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We examine linear and nonlinear shear and extensional rheological properties using a “micelle

slip-spring model” [T. Sato et al., J. Rheol., 64, 1045 (2020)] that incorporates breakage and rejoin-

ing events into the slip-spring model originally developed by Likhtman for unbreakable polymers

[Macromolecules, 38, 6128 (2005)]. We here employ the Fraenkel potential for main chain springs

and slip-springs to address the effect of the finite extensibility. Moreover, to improve extensional

properties under strong extensional flow, stress-induced micelle breakage (SIMB) is incorporated

into the micelle slip-spring model. Thus, this model is the first model that includes the entanglement

constraint, Rouse modes, finite extensibility, breakage and rejoining events, and stress-induced mi-

celle breakage. Computational expense currently limits the model to micellar solutions with moder-

ate numbers of entanglements (� 7), but for such solutions nearly quantitative agreement is attained

for start-up of shearing flow. The model in extensional flow cannot yet be tested owing to the lack of

data for this entanglement level. The transient and steady shear properties predicted by the micelle

slip-spring model for a moderate shear rate region without significant chain stretch are fit well by the

Giesekus model but not by the Phan/Thien-Tanner (PTT) model, which is consistent with the ability

of the Giesekus model to match experimental shear data. The extensional viscosities obtained by

the micelle slip-spring model with SIMB show thickening followed by thinning, which is in qual-

itative agreement with experimental trends. Additionally, the extensional rheological properties of

the micelle slip-spring model with or without SIMB are poorly predicted by both the Giesekus and

the PTT models using a single nonlinear parameter. Thus, future work should seek a constitutive

model able to capture the behavior of the slip-spring model in shear and extensional flows, and so

provide an accurate, efficient model of micellar solution rheology.
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I. INTRODUCTION

Surfactant molecules, consisting of a hydrophilic head and hydrophobic tail, are widely uti-

lized in our daily life.1 They form self-assembled structures, such as spherical and cylindrical

micelles, depending on surfactant and salt compositions. Cylindrical micelles or wormlike mi-

celles (WLMs) with entanglements typically show significant viscoelastic properties, and have

attracted significant attention from the rheological community.

There have been extensive experimental studies that examine linear rheology,2–4 nonlinear

shear rheology,5–12 nonlinear extensional rheology,13–17 as well as the corresponding microstruc-

tures of WLMs.18–20 In this study, we especially focus on modeling the nonlinear rheological

properties of WLM solutions, and begin by briefly summarizing the relevant experimental studies.

If the WLM solutions remain spatially homogeneous, their rheological properties are similar to

those of entangled polymers; that is, the transient shear viscosity growth shows a stress overshoot,

and the steady shear viscosity shows shear thinning.5–7 An important finding is that the Giesekus

model, which is a common phenomenological constitutive equation,21 can accurately reproduce

the shear rheological properties of WLM solutions.8,9 An important difference in shear rheologi-

cal properties between WLM and polymer solutions can be observed however at high shear rates,

where macroscopic flows can become spatially inhomogeneous. An example of this is shear-

banding22,23 which has been extensively investigated for example by Helgeson and coworkers for

cetyltrimethylammonium bromide (CTAB) solutions modeled using the Giesekus equation with

a stress-diffusion term.10,11 Extensional flow properties of WLM solutions can be measured by

several experimental techniques,24 such as filament-stretching extensional rheometry (FiSER),13

capillary breakup extensional rheometry (CaBER),14 and the opposed jet device.15–17 Rothstein

and coworkers reported that the WLM solutions show strain hardening followed by the filament

rupture before reaching a steady state. This filament rupture was considered to be due to flow-

induced scission of micelle chains. Steady extensional viscosities measured by the opposed jet

device for several surfactant and salt systems show extension thickening followed by extension

thinning.15–17

To deeply understand such experimental findings, theoretical and numerical approaches are

highly desirable. From a theoretical perspective, Cates developed a so-called reptation-reaction

model to describe linear “living” polymers25 that can break at a random point along a chain

and whose ends can each randomly fuse with the end of some other chain in a reversible scis-
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sion scheme. The reptation-reaction model can successfully capture the Maxwell-type relaxation

with a single relaxation time as observed in experiments.2 However, other polymer-like relaxation

mechanisms, including chain-length fluctuations and constraint release, which are important to

reproduce the rheology of entangled polymers, are not addressed in the original Cates’ model.

(In addition to reversible scission, Turner and Cates considered an end-interchange scheme that

makes a three-arm star intermediate, and a bond-interchange scheme that makes a four-arm star

intermediate.26 They showed that the relaxation behavior is changed by these mechanisms.)

Based on Cates’ reaction-reptation model, the “pointer algorithm” was developed by Zou and

Larson to accurately predict the linear rheology of WLM solutions.27 In the pointer algorithm,

reptation, chain length fluctuations, and constraint release are combined with breakage/rejoining.

To compute the relaxation modulus, the boundaries between relaxed and unrelaxed parts of WLM

chains are tracked. Analytic formulas for the high-frequency modes are then added to account for

the high-frequency region. Zou and Larson showed this pointer algorithm can reproduce linear

rheological properties over a wide frequency range.27 After their original work, the pointer algo-

rithm was extended in several directions; e.g., the end-interchange and bond-interchange schemes

were addressed,28 and relaxation mechanisms of unentangled micelles were included.29 More re-

cently, Tan and coworkers have established a formula based on the pointer algorithm simulations

to estimate micelle length from linear rheological data.30 Utilizing the pointer algorithm, we can

thus obtain accurate microscopic micelle parameters from linear rheological data. Compared to

these modeling developments in linear rheology, nonlinear rheological models are relatively un-

derdeveloped.

One of the most utilized models for the nonlinear rheology of WLMs is the Vasquez-Cook-

McKinley (VCM) model.31 The VCM model is composed of two species of Hookean dumbbells:

long and short dumbbells. A long dumbbell can break to make two short dumbbells and vice

versa to mimic the reversible scission scheme. Since the Hookean dumbbell model is employed,

the VCM model with a constant breakage rate cannot reproduce nonlinear rheological properties,

such as shear thinning observed in WLM solutions. Thus, the VCM model includes the stress-

induced micelle breakage under flow.31 While several nonlinear properties under homogeneous

flow have been successfully reproduced by the VCM model,32 the effects of entanglements (i.e.,

the constraints they imposed on chain relaxation, and how they might be lost and gained under

flow) are not included in the VCM model, which thus neglects the most important source of shear

thinning in WLM solutions. Shear thinning is predicted by the VCM model, but only through
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inclusion of shear-induced micelle breakage, whose rate is adjusted arbitrarily to produce shear

thinning strong enough to agree with experiments.

Very recently, Peterson and coworkers developed two molecular-based constitutive models for

entangled WLM solutions.33–35 One is the simplified tube approximation for rapid-breaking mi-

celles (STARM) model,33 and the other model is the living Rolie-Poly model.34 The basic idea

of these models is to combine the population balances and polymeric relaxations, i.e., reptation,

contour length fluctuation, and constraint release. While these models are physics-based and so-

phisticated, it is difficult to implement them in macroscopic flow calculations due to their model

complexity. It should be noted that there is a simplified version of the living Rolie-Poly model

in the fast-breakage limit, where micelle breakage is much faster than reptation, that might be

used for macroscopic flow calculations. However, the fast-breakage limit is often not attained in

common micellar solutions and, to the best of our knowledge, a simplified physics-based consti-

tutive model beyond the fast-breakage limit has not been developed yet. To avoid the complexity

appearing in these constitutive models, it may be useful instead to develop an accurate mesoscopic

simulation model and fit the predictions of this model with a simpler constitutive equation. This

strategy would allow a tractable equation to be developed whose parameters could be correlated

with micelle properties, rather than simply being adjusted to fit the experiments, without yielding

any connection to microscopic physics.

We developed such a mesoscopic “micelle slip-spring simulation model” to predict rheologi-

cal properties of WLM solutions.36 Our model is based on the slip-spring model originally pro-

posed by Likhtman.37 Slip-link and slip-spring models were originally developed for unbreakable

entangled polymers, and have been found to predict well their linear and nonlinear rheological

properties.38 To address the rheology of WLM solutions, breakage and rejoining events were in-

cluded in the polymer slip-spring model and the results were validated through comparison with

predictions of the pointer algorithm and with experimental linear viscoelastic data. Moreover,

using the micelle slip-spring model, we examined nonlinear shear properties including shear thin-

ning, which naturally emerge from our micelle slip-spring model due to the effect of the entangle-

ment constraint.36

In this paper, we further investigate nonlinear rheological properties obtained by the micelle

slip-spring model. For such a purpose, instead of the Hookean springs utilized in our previous

study following the original slip-spring model,36 we use the Fraenkel springs to prevent the over-

stretch of springs so that higher shear rates and extensional flows can be simulated where finite
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extensibility of the chain becomes important. Additionally, to improve extensional properties

under strong extensional flow, we incorporate stress-induced micelle breakage into the micelle

slip-spring model. Using the extended micelle slip-spring model, we examine nonlinear shear and

extensional properties. Details are explained in the following sections.

II. MODEL

A. Original Micelle-slip-spring Model

Here, we briefly explain the original micelle slip-spring model.36 A micellar chain is expressed

by a main chain and slip-springs that impose motional constraints on the main chain, as shown

in the upper figure in Fig. 1. A micellar chain i (1 ≤ i ≤ Nchain(t)) consists of N(i)(t)+ 1 beads

connected by N(i)(t) springs. Here, the super-script (i) distinguishes different micellar chains,

and Nchain(t) is the number of micellar chains in the system at time t. Because of breakage and

rejoining events, Nchain(t) and N(i)(t) fluctuate in time in our micelle slip-spring model.

Each main chain spring is modeled by a single Kuhn segment with Kuhn length b, and each

main chain bead is given a friction coefficient ξ . Here, the Kuhn length is related to the persistence

length ℓp as b = 2ℓp.39 On length scales is less than ℓp, the chain is locally rigid.

The main chain i has Z(i)
ss (t) slip-springs at time t. A slip-spring illustrated in Fig. 1 consists of a

slip-link shown with the red open circle connected to an anchoring point shown with the red filled

diamond by a red slip-spring. The slip-link k on the chain i, s(i)k , is constrained to move along the

Breakage Rejoining

main chain
slip-spring

Micelle-Slip-Spring Model

breakage point

FIG. 1. Schematic illustration of the micelle-slip-spring model.
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main chain i. Different from current “discrete” slip-spring models, in which the positions of the

slip-links are restricted to jump main chain beads,40,41 in our model, as in the original slip-spring

model of Likhtman, the slip-links can move anywhere along the chain.37 The time evolution of

s
(i)
k is defined by a 1D continuous dummy variable x(i)k , which spans between 0 and N(i)(t). In this

study, slip-links are allowed to pass through each other since this has little effect on the results,

as noted by Likhtman.37 While the slip-link can travel along the main chain, the corresponding

anchoring point, a
(i)
k , is pinned in space unless flow is applied. When shear or extensional flow is

applied, the anchoring point moves affinely, as in our previous study.36

Each slip-spring has Ns Kuhn segments with the Kuhn length bss, and each slip-link has a

friction coefficient ξs. As in our previous study36 that follows the original study by Likhtman,37 we

assume that the Kuhn length of main chain springs is the same as that of slip-springs (i.e., b = bss).

The slip-link friction coefficient ξs is introduced to control the dynamics of the slip-springs. The

initial number of slip-springs per chain is determined by an additional parameter, the average

number of beads between slip-links, Nss
e . The slip-links are initially distributed randomly along

the chains, and the anchoring points are placed around the corresponding slip-links according to

a Gaussian potential of a Hookean spring as in the original model of Likhtman37 even though we

employ the Fraenkel potential. We note that the microscopic detail of the model should not appear

in long-time rheological behavior, and thus the effect of this approximation would be expected to

vanish in the long-time region.

The remaining relaxation mechanism needed to reproduce the dynamics of entangled polymers

is constraint release (CR). We implement CR as in the original Likhtman’s slip-spring model,37 in

which a slip-link is paired with a partner slip-link on a different chain. The CR occurs when the

slip-link slides off the end of the chain (i.e., x(i)k (t)< 0 or N(i)(t)< x(i)k (t)). When CR occurs, this

slip-link and the partner slip-link are removed from the chain and the partner chain, respectively.

At the same time, two new slip-links are placed on two different randomly chosen chains. One

slip-link is placed near the end of a chain, and the other is placed at a random position on a

different chain. The corresponding anchoring points are distributed using the same procedure

explained previously. Thus, while the number of slip-springs on a given chain i, Z(i)
ss (t), fluctuates

in time due to CR or breakage/rejoining events, the total number of slip-springs in the system

is unchanged even under flow in most of our simulations. However, the effects of flow-induced

reduction of entanglement density are quite possibly important,42 and are therefore considered

Sec. III D, where we have examined a limiting case in which the total number of entanglements

6



continuously decreases and eventually becomes zero.

In the original micelle-slip-spring model, we utilized a Hookean spring law following the origi-

nal polymer slip-spring model. However, in this study, we focus on nonlinear shear and extensional

properties of entangled WLMs. Thus, it is important to address the effect of finite extensibility.

For springs that each correspond to a single Kuhn length, it is typical to employ the Fraenkel spring

law.43 The total potential energy of the chain i is then expressed as

U (i) = K
kBT
2b2

N(i)

∑
j=1

)(((R(i)
j

((( b
(2

+Kss
kBT

2Nsb2
ss

Z(i)
ss

∑
k=1

)(((q(i)k

((( Nsbss

(2
, (1)

where K and Kss are the Fraenkel parameters for main-chain springs and slip-springs, respectively,

kB is the Boltzmann constant, T is the temperature, R
(i)
j is the vector between two adjacent beads

defined as R
(i)
j = r

(i)
j+1 r

(i)
j with r

(i)
j being the position of the j-th bead on the i-th main chain,

and q
(i)
k is the vector between the slip-link and the anchoring point defined as q

(i)
k = a

(i)
k s

(i)
k .

Using this potential, we can express the spring force originating from spring j of the main chain,

F
(i)
sp, j, as

F
(i)
sp, j =

∂U (i)

∂R(i)
j

= K
kBT
b2

)(((R(i)
j

((( b
( R

(i)
j(((R(i)
j

(((. (2)

Furthermore, the spring force originating from slip-spring k, F
(i)
ss,k, can be written as

F
(i)
ss,k =

∂U (i)

∂q(i)k

= Kss
kBT
Nsb2

ss

)(((q(i)k

((( Nsbss

( q
(i)
k(((q(i)k

(((. (3)

From these forces, bead and slip-link positions are updated over time. For more details regarding

the dynamical equations, please see our previous study.36

From the forces and conformations of main chains and slip-springs, the αβ (α,β � (x,y,z))

components of the stress tensor of the main chain (i.e., real chain) and of the virtual-spring are

expressed as

σR
αβ = cchain

〉
N(i)

∑
j=1

F(i)
sp, jαR(i)

jβ

˜
, (4)

σV
αβ = cchain

〉
Z(i)

ss

∑
k=1

F(i)
ss,kαq(i)kβ

˜
, (5)
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respectively, where cchain is the chain concentration, and 〉×××√is the ensemble average. To compute

the relaxation modulus G(t) accurately from an equilibrium simulation using the Green-Kubo

formula, Ramírez and coworkers44 pointed out that the virtual-spring stress tensor σV
αβ needs to

be included so that

G(t) =
σR

xy(t)
γ

=
V

kBT

}〉σR
xy(t)σR

xy(0)√+ 〉σR
xy(t)σV

xy(0)√
∣
, (6)

where x is the velocity direction, y is the velocity gradient direction, γ is the step strain magnitude,

and V is the volume of the system. It should be noted that only the stress from main-chain springs

is utilized to obtain G(t) in the original work by Likhtman (i.e., G(t) = (V/kBT )〉σR
xy(t)σR

xy(0)√).37

However, this G(t) deviates from the relaxation modulus computed by the relaxation after a small

step strain, σR
xy(t)/γ , as explained by Ramírez and coworkers.44 We note that the virtual stress

contribution is not more than around 25% of the main-chain contribution, and shows similar de-

pendence on time as the main chain contribution under shear flow and is negligibly small under

extensional flow (for more detail, please see Sec. S1 in the supplementary material). Thus, because

of the rather long runs with small Δt values needed to adequately resolve the virtual-spring contri-

bution and its rather weak effect, we use only the main-chain stress σR
αβ to compute the nonlinear

rheological properties.

Breakage and rejoining events are included in our method as done in our previous study;36

that is, we use the reversible scission scheme and do not consider the end-interchange and the

bond-interchange schemes. To incorporate these events, we introduce the probability Pbreak that a

breakage event occurs for any micelle among all micelles during each time step:

Peq
break = 1 exp

)
Δt

Δteq
break

[
(7)

where Δt is the simulation time step size, and Δteq
break is the average time between breakage events

at equilibrium. In this study, a rejoining event occurs during each time step with probability Prejoin

that is the same as Peq
break over all time steps even under flow. At each simulation time step, breakage

and rejoining events independently occur with the probabilities of Peq
break and Prejoin, respectively.

Thus, the number of micelles Nchain(t) fluctuates in time. (It should be noted that the breakage

probability is increased under strong extensional flow due to stress-induced micelle breakage, as

explained in Sec. II B.) The average breakage time per chain with average length at equilibrium or
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under weak flow, τ̄eq
break, can be defined using Δteq

break as

τ̄eq
break = Δteq

break〉Nchain√, (8)

where 〉Nchain√is the average number of WLM chains in the system. The dimensionless breakage

time, ζ , is defined using τ̄eq
break as

ζ ≤ τ̄eq
break

τ̄rep
, (9)

where τ̄rep ≤ 3〉Ztube√3τe is the pure reptation time in the absence of other relaxation mechanisms

of a micelle of average number of entanglements 〉Ztube√and τe ≤ (Ntube
e )2τ0/(3π2) is the Rouse

time of the chain segment between entanglements.45

The assumptions regarding breakage/rejoining events are as follows. When a breakage event

occurs at a certain simulation time step, a randomly selected main-chain bead is chosen to be a

breakage point. At the breakage point, the chosen bead is duplicated, and these two beads are made

the new ends of the resulting chains, as can be seen in Fig. 1. Since beads are inertialess, there is

no fundamental problem with adding a bead. For a rejoining event, any two micelles can fuse with

equal probability. That is, we assume the rejoining probability does not depend on micelle length,

and employ a mean-field approach that does not track the relative positions of micelles. Before

and after breakage and rejoining events, configurations of main chains and slip-springs and pairing

information of slip-links remain the same. To reduce computational costs, we impose upper and

lower bounds on Nchain(t), Nmax
chain and Nmin

chain, respectively. Additionally, we maintain upper and

lower bounds on N(i)(t) by introducing the maximum and minimum numbers of springs per chain,

Nmax and Nmin, respectively.

B. Stress-Induced Micelle Breakage

Thus far, we have explained the case where the breakage and rejoining times are assumed to

be constant, which is valid at equilibrium or under weak flow. Extensional flow experiments by

FiSER13 for the CTAB/NaSal system suggest that a micelle will break when the extensional stress

per micelle reaches around 3.6∗ 105 Pa.46 This stress is about 104 times larger than the experimen-

tal plateau modulus of G0
N � 10 Pa for the CTAB/NaSal system.13 Under strong extensional flow,

the extensional stress obtained from the micelle slip-spring model is expected to become higher

than the micelle breakage stress and stress-induced micelle breakage (SIMB) might become evi-
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dent. To accurately model the nonlinear rheology under strong extensional flow, we address the

effect of SIMB in this study.

There are several ways to address SIMB in our micelle slip-spring model. A simple way is

to set the threshold stress for micelle breakage over which the micelles break. The threshold

stress can be estimated from experimental data of extensional stress before rupture.13 However, the

experimental threshold stress might be so high that all micelles break very fast. More realistically,

under high stress, the micelles can be allowed to break faster than the time scale τ̄eq
break for breakage

at lower stress than the threshold stress. Mandal and Larson developed the activation formula that

can address the acceleration of breakage at any stress.46 In this paper, we use this formula to obtain

the extensional rheological properties under more reasonable conditions. The average breakage

time of the chain i can be expressed as

τ̄break = τ≡exp

)
Esciss

kBT

[
, (10)

where τ≡is the time constant and Esciss is the scission free energy. The molecular dynamics simu-

lations by Mandal and Larson revealed that the dimensionless scission energy {Esciss = Esciss/kBT

decreases linearly with stress. Thus, {Esciss of the chain i can be expressed as

{Esciss = {Eeq
sciss

{σE{σbreak
E

, (11)

where {Eeq
sciss is the scission energy under no external force, {σE ≤ σE/G0

N is the normalized exten-

sional stress per chain, and {σbreak
E ≤ σbreak

E /G0
N is the normalized characteristic extensional stress

of micelle breakage, which can be estimated from molecular dynamics simulations. It should be

noted that σbreak
E is not identical to the experimental breakage stress per micelle (� 3.6∗ 105 Pa for

the CTAB/NaSal system13), and is expected to be smaller than the experimental breakage stress

per micelle for the reason mentioned above. Combining Eqs. (10) and (11), we can obtain the

breakage time under extensional flow as

τ̄break = τ≡exp

){Eeq
sciss

{σE{σbreak
E

[
= τ̄eq

break exp

) {σE{σbreak
E

[
, (12)

where the average breakage time at equilibrium, τ̄eq
break, is expressed as τ̄eq

break = τ≡exp
){Eeq

sciss

(
.

We incorporate SIMB into the slip-spring model as follows. At each simulation time step, we

compute the extensional stress of individual chains, which means that each chain has different
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extensional stress. This is used to determine whether or not breakage occurs using Eq. (12) and

a random number. Namely, the breakage probability shown in Eq. (7) is increased under strong

extensional flow. In general, the tension varies along the chain with the highest tension being near

the center of the chain. In this study, however, for simplicity, we use the averaged stress over the

whole chain and assume that every bead of the breaking chain has an equal probability to be the

breakage point. Thus, the bead at which breakage occurs is randomly selected, as done in our

original micelle slip-spring model. For rejoining events, we assume that the rejoining rate retains

its equilibrium value even under strong extensional flow.

C. Parameters

Simulations are carried out using dimensionless variables. Units of stress, time and length

are Gchain ≤ cchainkBT with cchain being the chain density, τ0 ≤ ξ b2/kBT , and the Kuhn length b,

respectively. Here, τ0 in this study differs from the Rouse time of a single Kuhn segment by a

factor of 3π2.

Basic parameter values used in this paper are the same as those in our previous study.36 For

slip-spring parameters, we use Nss
e = 4, Ns = 0.5, and ξs/ξ = 0.1, which are the same as in

Likhtman’s original work.37 Here, a comment on the number of “entanglements” needs to be made.

The average number of slip-springs introduced to reproduce the entangled polymer dynamics,

〉Zss√= 〉N√/Nss
e , is not the same as the number of entanglements, 〉Ztube√= 〉N√/Ntube

e , defined in

the tube model. Here, Ntube
e is the number of beads per entanglement. Comparing the slip-spring

model with the Likhtman-McLeish tube model,47 Likhtman found that Ntube
e ′ 7 gives the number

of beads per entanglement when using the standard slip-spring model parameters, Nss
e = 4 and

Ns = 0.5.37 (More precisely, Ntube
e with and without CR is Ntube

e = 6.7 and 5.7, respectively.48)

Thus, we use Ntube
e = 7 to determine the number of entanglements per chain 〉Ztube√.

The Fraenkel parameters for main chain springs and slip-springs are both set to K = Kss = 102

for all simulations. The Fraenkel parameter is arbitrary as long as it is large enough to prevent

spring stretch. We chose the above value because it accomplishes this without excessive com-

putational cost required when employing very large Fraenkel parameter values. Our choice of

K = Kss = 102 is of the same order as used in several other studies,49–51 while larger values were

employed in one particular study.52 The simulation time step Δt is kept less than 10 3τ0. A Δt

value smaller than 10 3τ0 is required to accurately obtain the stress under strong shear and ex-
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tensional flow. For a shear rate range of γ̇ > 〉τR√ 1, where γ̇ is the shear rate and 〉τR√is the

average Rouse time defined as 〉τR√≤ (〉N√+1)2τ0/(6π2), we set the time step less than the value

of 10 3τ0/(γ̇〉τR√). Here, in typical simulations, the time step size should be set to be inversely

proportional to the strain rate so that the strain increment in each time step is constant. Further-

more, even for the same strain rate, we used a smaller time step in extensional flow than in shear

flow. Due to the computational cost, we examined the time step size range of Δt ∼ 10 5τ0. As

discussed later in Sec. III C, the smallest time step size Δt = 10 5τ0 might not be enough to pre-

vent overstretch under extension. Nevertheless, we confirmed that the Δt values used in this study

are small enough to that the stress from main chains σR does not show significant divergence. We

show the effect of changing the time step size in Fig. S2 in the supplementary material.

For breakage and rejoining events, Δteq
break is an input parameter for the simulation that is ob-

tained from the micelle average breakage time τ̄eq
break at equilibrium from Eq. (8). To compare

results from slip-spring simulations with those from other models or experiments, it is convenient

to use the dimensionless breakage time ζ which can be computed from Eq. (9) once τ̄eq
break and τ̄rep

are obtained.

In this study, we mainly set the average number of chains in the system to 〉Nchain√= 2000.

For several extensional simulations with large extensional strain rates, which require a small Δt,

we set 〉Nchain√= 1000. Under strong extensional flow, since the fluctuation in the extensional

stress becomes small, we can safely use the smaller number of chains. We set the maximum

and minimum numbers of springs to Nmax = 4〉N√and Nmin = 2 in all simulations. The total

number of micelles Nchain(t) without SIMB is allowed to change within the range of 0.95〉Nchain√≥
Nchain(t) ≥ 1.05〉Nchain√. The above values are the same as in our previous study.36 We have

checked the effect of changing the ranges of N(i)(t) and Nchain(t), and confirmed that expansion of

these ranges has little effect on G(t).36 On the other hand, there is no upper limit to Nchain(t) for

the simulations with SIMB.

D. Giesekus Model

Since the experimental shear rheological properties of WLM solutions can be successfully fit-

ted by the Giesekus model,8,9 we will see the Giesekus model can also fit the micelle-slip-spring

simulation results. If we can systematically map micelle parameters of the slip-spring model (e.g.,

the number of entanglements and the breakage rate) onto a nonlinear parameter appearing in the
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Giesekus model, physical insights could thereby be indirectly incorporated into macroscopic (in-

homogeneous) flow simulations, which might give better understanding of inhomogeneous flows

of WLM solutions and how they depend on micellar parameters, such as the breakage rate, rather

than merely on the phenomenological nonlinear parameter of the Giesekus model.

We briefly explain the Giesekus model and its steady state solutions under shear and extensional

flows. The Giesekus model is a well-known phenomenological constitutive equation,21,53 which

for mode p (1≥ p≥ Nmode) is expressed as

τp
�
σp +(σp GpI)+αG

)
σp

Gp
I

[
×(σp GpI) = 0, (13)

where σp is the stress for mode p,
�
σp is the upper convected derivative defined as

�
σp = σ̇p σp×

κ+ κ×σp with σ̇p being the time derivative of σp and κ the velocity gradient tensor, αG is the

anisotropic parameter, which is the same for all modes,54 I is the unit tensor, and τp and Gp are

the relaxation time and modulus for mode p, respectively. Here, τp and Gp are determined by the

multi-mode Maxwell model fitting of the relaxation modulus. The total stress σ is σ = ∑Nmode
p=1 σp.

In shear flow, the steady shear viscosity for mode p, ηp, is written as55

ηp

η0,p
=

(1 f S
p [γ̇,αG])2

1+(1 2αG) f S
p [γ̇,αG]

, (14)

where ηp,0 (= Gpτp) is the zero shear viscosity for mode p, and f S
p [γ̇,αG] is the function defined

as

f S
p [γ̇,αG] =

1 gS
p[γ̇,αG]

1+(1 2αG)gS
p[γ̇,αG]

, (15)

with }
gS

p[γ̇,αG]
∣ 2

=

}
1+16αG(1 αG)(τpγ̇)2

∣ 1/2
1

8αG(1 αG)(τpγ̇)2
. (16)

Here, γ̇ is the shear rate. Under extensional flow, the steady extensional viscosity for mode p, ηE,p,

is
ηE,p

3η0,p
=

1

6αG
3+ f E

p [ε̇,αG]+gE
p[ε̇,αG]

{
(17)

with

f E
p [ε̇,αG] =

1

τpε̇

}
1 4 1 2αG

{
τpε̇ +4(τpε̇)2

1/2
(18)

and

gE
p[ε̇,αG] =

1

τpε̇

}
1+2 1 2αG

{
τpε̇ +(τpε̇)2

1/2
, (19)

where ε̇ is the extension rate. The anisotropic parameter αG is determined by fitting steady shear

or extensional viscosity data.
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E. Phan-Thien/Tanner Model

In addition to the comparison of slip-spring simulation results with predictions of the Giesekus

model, we will test another common constitutive equation, namely the Phan-Thien/Tanner (PTT)

model.53,56 The PTT model is expressed as

τp
�
σp +Y

]
Tr

)
σp

G◦p
a2

I

[ {)
σp

G◦p
a2

I

[
= 0, (20)

where
�
σp is the Gordon-Schowalter convected derivative defined as

�
σp = σ̇p σp ×κ+ κ×

σp +(1 a)(σp×D+D×σp) with a being the parameter describing a slippage of the strand and

D= (κ+κ+)/2 being the strain rate tensor, Y is a function of the term in brackets that depends on

the average conformation of the polymer chains through the trace of the stress tensor as indicated,

and G◦p is the modulus defined as G◦p = a2Gp. In this study, we set a = 1 to avoid unphysical

oscillations produced by the Gordon-Schowalter convected derivative under shear flow.53 Thus,
�
σp and G◦p reduce to

�
σp and Gp, respectively. As is the case for the Giesekus model, τp and Gp

are determined by the multi-mode Maxwell model fitting of G(t).

Two functional forms for the dependence of Y on conformation have been suggested, namely

a linear function and an exponential function. The difference between the two forms is evident

in the steady extensional viscosity as a function of the extensional rate. For the linear function,

the extensional viscosity shows extension hardening followed by a high-extension-rate plateau.

For the exponential function, the extensional viscosity shows extension hardening followed by

extension thinning. Since typical experimental extensional viscosities obtained by the opposed

jet device show extension hardening followed by extension thinning,15–17 we use the exponential

function expressed as

Y [Tr(σp GpI)] = exp

}
αPTT

Gp
Tr(σp GpI)

(
, (21)

where αPTT is the nonlinear parameter in the PTT model. As in the Giesekus model, the nonlinear

parameter αPTT is the same for all modes. That is, we use a single nonlinear parameter αPTT to

fit the slip-spring data. When we use the exponential function shown in Eq. (21), the steady shear

viscosity can be expressed as57

ηp

η0,p
=

1

2τpγ̇

)
W [4αPTTτ2

p γ̇2]

αPTT

〈1/2

, (22)
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where W [x] is the Lambert W function. Since no analytical solution exists for the steady-state so-

lution under uniaxial extensional flow, we numerically solve Eq. (20) to obtain steady extensional

viscosity.

Finally, in this study, we do not use the popular VCM model to fit the slip-spring data because

the VCM model is a two species dumbbell model, whose the linear viscoelastic behavior is ex-

pressed by the superposition of the two relaxation times. Thus, it does not give a good fit to the

linear viscoelastic data of the slip-spring model. In addition, the VCM model is based on dilute

dumbbells with no entanglement effects, making it physically unsuitable to describe the shear

thinning produced by entanglements in entangled WLM solutions.

III. RESULTS AND DISCUSSION

A. Linear Viscoelasticity

We first show the linear viscoelastic (LVE) properties of the micelle-slip-spring model with the

Fraenkel spring potential. Before calculating the LVE data, all WLM chains in the ensemble are

equilibrated without flow for a time teq. The relaxation time needed to equilibrate the micelles teq

depends on the dimensionless breakage time ζ as teq ≥ 2(τ̄repτ̄eq
break)

1/2 for ζ < 1 or teq ≥ 2τ̄rep

for ζ ≥ 1. Here, (τ̄repτ̄eq
break)

1/2 is the theoretically estimated longest relaxation time in the fast-

breakage limit by Cates.25

In our previous paper,36 we presented G(t) data from the slip-spring model using Hookean

springs obtained by relaxation after a small step shear strain. We here re-compute G(t) for the

Fraenkel springs from equilibrium simulations using the Green-Kubo formula. We carry out this

re-calculation for the following two reasons. First, G(t) of Fraenkel springs is slightly different

from that of Hookean springs with the same numbers of main chain springs and slip-springs.

(For more detail, please see Fig. S3 in the supplementary material). Since G(t) is a small-strain

property, predictions of it from the slip-spring model with Fraenkel springs should converge to

those with Hookean springs when the Fraenkel spring constant is very large and there are enough

short Fraenkel springs to recover Hookean behavior. To simulate with a large Fraenkel spring

constant, a very small ∆t is required and thus it takes a long simulation time to obtain reliable

results. Even with this, since the nonlinearity arising from the Fraenkel potential exists even in

the small strain region, it is difficult to obtain an accurate G(t) from relaxation after a small step
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FIG. 2. Relaxation modulus G(t) computed from the slip-spring model by Green-Kubo formula for (a)

〉Ztube√= 5 and (b) 7 at four dimensionless breakage times ζ = 0.01 (black), 0.1 (red), 1 (blue), and 10

(magenta) with solid lines giving fits by the multi-mode Maxwell model. In (b), filled symbols are the

calculation of the correlation function (cf. Eq. (6)) for the time duration tLVE = (ttotal teq) = 6 ∗ 104 τ0,

and open symbols are for tLVE = 1∗ 105 τ0.

shear strain, as also reported by Lin and Das who compared the relaxation behavior of Hookean

and Fraenkel springs.49 For more detail, please see Sec. S4 in the supplementary material. Thus,

we use the Green-Kubo formula to obtain accurate G(t) data. To compute G(t), we utilize Eq. (6)

and the multiple-tau correlator for efficient calculations.58

Figure 2 shows the relaxation modulus G(t) for (a) 〉Ztube√= 5 and (b) 7 at four dimensionless

breakage times ζ = 0.01 (black), 0.1 (red), 1 (blue), and 10 (magenta). Here, G0 is the modulus

defined as G0 = 〉N√Gchain utilized as the unit of stress in Likhtman’s work.37 After the equilibrium

simulation for the time period teq, we performed the simulation with κ = 0 for a time duration

tLVE =(ttotal teq)= 1∗ 105τ0 to compute G(t), where ttotal is the total simulation time. This tLVE is

at least 50 times longer than the longest relaxation time (cf. Table S1 and S2 in the supplementary

material). It should be noted that G(t) for 〉Ztube√= 7 and ζ = 10 shown in Fig. 2(b) for t � 3000τ0

seems not to be converged due to the limited computational time. Thus, only the G(t) data for

t � 3000τ0 is utilized in later analysis. From Fig. 2, the short-time relaxation behavior wherein
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G(t) exceeds unity for t � 10 2τ0 is absent for Hookean chains, for which G(t) normalized as

described above approaches unity at short times. The rise of G(t) above unity at short time is

due to the Fraenkel potential used in this study, as noted in the literature.49 Moreover, relaxation

behavior in the relatively short time region t � τ0 is almost identical for all breakage rates. This

is because the breakage time is much larger than the unit time of the system. The difference

between different breakage times can be seen in the long-time region. As expected, the relaxation

becomes slower with increasing breakage time (i.e., decreasing breakage rate). The G(t) results

obtained from slip-spring simulations with the Fraenkel potential are then fitted by the multi-mode

Maxwell model G(t) = ∑p Gp exp( t/τp) where τp and Gp, respectively, are the relaxation time

and strength for mode p. The fitting results are shown in Fig. 1 with solid lines. We will use the

set of parameters }τp,Gp〈 determined by these fits to G(t) in the following analysis of nonlinear

rheology under flow. We tabulate the values of }τp,Gp〈 in Sec. S5 of the supplementary material.

B. Rheological Properties under Shear Flow

Next, we investigate nonlinear shear rheological properties. In all of slip-spring simulations in

this subsection, which focuses on shear properties, the breakage and rejoining times are assumed

to retain constant values (i.e., τ̄break = τ̄rejoin = τ̄eq
break) so that the breakage rate does not depend on

configuration or stress. Extensional flow experiments13 for the CTAB/NaSal system suggest that a

micelle will break when under a stress of around 3.6∗ 105 Pa, roughly consistent with molecular

dynamics simulations.46 This scission stress is high enough that micelle scission is likely to occur

only under strong extensional flow, and not under shear flow. The effect of stress-induced micelle

breakage at the high-stress level under shear flow will be addressed in our future work, if necessary.

Figure 3 shows the steady shear viscosities η ≤ σR
xy/γ̇ for three dimensionless breakage times

(a) ζ = 0.01, (b) 0.1 and (c) 1. The slip-spring simulation results with 〉N√= 35 springs and

〉Ztube√= 5 entanglements are plotted with symbols. As can be seen in Fig. 3, the micelle slip-

spring model can reproduce shear thinning due to the effect of the entanglement constraint. Here,

it should be noted that the shear-rate dependencies of the shear viscosity of WLM and polymer

solutions are characterized by a power law, i.e., η ∝ γ̇n, but with different exponents. The exponent

n for WLM solutions is typically around n ′ 1,1 whereas for nearly monodisperse polymer

solutions it is typically around n ′ 0.8.59 This is an important difference since the power law of

η ∝ γ̇ 1 in WLM solutions, which corresponds to a stress plateau in the steady-state flow curve, is
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FIG. 3. Steady shear viscosities at three dimensionless breakage times (a) ζ = 0.01, (b) 0.1, and (c) 1.

Slip-spring simulation results for 〉N√= 35 (i.e., 〉Ztube√= 5) are presented with symbols, fitting results by

the Giesekus model are shown with red solid lines, and those by the PTT model with blue dotted lines.

The black and red arrows are the inverse of the average Rouse time 〉τR√ 1 and the inverse of the average

relaxation time 〉τ√ 1, respectively. Here, the error bars show the standard deviations, which are less than

the symbol size except at the lowest shear rate.

responsible for shear banding. In Fig. 3, however, the number of entanglements and the shear rate

ranges are too small to observe this characteristic exponent for WLMs (n ′ 1). To investigate

the higher shear rate region, the missing mechanisms here (e.g., the entanglement loss under flow)

should be incorporated into the micelle slip-spring model. Although the limiting case in which

there is flow-induced loss of entanglements but no regeneration of them is examined in Sec. III D,

consideration of a better slip-spring regeneration algorithm under flow is deferred to a future work.

Red solid and blue dotted lines in Fig. 3 are the fitting results for γ̇〉τR√� 1, where 〉τR√is the

average Rouse relaxation time, by the Giesekus model (cf. Eqs. (14)�(16)) and the PTT model
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TABLE I. Nonlinear parameters for the Giesekus model αG and the Phan-Thien/Tanner model αPTT.

ζ αG
shear αG

ext αPTT
shear αPTT

ext

0.01 0.036 0.024 0.054 0.010

0.1 0.11 0.037 0.17 0.013

1 0.33 0.11 0.56 0.021

(cf. Eq. (22)), respectively. The nonlinear parameter appearing in each constitutive equation is

the same for all modes. Thus, a single nonlinear parameter is used in each constitutive model to

fit the slip-spring data. We observe that the steady shear viscosities for γ̇〉τR√� 1 obtained by the

slip-spring model can be successfully reproduced by both the Giesekus and the PTT models with

nonlinear parameter values summarized in Table I. On the other hand, the slip-spring simulation

data for γ̇〉τR√> 1 are not well reproduced by the constitutive models. Here, we note that there is

no physical reason that a near perfect agreement should be obtained since the constitutive models

used here are phenomenological, and are not microstructurally-based. Almost the same trend can

be observed for the case of 〉N√= 49 springs and 〉Ztube√= 7 entanglements, as shown in Fig. S4(a)

in the supplementary material.

Figure 4 shows transient shear viscosities η+(t) ≤ σR
xy(t)/γ̇ for (a) ζ = 0.01, (b) 0.1, and (c)

1. Slip-spring simulation results with 〉N√= 35 (i.e., 〉Ztube√= 5) are plotted with symbols. Here,

the same color in each figure means the same strain rate. The linear viscosity growth function

η+
0 (t) computed from the LVE data is shown with the black dotted line. The stress overshoot

shown by the slip-spring model predictions qualitatively matches that seen in experiments.5,6 For

the high strain rate region (γ̇〉τR√> 1), the shear viscosity exceeds the linear viscosity growth

function, thus showing a “hardening” prior to the stress overshoot. This may be related to the

nonlinearity of the chain extension at high strain rates, because of the small number of Kuhn steps

per spring in our model. This hardening behavior under strong shear, which is attributed to the

finite extensibility of springs, is observed in experiments for CTAB/NaSal systems, as reported by

Inoue and coworkers.12 Similarly, stiff entangled polymers are known to produce strain hardening

in shear.60 This strain hardening in our model will likely weaken if strain-induced entanglement

loss at high shear rates is included. As can be seen in the solid lines of Fig. 4, the transient shear

viscosities, including the stress overshoots seen in γ̇〉τR√� 1, are in good agreement with those

predicted by the Giesekus model with the nonlinear parameter determined by the steady state data
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FIG. 4. Transient shear viscosities η+(t) for (a) ζ = 0.01, (b) 0.1, and (c) 1. Slip-spring simulation

results with 〉N√= 35 and 〉Ztube√= 5 are plotted with symbols. Shear rates are γ̇τ0 = 3 ∗ 10 3 (black

squares), 1 ∗ 10 2 (red circles), 3 ∗ 10 2 (green triangles), 1 ∗ 10 1 (blue reverse triangles), 3 ∗ 10 1

(pink diamonds), and 1 (orange pentagons). The Weissenberg number (Wishear) ranges in each fig-

ure are (a) 0.5 � 17, (b) 0.2 � 20, and (c) 0.3 � 90, where Wishear is defined as Wishear ≤ γ̇〉τ√with

〉τ√= (∑Nmode

p=1 Gpτ2
p)/(∑

Nmode

p=1 Gpτp) being the average relaxation time. The linear viscosity growth func-

tion η+
0 (t) computed from the LVE data is shown with the black bold dotted line. The predictions by the

Giesekus and the PTT models are plotted with solid and dotted lines, respectively.

in Fig. 3. While the steady-state slip-spring simulation data for γ̇〉τR√� 1 are reasonably captured

by the PTT model as shown in Fig. 3, the transient shear viscosity predictions are poorer than

those of the Giesekus model in that the stress overshoot in the PTT model is less prominent than

in the slip-spring model. However, the hardening behavior seen in γ̇〉τR√> 1 is not reploduced

by these constitutive models, where the effect of finite extensibility is not addressed. Almost the

same trend can be observed for the case of 〉N√= 49 springs and 〉Ztube√= 7 entanglements, as
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FIG. 5. The same as Fig. 4, except for transient normal stress coefficients Ψ+
1 (t). The first normal stress

growth function Ψ+
1,0(t) computed from the LVE data is shown with the black bold dotted line.

shown in Fig. S5(b) in the supplementary material. Better predictions by the PTT model might

be obtained by setting the slip-parameter in the Gordon-Schowalter convected derivative to a {= 1.

However, doing so produces unphysical stress oscillations under shear flow, which are not seen in

current slip-spring simulations.

Figure 5 shows normal stress coefficients Ψ+
1 (t)≤N1(t)/γ̇2 = }σR

xx(t) σR
yy(t)〈/γ̇2 for (a) ζ =

0.01, (b) 0.1, and (c) 1 with the same parameters as those in Fig. 4. The first normal stress growth

function Ψ+
1,0(t)

53 computed from the LVE data is also shown with the black dotted line. The

Giesekus model (solid lines) can reproduce both the transient and the steady state data predicted

by the slip-spring model for γ̇〉τR√� 1. However, as is the case for the transient shear viscosity, the

PTT model predictions (dotted lines) for both the transient and steady normal stress coefficients

deviate from the slip-spring simulation data for γ̇〉τR√� 1. Moreover, both constitutive models

cannot reproduce Ψ+
1 (t) for γ̇〉τR√> 1. Almost the same trend can be observed for the case of

〉N√= 49 springs and 〉Ztube√= 7 entanglements, as shown in Fig. S5(c) in the supplementary
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material.

From the comparison of slip-spring simulation data with the Giesekus and PTT models in

Figs. 4 and 5, the Giesekus model matches better the slip-spring data than does the PTT model

under moderate shear flow where the chains do not show significant stretch. Since experimen-

tal studies show that the Giesekus model can also reproduce the shear rheological data of WLM

solutions,8,9 the micelle slip-spring model will also be in qualitative agreement with the experi-

mental shear data. We note that the strain hardening behavior seen in both the slip-spring model

and the experiments for the CTAB/NaSal system12 is not reproduced by the Giesekus model. Thus,

we can conclude that a constitutive model that can predict rheological properties under strong shear

flow has not yet developed.

In experiments of shear-rate regions showing shear thinning, flows of typical WLM solutions

show shear banding.22,23 To predict shear banding, spatially-dependent simulations are required.

Such simulations with the micelle-slip-spring model incur excessive computational costs. Since

the slip-spring model predictions for γ̇〉τR√� 1 are well reproduced by the Giesekus model, the

latter can be used for such spatially-dependent simulations. This will be the goal of our future

research whose aim is to use slip-spring simulations to choose and tune a constitutive model to

produce similar responses in flows such as shear, extensional, and mixed flows, thus validating it

for use in more complex flows.

C. Rheological Properties under Extensional Flow

Next, we investigate uniaxial extensional rheological properties obtained by the micelle slip-

spring model again with Fraenkel springs. As for shear flow, we first omit stress-induced micelle

breakage (i.e., τ̄break = τ̄eq
break), and show the basic properties of the micelle slip-spring model under

extensional flow. However, as discussed above, experiments13 and recent molecular dynamics

simulations46 reveal that stress-induced micelle breakage is expected when the stress becomes

several orders of magnitude larger than the plateau modulus. This might be the case at the high

extensional rates examined in this study. Thus, we will also test the effect of stress-induced micelle

breakage (SIMB) for several conditions.

Figure 6 shows steady extensional viscosities ηE = σE/ε̇ normalized by the zero shear vis-

cosity η0 for three dimensionless breakage times (a) ζ = 0.01, (b) 0.1, and (c) 1 with the steady

extensional stress σE defined by σE = σR
xx (σR

yy +σR
zz)/2. Slip-spring simulation results without
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FIG. 6. Steady extensional viscosities at three dimensionless breakage times (a) ζ = 0.01, (b) 0.1, and (c)

1. Slip-spring simulation results for 〉N√= 35 (i.e., 〉Ztube√= 5) with and without stress-induced micelle

breakage are presented with filled and open symbols, respectively. Here, the simulation results showing sig-

nificant spring stretch beyond the theoretical maximum value are plotted with open squares. The Giesekus

and PTT model predictions with the same parameters as under shear flow are shown with gray solid and

dotted lines, respectively, while those with modified nonlinear parameters for extensional flow are shown

with red solid and dotted lines, respectively.

SIMB are plotted with open symbols. To compare simulation results with the experimental data,

it is convenient to introduce the Weissenberg number defined as Wiext ≤ ε̇〉τ√, where 〉τ√is an

average relaxation time defined as 〉τ√= (∑Nmode
p=1 Gpτ2

p)/(∑
Nmode
p=1 Gpτp). In Fig. 6, the simulation

results showing significant spring stretch beyond the theoretical maximum value are plotted with

open squares. Under high extensional flows, the average squared end-to-end vector for the mi-

cellar chains, 〉R2
EE√, becomes larger than the theoretical maximum value 〉R2

EE,max√= (〉N√b)2

since longer chains in the ensemble show significant stretch (for more details, please see Fig. S6

in the supplementary material). This is evident for slower breakage cases where longer chains less

frequently break. There are two possible reasons for this overstretch: one is the Fraenkel spring
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constant is not large enough, the other is Δt values (Δt � 10 5τ0 for high extensional rates) are

not small enough. However, it is not practical to employ larger Fraenkel parameters or smaller

Δt values due to the large computational cost. In the current case, however, since the number of

these chains is small, the extensional stress is expected not to be much affected by these chains.

This is partly supported by the fact that the extensional stress does not show significant diver-

gence (cf. Fig. 7). In Fig. 6, we also plot with gray solid and dotted lines the predictions of the

Giesekus model and PTT model, respectively, with the same nonlinear parameter as that under

shear flow. From Fig. 6, we can observe that extensional viscosities from the slip-spring simu-

lations without SIMB monotonically increase at Wiext � 0.5. This is a typical behavior obtained

by the bead-spring models.50 On the other hand, extensional viscosities predicted by the Giesekus

and PTT models show extension thickening followed by a high Weissenberg number plateau and

extension thinning, respectively. Experimentally, Walker and coworkers reported the extensional

viscosities for CPyCl/NaSal solutions show extension thickening followed by extension thinning,

where the increase in ηE occurs at Wi(expt)
ext ′ 0.7 and the maximum in ηE is seen at around Wi(expt)

ext

′ 4� 7.17 Here, Wi(expt)
ext is obtained by multiplying experimental apparent strain rates and a termi-

nal relaxation time τexpt, which is evaluated by τexpt = η0/G0
N. While the slip-spring simulations

can reasonably capture the onset of the increase in ηE, the original slip-spring simulations without

SIMB cannot reproduce extension thinning seen in experiments. Thus, there should be a missing

mechanism(s) in the original micelle slip-spring model under strong extensional flow. It should

be noted that the PTT model can qualitatively capture experimental extensional viscosities, i.e.,

extension thickening followed by extension thinning. However, the maximum in ηE becomes less

prominent with increasing dimensionless breakage time.

As discussed earlier, we incorporate stress-induced micelle breakage (SIMB) to improve slip-

spring predictions under strong extensional flow. To implement SIMB, the characteristic exten-

sional stress, σbreak
E , appearing in Eq. (12) should be determined. This can be done with the

assistance of the molecular dynamics simulation.46 For example, for the cetyltrimethylammonium

chloride (CTAC)/NaSal system, utilizing the scission energy vs stress data shown in Fig. 6(b) of

the work by Mandal and Larson46 and performing a linear fit (cf. Eq. (11)), we can estimate σbreak
E

to be σbreak
E ′ 3 ∗ 105 Pa for the CTAC/NaSal system at the salt concentration giving the lowest

breakage rate. This value is much higher than the experimental plateau modulus of CTAC/NaSal

systems.61 It should be noted that the characteristic stress might be system dependent, and has

not been systematically examined. To the best of our knowledge, for the CPyCl/NaSal system,
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whose extensional properties are reported by Walker and coworkers,17 no information to estimate

the characteristic stress has been reported. Here, based on the finding that σbreak
E is much higher

than the plateau modulus, we assume a value much lower than estimated by Mandal and Larson,

that is we take σbreak
E = 2 ∗ 104 Pa which allows us to find a significant effect of SIMB on rhe-

ological properties. (Comparison to the larger value of σbreak
E , i.e., σbreak

E = 1 ∗ 105 Pa closer to

the value of Mandal and Larson,46 giving much less extension thinning, is shown in Sec. S7 in the

supplementary material.) If we assume that the experimental plateau modulus as G0
N ′ 10 Pa, the

dimensionless characteristic extensional stress is evaluated as {σbreak
E ′ 2∗ 103. In the slip-spring

model, the plateau modulus can be approximated as G0
N,ss = 0.18 ∗ 0.8G0 = 0.144G0.48 During

simulations, we rescale the extensional stress by G0
N,ss to compute {σE, and evaluate the breakage

time by Eq. (12).

In Fig. 6, slip-spring simulation results with SIMB are plotted with filled symbols. We can

observe that the extensional viscosities show the maximum at around Wiext ′ 2 � 3, which is

almost the same as in the experimental results by Walker and coworkers.17 Here, 〉R2
EE√with

SIMB is smaller than, or at most slightly larger than the theoretical maximum value. As compared

to the simulations without SIMB, the degree of overstretch is thus significantly suppressed (for

more details, please see Fig. S6 in the supplementary material). The constitutive models using the

nonlinear parameter derived from fitting shear flow (gray lines in Fig. 6) underestimate ηE obtained

by the slip-spring model with SIMB (filled symbols in Fig. 6). To improve the predictions of the

constitutive models, we separately fit the Giesekus and PTT models to the extensional data with

SIMB of Wiext � 1. While we use Eqs. (17)�(19) for the Giesekus model fit, an optimal PTT fit to

the extensional data can be obtained by minimizing the value of ∑ j}(ηPTT
E, j ηE, j)/ηE, j〈2, where

j is the individual data points with different strain rates, ηPTT
E, j is the steady extensional viscosity

of the PTT model, and ηE, j is the steady extensional viscosity of the slip-spring model. The

parameter values under extensional flow are summarized in Table I. The fitting results are shown

in Fig. 6 with red lines. As can be seen in Table I, the Giesekus and PTT models with the smaller

nonlinear parameter values than under shear flow give better predictions under uniaxial extensional

flow. We can see that the Giesekus model can reproduce the slip-spring simulation results better

than the PTT model. However, the Giesekus model cannot predict extension thinning observed

in experiments and slip-spring simulations with SIMB. On the other hand, the PTT model can

reproduce extension thinning, but provides poorer predictions at the onset of extension thickening.

It should be noted that the Giesekus and PTT models with the nonlinear parameter determined
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FIG. 7. Transient uniaxial extensional viscosities η+
E (t) for (a) ζ = 0.01, (b) 0.1, and (c) 1. Slip-spring

simulation results for 〉N√= 35 and 〉Ztube√= 5 with and without stress-induced micelle breakage (SIMB)

are shown with filled and open symbols, respectively. Strain rates are ε̇τ0 = 1∗ 10 3 (black cross marks),

3∗ 10 3 (black squares), 1∗ 10 2 (red circles), 3∗ 10 2 (green triangles), 6∗ 10 2 (blue reverse triangles),

1∗ 10 1 (pink diamonds), and 3∗ 10 1 (orange pentagons). Simulation results without SIMB for the largest

strain rates are not shown since these results show significant overstretch. Moreover, simulation results with

SIMB for the small strain rates are not shown since SIMB only becomes significant at high stress levels,

which are not reached for small strain rates. The linear viscosity growth function η+
E0(t) obtained from the

LVE data is presented with the black bold line.

under extensional flow give poorer predictions under shear flow than those shown in Figs. 4 and 5

(for more details, please see Fig. S8 in the supplementary material).

Figure 7 shows transient uniaxial extensional viscosities η+
E (t) for (a) ζ = 0.01, (b) 0.1, and

(c) 1. For each ζ value, η+
E (t) curves of the slip-spring model with the smallest strain rate (ε̇τ0 =

1 ∗ 10 2 for ζ = 0.01, ε̇τ0 = 3 ∗ 10 3 for ζ = 0.1, and ε̇τ0 = 1 ∗ 10 3 for ζ = 1) are almost
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FIG. 8. Transient uniaxial extensional viscosities η+
E (t) for (a) ζ = 0.01, (b) 0.1, and (c) 1. Slip-spring

simulation results for 〉N√= 35 and 〉Ztube√= 5 with stress-induced micelle breakage are shown with filled

symbols. The strain rates are the same as those in Fig. 7. The Giesekus and PTT model predictions with

modified nonlinear parameters for extensional flow are shown with solid and dotted lines, respectively.

identical to η+
E0, which indicates that these strain rates are in the linear response regions. In the

small strain rate region (ε̇τ0 ≥ 3∗ 10 2 for ζ = 0.01, and ε̇τ0 ≥ 1∗ 10 2 for ζ = 0.1 and ζ = 1),

η+
E (t) curves with and without SIMB are almost identical, which indicates that SIMB does not

affect η+
E (t) in the small strain rate region. In the larger strain rate region, the effect of SIMB can

be detected for all ζ cases. While transient extension hardening behavior with SIMB is almost

identical to that without SIMB, η+
E (t) with SIMB shows a maximum before reaching a steady

state, which is the qualitatively different behavior from that without SIMB. As shown in Fig. 6

with filled symbols, the steady extensional viscosities show weak extension thinning.

In Fig. 8, we plot the Giesekus and PTT model predictions with modified nonlinear parame-

ters for extensional flow. In the small strain rate region, the Giesekus model predictions (solid
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lines) can be brought into reasonable agreement with transient extensional data from the slip-

spring model. However, deviations from the slip-spring simulation results can be observed for the

larger strain rate region. In particular, the viscosity overshoot observed in the slip-spring simula-

tions is not reproduced by the Giesekus model. Almost the same arguments are true for the PTT

model predictions (dotted lines). Thus, the nonlinear shear and extensional slip-spring data are not

simultaneously reproduced by the Giesekus and PTT models with a single nonlinear parameter.

Thus our attempt to fit slip-spring model predictions with those of common constitutive equa-

tions under both shear and extensional flows has not yet succeeded, although the Giesekus model

can give good predictions under moderate shear flow. A complete constitutive equation might

however be developed by replacing the nonlinear term of the Giesekus equation with a functional

form sensitive to the flow type or by changing the nonlinear parameter αG to a flow-type parameter

that can distinguish shear from extensional flow. The latter idea would be tricky, and would re-

quire choosing a suitable metric of flow type that satisfies the proper invariance principles. If such

a flow-type parameter is found that allows the model to predict results in both shear and extension,

it would need to be checked by comparing its predictions to those of slip-spring simulations in

mixed flows. These mixed flows are intermediate between shear and extension, for which the flow

switches between shear to extension as a function of time. Such work is beyond the scope of this

study, and therefore deferred to our future work.

D. The Effect of Entanglement Loss

Here, we examine the effect of the entanglement loss, which is one of the important nonlinear

mechanisms and does not consider so far, on the rheological properties. We implement this effect

by considering only a limiting case where the total number of slip-springs (Ztotal) continually

decreases and eventually becomes zero. Namely, when a slip-link goes through its chain end,

this slip-link and the partner slip-link are simultaneously destroyed, and no regeneration of slip-

links is considered. This method is similar to that employed by Moghadam and coworkers.62

From Figs. 9(a) and (b), the shear and extensional viscosities without the slip-spring regeneration

are smaller than those with the slip-spring regeneration. This stress reduction corresponds to the

decrease of the number of slip-springs seen in the insets of Figs. 9(a) and (b), and should contribute

to shear or extension thinning behavior. As can be seen Fig. 9(a), the strain hardening is hardly

observed for the case without the slip-spring regeneration. This is because the effect of slip-spring
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FIG. 9. (a) Shear and (b) extensional viscosities obtained by the micelle slip-spring model for 〉Ztube√= 5

and ζ = 0.01 with (open cirsles) and without (filled circles) the slip-spring regeneration. Strain rates are

γ̇τ0 = 3 ∗ 10 1 for the shear simulation, and ε̇τ0 = 1 ∗ 10 1 for the extensional simulation. The linear

viscosity growth functions are presented with the black solid lines. Dotted lines are added as guides to the

eye. The insets are the total number of slip-springs in the system (Ztotal). The horizontal dotted lines in the

insets are the initial value of Ztotal.

constraint is quickly lost due to the fast breakage. Nevertheless, the hardening behavior is expected

to re-appear since the unentangled bead-spring model with the Fraenkel springs itself shows the

hardening under fast shear, as shown in Fig. S9 in the supplementary material.

Since the extent of entanglement loss in nonlinear flow is still under investigation, our limit-

ing cases of constant entanglement density and no regeneration of entanglements provide useful

bounds on the expected behavior. A correct algorithm is somewhere between two cases since the

entanglement regeneration process should exist even under flow. The correct entanglement regen-

eration algorithm should be developed first for polymers without breakage and rejoining events.
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E. Comparison with Experimental Data

Finally, we present a comparison between the slip-spring results and experimental data for an

aqueous solution of 100 mM cetylpyridinium chloride (CPyCl) with 45 mM sodium salicylate

(NaSal) examined by Gaudino and coworkers.7 It should be noted that the experimental results for

100 mM CPyCl with 45 mM NaSal have a rather broad relaxation time distribution, as can be seen

later in Fig. 10. However, it is typical that entangled linear WLM solutions with a sufficiently high

surfactant or salt concentration show a Maxwell-type stress relaxation with a single relaxation

time.2–4 This relaxation behavior is observed if the number of entanglements is large enough

that the reptation dynamics is well separated from Rouse modes, and the breakage rate is fast

enough that the relaxation process can be described by a single relaxation time. In this study, the

computational cost limits the model to WLM solutions with moderate numbers of entanglements

(� 7), which is not enough to show the Maxwell-type stress relaxation with a single relaxation

time. Nevertheless, in the future, we hope to perform nonlinear simulations with a larger number

of entanglements by developing a further computationally efficient code, or a constitutive model

for well-entangled WLMs based on our micelle slip-spring model.

To test the ability of the slip-spring model to predict the nonlinear experimental data, the slip-

spring parameters (i.e., the number of entanglements 〉Ztube√and the dimensionless breakage time

ζ ) should be determined before performing linear and nonlinear rheological simulations. We

can estimate 〉Ztube√from the linear rheological data with the aid of the following relationship

developed from the pointer algorithm by Tan and coworkers:30

G∈min

G∈∈min

= 0.317

)〉L√
�e

[ 0.82

= 0.317〉Ztube√0.82. (23)

Here, G∈∈min is the local minimum in G∈∈, G∈min is the G∈value at the frequency at which G∈∈shows

its minimum value G∈∈min, 〉L√is the average micelle length, and �e is the entanglement length.

However, the target experimental data for the CPyCl/NaSal system does not have a clear minimum

in G∈∈(see Fig. 1(a) of Ref. 7). In this case, it is reasonable to assume that the G∈min/G∈∈min value

is a small number, 1� 2, which gives 〉Ztube√′ 4� 9. In this study, we therefore assume that the

G∈min/G∈∈min is 1.5, which gives 〉Ztube√′ 7. (The experimental data showing G∈min/G∈∈min = 1.5 is

at about ω ′ 20 s 1.) This 〉Ztube√value is lager than the value 〉Ztube√= 2.5 that Gaudino and

coworkers obtained from an earlier scaling formula lacking a prefactor, namely 〉Ztube√=G0
N/G∈∈min

with G0
N being a rough estimate of the plateau modulus since the experimental data does not show
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a clear plateau from which to obtain G0
N.7 Thus, the value of 〉Ztube√= 2.5 is expected to be smaller

than the more realistic value estimated from Eq. (23). For the dimensionless breakage time ζ , we

use a relatively large value ζ = 10 since the WLM solution is expected to be well outside of the

fast breakage limit. This can be inferred from the fact that four modes are required to fit the LVE

data (cf. Table I of Ref. 7).

In addition to 〉Ztube√and ζ , we need to estimate the theoretical values of the stress G(theory)
0

and the unit time τ(theory)
0 of the slip-spring model. Before computing these values, we estimate

the plateau modulus of this WLM solution, G0
N. We use the following relation established by

Tan and coworkers:30 G0
N/G∈min = 4.25/(G∈min/G∈∈min) + 0.625. This equation is recommended

for G∈min/G∈∈min < 10, which is the case in our study. From our assumption of G∈min/G∈∈min = 1.5

and G∈min = G∈(ω ′ 20 s 1) ′ 10 Pa, G0
N is determined as G0

N ′ 35 Pa. Using the same procedure

shown in our previous study,36 we can determine G(theory)
0 as G(theory)

0 =G0
N/(0.8∗ 0.18) ′ 2∗ 102

Pa. In the loosely entangled regime, G0
N is expressed as G0

N = 9.75kBT/�3
blob where �blob is the blob

size.27 Using this equation and setting T = 300 K, we can compute �blob as 1.1∗ 10 7 m. Taking

for the persistence length �p the typical value �p = 25 nm and using the relation �blob = �0.6
e �0.4

p ,

we can determine the entanglement length �e as �e ′ 280 nm. Thus, the semi-flexibility factor αe

is αe = �e/�p ′ 11, which is close to the standard value used in the slip-spring model, αss
e = 14.

In the slip-spring model, the unit of time τ0 is τ0 = ξ b2/kBT = ξ∈b3/kBT with ξ∈being the drag

coefficient per unit micelle length. The value of ξ∈can be computed using the drag coefficient for

a cylinder of length �blob and micelle diameter d as ξ∈= 2πηs/ ln(�blob/d). Here, ηs is the solvent

viscosity. From T = 300 K, ηs = 0.85 mPa×s, and the typical value of d = 4 nm, the theoretical

value of the unit time can be computed as τ(theory)
0 ′ 5∗ 10 5 s.

Figure 10 compares the storage and loss moduli for the slip-spring simulation with 〉Ztube√= 7

and ζ = 10 (symbols) with the experimental data (lines). As noted in Sec. III A, we can use the

slip-spring data for t/τ0 � 3000 to accurately evaluate G∈and G∈∈(cf. Fig. 2). Here, rather than

plot the original G∈and G∈∈experimental data, we smooth these data using the fits to them by a

set of Maxwell modes whose relaxation times and strengths are given in Table I of Ref. 7. The

unit time and unit stress determined by shifting the dimensionless G∈and G∈∈curves to match the

experimental G∈and G∈∈are τ0 = 5∗ 10 5 s and G0 = 2∗ 102 Pa, respectively. These values are

the same as the theoretically determined unit time and stress since the semi-flexibility factor of

the slip-spring model αss
e = 14 is close to the experimental value of αe ′ 11. Unlike our previous

study,36 we need not correct τ0 and G0 to address the different αe values between the slip-spring
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FIG. 10. Storage and loss moduli of slip-spring simulations with 〉Ztube√= 7 and ζ = 10 (symbols) com-

pared to the experimental data (lines) for an aqueous solution of 100 mM CPyCl with 45 mM NaSal. The

experimental data are reproduced by relaxation times and strengths shown in Table I of Ref. 7.
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FIG. 11. Transient shear viscosity of slip-spring simulations (lines) compared to the experimental data

(symbols) for aqueous solutions of 100 mM CPyCl with 45 mM NaSal. The linear viscosity growth function

η+
0 (t) obtained from the LVE data is plotted with the black dotted line. The strain rates are 20 s 1 (green

circles), 40 s 1 (red reverse triangles), and 80 s 1 (blue diamonds). The experimental data are taken from

Fig. 2 of Ref. 7.

simulation and the experiment. From Fig. 10, we can see that G∈and G∈∈obtained from the slip-

spring simulation are in reasonable agreement with the experimental data. This indicates that the

choices of slip-spring parameters, i.e., 〉Ztube√and ζ , are reasonable.

Figure 11 compares η+(t) predicted by the slip-spring simulations without SIMB and entan-

glement loss for 〉Ztube√= 7 and ζ = 10 (lines) with the experimental data (symbols). Here, we

also use the values of τ0 and G0 determined in Fig. 10. The dimensionless shear rates γ̇τ0 in the

slip-spring model that correspond to the experimental values 20 s 1, 40 s 1, and 80 s 1 are there-
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fore about γ̇τ0 ′ 1∗ 10 3, 2∗ 10 3, and 4∗ 10 3, respectively. The slip-spring results in Fig. 11

are shown with solid lines, and η+
0 (t) computed from the LVE data is presented with the black

dotted line. Fig. 11 indicates that the slip-spring data are in good agreement with the experimental

shear data. Again, this shows that the choices of slip-spring parameters are reasonable.

To the best of our knowledge, experimental data in extensional flow for WLM solutions with

micelles of length accessible by the slip-spring model are not available currently. Extensional

measurements for WLM solutions with low viscosities are typically conducted by the Capillary

Breakup Extensional Rheometry (CaBER). However, the strain rate of the CaBER measurements

is not constant over time, making it difficult to compare the extensional experimental data with the

slip-spring data. Additionally, an initial step extensional strain in the CaBER measurements might

affect the extensional viscosity.14 It is difficult to produce the initial state of micellar chains for the

slip-spring simulations. The comparison with extensional experiments is an important problem to

study in the future.

IV. CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

We have presented linear and nonlinear rheological predictions of a mesoscopic simulation

model for entangled WLM solutions, the so-called “micelle-slip-spring model” based on the poly-

mer slip-spring model proposed by Likhtman37 with breakage and rejoining events added to repro-

duce WLM dynamics.36 To capture the nonlinear rheological properties, instead of the Hookean

springs employed in our previous study,36 we introduced the Fraenkel potential for main-chain

springs and slip-springs. Additionally, to improve extensional properties under strong extensional

flow, we incorporated stress-induced micelle breakage into the micelle-slip-spring model. We used

this extended model to examine both linear and nonlinear rheological properties.

In the linear response region, the relaxation modulus G(t) was computed using the Green-Kubo

formula from the equilibrium simulation. We found that G(t) for Frankel springs differs slightly

from that for Hookean springs due to the difference in spring potential. The results for G(t) are

fitted using the multimode Maxwell model to determine relaxation times and strengths.

This micelle slip-spring model with Fraenkel springs can reproduce the characteristic rheolog-

ical behavior in start-up and steady-state shear of WLM solutions. That is, the transient shear

viscosities for moderate strain rates show the experimentally observed overshoot and the steady

shear viscosities show the observed shear thinning. The experimentally observed hardening be-
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havior under strong shear flow can be replroduced by the micelle slip-spring model with finite

extensibility. The slip-spring simulation results for the strain rates where the chains do not show

significant chain stretch were fitted by two common phenomenological constitutive equations: the

Giesekus model and the PTT model. The steady shear viscosity obtained by the slip-spring model

can be well reproduced by both constitutive models. Transient shear predictions by the Giesekus

model are also in good agreement with those of the slip-spring model. This result is qualitatively

the same as in experimental observations. In contrast, transient predictions by the PTT model (with

the non-affine deformation parameter set to zero to avoid spurious oscillations in shear) deviate

from those by the slip-spring model. These results indicate the Giesekus model captures better the

shear properties of the slip-spring model for not so high shear rates than does the PTT model.

The micelle slip-spring model was also applied to predict rheological properties under uniaxial

extensional flow. The Fraenkel potential prevents the overstretch of WLM chains under exten-

sional flow, and thus we can reach steady state extensional viscosities. While the micelle slip-

spring model reasonably reproduces the onset of extension thickening behavior, this model fails

to predict extension thinning behavior observed in experiments. Thus, we incorporated stress-

induced micelle breakage (SIMB) which allows the simulation results with SIMB to successfully

capture extension thinning behavior. We also show the Giesekus and PTT constitutive model

predictions with the same nonlinear parameter as under shear flow underestimate the slip-spring

results. To reproduce the steady extensional data of the slip-spring model, a smaller value of

the nonlinear parameter (corresponding to smaller deviations from the upper-convected Maxwell

model) is needed to fit the slip-spring results in extensional flow. However, the constitutive model

predictions even with the modified nonlinear parameter cannot capture the transient extensional

viscosities especially under strong flow. Thus, it is not possible to predict both shear and exten-

sional properties by the Giesekus and PTT models with a single constant nonlinear parameter.

Furthermore, we examined the effect of entanglement loss on rheological properties by consid-

ering the limiting case in which we disable the regeneration of slip-springs when previous ones

disappear, so that the number of slip-springs continuously decreases and eventually becomes zero.

We found that the stress without the slip-spring regeneration is smaller than that with the slip-

spring regeneration. Thus, the effect of entanglement loss should contribute to shear/extension

thinning behavior. A correct algorithm for entanglement loss is somewhere between two cases of

constant entanglement density and no regeneration of slip-springs, and should be developed first

for unbreakable polymers.
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The slip-spring simulation results were also compared with experimental linear rheological and

nonlinear shear data. The number of entanglements 〉Ztube√was estimated from the linear rheolog-

ical data using the recent relation found by Tan and coworkers,30 and the dimensionless breakage

time ζ was set to be large based on the inference that the WLM solution is well outside of the

fast breakage limit. The simulation results for G∈and G∈∈were compared with the experimental

results, and the unit time τ0 and the stress G0 were determined. These τ0 and G0 are the same as

expected theoretical values, indicating the validity of the chosen parameters. Moreover, nonlinear

shear viscosities obtained by the slip-spring model are in reasonable agreement with the exper-

imental shear data. These results support the predictive ability of the slip-spring model under

homogeneous shear flow.

Further studies are required to understand more deeply the rheological properties of WLM

solutions using the micelle slip-spring model. For example, strain hardening in nonlinear stress

relaxation is experimentally detected in several WLM systems63,64 which has been linked to shear-

induced associations of WLMs. Hence, to reproduce strain hardening in nonlinear stress relax-

ation, it might be important to incorporate this mechanism into the micelle slip-spring model.

Moreover, it would be interesting to examine the change in strain-rate dependence of shear stress,

which is related to shear banding, caused by stress-induced acceleration of micelle breakage. Ad-

ditionally, the extensional rheology obtained by the slip-spring model should be compared with

experimental results. The current simulations are limited to homogeneous flow. To incorporate in-

homogeneous shear such as shear banding, the equations of conservation of mass and momentum

should be coupled. While “multiscale” slip-link simulations have been performed for unbreakable

polymer melts,65 such simulations are currently too extensive to be carried out for WLM solutions

since an ensemble of many WLM chains is required. Thus, the fitting of predictions of the slip-

spring model by a phenomenological constitutive equation, which is attempted for the first time

in this study, might be effective for such a purpose. This might be done more efficiently in the

future with the aid of machine learning techniques.66 We hope to continue our study along these

directions.

SUPPLEMENTARY MATERIAL

See supplementary material for further results obtained from the slip-spring simulations.
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