GAMMA: Leveraging Gustavson’s Algorithm
to Accelerate Sparse Matrix Multiplication

Guowei Zhang Nithya Attaluri

Joel S. Emer Daniel Sanchez

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology
Cambridge, MA, USA
{zhanggw,nsattaluri,emer,sanchez}@csail.mit.edu

ABSTRACT

Sparse matrix-sparse matrix multiplication (SPMspM) is at the heart
of a wide range of scientific and machine learning applications.
sPMsPM is inefficient on general-purpose architectures, making
accelerators attractive. However, prior sPMspM accelerators use
inner- or outer-product dataflows that suffer poor input or output
reuse, leading to high traffic and poor performance. These prior
accelerators have not explored Gustavson’s algorithm, an alterna-
tive sPMspM dataflow that does not suffer from these problems but
features irregular memory access patterns that prior accelerators
do not support.

We present GAMMA, an sSPMsPM accelerator that uses Gustavson’s
algorithm to address the challenges of prior work. GAMMA performs
spPMsPM’s computation using specialized processing elements with
simple high-radix mergers, and performs many merges in parallel
to achieve high throughput. GAMMA uses a novel on-chip storage
structure that combines features of both caches and explicitly man-
aged buffers. This structure captures Gustavson’s irregular reuse
patterns and streams thousands of concurrent sparse fibers (i.e.,
lists of coordinates and values for rows or columns) with explicitly
decoupled data movement. GAMMA features a new dynamic sched-
uling algorithm to achieve high utilization despite irregularity. We
also present new preprocessing algorithms that boost GAMMA’s
efficiency and versatility. As a result, Gamma outperforms prior
accelerators by gmean 2.1x%, and reduces memory traffic by gmean
2.2x and by up to 13x.

CCS CONCEPTS

« Computer systems organization — Architectures.

KEYWORDS

sparse matrix multiplication, sparse linear algebra, accelerator, Gus-
tavson’s algorithm, high-radix merge, explicit data orchestration,
data movement reduction

ACM Reference Format:

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021.
GaMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix
Multiplication. In Proceedings of the 26th ACM International Conference on

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8317-2/21/04.

https://doi.org/10.1145/3445814.3446702

Architectural Support for Programming Languages and Operating Systems
(ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3445814.3446702

1 INTRODUCTION

Scientific and machine learning applications are increasingly com-
puting on sparse data, i.e., data where a large fraction of values are
zeros. In this work, we focus on accelerating sparse matrix-sparse
matrix multiplication (sPMspM), a key kernel that lies at the heart of
many sparse algorithms, like sparse deep neural networks [18, 39],
sparse linear and tensor algebra [29, 57], graph analytics [16, 27],
and simulation [6].

sPMsPM has two key characteristics that make it challenging
to accelerate. First, sSPMsPM is bottlenecked by memory traffic and
data movement: it requires far fewer arithmetic operations per
input element than dense matrix multiplication, and its inputs and
outputs typically use a compressed representation that omits zeros
but is more complicated to traverse, requiring irregular and indirect
accesses. Thus, to be effective, accelerators must minimize data
movement, rather than compute operations. Second, sPMsPM has a
rich algorithmic diversity: it admits a wide range of dataflows (i.e.,
computation schedules) with different tradeoffs, and some dataflows
have asymptotically worse performance on particular inputs. Thus,
accelerators must achieve efficiency though specialization while
avoiding the inefficiencies of using an inadequate sPMspM dataflow.

Prior work has proposed sPMsPM accelerators that greatly im-
prove performance over CPUs and GPUs. And yet, these accel-
erators have focused on one of two spPMspM dataflows, inner-
product [20, 43] or outer-product [37, 59], which have significant
drawbacks (Sec. 2). Inner-product maximizes output reuse but sac-
rifices reuse of input matrices, and is inefficient with highly sparse
matrices, as it is dominated by the cost of intersections that do
not produce output values. By contrast, outer-product maximizes
input reuse, but sacrifices output reuse, as it suffers from the cost
and memory traffic of merging large partial output matrices. Prior
accelerators have missed a third sPMspM dataflow, Gustavson’s
algorithm [17],! which is often the most efficient dataflow and is
widely used in CPUs and GPUs [15, 29, 52]. Gustavson’s algorithm
often achieves the least amount of memory traffic and requires
simpler operations because it avoids the extremes of inner- and
outer-product. However, Gustavson’s algorithm has more irregular
reuse across data structures, demanding a storage organization that
can exploit that reuse to reduce memory traffic.

!MatRaptor [48], which was published after the submission of this work, is an acceler-
ator that exploits Gustavson’s algorithm. We discuss it briefly in Sec. 7.

https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1145/3445814.3446702

ASPLOS 21, April 19-23, 2021, Virtual, USA

To unlock the potential of sPMspPM acceleration, we propose
GAMMA, the Gustavson-Algorithm Matrix-Multiplication Accelerator
(Sec. 3). GAMMA combines three key features:

(1) GamMmA uses simple processing elements (PEs) that linearly
combine sparse input rows to produce each output row. PEs
implement high-radix mergers that combine many input
rows (e.g., 64 in our design) in a single pass, reducing work
and memory accesses. Instead of expensive high-throughput
mergers as in prior work [59], GAMMA uses simple scalar
mergers, and relies on Gustavson’s row-level parallelism
to achieve high throughput efficiently, using tens of PEs to
perform many combinations in parallel. Thus, GAMMA con-
currently processes thousands of compressed sparse fibers,
variable-sized rows from inputs or partial outputs.

(2) GamMA uses a novel storage structure, FIBERCACHE, to effi-
ciently buffer the thousands of fibers required by PEs. FIBER-
CACHE is organized as a cache to capture Gustavson’s ir-
regular reuse patterns. However, FIBERCACHE is managed
explicitly, like a large collection of buffers, to fetch missing
fibers ahead of time and avoid PE stalls. This saves megabytes
of dedicated on-chip buffers.

(3) GAMMA dynamically schedules work across PEs to ensure
high utilization and minimize memory traffic despite the
irregular nature of Gustavson’s algorithm.

While Gustavson’s algorithm is an improvement over other
dataflows, it still incurs excessive traffic on some inputs. To ad-
dress this issue, we propose a preprocessing technique (Sec. 4).
that combines row reordering and selective tiling of one matrix
input. Preprocessing improves GAMMA’s performance and avoids
pathologies across the full range of inputs.

We synthesize GAMMA and evaluate its performance on a wide
range of sparse matrices (Sec. 6). Compared to state-of-the-art ac-
celerators, with a similar hardware budget, GAMMA reduces total
DRAM traffic by 2.2X on average, non-compulsory DRAM traffic
by 12X on average, and achieves significantly higher DRAM band-
width utilization. Moreover, GAMMA is effective on a much broader
range of sparse matrices.

In summary, we make the following contributions:

e We show that prior sPMspM accelerators have missed a key
dataflow, Gustavson’s, which is often more efficient but has
less regular access patterns than previously used dataflows.

o We build GAMMA, a novel sPMspPM accelerator that combines
specialized PEs, a novel cache-based structure to capture Gus-
tavson’s irregular reuse, and dynamic scheduling to achieve
high utilization despite irregularity.

e We propose preprocessing techniques that boost GAMMA’s
effectiveness and avoid Gustavson’s pathologies.

e We evaluate GAMMA under a broad range of matrices, show-
ing large performance gains and memory traffic reductions
over prior systems, as well as higher versatility.

2 BACKGROUND AND MOTIVATION

Sparse matrix-sparse matrix multiplication (sPMspPM) is widely used
in deep learning inference [18, 39, 54], linear algebra [5, 29, 57],
and graph analytics [16, 27] (including breadth-first search [16],
maximum matching [44], cycle detection [58], triangle counting [2],

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

columns
0 1

Compressed Sparse Row Compressed Sparse Column

o 1, 0 ﬂ
0.3/07 1.412.5

compressed fibers (ordered coordinate-value lists)

TN ﬂ
0.3 1.4 0.7 2.5

Figure 1: Compressed sparse matrix formats.

clustering [50], and all-pair shortest paths [7]). It is also a key
building block for many other workloads, such as parsing [41],
searching [25], and optimization [26].

We first describe the data structures used by sPMspM and the
basic sPMspPM dataflows; then, we review prior accelerators, the
optimizations they introduce, and their limitations, motivating the
need for a Gustavson-based accelerator.

2.1 Compressed Sparse Data Structures

sPMsPM operates on compressed sparse data structures, i.e., struc-
tures where only nonzeros are represented. Fig. 1 shows a sparse
matrix encoded in two commonly used formats, compressed sparse
row (CSR) and compressed sparse column (CSC). In CSR, rows are
stored in a compressed format: each row is an ordered list of coor-
dinates (in this case, column indexes) and nonzero values, stored
contiguously. Indexing into a particular row is achieved through the
offsets array, which stores the starting position of each row. CSC is
analogous to CSR, but stores the matrix by compressed columns. In
general, we call each compressed row or column a fiber, represented
by a list of coordinates and values, sorted by coordinate.

Compressed sparse data structures introduce two challenges.
First, certain kinds of traversals, called concordant traversals [49],
are more efficient than others. For example, a CSR matrix can be
traversed row by row, but traversing it by columns or accessing
elements at random coordinates is inefficient. Thus, to be efficient,
different sPMspPM dataflows impose different constraints on the pre-
ferred representation of input and output matrices. Second, sPMspM
relies on indirect accesses (through the offsets array) to variable-
sized fibers, and requires combining or intersecting those fibers.
These operations are inefficient on CPUs and GPUs.

2.2 spMspPM Dataflows

Fig. 2 shows the three basic dataflows for sSPMsPM: inner-product,
outer-product, and Gustavson. Fig. 2 also shows the abstract loop
nest corresponding to each dataflow (for simplicity, these loop
nests assume dense matrices; with compressed sparse matrices,
operations are more complex). sSPMspM computes CprxN = Aprxk X
Bk xnN using a triply-nested loop that iterates over A’s and B’s
independent dimensions, M and N, and co-iterates over their shared
dimension, K. The dataflow is determined by the level of this co-
iteration: in inner-product, co-iteration happens at the innermost
loop; in outer-product, at the outermost loop; and in Gustavson’s,
at the middle loop.?

2While Fig. 2 shows three loop nest orders, there are six possible orders. The remaining
three stem from swapping the M and N loops; this merely switches the dimensions
in which inputs are traversed, but results in an otherwise identical dataflow. For
example, Fig. 2 shows an inner-product dataflow where A is traversed by rows and B
by columns; swapping the outer two loops results in an inner-product dataflow where
A is traversed by columns and B by rows.

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

Amxk Brun Can
Inner-product
dataflow X _
for m in [0, M) M M
for n in [0, N)
for k in [0, K) K K N
C[m,n] += A[m,k] * B[k,n] —

Outer-product
dataflow

for k in [0, K)
for m in [0, M)
for n in [0, N)

C[m,n] += A[m,k] * B[k,n]

Gustavson 1L b-xo
tafl =

dataflow X —

for m in [0, M) - Em-—/

for k in [0, K)
for n in [0, N)
C[m,n] += A[m,k] * B[k,n]

Figure 2: Comparison of basic sPMspM dataflows.

Inner-product is an output-stationary® dataflow: it computes the
output matrix one element at a time, simultaneously traversing (i.e.,
co-iterating) rows (m) of A and columns (n) of B. This achieves good
output reuse, but poor input reuse. Since A and B are sparse, this
traversal requires an intersection, as only nonzeros with matching
k coordinates contribute towards the output. Inner-product is rela-
tively efficient when the input matrices are nearly dense. But with
highly sparse matrices, inner-product is dominated by the cost of
intersections, which are inefficient because all elements of the rows
and columns must be traversed, even though there are few effectual
intersections, i.e., cases where both elements are nonzero. For ex-
ample, in Fig. 2, intersecting row A1 and column Bs is completely
ineffectual, as they have no nonzeros with the same coordinate.

Outer-product, by contrast, is an input-stationary dataflow: it com-
putes the output one partial matrix at a time, traversing each col-
umn of A (k) and row of B (k) once and computing a full M X N
matrix that incorporates all their contributions to the output. Then,
all K partial output matrices are combined to produce the final out-
put matrix. Outer-product achieves good reuse of input matrices.
Additionally, outer-product avoids inner-product’s inefficiencies of
ineffectual intersections: each co-iteration of a column of A and a
row of B is ineffectual only when either is all-zeros, which is un-
likely. However, outer-product is limited by poor output reuse: the
combined size of the partial output matrices is often much larger
than the final output, so they cause significant traffic. Moreover,
combining these partial output matrices is a complex operation.

Gustavson, finally, is a row-stationary dataflow: it computes the
output matrix one row at a time, by traversing a row of A (m) and
scaling and reducing, i.e., linearly combining, the rows of B (k) for
which the row of A has nonzero coordinates. Specifically, given a
row A; with nonzeros ajj, output row C; is produced by linearly
combining B’s rows Bj, ie., C; = Zj a;ijBj. Gustavson is more
efficient because it avoids the extremes of inner- and outer-product
dataflows. While Gustavson does not get as much reuse of a single
value as either inner- or outer-product dataflows, it gets reuse of

3We use the *-stationary terminology from Chen et al. [9].

ASPLOS 21, April 19-23, 2021, Virtual, USA

modestly sized rows. Unlike outer-product, Gustavson requires
combining partial output rows rather than partial output matrices,
a simpler operation on much smaller intermediates that more easily
fit on-chip; and unlike inner-product, Gustavson avoids ineffectual
intersections and poor input reuse.

Finally, Gustavson has an additional advantage over the other
dataflows: its inputs and outputs are all in a consistent format,
CSR.* By contrast, inner- or outer-product require one input to
be in CSR and the other in CSC, to support efficient concordant
traversals. We do not evaluate this issue further, but for compound
operations (e.g., matrix exponentiation), having different formats
requires expensive operand transformations, e.g., converting CSC
to CSR, that rival the cost of accelerated sPMsPM [11].

2.3 sPMsPM Accelerators

Despite the advantages of Gustavson’s algorithm, prior sPMspM
accelerators have focused on inner- and outer-product dataflows,
seeking to maximize reuse of one operand. These designs incorpo-
rate different optimizations over the basic dataflow they adopt to
mitigate its inefficiencies.

Accelerators like UCNN [20] and SIGMA [43] implement inner-
product sPMspM. These designs are built around hardware support
to accelerate intersections: UCNN traverses compressed sparse data
structures, while SIGMA uses a hardware-friendly bitmap-based
fiber representation to further accelerate intersections. To counter
poor input reuse, some designs also tile input matrices [19] to fit
on-chip. While these designs achieve much higher throughput than
CPUs and GPUs when matrices are relatively dense (as is typical
in e.g. deep learning inference), they suffer from the algorithmic
inefficiencies of ineffectual intersections on sparse matrices.

By contrast, accelerators including OuterSPACE [37], SpArch [59],
and SCNN [39] implement an outer-product dataflow, and take dif-
ferent approaches to mitigate its inefficiencies. To reduce merge
complexity, OuterSPACE divides partial output matrices in rows,
then merges rows individually. However, OuterSPACE produces
a large amount of off-chip traffic due to partial outputs, which do
not fit on-chip. SpArch, by contrast, is built around a very complex
high-throughput, high-radix merger that can merge up to 64 partial
matrices per pass, and two main techniques to use this merger well:
pipelining the production of the partial output matrices and their
merging to avoid spilling them off-chip, and using a matrix condens-
ing technique that reduces the number and size of partial output
matrices. Scaling up SpArch is inefficient because its throughput is
bottlenecked by the merger, and scaling up the merger’s throughput
incurs quadratic area and energy costs. Instead, GAMMA achieves
high throughput with linear cost by performing many indepen-
dent merges in parallel. On highly sparse matrices, SpArch often
achieves nearly perfect off-chip traffic because it can produce fewer
than 64 partial output matrices; however, on large or less-sparse
matrices, SpArch incurs high traffic as it needs to spill many par-
tial outputs off-chip. SpArch’s matrix condensing technique also
sacrifices reuse of the B matrix, which can add significant traffic.

Finally, some prior work adopts a hybrid of inner- and outer-
product: ExTensor [19] is a flexible accelerator for tensor algebra
that combines outer-product at the chip level, and inner-product

40r CSC in the alternative Gustavson dataflow; see footnote 2.

ASPLOS 21, April 19-23, 2021, Virtual, USA

within individual PEs. This approach requires tiling to be used well,
and though this hierarchical design eliminates more ineffectual
work than a pure inner-product design (by skipping entire ineffec-
tual tiles when possible), it still suffers from the drawbacks of the
dataflows it adopts.

Despite these optimizations, prior SPMsPM accelerators are sad-
dled by the fundamental inefficiencies of the dataflows they adopt.
Fig. 3 shows this by comparing the memory traffic of different
accelerators when squaring (multiplying by itself) two represen-
tative sparse matrices: gupta2 (49 MB, density 1 X 10_3), which
is relatively dense, and web-Google (58 MB, density 6 x 1076),
which is highly sparse. We compare five accelerators with simi-
lar hardware budgets (see Sec. 5 for methodology details): (1) IP
uses an inner-product dataflow with optimally tiled input matrices;
(2) OS is OuterSPACE; (3) S is SpArch; (4) G is GaMMA without
preprocessing; and (5) GP is GAMMA with preprocessing. Each bar
shows traffic normalized to
compulsory traffic (i.e., the traf-
fic all designs would incur with

C W= Partial outputs
1045x

214 1
unbounded on-chip memory, £,
equivalent to reading the in- Em
puts and writing the output ¢ 8
matrix). Traffic is broken down E j
by data structure: reads of A E 0 | |
and B, writes of the final out- 2 0 | | | -
. POSS GGP IPOS S G GP
put C, and writes and reads of gupta2 web-Google

partial outputs.

Fig. 3 shows that, despite Figure 3: Off-chip traffic of
their optimizations, prior accel- tiled inner-product (IP), Out-
erators have significant draw- erSPACE (OS), SpArch (S), and
backs: IP works reasonably Gamma without/with prepro-
well on the denser matrix, but cessing (G/GP).
is inefficient on the sparser one
because of many sparse tiles
resulting from the hard-to-predict distribution of nonzeros. Out-
erSPACE suffers from partial outputs, while SpArch incurs less
traffic on partial outputs, but more on matrix B. They both perform
well on the sparser matrix, but not on the denser one. Even with-
out preprocessing, GAMMA outperforms them all solely by virtue
of using Gustavson’s dataflow. But GAMMA supports matrix tiling
and reordering techniques like prior work, as we will see in Sec. 4.
With these preprocessing techniques, GAMMA achieves even larger
traffic reductions. Finally, since sPMsPM is memory-bound, this
lower bandwidth translates to higher performance (Sec. 6).

3 GAMMA

Fig. 4 shows an overview of |
GAMMA. GAMMA consists of multi-

Memory ‘

ple processing elements (PEs) that H
linearly combine sparse fibers; ‘ FiberCache ‘
a scheduler that adaptively dis-
tributes work across PEs; and a
FIBERCACHE that captures irregu-

| Scheduler |
lar reuse of fibers.

Fig. 5 illustrates GAMMA’s op-

eration through a simple example ~ Figure 4: GAMMA overview.

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

Main memory

FiberCache

2
& «
)
m
o

i ba 21Bs,l~
o |°1,s'bs,4|°1,3'b3,4|°1,3'b3,2|°1,5'b5,1|'

eoe |°1,5'bs,4+°1,3'b3,4|°1 3bs 2|°1 sbs l| T

Figure 5: Example showing GaAmmA’s operation.

that shows how the first few elements of an output row are pro-
duced. GAMMA always operates on fibers, i.e., streams of nonzero
values and their coordinates sorted by coordinate. First, the sched-
uler fetches row fibers from matrix A and dispatches them to PEs.
Each PE then computes a linear combination of row fibers of B to
produce a row fiber of output C. For example, in Fig. 5, the scheduler
dispatches row A to PE 0. Row A has only two nonzeros, at coor-
dinates 3 and 5. Therefore, PE 0 linearly combines rows B3 and Bs.
Fig. 5 shows how the first few elements of each row are combined.
First, the B3 and B fibers are streamed from the FIBERCACHE. (The
FIBERCACHE retains these fibers, so subsequent uses do not incur
off-chip traffic.) Then, these fibers are merged into a single fiber,
with elements ordered by their shared (column, i.e., N-dimension)
coordinate. Each element in the merged fiber is then scaled by the
coefficient of A’s row corresponding to the fiber element’s row (K)
coordinate. Finally, consecutive values with the same column (N)
coordinate are summed up, producing the output fiber. Fig. 5 shows
the values of these intermediate fibers needed to produce the first
three elements of output row Cy.
Gamma PEs have a bounded radix, R: PEs can linearly combine
up to R input fibers in a single pass (though Fig. 5 illustrates the
combination of only two fibers, GaAmMMA PEs have a higher radix, 64
in our implementation). When a row of A has more than R nonzeros,
the scheduler breaks the linear combination into multiple rounds.
For example, with R = 64, processing a row of A with 256 nonzeros
would be done using four 64-way linear combinations followed by
a 4-way linear combination. Each of the initial linear combinations
produces a partial output fiber, which is then consumed by the final
linear combination. The FIBERCACHE buffers these partial output
fibers, avoiding off-chip traffic when possible.
Gamma PEs use high-radix, modest-throughput mergers: PEs
have two key design parameters: radix, i.e., how many input fibers
they can take; and throughput, i.e., how many input and output ele-
ments they can consume and produce per cycle. These parameters
are given by the radix and throughput of the PE’s hardware merger,
which takes R input fibers and produces a sequence sorted by co-
ordinate (with repeats) as a step in creating a single output fiber
from all the elements of all the input fibers. Radix and throughput
choices have a substantial impact on PE and system efficiency, and
on memory system design, so we discuss them first.
Implementing high-radix merges is cheap, since merger area
grows linearly with radix. A high radix in turn makes computa-
tion more efficient: it allows many linear combinations to be done

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

in a single pass, and increasing the radix reduces the number of
merge rounds and partial output fibers needed. For example, lin-
early combining 4096 fibers with radix-64 PEs would require 65
PE invocations in a depth-2 tree; using radix-2 PEs would require
4095 PE invocations in a depth-12 tree. The radix-64 PEs would
produce one set of partial output fibers, whereas the radix-2 PEs
would produce 11, increasing FIBERCACHE traffic by about an order
of magnitude.’

Since higher-radix mergers are larger, there is a tradeoff between
the size and power cost of the merger and both PE performance
(measured in number of passes required) and FIBERCACHE traffic
(due to partial output fibers). With current technology, the sweet
spot balancing overall PE cost and performance occurs around
R=64.

Another consideration is the throughput of the merger. Imple-
menting high-throughput mergers is costly, since merger area and
energy grow quadratically with throughput. Producing N output el-
ements per cycle requires the merger to consume up to N elements
from a single input, and to perform up to N? comparisons. Thus,
GaMmMA uses simple pipelined merge units that produce one output
and consume one input per cycle, and achieves high throughput by
doing many independent linear combinations in parallel, e.g., by
using multiple PEs to process distinct rows of A.

This design tradeoff stands in contrast to SpArch [59], the sPM-
sPM accelerator that comes closest to GAMMA’s efficiency. Because
SpArch merges partial output matrices rather than fibers, it can-
not exploit row-level parallelism, and implements a single high-
throughput merger that dominates area and limits throughput.
GaMMA and SpArch both implement radix-64 mergers. However,
while in GaMMA each PE’s merger is about the same area as its
floating-point multiplier, SpArch spends 38X more area on the
merger than on multipliers.

GammaA’s on-chip storage captures irregular reuse across many
fibers: Although Gamma’s PEs are efficient, the combination of
high-radix and many PEs to achieve high throughput means that
GAMMA’s memory system must support efficient accesses to a large
number of concurrent fibers. For example, a system using 32 radix-
64 PEs can fetch 2048 input fibers concurrently. GAMMA relies on a
novel on-chip storage idiom, FIBERCACHE, to support the irregular
reuse patterns of Gustavson’s algorithm efficiently. FIBERCACHE
takes two key design decisions: sharing a single structure for all
fibers that may have reuse, and combining caching and explicit
decoupled data orchestration [40] to avoid large fetch buffers.

GAaMMA processes four types of fibers: rows of A and B, and
partial and final output rows of C. Rows of A and final output rows
of C have no reuse, so they are streamed from/to main memory.
Rows of B and partial output rows of C have reuse, but different
access patterns: rows of B are read-only and are accessed potentially
multiple times (depending on A’s nonzeros), whereas partial output
fibers, which need to be further merged to produce a final output
row, are produced and consumed by PEs, typically within a short
period of time. The FIBERCACHE buffers both types of fibers within
a single structure, instead of having separate buffers for inputs and

5In highly sparse matrices, fibers rarely have matching coordinates, so the size of the
linear combination of R fibers is close to the sum of the size of the partial output fibers
(whereas for dense fibers, the final output would be a factor of R smaller).

ASPLOS 21, April 19-23, 2021, Virtual, USA

outputs. Sharing capacity across fiber types helps because different
matrices demand a widely varying share of footprint for partial
outputs, but requires careful management to maximize reuse.

FIBERCACHE is organized as a highly banked cache, which allows
it to flexibly share its capacity among many fibers or fiber fragments.
However, FIBERCACHE is managed using the explicit data orchestra-
tion idioms common in accelerators [40]: the fibers needed by each
PE are fetched ahead of time, so that when the PE reads each input
fiber element, the data is served from the FIBERCAcHE. This avoids
PE stalls and lets the FIBERCACHE pull double duty as a latency-
decoupling buffer. This feature is important because, due to the
large number of concurrent fibers processed, implementing such
buffering separately would be inefficient: with 32 radix-64 PEs and
an 80 ns main memory, implementing these buffers would require
about 2 MB of storage, a large fraction of the 3 MB FIBERCACHE we
implement (Sec. 5).

3.1 Processing Element

Fig. 6 details the design of GAmMA’s PE. The PE linearly combines
up to R fibers incrementally. Operation begins with a request from
the scheduler, which streams up to R input fiber descriptors: for
each input, the scheduler specifies its starting location, size, and a
scaling factor. If the input fiber is a row of B, By, the scaling factor
is value a,,,;; otherwise, the input fiber is a previously generated
partial output, and its scaling factor is 1.0. The PE stores scaling
factors in a register file, and input fiber locations in the fiber fetcher.
The fiber fetcher then begins streaming input fibers from the
FIBERCACHE. The read elements are streamed into two sets of cir-
cular buffers: coordinates (N) are staged as inputs to the high-radix
merger, while values are buffered separately. Each set has R buffers,
one for each way of the merger. Since the FIBERCACHE ensures low
access latency, these buffers are small and incur low overheads.
To FiberCache

Input fiber (By) elements

output
merged cords (n)py coords
indexes (0..R-1) U (n)
N output
Tg § values
bl = = (Cmn)
218 valves (b,,) '?
= valuves (a) =
=T

Scaling
factor regfile

Ay fiber elements
From scheduler

Figure 6: GaAmMA’s PE architecture.

The merger consumes the minimum coordinate (N) among the
heads of its R input buffers, and outputs the coordinate together
with its way index, i.e., a value between 0 and R — 1 that identifies
which input fiber this coordinate came from.

The way index is used to read both the corresponding value from
the value buffer and the scaling factor. The PE then multiplies these
values. Finally, the coordinate and value are processed by an accu-
mulator that buffers and sums up the values of same-coordinate
inputs. If the accumulator receives an input with a different coordi-
nate, it emits the currently buffered element, which is part of the
output fiber.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Fig. 7 shows the implementation 0«

s _ 1 ,_,D"’ > output
of the merger. The merger is orga- LB woord
nized as a balanced binary tree of sim- oords © " |
ple compute units. Each unit has an DI HDI

R-1
integer comparator for coordinates, ~

and merges coordinate streams incre- %elﬁmd
next

mentally. This design achieves a small i
area cost, e.g., 55% of a 64-bit float- "
ing point multiplier for a radix of 64, _coord_0 coord
i i _ coord_1 >
and achieves an adequately high fre o > |
quency < next (h—_«l{_—
Unlike prior mergers [45, 59] with ~ from_1

throughputs that are high on average

but are very sensitive to coordinate Figure 7: High-radix
distribution, GAMMA’s merger main- merger implementa-
tains a constant 1-element-per-cycle tion.

throughput. Thus, in steady state, the

PE consumes one input fiber element per cycle and performs one
scaling operation. This achieves high utilization of its most expen-
sive components, the multiplier and the merger.

3.2 FI1BERCACHE

Fig. 8 shows the FIBERCACHE design and interface. FIBERCACHE
builds upon a cache: it has data and tag arrays, organizes data in
lines, and uses a replacement policy tailored to fiber access patterns.
But FIBERCACHE has two key distinct features. First, FIBERCACHE
extends the usual read-write access interface with primitives
that manage data movement more explicitly: fetch and consume.
fetch enables decoupled data orchestration by fetching data from
memory ahead of execution. Second, to ensure that read’s hit in
most cases, FIBERCACHE ensures that fetched data is unlikely to
be evicted. This is achieved through the replacement policy. This
effectively turns a dynamic portion of FIBERCACHE into buffer-
like storage, but without incurring the high overheads of separate,
statically sized buffers.

Reading rows of B that are not cached incurs a long latency,
stalling the PE and hurting performance. FIBERCACHE addresses
this issue by decoupling PE data accesses into two steps: fetch
and read. A fetch request is sent ahead of execution and places
the data into the FIBERCACHE, accessing main memory if needed,
and a read request directs the actual data movement from FIBER-
CAcHE to the PE. This decouples the accesses to memory and the
computation on PEs.

Unlike speculative prefetching, a fetch is non-speculative: the
data accessed by a fetch is guaranteed to have a short reuse dis-
tance. FIBERCACHE exploits this property through the replacement
policy. FIBERCACHE assigns each line a priority in replacement.
The priority is managed as a counter: e.g., a 5-bit counter for 32
PEs. A fetchrequest increments the priority, while a read request
decrements it. Lower-priority lines are selected for eviction. This
guarantees that most read’s hit in the cache; effectively, the prior-
ity is a soft lock on lines that are about to be used. FIBERCACHE uses
simple 2-bit SRRIP [22] to break ties among same-priority lines.
Reading and writing partial outputs use the other two primitive
requests: write and consume. Both write and consume exploit
the fact that partial output fibers need not be backed up by memory.

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

" FiberCache FiberCache

o bank

'g -g _g read

o 2 Qe consume

~ o o L Data array .

2 & o] Pt . write

el [T T | e . Meme PE
—

2
Tag array

Figure 8: FIBERCACHE architecture overview.

Upon a write, FIBERCACHE allocates a line without fetching it
from memory, updates the data, and sets a dirty bit. A consume
is similar to a read, but instead of retaining the line after the
access, FIBERCACHE invalidates the line, without writing it back
even though it is dirty.

Banks and interconnect: Since FIBERCACHE must accommodate
concurrent accesses from multiple PEs, we use a highly banked
design (e.g., 48 banks for 32 PEs). Banks are connected with PEs
and memory controllers using crossbars.

3.3 Scheduler

The scheduler assigns compute tasks to PEs to ensure high utiliza-
tion and minimize memory traffic.

From A to tasks: The scheduler assigns work by traversing the
rows of A. Each row of A with fewer nonzeros than the PE radix
results in a single task that produces the corresponding output row
and writes it directly to main memory.

When a row of A has more nonzeros N than the PE radix R,
the scheduler produces a task tree that performs an radix-N linear
combination in multiple radix-R steps. Fig. 9 shows an example
of a task tree that combines 18 fibers using radix-3 mergers. Each
node represents a fiber: the root is the output; leaves are rows of B;
and intermediate nodes are the partial output fibers. Edges denote
which input fibers (children) contribute to a partial or final output
fiber (parent).

The scheduler produces a balanced, top-full tree. Balance im-
proves merge efficiency: in the common case, the rows of B have
similar nonzeros, so a balanced tree results in similarly sized input
fibers at each tree level. This is more efficient than a linear tree,
which would build an overlong fiber. Moreover, a balanced tree
enables more PEs to work on the same row in parallel. (SpArch [59]
uses more sophisticated dynamic selection of merge inputs based
on their lengths; this is helpful in SpArch because it purposefully
constructs uneven partial output matrices, but does not help in
GamMma.) Top-fullness keeps footprints of partial output fibers low:
by keeping the radix of the top levels full, and allowing only the
lowest level to have empty input fibers, partial fibers are kept small,
reducing the pressure on FIBERCACHE storage.

@ ovtput fiber
O Partial output fibers O Q
@ @& o & 0 0000
- QPO 000000000 00O °"

Figure 9: Example schedule tree (balanced and top-full) to
combine 18 input fibers on PEs with radix 3.

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

Mapping tasks to PEs: The scheduler dynamically maps tasks to
PEs: when a PE becomes ready to receive a new task, the scheduler
assigns is the next available one. Tasks are prioritized for execution
in row order, to produce the output in an ordered fashion. For
multi-task rows, the scheduler follows a dataflow (i.e., data-driven)
schedule: it schedules as many leaf tasks from a single row as needed
to fill PEs, and schedules each higher-level task as soon as its input
fibers become available. The scheduler prioritizes higher-level tasks
over lower-level ones to reduce the footprint of partial outputs.
Staging tasks and data: To avoid stalls when starting up a linear
combination, PEs can accept a new task while processing the exist-
ing one. When a PE receives a new task, it starts staging its data
into its merge buffers, so that it can switch from processing the old
task to the new task in a single cycle.

The main data structure in a scheduler implementation is a
scoreboard that buffers tasks not ready to dispatch and monitors
partial fibers that have not been produced. Additional logic and
buffers are required to fill tasks in the scoreboard by running the
outermost loop of Gustavson’s algorithm. The scheduler is 0.4% of
total chip area.

3.4 Memory Management

Prior to the execution, matrices A and B are loaded into memory,
and a sufficiently wide range of address space is allocated for C and
partial output fibers.

Since the lengths of partial output fibers are unknown ahead of
time, GAMMA allocates them dynamically. Upon scheduling a merge
that produces a partial output fiber, the scheduler estimates the
number of nonzeros of the fiber conservatively, by using the sum of
the numbers of nonzeros in all its input fibers. The scheduler then
assigns and records the address range of the partial output fiber.
This space is only used if the FIBERCACHE needs to evict a partial
output, a rare occurrence. The scheduler deallocates the memory
when the partial output fiber is consumed. The number of partial
outputs is limited to twice the number of PEs, so this dynamic
memory management requires negligible on-chip memory.

4 PREPROCESSING FOR GAMMA

Though Gustavson is a more efficient dataflow than inner- and
outer-product, it can incur high traffic. Consider Gustavson on
dense operands: processing each row of A requires a complete
traversal of every row of B, and results in high memory traffic. This
phenomenon is mitigated for sparse operands, because processing
a sparse row of A only touches a subset of rows of B, and reuse
across those subsets makes the FIBERCACHE effective. Specifically,
rows of B enjoy reuse in the FIBERCACHE when multiple nonzeros
in A with the same column coordinate appear in nearby rows of A.
However, there are two reasons this may not happen: either nearby
rows of A contain largely disjoint sets of column coordinates (the
matrix lacks structure), so there is minimal reuse of rows of B; or a
single row of A has many nonzeros, which requires many rows of
B, thrashing the FIBERCACHE.

Prior work has addressed improving such problematic memory
access patterns in sparse matrices and graphs using preprocessing
techniques like tiling and reordering [21, 23, 42]. Similarly, GAMMA,

ASPLOS 21, April 19-23, 2021, Virtual, USA

like prior accelerators, can exploit preprocessing tailored to its
memory system and dataflow to further reduce data movement.

To improve data reference behavior, we design two preprocess-
ing techniques for rows of A. Affinity-based row-reordering targets
disparate adjacent rows of A by reordering rows so that similar
rows are processed consecutively. Selective coordinate-space tiling
breaks (only) dense rows of A into subrows to avoid thrashing,
and is applied before row-reordering to extract affinity among the
subrows. Both techniques can be implemented by either relying
on auxiliary data for indirections or by modifying the memory
layout of A. These techniques improve the reuse of sets of rows of
B, achieving better versatility and efficiency.

4.1 Affinity-Based Row Reordering

Problem definition: We use a score function S(i, j) to represent
the affinity of two rows A; and A;. S(i, j) is the number of coordi-
nates for which both A; and A; have a nonzero value.

Because on-chip storage can hold rows of B corresponding to
several rows of A, we are interested in maximizing the affinity of a
row with the previous W adjacent rows:

i-1

ali) = Z

Jj=max(0,i-W)

5@, J) 1)

We set the window size W to capture the number of rows of B that
fit in the FIBERCACHE on average:

max nnz in FIBERCACHE
w= @)

Nnnz per row4 - NNz per rowp

The goal of the algorithm is to find a proper permutation of rows
to maximize the affinity of the whole matrix, which we call a:

M-1 M-1 i-1
a= Y ay=> > SG) 3)
i=1 i=1 j=max(0,i-W)

Algorithm: Algorithm 1 shows the pseudocode for the affinity-
based reordering algorithm. This algorithm is greedy and uses a
priority queue (Q) to efficiently find the row with highest affinity.
The algorithm produces a permutation P of A’s rows. This algorithm
has complexity O(RlogR - N2), where R is the number of rows and
N is the average number of nonzeros per row, so it scales well to
large matrices as long as they are sparse.

Algorithm 1: Affinity-based row reordering.

Result: Permutation P of row indices
for r € rows do Q.insert(r, 0);
select some r to start, P[0] « r, Q.remove(r);
fori € [1,M) do
for u € column coords of row P[i — 1] do
for r € row coords of column u do

‘ if r € Q then Q.incKey(r);
if i > W then

for u € column coords of row P[i — W — 1] do

for r € row coords of column u do

‘ if r € Q then Q.decKey(r);

P[i] < Q.pop();

ASPLOS 21, April 19-23, 2021, Virtual, USA

4.2 Selective Coordinate-Space Tiling

Tiling improves input reuse (as each input tile is sized to fit on-
chip) at the expense of additional intermediate outputs that must be
merged. Tiling dense matrices is nearly always a good tradeoff [8,
38] because each input contributes to many outputs, and tiling
introduces a large gain in input locality for a few extra fetches of
intermediate outputs. However, this no longer holds with sparse
matrices, because output traffic often dominates. In other words,
tiling sparse rows may reduce traffic to B but produce many partial
output fibers that must be spilled off-chip and then brought back
to be merged.

Therefore, we apply tiling selectively, only to extremely dense
rows of A. Specifically, we split rows of A whose footprint to hold
rows of B is estimated to be above 25% of the FIBERCACHE capacity
(the estimated footprint is the length of A’s row times the average
number of nonzeros per row of B). Each subrow resulting from this
split contributes to a partial output fiber that must be combined
eventually. Because these partial output fibers are not accessed close
in time, they are likely to be spilled. To ensure that the partial output
fibers generated by subrows can be combined in just one round,
we use the merger’s radix R as the tiling factor, i.e., the number of
subrows. Rather than splitting rows into evenly-sized subrows, we
perform coordinate-space tiling [49]: we split evenly in coordinate
space, so if column coordinates are in the range [0, K), we create
up to R subrows with the ith subrow having the nonzeros within
an even subrange [iK/R, (i + 1)K/R). Experimentally, we find this
creates subrows with higher affinity, improving performance. In
large matrices, the resulting subrows may still be large, so this
process is repeated recursively.

5 METHODOLOGY

System: We evaluate a GAMMA system sized to make good use of
high-bandwidth memory and consume similar levels of resources
compared to prior accelerators [37, 59], in order to make fair com-
parisons. Our system has 32 radix-64 PEs, a 3 MB FIBERCACHE, and
a 128 GB/s High-Bandwidth Memory (HBM) interface. The system
runs at 1 GHz. Table 1 details the system’s parameters. We built
a cycle-accurate simulator to evaluate GAMMA’s performance and
resource utilization.

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

Table 1: Configuration of the evaluated GaAMMA system.

PEs 32 radix-64 PEs; 1 GHz
FIBERCACHE 3 MB, 48 banks, 16-way set-associative
Crossbars 48x48 and 4816, swizzle-switch based

Main memory 128 GB/s, 16 64-bit HBM channels, 8 GB/s/channel

Table 2: Area breakdown of Gamma (left) and one PE (right).

Area (mm?2) H PE component Area (mm?) %PE

32 PEs 4.8 Merger 0.045 30%
Scheduler 0.11 FP Mul 0.082 55%
F1BERCACHE 22.6 FP Add 0.015 10%
Crossbars 3.1 Others 0.008 5%

Total 30.6 PE total 0.15 100%

We measure GAMMA’s area by writing RTL for the PEs and sched-
uler. We then synthesize this logic using Synopsys Design Compiler
and yosys [55] on the 45 nm FreePDK45 standard cell library [35],
with a target frequency of 1GHz at 1.25V. We use CACTI 7.0 [3] to
model the FIBERCACHE at 45 nm. We model the same swizzle-switch
networks [46] as in prior work [37]. Table 2 shows GAMMA’s area
breakdown, which we contrast with prior work in Sec. 6.
Baselines: We compare GAMMA with two state-of-the-art acceler-
ators, OuterSPACE and SpArch. We built detailed memory traffic
models for OuterSPACE and SpArch to understand their key opera-
tional differences. We use the same approach as prior work [59] to
compare end-to-end performance, by using the same set of matrices
used in their evaluations. We use the original designs proposed in
OuterSPACE and SpArch papers, rather than scaling them to con-
duct iso-area or iso-power comparisons. This is because the correct
scaling strategy for each baseline is unclear. For instance, scaling
SpArch requires carefully tuning various buffer and comparator
array sizes. As a result, both baselines used in the comparisons have
larger area than GaMMA at the same technology.

Each accelerator uses inputs in the right format for its dataflow
(e.g., CSC and CSR inputs for outer-product), and SpArch uses
preprocessed inputs as described by Zhang et al. [59]. We use 32-
bit integer coordinates and 64-bit, double-precision floating-point

Table 3: Characteristics of the common set of matrices (all square).

Matrix ~ Nnz/row Rows ‘ ‘ Matrix Nnz/row Rows ‘ ‘ Matrix Nnz/row Rows

patents_main 233 240,547 web-Google 5.57 916,428 2cubes_sphere 16.23 101,492

p2p-Gnutella31 2.36 62,586 scircuit 5.61 170,998 offshore 16.33 259,789

roadNet-CA 2.81 1,971,281 amazon0312 7.99 400,727 cop20k_A 21.65 121,192

webbase-1M 3.11 1,000,005 ca-CondMat 8.08 23,133 filter3D 25.43 106,437

m133-b3 4.00 200,200 email-Enron 10.02 36,692 poisson3Da 26.10 13,514

cit-Patents 4.38 3,774,768 wiki-Vote 12.50 8,297
mario002 5.38 389,874 cagel2 15.61 130,228
Table 4: Characteristics of the extended set of matrices.

Matrix Nnz/row Rows Cols ‘ ‘ Matrix (Square) ~ Nnz/row Rows ‘ ‘ Matrix (Square) ~ Nnz/row Rows
NotreDame_actors 3.75 392,400 127,823 gupta2 68.45 62,064 x104 80.4 108,384
relat8 3.86 345,688 12,347 vsp_bcsstk30_500 69.12 58,348 m_t1 99.96 97,578
Maragal 7 25.63 46,845 26,564 Ge87H76 69.85 112,985 ship_001 111.58 34,920
degme 43.81 185,501 659,415 raefsky3 70.22 21,200 msc10848 113.36 10,848
Eternityll_Etilde 116.42 10,054 204,304 sme3Db 71.6 29,067 optl 124.97 15,449
nemsemm1 267.17 3,945 75,352 Ge99H100 74.8 112,985 ramage02 170.31 16,830

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

values. Because the outer-product baselines and Gamma always
consume coordinates and values, we store them together, as shown
in Fig. 1. For the memory traffic comparison in Fig. 3, the inner-
product accelerator (IP) uses separate coordinate and value arrays,
and values are only fetched on a matching intersection, since this
reduces traffic.

We also compare GAMMA against the sPMsPM implementation
from Intel MKL [52] (mk1_sparse_spmm function), running on a
4-core, 8-thread Skylake Xeon E3-1240 v5, with two DDR4-2400
channels. We do not include GPU results because existing GPU
spPMspM implementations perform similarly to MKL on CPUs [59].
Inputs: We use two sets of matrices. First, the Common set of ma-
trices is the set used in the evaluations of OuterSPACE and SpArch,
as shown in Table 3. We use the Common set for direct performance
comparisons with these accelerators. However, the Common set
covers only a fraction of the space of possible inputs: these matrices
are square, and most are very sparse, with a maximum mean of 26
nonzeros per row. This is not representative of other commonly
used matrices, and masks the inefficiencies of outer-product designs.
To evaluate the designs with a broader range of inputs, we construct
the Extended set of matrices, which includes 18 matrices from the
SuiteSparse Matrix Collection [30]. Table 4 lists these matrices,
which include non-square and square matrices with a wider range
of sparsities and sizes. We evaluate A X A for square matrices (like
prior work), and A x AT for non-square matrices.

6 EVALUATION

6.1 Performance on Common-Set Matrices

Fig. 10 reports the perfor-
mance of all accelerators on

common-set matrices. Each bar 3

shows the gmean speedup over <30

our software baseline, MKL. g 25

Note that common-set matri- § 20

ces are highly sparse and thus £ 15 |

well suited for OuterSPACE 210 ‘

and SpArch. On these matri- 4 5 ‘

ces, GAMMA (with preprocess- ‘ ‘ ‘

ing) is gmean 2.1xX faster than 0—Moss GGpP
SpArch, 7.7% faster than Out-

erSPACE, and 38x faster than Figure 10: Gmean speedup

vs. MKL on common-set ma-
trices for OuterSPACE (OS),
SpArch (S), and Gamma with-
out and with preprocessing
(G/GP).

MKL. Even without prepro-
cessing, which makes GaAMMA
gmean 16% faster, GAMMA
outperforms SpArch by 1.84X,
OuterSPACE by 6.6x, and MKL
by 33x.

Fig. 11 further shows the per-matrix speedups of Gamma (with
preprocessing) over MKL. GamMA outperforms MKL by up to 184x.

Fig. 12 and Fig. 13 explain how Gamma outperforms SpArch and
OuterSPACE: through a combination of reducing memory traffic
and improving memory bandwidth utilization.

Fig. 12 reports the memory traffic of OuterSPACE, SpArch, and
Gamma without and with preprocessing. Each group of bars shows
results for one matrix. Traffic is normalized to the compulsory
traffic, which would be incurred with unbounded on-chip storage:

ASPLOS 21, April 19-23, 2021, Virtual, USA

184x 101x
60 .
-
< 50
=
240
8
230
<
€20
s
a 10
0
T 0O < @ 9 N 2 £ F N E 2 N 2 @ S L - £
8 Q2 <L g8 %3 8 28=53%3%85 8579 3¢ 8§
:moﬁﬁm_cuo._ooumw,ﬂ:EE
= o £ @ T W & € © 2 ® ™ 3 © ©
2= 29 %5 93 £ L 56 » 0 §a T &2 3 o °
@ S @ 2 T O ¥ .oE.éE_-gE,cc
o @ E & g [) S 8 6 9
e = ® ©° 3 s 2 = o g
o & <
o o

Figure 11: Speedups of Gamma with preprocessing over MKL
on common-set matrices.

fetching A, the needed rows of B, and writing C. Each bar is broken
down into four categories: reads of A or B, writes of C, and reads
and writes of partial outputs.

Fig. 12 shows that GAMMA incurs close-to-optimal traffic: across
all inputs, it is only 7% higher than the compulsory (i.e., minimum)
traffic with preprocessing, and 26% higher without preprocessing.
By contrast, SpArch is 59% higher, and OuterSPACE is 4X higher.
OuterSPACE suffers writes and reads to partial matrices. SpArch
reduces partial output traffic over OuterSPACE, but incurs high
traffic on B for two reasons. First, to reduce partial output traffic,
SpArch preprocesses A to produce a schedule that worsens the
access pattern to B. Second, SpArch splits its storage resources
across data types (e.g., merge and prefetch buffers), leaving only
part of its on-chip storage (around half a megabyte) to exploit reuse
of B. By contrast, GAMMA’s shared FIBERCACHE allows B’s rows
to use more on-chip storage when beneficial. Because GAMMA’s
partial outputs are rows, it has negligible partial output traffic, and
its main overhead comes from imperfect reuse of B.

Fig. 13 further illustrates how memory bandwidth translates to
performance. Because GAMMA’s PEs achieve very high throughput
(processing inputs and outputs at a peak rate of 768 GB/s) and Gus-
tavson’s algorithm does not have compute-bound execution phases,
GamMma almost always saturates the available 128 GB/s memory
bandwidth. By contrast, OuterSPACE and SpArch suffer from the
compute bottleneck of merging all the partial matrices, and hence
achieve lower bandwidth utilizations of 48.3% and 68.6%, respec-
tively, on the same matrices. GAMMA’s higher performance stems
from its lower memory traffic and higher bandwidth utilization.

To further illustrate how FIBERCACHE is utilized, for each ap-
plication, we sample the utilization of FIBERCACHE every 10,000
cycles. Fig. 14 shows the average utilization of FIBERCACHE. On
these matrices, B fibers are dominant in FIBERCACHE, while par-
tial result fibers consume non-negligible capacity on some inputs,
including wiki-Vote, email-Enron, and webbase-1M.

6.2 Performance on Extended-Set Matrices

To further evaluate the versatility of GAMMA, we use the extended
set of matrices, which includes non-square matrices and square
matrices more diverse than the common set (Sec. 5).

Fig. 15 shows the speedups of GAmMmA (with preprocessing) over
MKL. By exploiting hardware specialization, GaAMMA outperforms
MKL by gmean 17X and by up to 50x.

ASPLOS 21, April 19-23, 2021, Virtual, USA Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

WA B mmm C W Partial outputs

56x 4.3x 4.0x 4.1x
= = = =

So5
220
€15
s 1.0
0.5
0.0

NOL ONGL ONGL ONGAL ONGL ONGL ONGL ONGL ONGL ONGAL ONGL ONGL ONGAL ONGL ONGEL ONGL ONGL ONGL ONGL ONGL
oooo ooo ooo (DOO (D(DO ooo (DOO O(DO O(DO ooo ooo ooo ooo (D(DO ooo (DOO O(DO O(DO ooo (.’)o

> a0 » @ @ A% e N e AT ¥ o &) o> 3 oot
% VS e O O W BV o o & 00 / " \° " @
NN 20 & V¥ & AT 0% X SR 2 a3 N) O
o R o o> © N N O o ° o0 @ @FP < 927 o8 RO\ Z)
o < (Lo\pe o &0 W & W& o &9’0 °

Figure 12: Off-chip traffic on common-set matrices of OuterSPACE (O), SpArch(S), and Gamma without and with preprocessing

(G/GP) (lower is better).
I Unused 00 B W Partial outputs

c
$1.0
8 _08
S08 %
£ N 0.6
_-go,s k=1
° Lo4
S04 8
2 [$)
So2 02
5
=00 0.0
oo oo 0. oo 0o oo 0o O Oo 0o oo 0o oo 0o oo 0o O Oo 0o oo oo oo oo 0o 04 04 Oo oo Oa Ca 04 04 04 oo oo o4 04 0o O
G 670060 60 606 06060606 6 0 60 6 "6 6 6 6 06 06 06 06 6 06 06 06 06 06 0 0 0 O
S o < ¢ 0o 2 5 F N E O o L @ 35 L o £ 0 T O < 9 9 N 2 c F N E © N 92 @ 5 L = C
8 2 J g 28 % 8 =53 38 52T 98T 8 ¢ L 528 9 8 2 =5%5 338587 28 ¢
2855592 52¢ 5828 L8 853 g E 2 2 58 %5 8 2262582858 ¢ 89 E
OENtme.Czﬂc'C‘“—"’zg‘m OENtm‘“E‘{‘cho‘:‘“QW“’Ql
» = a2 35 9 o £ = o o ? © a s 5 @ @ ¥ o F 9 o £ X & o ? © 0O T Z2 5 o
2 8 7 2 B3 O § 5 E £ E 28 8 £ % 2 S s 52 3 O § 5 £ £ E 8 % £ %
g b} 5 8 E 2 S 8 8 9 £] 3 E & & g 5 § 86 3
3 < H o J 3 ° ® H o 8
o Y o Y
N a [a

Figure 13: Memory bandwidth utilization on common-set
matrices of GaAMMA without and with preprocessing (G/GP).

Fig. 16 compares GAMMA with SpArch and OuterSPACE. The
off-chip traffic of SpArch and OuterSPACE are are 3x and 14X
greater than GAMMA, respectively. This difference is much larger
than that in Fig. 12, because the extended set includes matrices
that are denser and have more nonzeros per row. Outer-product
struggles on these matrices, as it suffers from excessive memory
traffic caused by writing and reading partial output matrices. For
instance, on matrices that are relatively dense, such as msc10848
and ramage0®2, such memory traffic is dominant, reaching 54X over
compulsory in OuterSPACE.

Fig. 17 shows the memory bandwidth utilization of the extended-
set matrices. Compared to the extremely sparse matrices in the
common set, denser matrices are more bounded by compute. There-
fore, some matrices in the extended set do not saturate memory
bandwidth. The memory bandwidth utilization can be improved by
adding more PEs to the system, as shown in Sec. 6.7.

Fig. 18 shows the utilization of FIBERCACHE on the extended-
set matrices. These matrices demand a widely varying share of
footprint for partial results. For instance, ND_actors does not need
capacity for partial results, while Maragal_7 spends 35% of the
capacity on partial result fibers. Having a single storage structure
for both B fibers and partial result fibers improves the versatility of
the system.

Figure 14: Cache utilization on common-set matrices of
Gamma without and with preprocessing (G/GP).

6.3 Effectiveness of GaAmMA Preprocessing

Preprocessing improves the performance of GAMMA by 18% on
average. Fig. 19 further illustrates the effects of affinity-based row re-
ordering and selective coordinate-space tiling in two cases. Affinity-
based row reordering improves the reuse of B. For instance, it con-
tributes to a 6x reduction of traffic on sme3Db. As Sec. 4.2 explained,
tiling all rows of A (+T in Fig. 19) may hurt: it does little harm to
Maragal_7 but causes 13X extra traffic on sme3Db due to excessive
partial outputs. This is why GAmMA selectively tiles long rows only.
Selective coordinate-space tiling reduces traffic of B drastically by

41x 37x 50x 32x

30 .

n
o

n
o

Performance vs. MKL
S o

o

o

relat8
degme
gupta2
x104
m_t1
opt1
gmean

ND_actors

Maragal_7

vsp_bcsstk30

Ge87H76

raefsky3

sme3Db

Ge99H100

ship_001

msc10848

Eternityll_Etild

ramage02

nemsemm1

Figure 15: Speedups of Gamma with preprocessing over MKL
on extended-set matrices.

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication ASPLOS 21, April 19-23, 2021, Virtual, USA

| A B mmC - Partial outputs

9 28 14 2715 1327 2110 7 28 39 43 39 46 54 21 19
7 = =
6
L
~§5
=4
Ss
§
22 I
0 | [! !
. HRER

(/Jﬁ.U)Q.CDQ.U)ﬂ.(l)ﬁ.(/JELU)Q.(/JCLU)D.(/JQ.U)Q.(IJQ.U)Q_CIJQ.(IJELU)Q.(/JELU)D.(/JQ.
OVOL ONOY ONBE ONOE ONOL DN OPOL ONBY ONOL ONOE ONBE ONBL OPOL OVBY, ONOL ONEE ONOE ONBE OPOL
2 Q o) o O Lok Q N (5] NP o N \
o Qgs\“g’ee%’l‘?‘ & ey P R S d g R o o
&

N ra’\b
o7 b < o° PN & ({\‘i @
\\
&R A\ ?}e" N

1 @
N 6\
RE oo &0

Figure 16: Off-chip traffic on extended-set matrices of OuterSPACE (O), SpArch(S), and GaAmma without and with preprocessing
(G/GP) (lower is better).
I Unused @0 B W Partial outputs

o

510
g .08
%o.a 2
= Sos
Zos g
© [}
504 504
Qo ©
> [&]
502 02
£
200 0.0
N o o o o o o o o o o o o o o o o o o o B o o o o o o o o o o o o o o o o o o
00 00 00 00 0(.') 00 00 0(.') (90 (90 (90 (90 (90 (90 o(.') (9(5 0(.') 0(.') 0(.') G(D 0(.') G(.’! (DL') o(.’! 0(5 w(.’) 0(5 o(.') G(D 0(.') G(.’! OL’) w(.’! O(D w(.’) 0(5 o(.')
g e 8828835338258 E § g 2~ 2 9 8L 2883 53 8 2z 8 %E
T 2§ 28 B 2 Q@ xx€E Q8 W oS 5 e E 5 » 8§ 2 8 % £ % @ T % e © & @ o g £
s §°°5385 8 £33 ©§£¢° ST ES sty of g 233 £ 3
2 = o © 8 cEE g 5 e S 58 = 7 8 I g§ 5
13 8 < g 3 <
] >]
Figure 17: Memory bandwidth utilization on extended-set Figure 18: Cache utilization on extended-set matrices of

matrices of Gamma without and with preprocessing (G/GP).

tiling dense rows (e.g, on Maragal_7), and also avoids performance
pathologies by not tiling sparse rows (e.g., on sme3Db).

Preprocessing takes an average time of 44 seconds and 208 sec-
onds on the common-set matrices and the extended-set matrices,
respectively. On average, the preprocessing time for a matrix is
4600x longer than using GAMMA to execute SPMsPM on the same
matrix. Thus, preprocessing is beneficial only when the A matrix
will be reused frequently.

6.4 GammMma Scheduling

GamMmA’s scheduling algorithm (Sec. 3.3) uses multiple PEs to pro-
cess the tasks produced by the same row of A (or, if preprocessing
tiles the row, the same subrow of A). To demonstrate its effective-
ness, we compare it against a less dynamic algorithm that always
uses a single PE to process all the tasks for each row of A. Fig. 20
shows the off-chip memory traffic on input matrix email-Enron.
With the single-PE approach, all the tasks from the same row
are serialized, so partial result fibers stay resident in FIBERCACHE
for a longer time. By contrast, GammA’s multi-PE algorithm al-
lows partial result fibers to be consumed as early as possible. On
email-Enron, this multi-PE scheduling algorithm reduces memory
traffic by 18%, and hence improves performance by 17%.

6.5 GammMma Roofline Analysis

To show that GAMMA uses resources well, Fig. 21 presents its
roofline analysis plot. The plot presents arithmetic intensity (x-axis)

Gamma without and with preprocessing (G/GP).

7 7.1x 15x
L6
S5 Partial outputs
s c

2
21 A

0

o X ?\‘5« o » X ?\6«
Maragal_7 sme3Db

Figure 19: Off-chip traffic of Gamma (G) and Gamma with
different preprocessing on A: affinity-based row reordering
(+R), selective coordinate-space tiling (+ST), and tiling all
rows (+7T).

W Partial outputs
e
B
A

Memory traffic
o000 =
ONPAOOX®OOON

M S

Figure 20: Off-chip traffic of Gamma with different schedul-
ing algorithms: using Multiple PEs (the default) or a Single
PE for each row.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Ge87H76
Ge87H76

Performance (GOPs/sec)
(=
o

1071 10°
Operation Intensity (Ops/byte)

Figure 21: Performance of GaAmMa without and
cessing (G/CP) in a roofline model.

prepro-

in FLOPs per byte of off-chip memory traffic, and performance (y-
axis) in GFLOPs (as is usual, one multiply-accumulate is counted as
a single FLOP, despite being performed by a separate multiplier and
adder in GaMMA PEs). Note that the plot uses a logarithmic scale
for both axes. Each dot represents a single matrix; results without
preprocessing are shown in blue, while results with preprocessing
are shown in yellow. The plot also shows the design’s roofline at
32 GFLOPs, which caps the maximum achievable performance: the
sloped (left) part of the roofline is set by memory bandwidth, while
the flat (right) part is set by compute (PE) throughput.

Fig. 21 shows that most matrices have low arithmetic intensi-
tiy and are memory bandwidth-bound, while some have higher
arithmetic intensity and are compute-bound. More importantly,
this shows that GAMMA uses its resources well: almost all matrices
are right at or very close to the roofline, showing that the system is
driven to saturation all the time. Only three matrices are noticeably
below the roofline (gupta2, Ge87H76, and Ge99H100). By inspec-
tion, we have found that these matrices have memory-bound and
compute-bound phases, so while their average compute intensity
falls past the sloped part of the roofline, they do not saturate PEs all
the time due to memory-bound phases. Nonetheless, compared to
prior accelerators, which have memory-bound and compute-bound
phases (e.g., partial output matrix generation vs. merging in Out-
erSPACE and SpArch), this result shows that Gustavson’s algorithm
yields a more consistent behavior that uses resource better.

6.6 GammMma Area Analysis

As shown in Table 2, the total area of GAMMA is 30.6 mm?2, syn-
thesized with a 45 nm standard cell library. Scaled down to 40 nm,
GAMMA’s area is 24.2 mm?, smaller than the 28.5 mm? of SpArch
at 40 nm and the 87 mm? of OuterSPACE at 32 nm. The vast major-
ity of area is used by the FIBERCACHE. This is a good tradeoff for
spMspPM, since the key bottleneck is memory traffic and data move-
ment. The PEs are simple, taking 16% of chip area, and the merger
and multiplier are its main components. By contrast, SpArch and
OuterSPACE spend far more area on compute resources, e.g., 60%
on SpArch’s merger.

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

1.2
o 1.0
&
go08
o6
§
S04
0.2
0.0 8 163264128 0.0
(b) Memory traffic

Performance vs. MKL
- = NN W
[, o (4] o (4] o
andwidth utilization
e o o o =
M A ® © O

0

8 163264128
(a) Performance

8 163264128
(c) Bandwidth utilization

Figure 22: Results on common-set matrices of Gamma with
different number of PEs.

220 2.00 0.6
s 1.75 5
3 ° £05
s 15 = 1.50 N
> E = 4
3 S125 50
é 10 §1.00 £03
H]
5 % 0.75 B2
T 5 0.50 &
o 0.25 01
08 163264128 0.0 363264128 008 163264128
(a) Performance (b) Memory traffic (c) Bandwidth utilization

Figure 23: Results on extended-set matrices of Gamma with
different number of PEs.

Performance vs. MKL
- = NN W W
o OO oo oo O
Memory traffic
o - - N
o o o« o
Bandwidth utilization
e o o o =
M DM ® ® O

0.0 75153 6 12 0.0

(b) Memory traffic

75153 6 12

(a) Performance

75153 6 12
(c) Bandwidth utilization
Figure 24: Results on common-set matrices of Gamma with
different FIBERCACHE sizes (in MB).

16 1.0

< 14 8 c

4 k<]

=P © ﬁ 0.8

; &= N

£ 10 s 6 £06

@ 5 U

g ® 84 5

E 6 £ g 0.4

24 = 2 2

K 5 g 0.2
0" 75163 612 © 75153 612 %0 75153 612
(a) Performance (b) Memory traffic (c) Bandwidth utilization

Figure 25: Results on extended-set matrices of Gamma with
different FIBERCACHE sizes (in MB).

6.7 Scalability Studies

Fig. 22 and Fig. 23 show GamMMA’s performance and traffic on
common-set and extended-set matrices, respectively, when the num-
ber of PEs is swept from 8 to 128 (the default is 32 PEs). For common-
set matrices, 32 PEs are the right tradeoff, as all are memory-bound
at 32 PEs. Since some extended-set matrices have higher reuse

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

and thus arithmetic intensity, GAMMA continues to improve perfor-
mance past 32 PEs: at 128 PEs (which would increase accelerator
area by about 50%), GAMMA is gmean 65% faster than at 32 PEs.

Fig. 24 and Fig. 25 show GAMMA’s performance and traffic on
common-set and extended-set matrices, respectively, when FIBER-
CACHE size is swept from 0.75 MB to 12 MB (the default is 3 MB).
At and after 1.5 MB, performance improves smoothly with FIBER-
CACHE size, showing that GAMMA can leverage additional storage to
gracefully improve performance on inputs where non-compulsory
traffic is high. However, performance is significantly degraded at
0.75 MB. This performance cliff occurs because FIBERCACHE is used
as decoupling buffers, and at this size, there is little capacity left to
capture irregular reuse. These results show that FIBERCACHE does
indeed save significant storage on dedicated buffers.

7 ADDITIONAL RELATED WORK

Much prior work has proposed optimized CPU and GPU implemen-
tations for sPMsPM, e.g., using autotuning [51], input characteris-
tics [56], or code generation [29] to pick a well-performing spPMspM
implementation. Intel’s MKL [52], which we use in our evaluation,
is generally the fastest, or close to the fastest, across input matri-
ces [56]. Although GPUs have higher compute and memory band-
width than CPUs, sSPMsPM is a poor match to the regular data paral-
lelism supported in current GPUs, so GPU frameworks [13, 32, 36]
achieve similar sPMspM performance to CPUs [56, 59].

Most CPU and GPU implementations follow Gustavson’s dataflow;
variants differ in how they merge rows of B, e.g., using sparse
accumulators [15, 28], bitmaps [24], unordered associative con-
tainers [33, 34, 36], trees [47], or heaps [1] to hold outputs. This
algorithmic diversity arises because merging fibers is an expensive
operation in general-purpose architectures. At a high level, heaps
are space-efficient but slow, and the other data structures trade
lower compute for higher space costs. GAMMA’s high-radix merges
are both space-efficient and make merges very cheap, avoiding this
dichotomy.

As explained in Sec. 2.3, to the best of our knowledge, accel-
erators earlier than GAMMA did not exploit Gustavson’s dataflow.
However, MatRaptor [48], which is concurrent with Gamma, does
exploit Gustavson’s dataflow. Nonetheless, MatRaptor and GAMMA
are very different. MatRaptor does not exploit the reuse of B fibers:
it streams such fibers from DRAM and uses them once. By con-
trast, GAMMA exploits the reuse of B fibers with FIBERCACHE. This
adds area costs, but since reusing B fibers is the key way by which
Gustavson’s dataflow minimizes traffic, GamMma improves perfor-
mance significantly. Consequently, on the common-set matrices,
MatRaptor outperforms OuterSPACE by only 1.8x [48], worse than
SpArch’s improvement over OuterSPACE (3.6X), while GAMMA out-
performs OuterSPACE by 6.6x even without preprocessing.

Preprocessing of sparse matrices [10, 12, 14, 53] has been studied
extensively on CPUs and GPUs. Matrix preprocessing on CPUs
and GPUs typically targets creating dense tiles [42] to reduce ir-
regularity of partial outputs, disjoint tiles [4] to minimize commu-
nication, or balanced tiles [21, 23] to ease load balancing. These
techniques differ from GAMMA’s: our goal is to improve the locality
of B, whereas CPUs and GPUs lack high-radix mergers and have
more on-chip storage, making B’s locality a less pressing concern.

ASPLOS 21, April 19-23, 2021, Virtual, USA

To classify on-chip storage structures, we can use the two-dimen-
sional taxonomy from Pellauer et al. [40]. Specifically, the content of
an on-chip storage structure can be managed in two styles: explicit
or implicit. Explicitly orchestrated structures allow applications to
directly control what to retain or remove, while implicitly orches-
trated structures infer such decisions implicitly based on read/write
accesses. A storage structure can be used in either coupled or decou-
pled manner depending on whether the data needed is pre-staged
ahead of processing to hide the memory access latency. Caches
are implicit and coupled. GAMMA’s FIBERCACHE combines features
of caches and explicitly managed buffers to both exploit irregular
reuse and hide memory latency through explicit decoupled data
orchestration. Stash [31] is also a hybrid of caches and scratchpads,
but with different goals: Stash maps data regions and accesses them
explicitly, with a scratchpad interface, to reduce addressing power.
Stash fetches accessed data lazily, which saves traffic when not all
mapped data is accessed, but leaves accesses coupled to users. By
contrast, GAMMA knows precisely which data will be accessed so
its decoupled design hides long access latency. Following the tax-
onomy above, Stash is explicit and coupled, whereas FIBERCACHE
is implicit and decoupled.

Finally, while we focus on spPMspM, many applications use high-
dimensional tensors. For instance, TACO [28, 29] introduces worksp-
aces and proposes compiler machinery to handle complex tensor
operations. GAMMA can be combined with such techniques to sup-
port a broader range of applications.

8 CONCLUSION

sPMsPM is the basic building block of many emerging sparse appli-
cations, so it is crucial to accelerate it. However, prior sPMsPM accel-
erators use inefficient inner- and outer-product dataflows, and miss
Gustavson’s more efficient dataflow. We have presented GAMMA, an
SPMsPM accelerator that leverages Gustavson’s algorithm. Gamma
uses dynamically scheduled PEs with efficient high-radix mergers
and performs many merges in parallel to achieve high throughput,
reducing merger area by about 15X over prior work [59]. GAMMA
uses a novel on-chip storage structure, FIBERCACHE, which sup-
ports Gustavson’s irregular reuse patterns and streams thousands of
concurrent sparse fibers with explicitly decoupled data movement.
We also devise new preprocessing algorithms that boost GAMMA’s
efficiency and versatility. As a result, GAMMA outperforms prior
accelerators by gmean 2.1%, and reduces memory traffic by 2.2x
on average and by up to 13x.

ACKNOWLEDGMENTS

We sincerely thank Maleen Abeydeera, Axel Feldmann, Quan Nguyen,
Nellie Yannan Wu, Nikola Samardzic, Yifan Yang, Victor Ying, Vivi-
enne Sze; our shepherd, Christopher Hughes; and the anonymous
reviewers for their helpful feedback. This work was supported
in part by DARPA SDH under contract HR0011-18-3-0007 and by
Semiconductor Research Corporation under contract 2020-AH-2985.
This research was, in part, funded by the U.S. Government. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

ASPLOS 21, April 19-23, 2021, Virtual, USA

REFERENCES

(1]

A

=

=

[10]

[11

[12

[13]

[14

[15

[16]

[19]

[20]

[21

[22

Ariful Azad, Grey Ballard, Aydin Buluc, James Demmel, Laura Grigori, Oded
Schwartz, Sivan Toledo, and Samuel Williams. Exploiting multiple levels of
parallelism in sparse matrix-matrix multiplication. SIAM Journal on Scientific
Computing, 38(6), 2016.

Ariful Azad, Aydin Bulug, and John Gilbert. Parallel triangle counting and enu-
meration using matrix algebra. In 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop, 2015.

Rajeev Balasubramonian, Andrew B Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. CACTI 7: New tools for interconnect exploration in
innovative off-chip memories. ACM Transactions on Architecture and Code Opti-
mization (TACO), 14(2), 2017.

Grey Ballard, Alex Druinsky, Nicholas Knight, and Oded Schwartz. Hypergraph
partitioning for sparse matrix-matrix multiplication. ACM Transactions on Parallel
Computing (TOPC), 3(3), 2016.

Nathan Bell, Steven Dalton, and Luke N Olson. Exposing fine-grained parallelism
in algebraic multigrid methods. SIAM Journal on Scientific Computing, 34(4),
2012.

Andrew Canning, Giulia Galli, Francesco Mauri, Alessandro De Vita, and Roberto
Car. O(N) tight-binding molecular dynamics on massively parallel computers:
An orbital decomposition approach. Computer Physics Communications, 94(2-3),
1996.

Timothy M Chan. More algorithms for all-pairs shortest paths in weighted
graphs. SIAM Journal on Computing, 39(5), 2010.

Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. Diannao: A small-footprint high-throughput accelerator for
ubiquitous machine-learning. In Proceedings of the 19th international conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-XIX), 2014.

Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks. In Proceedings of the
43rd annual International Symposium on Computer Architecture (ISCA-43), 2016.
Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessan-
dro Panconesi, and Prabhakar Raghavan. On compressing social networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, 2009.

Stephen Chou, Fredrik Kjolstad, and Saman Amarasinghe. Automatic generation
of efficient sparse tensor format conversion routines. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 2020.

Elizabeth Cuthill and James McKee. Reducing the bandwidth of sparse symmetric
matrices. In Proceedings of the 24th National Conference, 1969.

Steven Dalton, Luke Olson, and Nathan Bell. Optimizing sparse matrix-matrix
multiplication for the GPU. ACM Transactions on Mathematical Software (TOMS),
41(4), 2015.

Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. Compressing graphs and indexes with recursive
graph bisection. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2016.

John R Gilbert, Cleve Moler, and Robert Schreiber. Sparse matrices in MATLAB:
Design and implementation. SIAM Journal on Matrix Analysis and Applications,
13(1), 1992.

John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance graph
algorithms from parallel sparse matrices. In International Workshop on Applied
Parallel Computing, 2006.

Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication and
permuted transposition. ACM Transactions on Mathematical Software (TOMS),
4(3), 1978.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman coding.
In Proceedings of the 4th International Conference on Learning Representations
(ICLR), 2016.

Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. ExTensor: An
accelerator for sparse tensor algebra. In Proceedings of the 52nd annual IEEE/ACM
international symposium on Microarchitecture (MICRO-52), 2019.

Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and
Christopher Fletcher. UCNN: Exploiting computational reuse in deep neural
networks via weight repetition. In Proceedings of the 45th annual International
Symposium on Computer Architecture (ISCA-45), 2018.

Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa, Kunal Singh, and P Sa-
dayappan. Adaptive sparse tiling for sparse matrix multiplication. In Proceedings
of the ACM SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming (PPoPP), 2019.

Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer. High per-
formance cache replacement using re-reference interval prediction (RRIP). In
Proceedings of the 37th annual International Symposium on Computer Architecture

)
&

[24

™
2

[26

[27

[28

[29

[30

[31

(32

[33

&
=)

[35

(36]

[37

(39]

[40

N
=

[42

[43

Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez

(ISCA-37), 2010.

Peng Jiang, Changwan Hong, and Gagan Agrawal. A novel data transformation
and execution strategy for accelerating sparse matrix multiplication on GPUs. In
Proceedings of the ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP), 2020.

Konstantinos Kanellopoulos, Nandita Vijaykumar, Christina Giannoula, Roknod-
din Azizi, Skanda Koppula, Nika Mansouri Ghiasi, Taha Shahroodi, Juan Gomez
Luna, and Onur Mutlu. Smash: Co-designing software compression and hardware-
accelerated indexing for efficient sparse matrix operations. In Proceedings of the
52nd annual IEEE/ACM international symposium on Microarchitecture (MICRO-52),
2019.

Haim Kaplan, Micha Sharir, and Elad Verbin. Colored intersection searching
via sparse rectangular matrix multiplication. In Proceedings of the twenty-second
annual symposium on Computational geometry, 2006.

George Karypis, Anshul Gupta, and Vipin Kumar. A parallel formulation of
interior point algorithms. In Proceedings of the ACM/IEEE conference on Super-
computing (SC94), 1994.

Jeremy Kepner, David Bader, Aydin Bulug, John Gilbert, Timothy Mattson, and
Henning Meyerhenke. Graphs, matrices, and the GraphBLAS: Seven good reasons.
Procedia Computer Science, 51, 2015.

Fredrik Kjolstad, Peter Ahrens, Shoaib Kamil, and Saman Amarasinghe. Tensor
algebra compilation with workspaces. In Proceedings of the 17th IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), 2019.
Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Ama-
rasinghe. The tensor algebra compiler. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), 2018.

Scott P Kolodziej, Mohsen Aznaveh, Matthew Bullock, Jarrett David, Timothy A
Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. The SuiteSparse
matrix collection website interface. Journal of Open Source Software, 4(35), 2019.
Rakesh Komuravelli, Matthew D Sinclair, Johnathan Alsop, Muhammad Huza-
ifa, Maria Kotsifakou, Prakalp Srivastava, Sarita V Adve, and Vikram S Adve.
Stash: Have your scratchpad and cache it too. In Proceedings of the 42nd annual
International Symposium on Computer Architecture (ISCA-42), 2015.

Weifeng Liu and Brian Vinter. An efficient GPU general sparse matrix-matrix
multiplication for irregular data. In Proceedings of the 28th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2014.

Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. PHI: Architectural
support for synchronization-and bandwidth-efficient commutative scatter up-
dates. In Proceedings of the 52nd annual IEEE/ACM international symposium on
Microarchitecture (MICRO-52), 2019.

Yusuke Nagasaka, Satoshi Matsuoka, Ariful Azad, and Aydin Bulug. High-
performance sparse matrix-matrix products on Intel KNL and multicore architec-
tures. In Proceedings of the 47th International Conference on Parallel Processing,
2018.

NanGate Inc. The NanGate 45nm open cell library. http://www.nangate.com/
?page_id=2325, 2008.

Maxim Naumov, Lung-Sheng Chien, Philippe Vandermersch, and Ujval Kapasi.
CUSPARSE library. In GPU Technology Conference, 2010.

Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,
and Ronald Dreslinski. OuterSPACE: An outer product based sparse matrix mul-
tiplication accelerator. In Proceedings of the 24th IEEE international symposium
on High Performance Computer Architecture (HPCA-24), 2018.

Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan, Brucek Khailany,
Stephen W Keckler, and Joel Emer. Timeloop: A systematic approach to dnn
accelerator evaluation. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2019.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-
harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and
William J Dally. SCNN: An accelerator for compressed-sparse convolutional
neural networks. In Proceedings of the 44th annual International Symposium on
Computer Architecture (ISCA-44), 2017.

Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W Keckler, Christopher W Fletcher, and Joel
Emer. Buffets: An efficient and composable storage idiom for explicit decoupled
data orchestration. In Proceedings of the 24th international conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-XXIV),
2019.

Gerald Penn. Efficient transitive closure of sparse matrices over closed semirings.
Theoretical Computer Science, 354(1), 2006.

Ali Pinar and Michael T Heath. Improving performance of sparse matrix-vector
multiplication. In Proceedings of the ACM/IEEE conference on Supercomputing
(5C99), 1999.

Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Sudarshan Srini-
vasan, Dipankar Das, Bharat Kaul, and Tushar Krishna. SIGMA: A sparse and

http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325

GAMMA: Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

irregular GEMM accelerator with flexible interconnects for dnn training. In Pro-
ceedings of the 26th IEEE international symposium on High Performance Computer
Architecture (HPCA-26), 2020.

Michael O Rabin and Vijay V Vazirani. Maximum matchings in general graphs
through randomization. Journal of Algorithms, 10(4), 1989.

Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz
Franchetti. Efficient SPMV operation for large and highly sparse matrices using
scalable multi-way merge parallelization. In Proceedings of the 52nd annual
IEEE/ACM international symposium on Microarchitecture (MICRO-52), 2019.
Korey Sewell, Ronald G Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel
Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das, Thomas F Wenisch,
Dennis Sylvester, et al. Swizzle-switch networks for many-core systems. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 2(2), 2012.
Sriseshan Srikanth, Anirudh Jain, Joseph M Lennon, Thomas M Conte, Erik
Debenedictis, and Jeanine Cook. MetaStrider: Architectures for scalable memory-
centric reduction of sparse data streams. ACM Transactions on Architecture and
Code Optimization (TACO), 16(4), 2019.

Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. Mat-
paptor: A sparse-sparse matrix multiplication accelerator based on row-wise
product. In Proceedings of the 53rd annual IEEE/ACM international symposium on
Microarchitecture (MICRO-53), 2020.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks. Synthesis Lectures on Computer Architecture, 15(2), 2020.
Stijn Van Dongen. Performance criteria for graph clustering and Markov cluster
experiments. Technical report, CWI (Centre for Mathematics and Computer
Science), 2000.

Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Journal of Physics: Conference

ASPLOS 21, April 19-23, 2021, Virtual, USA

Series, 2005.

Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
and Yajuan Wang. Intel Math Kernel Library. In High-Performance Computing
on the Intel Xeon Phi. Springer, 2014.

Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. Speedup graph processing by
graph ordering. In Proceedings of the 2016 International Conference on Management
of Data, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning struc-
tured sparsity in deep neural networks. In Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016.

Clifford Wolf, Johann Glaser, and Johannes Kepler. Yosys-a free Verilog synthesis
suite. In Proceedings of the 21st Austrian Workshop on Microelectronics (Austrochip),
2012.

Zhen Xie, Guangming Tan, Weifeng Liu, and Ninghui Sun. IA-SpGEMM: An input-
aware auto-tuning framework for parallel sparse matrix-matrix multiplication.
In Proceedings of the International Conference on Supercomputing (ICS’19), 2019.
Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robustness and
scalability of a parallel hybrid linear solver. In International Conference on High
Performance Computing for Computational Science, 2010.

Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular
matrix multiplication and dynamic programming. In Proceedings of the 15th
annual ACM-SIAM Symposium On Discrete Algorithms (SODA), 2004.

Zhekai Zhang, Hanrui Wang, Song Han, and William] Dally. Sparch: Efficient
architecture for sparse matrix multiplication. In Proceedings of the 26th IEEE
international symposium on High Performance Computer Architecture (HPCA-26),
2020.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Compressed Sparse Data Structures
	2.2 spMspM Dataflows
	2.3 spMspM Accelerators

	3 Gamma
	3.1 Processing Element
	3.2 FiberCache
	3.3 Scheduler
	3.4 Memory Management

	4 Preprocessing for Gamma
	4.1 Affinity-Based Row Reordering
	4.2 Selective Coordinate-Space Tiling

	5 Methodology
	6 Evaluation
	6.1 Performance on Common-Set Matrices
	6.2 Performance on Extended-Set Matrices
	6.3 Effectiveness of Gamma Preprocessing
	6.4 Gamma Scheduling
	6.5 Gamma Roofline Analysis
	6.6 Gamma Area Analysis
	6.7 Scalability Studies

	7 Additional Related Work
	8 Conclusion
	References

