default is 3MB).
At and after 1.5MB, performance improves smoothly with Fiber-

Cache size, showing thatGamma can leverage additional storage to
gracefully improve performance on inputs where non-compulsory
tra"c is high. However, performance is signi!cantly degraded at
0.75MB. This performance cli$ occurs because FiberCache is used
as decoupling bu$ers, and at this size, there is little capacity left to
capture irregular reuse. These results show that FiberCache does
indeed save signi!cant storage on dedicated bu$ers.

7 ADDITIONAL RELATEDWORK
Much prior work has proposed optimized CPU and GPU implemen-
tations for spMspM, e.g., using autotuning [51], input characteris-
tics [56], or code generation [29] to pick a well-performing spMspM

implementation. Intel’s MKL [52], which we use in our evaluation,
is generally the fastest, or close to the fastest, across input matri-
ces [56]. Although GPUs have higher compute and memory band-
width than CPUs, spMspM is a poor match to the regular data paral-
lelism supported in current GPUs, so GPU frameworks [13, 32, 36]
achieve similar spMspM performance to CPUs [56, 59].

Most CPU andGPU implementations followGustavson’s data#ow;
variants di$er in how they merge rows of #, e.g., using sparse
accumulators [15, 28], bitmaps [24], unordered associative con-
tainers [33, 34, 36], trees [47], or heaps [1] to hold outputs. This
algorithmic diversity arises because merging !bers is an expensive
operation in general-purpose architectures. At a high level, heaps
are space-e"cient but slow, and the other data structures trade
lower compute for higher space costs. Gamma’s high-radix merges
are both space-e"cient and make merges very cheap, avoiding this
dichotomy.

As explained in Sec. 2.3, to the best of our knowledge, accel-
erators earlier than Gamma did not exploit Gustavson’s data#ow.
However, MatRaptor [48], which is concurrent with Gamma, does
exploit Gustavson’s data#ow. Nonetheless, MatRaptor and Gamma

are very di$erent. MatRaptor does not exploit the reuse of # !bers:
it streams such !bers from DRAM and uses them once. By con-
trast, Gamma exploits the reuse of # !bers with FiberCache. This
adds area costs, but since reusing # !bers is the key way by which
Gustavson’s data#ow minimizes tra"c, Gamma improves perfor-
mance signi!cantly. Consequently, on the common-set matrices,
MatRaptor outperforms OuterSPACE by only 1.8× [48], worse than
SpArch’s improvement over OuterSPACE (3.6×), while Gamma out-
performs OuterSPACE by 6.6× even without preprocessing.

Preprocessing of sparse matrices [10, 12, 14, 53] has been studied
extensively on CPUs and GPUs. Matrix preprocessing on CPUs
and GPUs typically targets creating dense tiles [42] to reduce ir-
regularity of partial outputs, disjoint tiles [4] to minimize commu-
nication, or balanced tiles [21, 23] to ease load balancing. These
techniques di$er from Gamma’s: our goal is to improve the locality
of #, whereas CPUs and GPUs lack high-radix mergers and have
more on-chip storage, making #’s locality a less pressing concern.

To classify on-chip storage structures, we can use the two-dimen-
sional taxonomy from Pellauer et al. [40]. Speci!cally, the content of
an on-chip storage structure can be managed in two styles: explicit
or implicit. Explicitly orchestrated structures allow applications to
directly control what to retain or remove, while implicitly orches-
trated structures infer such decisions implicitly based on read/write
accesses. A storage structure can be used in either coupled or decou-
pled manner depending on whether the data needed is pre-staged
ahead of processing to hide the memory access latency. Caches
are implicit and coupled. Gamma’s FiberCache combines features
of caches and explicitly managed bu$ers to both exploit irregular
reuse and hide memory latency through explicit decoupled data
orchestration. Stash [31] is also a hybrid of caches and scratchpads,
but with di$erent goals: Stash maps data regions and accesses them
explicitly, with a scratchpad interface, to reduce addressing power.
Stash fetches accessed data lazily, which saves tra"c when not all
mapped data is accessed, but leaves accesses coupled to users. By
contrast, Gamma knows precisely which data will be accessed so
its decoupled design hides long access latency. Following the tax-
onomy above, Stash is explicit and coupled, whereas FiberCache
is implicit and decoupled.

Finally, while we focus on spMspM, many applications use high-
dimensional tensors. For instance, TACO [28, 29] introducesworksp-
aces and proposes compiler machinery to handle complex tensor
operations. Gamma can be combined with such techniques to sup-
port a broader range of applications.

8 CONCLUSION
spMspM is the basic building block of many emerging sparse appli-
cations, so it is crucial to accelerate it. However, prior spMspM accel-
erators use ine"cient inner- and outer-product data#ows, and miss
Gustavson’s more e"cient data#ow. We have presented Gamma, an
spMspM accelerator that leverages Gustavson’s algorithm. Gamma
uses dynamically scheduled PEs with e"cient high-radix mergers
and performs many merges in parallel to achieve high throughput,
reducing merger area by about 15× over prior work [59]. Gamma
uses a novel on-chip storage structure, FiberCache, which sup-
ports Gustavson’s irregular reuse patterns and streams thousands of
concurrent sparse !bers with explicitly decoupled data movement.
We also devise new preprocessing algorithms that boost Gamma’s
e"ciency and versatility. As a result, Gamma outperforms prior
accelerators by gmean 2.1×, and reduces memory tra"c by 2.2×
on average and by up to 13×.
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