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Amplituhedron
Electrical networks

1. Introduction

The prototypical example of a closed ball of interest in topological combinatorics is 
a convex polytope. Over the past few decades, an analogy between convex polytopes, 
and certain spaces appearing in total positivity and in electrical resistor networks, has 
emerged [23,11,26,8,9]. One motivation for this analogy is that these latter spaces come 
equipped with cell decompositions whose face posets share a number of common features 
with the face posets of polytopes [35,14,31]. A new motivation for this analogy comes from 
recent developments in high-energy physics, where physical significance is ascribed to 
certain differential forms on positive spaces which generalize convex polytopes [1,3,2]. In 
this paper we show in several fundamental cases that this analogy holds at the topological 
level: the spaces themselves are closed balls.

1.1. The totally nonnegative Grassmannian

Let Gr(k, n) denote the Grassmannian of k-planes in Rn. Postnikov [26] defined its 
totally nonnegative part Gr≥0(k, n) as the set of X ∈ Gr(k, n) whose Plücker coordi-
nates are all nonnegative. The totally nonnegative Grassmannian is not a polytope, but 
Postnikov conjectured that it is the ‘next best thing’, namely, a regular CW complex 
homeomorphic to a closed ball. He found a cell decomposition of Gr≥0(k, n), where each 
open cell is specified by requiring some subset of the Plücker coordinates to be strictly 
positive, and requiring the rest to equal zero.

Over the past decade, much work has been done towards Postnikov’s conjecture. The 
face poset of the cell decomposition (described in [28,29,26]) was shown to be shellable by 
Williams [35]. Postnikov, Speyer, and Williams [27] showed that the cell decomposition is 
a CW complex, and Rietsch and Williams [31] showed that it is regular up to homotopy, 
i.e., the closure of each cell is contractible. Our first main theorem is:

Theorem 1.1. The space Gr≥0(k, n) is homeomorphic to a k(n − k)-dimensional closed 
ball.

It remains an open problem to establish Postnikov’s conjecture, i.e., to address ar-
bitrary cell closures in the cell decomposition of Gr≥0(k, n).1 Each of Postnikov’s cells 
determines a matroid known as a positroid, and Theorem 1.1 also reflects how positroids 
are related via specialization (see [6] for a related discussion about oriented matroids).

Separately, Lusztig [23] defined and studied the totally nonnegative part (G/P )≥0
of a partial flag variety of a split real reductive group G. In the case G/P = Gr(k, n), 

1 Since this paper was completed, we verified Postnikov’s conjecture using different methods [12].
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Rietsch showed that Lusztig’s and Postnikov’s definitions of the totally nonnegative part 
are equivalent (see e.g. [20, Remark 3.8] for a proof). Lusztig [24] showed that (G/P )≥0
is contractible, and our approach to Theorem 1.1 is similar to his (see Section 3.4). We 
discuss the case (G/P )≥0 in a separate work [13].

Our proof of Theorem 1.1 employs a certain vector field τ on Gr≥0(k, n). The flow 
defined by τ contracts all of Gr≥0(k, n) to a unique fixed point X0 ∈ Gr≥0(k, n). We 
construct a homeomorphism from Gr≥0(k, n) to a closed ball B ⊂ Gr≥0(k, n) centered 
at X0, by mapping each trajectory in Gr≥0(k, n) to its intersection with B. A feature of 
our construction is that we do not rely on any cell decomposition of Gr≥0(k, n).

1.2. The totally nonnegative part of the unipotent radical of GLn(R)

The interest in totally nonnegative spaces from the viewpoint of combinatorial topol-
ogy dates back at least to Fomin and Shapiro [11]. Edelman [10] had shown that intervals 
in the poset formed by the symmetric group Sn with Bruhat order are shellable, whence 
Björner’s results [7] imply that there exists a regular CW complex homeomorphic to a 
ball whose face poset is isomorphic to Sn. Fomin and Shapiro [11] suggested that such 
a CW complex could be found naturally occurring in the theory of total positivity.

Namely, let U ⊂ GLn(R) be the subgroup of all upper-triangular unipotent matrices, 
and U≥0 its totally nonnegative part, where all minors are nonnegative. Let V≥0 denote 
the link of the identity of U≥0. The intersection of V≥0 with the Bruhat stratification of 
U induces a decomposition of V≥0 into cells, whose face poset is isomorphic to Sn. Fomin 
and Shapiro [11, Conjecture 1.10] conjectured that V≥0 is a regular CW complex, which 
was proved by Hersh [14]. Applying her result to the cell of top dimension implies that 
V≥0 is homeomorphic to an 

((
n
2
)
− 1

)
-dimensional closed ball. We give a new proof of 

this special case to exhibit the wide applicability of our methods. We emphasize that our 
techniques in their present form are not able to address the other (lower-dimensional) 
cell closures in V≥0, which appear in Hersh’s result. In addition, Fomin and Shapiro’s 
conjecture, as well as Hersh’s theorem, hold in arbitrary Lie types, while we only consider 
type A.

1.3. The cyclically symmetric amplituhedron

A robust connection between the totally nonnegative Grassmannian and the physics 
of scattering amplitudes was developed in [1], which led Arkani-Hamed and Trnka [3] to 
define topological spaces called amplituhedra. A distinguishing feature that these topo-
logical spaces share (conjecturally) with convex polytopes is the existence of a canonical 
differential form [2]. This brings the analogy between totally nonnegative spaces and 
polytopes beyond the level of face posets.

Let k, m, n be nonnegative integers with k + m ≤ n, and Z be a (k + m) × n matrix 
whose (k+m) ×(k+m) minors are all positive. We regard Z as a linear map Rn → Rk+m, 
which induces a map ZGr on Gr(k, n) taking the subspace X to the subspace {Z(v) :
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v ∈ X}. The (tree) amplituhedron An,k,m(Z) is the image of Gr≥0(k, n) in Gr(k, k +m)
under the map ZGr [3, Section 4]. When k = 1, the totally nonnegative Grassmannian 
Gr≥0(1, n) is a simplex in Pn−1, and the amplituhedron An,1,m(Z) is a cyclic polytope in 
Pm [33]. Understanding the topology of amplituhedra, and more generally of Grassmann 
polytopes [20] (obtained by relaxing the positivity condition on Z), was one of the main 
motivations of our work.

We now take m to be even, and Z = Z0 such that the rows of Z0 span the unique 
element of Gr≥0(k + m, n) invariant under the Z/nZ-cyclic action (cf. [16]). We call 
An,k,m(Z0) the cyclically symmetric amplituhedron. When k = 1 and m = 2, An,1,2(Z0)
is a regular n-gon in the plane. More generally, An,1,m(Z0) is a polytope whose vertices 
are n regularly spaced points on the trigonometric moment curve in Pm.

Theorem 1.2. The cyclically symmetric amplituhedron An,k,m(Z0) is homeomorphic to a 
km-dimensional closed ball.

It is expected that every amplituhedron is homeomorphic to a closed ball. The 
topology of amplituhedra and Grassmann polytopes is not well understood in general; 
see [18,4] for recent work.

1.4. The compactification of the space of planar electrical networks

Let Γ be an electrical network consisting only of resistors, modeled as an undirected 
graph whose edge weights (conductances) are positive real numbers. The electrical prop-
erties of Γ are encoded by the response matrix Λ(Γ) : Rn → Rn, sending a vector of 
voltages at n distinguished boundary vertices to the vector of currents induced at the 
same vertices. The response matrix can be computed using (only) Kirchhoff’s law and 
Ohm’s law. Following Curtis, Ingerman, and Morrow [9] and Colin de Verdière, Gitler, 
and Vertigan [8], we consider the space Ωn of response matrices of planar electrical net-
works: those Γ embedded into a disk, with boundary vertices on the boundary of the 
disk. This space is not compact; a compactification En was defined by the third author 
in [21]. It comes equipped with a natural embedding ι : En ↪→ Gr≥0(n − 1, 2n). We 
exploit this embedding to establish the following result.

Theorem 1.3. The space En is homeomorphic to an 
(
n
2
)
-dimensional closed ball.

A cell decomposition of En was defined in [21], extending earlier work in [9,8]. The 
face poset of this cell decomposition had been defined and studied by Kenyon [17, Sec-
tion 4.5.2]. Theorem 1.3 says that the closure of the unique cell of top dimension in En

is homeomorphic to a closed ball. In [19], the third author showed that the face poset 
of the cell decomposition of En is Eulerian, and conjectured that it is shellable. Hersh 
and Kenyon recently proved this conjecture [15]. Björner’s results [7] therefore imply 
that this poset is the face poset of some regular CW complex homeomorphic to a ball. 
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We expect that En forms such a CW complex, so that the closure of every cell of En is 
homeomorphic to a closed ball. Proving this remains an open problem.

1.5. Outline

In Section 2, we prove a topological lemma (Lemma 2.3) which essentially states that 
if one can find a contractive flow (defined below) on a submanifold of RN , then its closure 
is homeomorphic to a ball. We use Lemma 2.3 in Sections 3 to 6 to show that the four 
spaces discussed in Sections 1.1 to 1.4 are homeomorphic to closed balls. To do so, in 
each case we consider a natural flow on the underlying space, and show that it satisfies 
the contractive property by introducing novel coordinates on the space.

Acknowledgements. We thank Patricia Hersh and Lauren Williams for helpful comments, 
and anonymous referees for many suggestions leading to improvements in the exposition.

2. Contractive flows

In this section we prove Lemma 2.3, which we will repeatedly use in establishing our 
main theorems. Consider a real normed vector space (RN , ‖ · ‖). Thus for each r > 0, 
the closed ball BN

r := {p ∈ RN : ‖p‖ ≤ r} of radius r is a compact convex body in RN

whose interior contains the origin. We denote its boundary by ∂BN
r , which is the sphere 

of radius r.

Definition 2.1. We say that a map f : R ×RN → RN is a contractive flow if the following 
conditions are satisfied:

(1) the map f is continuous;
(2) for all p ∈ RN and t1, t2 ∈ R, we have f(0, p) = p and f(t1 + t2, p) = f(t1, f(t2, p)); 

and
(3) for all p �= 0 and t > 0, we have ‖f(t, p)‖ < ‖p‖.

The condition (2) says that f induces a group action of (R, +) on RN . In particular, 
f(t, p) = q is equivalent to f(−t, q) = p, so (3) implies that if t �= 0 and f(t, p) = p, then 
p = 0. The converse to this statement is given below in Lemma 2.2(i).

Lemma 2.2. Let f : R ×RN → RN be a contractive flow.

(i) We have f(t, 0) = 0 for all t ∈ R.
(ii) Let p �= 0. Then the function t �→ ‖f(t, p)‖ is strictly decreasing on (−∞, ∞).
(iii) Let p �= 0. Then lim

t→∞
‖f(t, p)‖ = 0 and lim

t→−∞
‖f(t, p)‖ = ∞.

Proof. (i) By (1), the function s �→ ‖f(s, 0)‖ is continuous on R, and it equals 0 when 
s = 0. If f(t, 0) �= 0 for some t > 0, then 0 < ‖f(s, 0)‖ < ‖f(t, 0)‖ for some s ∈ (0, t), 
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which contradicts (3) applied to p = f(s, 0) and t − s. Therefore f(t, 0) = 0 for all t ≥ 0. 
By (2), for t ≥ 0 we have 0 = f(0, 0) = f(−t, f(t, 0)) = f(−t, 0), and so f(−t, 0) = 0 as 
well.

(ii) This follows from (3) and the fact that f induces a group action of R on RN , once 
we know that f(t, p) is never 0. But if f(t, p) = 0 then f(−t, 0) = p, which contradicts 
part (i).

(iii) Let r1(p) and r2(p) denote the respective limits. By part (ii), both limits exist, 
where r1(p) ∈ [0, ∞) and r2(p) ∈ (0, ∞]. By compactness, there exists a point q ∈ RN

with ‖q‖ = r1(p), along with an unbounded increasing sequence t1, t2, . . . in R satisfying 
limi→∞ f(ti, p) = q. If r1(p) > 0, then using (1)–(3), we find

r1(p) = ‖q‖ > ‖f(1, q)‖ = lim
i→∞

‖f(1, f(ti, p))‖ = lim
i→∞

‖f(1 + ti, p)‖ = r1(p),

a contradiction. Thus r1(p) = 0. Similarly, we get r2(p) = ∞.2 �
For K ⊂ RN and t ∈ R, we let f(t, K) denote {f(t, p) : p ∈ K}.

Lemma 2.3. Let Q ⊂ RN be a smooth embedded submanifold of dimension d ≤ N , and 
f : R × RN → RN a contractive flow. Suppose that Q is bounded and satisfies the 
condition

f(t, Q) ⊂ Q for t > 0. (2.4)

Then the closure Q is homeomorphic to a closed ball of dimension d, and Q \ Q is 
homeomorphic to a sphere of dimension d − 1.

Note that any open subset of RN is a smooth embedded submanifold of dimension N .

Proof. Since Q is bounded, its closure Q is compact. By Lemma 2.2(iii) and (2.4) we 
have 0 ∈ Q, and therefore 0 ∈ Q. Because Q is smoothly embedded, we can take r > 0
sufficiently small so that B := BN

r ∩Q is homeomorphic to a closed ball of dimension d. 
We let ∂B denote (∂BN

r ) ∩Q, which is a (d − 1)-dimensional sphere.
For any p ∈ RN \ {0}, consider the curve t �→ f(t, p) starting at p and defined for 

all t ∈ R. By Lemma 2.2(ii), this curve intersects the sphere ∂BN
r for a unique t ∈ R, 

which we denote by tr(p). Also, for p ∈ Q \ {0}, define t∂(p) ∈ (−∞, 0] as follows. Let 
T (p) := {t ∈ R : f(t, p) ∈ Q}. We have 0 ∈ T (p), and T (p) is bounded from below by 
Lemma 2.2(iii) because Q is bounded. By (2.4), if t ∈ T (p) then [t, ∞) ⊂ T (p). Also, 
T (p) is closed since it is the preimage of Q under the continuous map t �→ f(t, p). It 
follows that T (p) = [t∂(p), ∞) for some t∂(p) ∈ (−∞, 0].

Claim. The functions tr and t∂ are continuous on Q \ {0}.

2 We thank an anonymous referee for suggesting this simpler argument.
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Proof of Claim. First we prove that tr is continuous on RN \{0}. It suffices to show that 
the preimage of any open interval I ⊂ R is open. To this end, let q ∈ t−1

r (I). Take t1, t2 ∈
I with t1 < tr(q) < t2. By Lemma 2.2(ii), we have ‖f(t1, q)‖ > r > ‖f(t2, q)‖. Note that 
the map γ1 : RN → RN , p �→ f(t1, p) is continuous and RN\BN

r is open, so γ−1
1 (RN \BN

r )
is an open neighborhood of q. Similarly, defining γ2 : RN → RN , p �→ f(t2, p), we have 
that γ−1

2 (int(BN
r )) is an open neighborhood of q. Therefore γ−1

1 (RN \BN
r ) ∩γ−1

2 (int(BN
r ))

is an open neighborhood of q, whose image under tr is contained in (t1, t2) ⊂ I. This 
shows that tr is continuous on RN \ {0}.

Next, let us define

R := {f(t, p) : (t, p) ∈ R×Q}. (2.5)

The map b : R × ∂B → R \ {0} defined by (t, p) �→ f(t, p) is a continuous bijection. 
(Recall that ∂B = (∂BN

r ) ∩ Q.) Its inverse p �→ (−tr(p), f(tr(p), p)) is continuous as 
well. Therefore b is a homeomorphism. We claim that Q is relatively open in R. Indeed, 
since Q \{0} is a submanifold of R\{0} of the same dimension d, we deduce that Q \{0}
is an open subset of R \ {0}. Also, Q contains the neighborhood int(BN

r ) ∩R of 0 in R. 
Thus Q is an open subset of R.

We now prove that the map t∂ : Q\{0} → R is continuous, by a very similar argument. 
Let I ⊂ R be an open interval and consider a point q ∈ t−1

∂ (I). Take t1, t2 ∈ I with 
t1 < t∂(q) < t2. By the definition of t∂ , we have f(t1, q) ∈ R \ Q. By (2.4), we have 
f(t2, q) ∈ Q. Note that the map γ1 : R → R, p �→ f(t1, p) is continuous and R \ Q

is open in R, so γ−1
1 (R \ Q) is an open neighborhood of q in R. Similarly, defining 

γ2 : R → R, p �→ f(t2, p), we have that γ−1
2 (Q) is an open neighborhood of q in R. 

Therefore γ−1
1 (R \ Q) ∩ γ−1

2 (Q) ∩ Q is an open neighborhood of q in Q, whose image 
under t∂ is contained inside (t1, t2) ⊂ I. This finishes the proof of the claim. �

Define the maps α : Q → B and β : B → Q by

α(p) := f(tr(p) − t∂(p), p), β(p) := f(t∂(p) − tr(p), p)

for p �= 0, and α(0) := 0, β(0) := 0. Let us verify that α sends Q inside B and β sends 
B inside Q. If p ∈ Q \ {0}, then f(tr(p), p) ∈ B and t∂(p) ≤ 0, whence the contractive 
property (3) implies α(p) = f(−t∂(p), f(tr(p), p)) ∈ B. Similarly, if p ∈ B \ {0}, then 
f(t∂(p), p) ∈ Q and tr(p) ≤ 0, whence (2.4) implies β(p) = f(−tr(p), f(t∂(p), p)) ∈ Q.

Now we check that α and β are inverse maps. For any p ∈ Q and Δt ∈ R such that 
f(Δt, p) ∈ Q, we have

tr(f(Δt, p)) = tr(p) − Δt, t∂(f(Δt, p)) = t∂(p) − Δt.



8 P. Galashin et al. / Advances in Mathematics 397 (2022) 108123
Taking Δt := t∂(p) − tr(p), we find

α(β(p)) = α(f(Δt, p)) = f(tr(f(Δt, p))−t∂(f(Δt, p)), f(Δt, p)) = f(−Δt, f(Δt, p)) = p.

We can similarly verify that β(α(p)) = p, by instead taking Δt := tr(p) − t∂(p).
By the claim, tr and t∂ are continuous on Q \ {0}, so α is continuous everywhere 

except possibly at 0. Also, tr(p) > t∂(p) for all p ∈ Q \ {0}, so α is continuous at 0 by 
Lemma 2.2(ii). Thus α is a continuous bijection from a compact space to a Hausdorff 
space, so it is a homeomorphism. This shows that Q is homeomorphic to a closed d-
dimensional ball.

It remains to prove that Q \Q is homeomorphic to a (d − 1)-dimensional sphere. We 
claim that α restricts to a homeomorphism from Q \ Q to ∂B. We need to check that 
α sends Q \Q inside ∂B, and β sends ∂B inside Q \Q. To this end, let p ∈ Q \Q. By 
condition (2), we have p = f(−t∂(p), f(t∂(p), p)). Hence if t∂(p) < 0, then (2.4) implies 
p ∈ Q, a contradiction. Therefore t∂(p) = 0, and α(p) = f(tr(p), p) ∈ ∂B. Now let 
q ∈ ∂B. We have tr(q) = 0, so β(q) = f(t∂(q), q). If β(q) ∈ Q, then f(t∂(q) − t, q) ∈ Q

for t > 0 sufficiently small (as Q is open in R from (2.5)), contradicting the definition of 
t∂(q). Thus β(q) ∈ Q \Q. �
3. The totally nonnegative Grassmannian

Let Gr(k, n) denote the real Grassmannian, the space of all k-dimensional subspaces 
of Rn. We set [n] := {1, . . . , n}, and let 

([n]
k

)
denote the set of k-element subsets of [n]. 

For X ∈ Gr(k, n), we denote by (ΔI(X))
I∈([n]

k ) ∈ P (nk)−1 the Plücker coordinates of X: 
ΔI(X) is the k × k minor of X (viewed as a k × n matrix modulo row operations) with 
column set I.

Recall that Gr≥0(k, n) is the subset of Gr(k, n) where all Plücker coordinates are 
nonnegative (up to a common scalar). We also define the totally positive Grassmannian
Gr>0(k, n) as the subset of Gr≥0(k, n) where all Plücker coordinates are positive.

3.1. Global coordinates for Gr≥0(k, n)

For each k and n, we introduce several distinguished linear operators on Rn. Define the 
left cyclic shift S ∈ gln(R) = End(Rn) by S(v1, . . . , vn) := (v2, . . . , vn, (−1)k−1v1). The 
sign (−1)k−1 can be explained as follows: if we pretend that S is an element of GLn(R), 
then the action of S on Gr(k, n) preserves Gr≥0(k, n) (it acts on Plücker coordinates by 
rotating the index set [n]).

Note that the transpose ST of S is the right cyclic shift given by ST (v1, . . . , vn) =
((−1)k−1vn, v1, . . . , vn−1). Let τ := S + ST ∈ End(Rn). We endow Rn with the stan-
dard inner product, so that τ (being symmetric) has an orthogonal basis of eigenvectors 
u1, . . . , un ∈ Rn corresponding to real eigenvalues λ1 ≥ · · · ≥ λn. Let X0 ∈ Gr(k, n) be 
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the linear span of u1, . . . , uk. The following lemma implies that X0 is totally positive 
and does not depend on the choice of eigenvectors u1, . . . , un.

Lemma 3.1.

(i) The eigenvalues λ1 ≥ · · · ≥ λn are given as follows, depending on the parity of k:
• if k is even, λ1 = λ2 = 2 cos(πn ), λ3 = λ4 = 2 cos( 3π

n ), λ5 = λ6 = 2 cos( 5π
n ), . . . ;

• if k is odd, λ1 = 1, λ2 = λ3 = 2 cos( 2π
n ), λ4 = λ5 = 2 cos( 4π

n ), . . . .
In either case, we have

λk = 2 cos
(
k−1
n π

)
> 2 cos

(
k+1
n π

)
= λk+1.

(ii) [32] The Plücker coordinates of X0 are given by

ΔI(X0) =
∏

i,j∈I, i<j

sin
(
j−i
n π

)
> 0 for all I ∈

([n]
k

)
.

For an example in the case of Gr(2, 4), see Section 3.5. (We remark that in the example, 
the Plücker coordinates of X0 are scaled by a factor of 2 compared to the formula above.)

Proof. In this proof, we work over C. Let ζ ∈ C be an nth root of (−1)k−1. There are n
such values of ζ, each of the form ζ = eiπm/n for some integer m congruent to k−1 modulo 
2. Let zm := (1, ζ, ζ2, . . . , ζn−1) ∈ Cn. We have S(zm) = ζzm and ST (zm) = ζ−1zm, so

τ(zm) = (ζ + ζ−1)zm = 2 cos(πmn )zm. (3.2)

The n distinct zm’s are linearly independent (they form an n × n Vandermonde matrix 
with nonzero determinant), so they give a basis of Cn of eigenvectors of τ .

We deduce part (i) from (3.2). For part (ii), we apply Vandermonde’s determinantal 
identity, following an argument outlined by Scott [32]. That is, by (3.2), the C-linear 
span of u1, . . . , uk is the same as the span of z−k+1, z−k+3, z−k+5, . . . , zk−1. Let M be 
the matrix whose rows are z−k+1, z−k+3, z−k+5, . . . , zk−1, i.e.,

Mr,j = eiπ(−k−1+2r)(j−1)/n for 1 ≤ r ≤ k and 1 ≤ j ≤ n.

Then the Plücker coordinates of X0 are the k×k minors of M (up to a common nonzero 
complex scalar), which can be computed explicitly by Vandermonde’s identity after 
appropriately rescaling the columns. We refer the reader to [16, Proposition 2.5] for 
details. �

Denote by Mat(k, n − k) the vector space of real k × (n − k) matrices. Define a map 
φ : Mat(k, n − k) → Gr(k, n) by
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φ(A) := span(ui +
∑n−k

j=1 Ai,juk+j : 1 ≤ i ≤ k). (3.3)

In other words, the entries of A are the usual coordinates on the big Schubert cell of 
Gr(k, n) with respect to the basis u1, . . . , un of Rn, this Schubert cell being

φ(Mat(k, n− k)) = {X ∈ Gr(k, n) : X ∩ span(uk+1, . . . , un) = 0}.

In particular, φ is a smooth embedding, and it sends the zero matrix to X0. For an 
example in the case of Gr(2, 4), see Section 3.5.

Proposition 3.4. The image φ(Mat(k, n − k)) contains Gr≥0(k, n).

Proof. Let X ∈ Gr≥0(k, n) be a totally nonnegative subspace. We need to show that 
X ∩ span(uk+1, . . . , un) = 0. Suppose otherwise that there exists a nonzero vector v in 
this intersection. Extend v to a basis of X, and write this basis as the rows of a k × n

matrix M . Because X is totally nonnegative, the nonzero k×k minors of M all have the 
same sign (and at least one minor is nonzero, since M has rank k). Also let M0 be the 
k×n matrix with rows u1, . . . , uk. By Lemma 3.1(ii), all k×k minors of M0 are nonzero 
and have the same sign. The vectors u1, . . . , un are orthogonal, so v is orthogonal to the 
rows of M0. Hence the first column of M0M

T is zero, and we obtain det(M0M
T ) = 0. 

On the other hand, the Cauchy–Binet identity implies

det(M0M
T ) =

∑
I∈([n]

k )
det((M0)I) det(MI),

where AI denotes the matrix A restricted to the columns I. Each summand has the same 
sign and at least one summand is nonzero, contradicting det(M0M

T ) = 0. �
We have shown that the restriction of φ−1 to Gr≥0(k, n) yields an embedding

Gr≥0(k, n) ↪→ Mat(k, n− k) � Rk(n−k)

whose restriction to Gr>0(k, n) is smooth.

3.2. Flows on Gr(k, n)

For g ∈ GLn(R), we let g act on Gr(k, n) by taking the subspace X to g ·X := {g(v) :
v ∈ X}. We let 1 ∈ GLn(R) denote the identity matrix, and for x ∈ gln(R) we let 
exp(x) :=

∑∞
j=0

xj

j! ∈ GLn(R) denote the matrix exponential of x.
We examine the action of exp(tS) and exp(tτ) on Gr(k, n).

Lemma 3.5. For X ∈ Gr≥0(k, n) and t > 0, we have exp(tS) ·X ∈ Gr>0(k, n).

Proof. We claim that it suffices to prove the following two facts:
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(i) for X ∈ Gr≥0(k, n) and t ≥ 0, we have exp(tS) ·X ∈ Gr≥0(k, n); and
(ii) for X ∈ Gr≥0(k, n) \ Gr>0(k, n), we have exp(tS) · X /∈ Gr≥0(k, n) for all t < 0

sufficiently close to zero.

To see why this is sufficient, let X ∈ Gr≥0(k, n) and t > 0. By part (i), we have exp(tS) ·
X ∈ Gr≥0(k, n), so we just need to show that exp(tS) ·X ∈ Gr>0(k, n). Suppose otherwise 
that exp(tS) · X /∈ Gr>0(k, n). Then applying part (ii) to exp(tS) · X, we get that 
exp((t + t′)S) · X /∈ Gr≥0(k, n) for t′ < 0 sufficiently close to zero. But by part (i), 
we know that exp((t + t′)S) ·X ∈ Gr≥0(k, n) for all t′ in the interval [−t, 0]. This is a 
contradiction.

Now we prove parts (i) and (ii). We will make use of the operator 1 +tS, which belongs 
to GLn(R) for |t| < 1. Note that if [M1 | · · · | Mn] is a k×n matrix representing X, then 
a k × n matrix representing (1 + tS) ·X is

M ′ = [M1 + tM2 | M2 + tM3 | · · · | Mn−1 + tMn | Mn + (−1)k−1tM1].

We can evaluate the k × k minors of M ′ using multilinearity of the determinant. We 
obtain

ΔI((1 + tS) ·X) =
∑

ε∈{0,1}k

tε1+···+εkΔ{i1+ε1,...,ik+εk}(X) for I = {i1, . . . , ik} ⊂ [n],

(3.6)

where i1 + ε1, . . . , ik + εk are taken modulo n. Therefore (1 + tS) · X ∈ Gr≥0(k, n) for 

X ∈ Gr≥0(k, n) and t ∈ [0, 1). Since exp(tS) = limj→∞
(
1 + tS

j

)j

and Gr≥0(k, n) is 
closed, we obtain exp(tS) ·X ∈ Gr≥0(k, n) for t ≥ 0. This proves part (i).

To prove part (ii), first note that exp(tS) = 1 + tS + O(t2). By (3.6), we have

ΔI(exp(tS) ·X) = ΔI(X) + t
∑
I′

ΔI′(X) + O(t2) for I ∈
([n]

k

)
, (3.7)

where the sum is over all I ′ ∈
([n]

k

)
obtained from I by increasing exactly one element 

by 1 modulo n. If we can find such I and I ′ with ΔI(X) = 0 and ΔI′(X) > 0, then 
ΔI(exp(tS) ·X) < 0 for all t < 0 sufficiently close to zero, thereby proving part (ii). In 
order to do this, we introduce the directed graph D with vertex set 

([n]
k

)
, where J → J ′

is an edge of D if and only if we can obtain J ′ from J by increasing exactly one element 
by 1 modulo n. Note that for any two vertices K and K ′ of D, there exists a directed 
path from K to K ′:

• we can get from [k] to any {i1 < · · · < ik} by shifting k to ik, k − 1 to ik−1, etc.;
• similarly, we can get from any {i1 < · · · < ik} to {n − k + 1, n − k + 2, . . . , n};
• we can get from {n − k + 1, . . . , n} to [k] by shifting n to k, n − 1 to k − 1, etc.
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Now take K, K ′ ∈
([n]

k

)
with ΔK(X) = 0 and ΔK′(X) > 0, and consider a directed path 

from K to K ′. It goes through an edge I → I ′ with ΔI(X) = 0 and ΔI′(X) > 0, as 
desired. �

Now we consider exp(tτ) = exp(t(S + ST )). Recall that S and ST are the left and 
right cyclic shift maps, so by symmetry Lemma 3.5 holds with S replaced by ST . Also, 
S and ST commute, so exp(tτ) = exp(tS) exp(tST ). We obtain the following.

Corollary 3.8. For X ∈ Gr≥0(k, n) and t > 0, we have exp(tτ) ·X ∈ Gr>0(k, n).

Let us see how exp(tτ) acts on matrices A ∈ Mat(k, n −k). Note that τ(ui) = λiui for 
1 ≤ i ≤ n, so exp(tτ)(ui) = etλiui. Therefore exp(tτ) acts on the basis of φ(A) in (3.3)
by

exp(tτ)(ui +
∑n−k

j=1 Ai,juk+j) = etλi(ui +
∑n−k

j=1 et(λk+j−λi)Ai,juk+j)

for all 1 ≤ i ≤ k. Thus exp(tτ) · φ(A) = φ(f(t, A)), where by definition f(t, A) ∈
Mat(k, n − k) is the matrix with entries

(f(t, A))i,j := et(λk+j−λi)Ai,j for 1 ≤ i ≤ k and 1 ≤ j ≤ n− k. (3.9)

3.3. Proof of Theorem 1.1

Consider the map f : R × Mat(k, n − k) → Mat(k, n − k) defined by (3.9). We claim 
that f is a contractive flow on Mat(k, n − k) equipped with the Euclidean norm

‖A‖2 =
k∑

i=1

n−k∑
j=1

A2
i,j .

Indeed, parts (1) and (2) of Definition 2.1 hold for f . To see that part (3) holds, note 
that for any 1 ≤ i ≤ k and 1 ≤ j ≤ n − k with Ai,j �= 0, we have

|(f(t, A))i,j | = |et(λk+j−λi)Ai,j | = et(λk+j−λi)|Ai,j | < |Ai,j | for t > 0,

using the fact that λi ≥ λk > λk+1 ≥ λk+j from Lemma 3.1(i). Therefore ‖f(t, A)‖ <
‖A‖ if A �= 0, verifying part (3).

Let us now apply Lemma 2.3 with RN = Mat(k, n − k) and Q = φ−1(Gr>0(k, n)). 
We need to know that Gr≥0(k, n) is the closure of Gr>0(k, n). This was proved by 
Postnikov [26, Section 17]; it also follows directly from Corollary 3.8, since we can express 
any X ∈ Gr≥0(k, n) as a limit of totally positive subspaces:

X = lim exp(tτ) ·X.

t→0+
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Therefore Q = φ−1(Gr≥0(k, n)). Moreover, Gr≥0(k, n) is closed inside the compact space 

P (nk)−1, and is therefore also compact. So, Q is compact (and hence bounded). Finally, the 
property (2.4) in this case is precisely Corollary 3.8. We have verified all the hypotheses 
of Lemma 2.3, and conclude that Q (and also Gr≥0(k, n)) is homeomorphic to a k(n −k)-
dimensional closed ball. �
3.4. Related work

Lusztig [24, Section 4] used a flow similar to exp(tτ) to show that (G/P )≥0 is con-
tractible. Our flow can be thought of as an affine (or loop group) analogue of his flow, and 
is closely related to the whirl matrices of [22]. We also remark that Ayala, Kliemann, and 
San Martin [5] used the language of control theory to give an alternative development 
in type A of Lusztig’s theory of total positivity. In that context, exp(tτ) (t > 0) lies in 
the interior of the compression semigroup of Gr≥0(k, n), and X0 is its attractor.

Marsh and Rietsch defined and studied a superpotential on the Grassmannian in the 
context of mirror symmetry [25, Section 6]. It follows from results of Rietsch [30] (see [16, 
Corollary 3.12]) that X0 is, rather surprisingly, also the unique totally nonnegative crit-
ical point of the q = 1 specialization of the superpotential. However, the superpotential 
is not defined on the boundary of Gr≥0(k, n). The precise relationship between τ and 
the gradient flow of the superpotential remains mysterious.

3.5. Example: the case Gr(2, 4)

The matrix τ = S + ST ∈ gl4(R) and an orthogonal basis of real eigenvectors 
u1, u2, u3, u4 are

τ =

⎡
⎢⎣

0 1 0 −1
1 0 1 0
0 1 0 1
−1 0 1 0

⎤
⎥⎦ ,

u1 = (0, 1,
√

2, 1), λ1 =
√

2,

u2 = (−
√

2,−1, 0, 1), λ2 =
√

2,

u3 = (
√

2,−1, 0, 1), λ3 = −
√

2,

u4 = (0, 1,−
√

2, 1), λ4 = −
√

2.

The embedding φ : Mat(2, 2) ↪→ Gr(2, 4) sends the matrix A =
[
a b
c d

]
to

φ(A) = X =
[
u1 + au3 + bu4
u2 + cu3 + du4

]
=

[ √
2a 1 − a + b

√
2 −

√
2b 1 + a + b

−
√

2 +
√

2c −1 − c + d −
√

2d 1 + c + d

]
.

Above we are identifying X ∈ Gr(2, 4) with a 2 × 4 matrix whose rows form a basis of 
X. In terms of Plücker coordinates Δij = Δ{i,j}(X), the map φ is given by
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Δ12 =
√

2(1 − 2a + b− c + ad− bc),
Δ23 =

√
2(1 − 2d− b + c + ad− bc),

Δ34 =
√

2(1 + 2d− b + c + ad− bc),
Δ14 =

√
2(1 + 2a + b− c + ad− bc),

Δ13 = 2(1 − b− c− ad + bc),
Δ24 = 2(1 + b + c− ad + bc),

(3.10)

and its inverse is given by

a = (2Δ14 − 2Δ12)/δ, b = (Δ12 − Δ23 − Δ34 + Δ14 −
√

2Δ13 +
√

2Δ24)/δ,

d = (2Δ34 − 2Δ23)/δ, c = (−Δ12 + Δ23 + Δ34 − Δ14 −
√

2Δ13 +
√

2Δ24)/δ,

where δ = Δ12 + Δ23 + Δ34 + Δ14 +
√

2Δ13 +
√

2Δ24.

The point X0 = φ(0) = span(u1, u2) ∈ Gr>0(2, 4) has Plücker coordinates

Δ12 = Δ23 = Δ34 = Δ14 =
√

2, Δ13 = Δ24 = 2,

which agrees with Lemma 3.1(ii). The image of φ is the subset of Gr(2, 4) where δ �=
0, which we see includes Gr≥0(2, 4), verifying Proposition 3.4 in this case. Restricting 
φ−1 to Gr≥0(2, 4) gives a homeomorphism onto the subset of R4 of points (a, b, c, d)
where the 6 polynomials Δij in (3.10) are nonnegative. By Theorem 1.1, these spaces 
are both homeomorphic to 4-dimensional closed balls. The closures of cells in the cell 
decomposition of Gr≥0(2, 4) are obtained in R4 by taking an intersection with the zero 
locus of some subset of the 6 polynomials. The 0-dimensional cells (corresponding to 
points of Gr≥0(2, 4) with only one nonzero Plücker coordinate) are

(a, b, c, d)

= (−2, 1,−1, 0), (0,−1, 1,−2), (0,−1, 1, 2), (2, 1,−1, 0), (0,−1,−1, 0), (0, 1, 1, 0).

In general, using the embedding φ we can describe Gr≥0(k, n) as the subset of Rk(n−k)

where some 
(
n
k

)
polynomials of degree at most k are nonnegative.

4. The totally nonnegative part of the unipotent radical of GLn(R)

Recall from Section 1.2 that U denotes the unipotent group of upper-triangular ma-
trices in GLn(R) with 1’s on the diagonal, and U≥0 is its totally nonnegative part, where 
all minors are nonnegative. We also let V ⊂ U be the set of x ∈ U whose superdiagonal 
entries xi,i+1 sum to n − 1, and define V≥0 := V ∩ U≥0. We may identify V≥0 with the 
link of the identity matrix 1 in U≥0. In this section, we prove the following result. It is a 
special case of a result of Hersh [14], who established the corresponding result in general 
Lie type, and in addition for all the lower-dimensional cells in the Bruhat stratification.

Theorem 4.1 ([14]). The space V≥0 is homeomorphic to an 
((

n
2
)
− 1

)
-dimensional closed 

ball. The space U≥0 is homeomorphic to a closed half-space in R(n2).
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Let e ∈ gln(R) be the upper-triangular principal nilpotent element, which has 1’s on 
the superdiagonal and 0’s elsewhere. We wish to consider the flow on V≥0 generated 
by exp(te), which we remark was used by Lusztig to show that U≥0 is contractible [24, 
Section 4]. However, we must take care to define a flow which preserves V and not 
merely U . To this end, for t > 0, let ρ(t) ∈ GLn(R) be the diagonal matrix with diagonal 
entries (tn−1, tn−2, . . . , 1). Note that ρ is multiplicative, i.e., ρ(s)ρ(t) = ρ(st). Define 
a(t) : U → U by

a(t) · x := ρ(1/t) exp((t− 1)e)xρ(t). (4.2)

Lemma 4.3. The map a(·) defines an action of the multiplicative group R>0 on V , i.e.,

a(t) · x ∈ V, a(1) · x = x, and a(s) · (a(t) · x) = a(st) · x for all s, t > 0 and x ∈ V .

Proof. This can be verified directly, using the fact that for s, t > 0, x ∈ U , and 1 ≤
i, j ≤ n,

(ρ(1/t) exp((s− 1)e)xρ(t))i,j = ti−ntn−j(exp((s− 1)e)x)i,j

= 1
tj−i

j∑
l=i

(s− 1)l−i

(l − i)! xl,j . � (4.4)

We now introduce coordinates on V centered at exp(e). Namely, for x ∈ V , define

bi,j(x) := ci−j((j − i)!xi,j − 1) for 1 ≤ i < j ≤ n, (4.5)

where c > 1 is a fixed real number. Note that b1,2 + b2,3 + · · · + bn−1,n = 0. We use the 
L∞-norm ‖x‖∞ := max1≤i<j≤n |bi,j(x)| in the bi,j-coordinates. We have ‖ exp(e)‖∞ = 0. 
We also define the totally positive part U>0 as the set of x ∈ U≥0 such that every minor 
of the form det(x{i1<···<ik},{j1<···<jk}) with j1 ≥ i1, . . . , jk ≥ ik is nonzero, and let 
V>0 := V ∩ U>0.

Lemma 4.6. Let x ∈ V .

(i) If x ∈ V≥0 and t > 1, then a(t) · x ∈ V>0.
(ii) If x �= exp(e), then t �→ ‖a(t) · x‖∞ is a strictly decreasing function on (0, ∞).

Proof. To prove part (i), we must show that exp((t −1)e)x ∈ U>0 for x ∈ V≥0 and t > 1. 
This follows by writing the relevant minors of exp((t − 1)e)x via the Cauchy–Binet 
identity, using the fact that exp((t − 1)e) ∈ U>0 (see [23, Proposition 5.9]). For part (ii), 
because a(·) is multiplicative (Lemma 4.3) it suffices to prove that t �→ ‖a(t) · x‖∞ is 
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decreasing at t = 1. Using the description of the entries of a(t) given by setting s = t

in (4.4), we get

bi,j(a(t) · x) = bi,j(x) + (t− 1)(j − i)
(
bi+1,j(x)

c
− bi,j(x)

)
+ O((t− 1)2)

as t → 1, where we set bi+1,j(x) := 0 if i +1 = j. Then for any i < j with |bi,j(x)| = ‖x‖∞, 
we have |bi+1,j(x)/c| < |bi,j(x)|, and so |bi,j(a(t) · x)| is decreasing at t = 1. �
Proof of Theorem 4.1. Set N :=

(
n
2
)
−1, and consider a real N -dimensional vector space

W := {(wi,j)1≤i<j≤n : w1,2 + · · · + wn−1,n = 0}

equipped with the L∞-norm. We have a diffeomorphism b : V → W defined by b(x) :=
(bi,j(x))1≤i<j≤n. Define the continuous map f : R × W → W by setting f(t, b(x)) :=
b(a(exp(t)) · x). Then Lemma 4.3 and Lemma 4.6(ii) imply that f is a contractive flow.

Let us now show that the hypotheses of Lemma 2.3 hold, with RN = W and Q =
b(V>0). Lemma 4.6(i) implies that Q = b(V≥0), and also verifies (2.4). Finally, Q is 
bounded because V≥0 is bounded, e.g., one can prove by induction on j − i that for any 
x ∈ V≥0,

0 ≤ xi,j ≤ (n− 1)j−i for 1 ≤ i < j ≤ n.

(Alternatively, see [23, proof of Proposition 4.2].) Thus Lemma 2.3 implies that Q (and 
hence V≥0) is homeomorphic to an N -dimensional closed ball.

For U≥0, we use the dilation action of R>0 on U≥0, where t ∈ R>0 acts by multiplying 
all entries xi,j on the (j − i)-th diagonal (above the main diagonal) by tj−i. Therefore 
U≥0 is homeomorphic to the open cone over the compact space V≥0. That is, U≥0 is 
homeomorphic to the quotient space of R≥0 × V≥0 by the subspace 0 × V≥0, with the 
identity matrix 1 ∈ U≥0 corresponding to the cone point. �
Example 4.7. Let n = 3. The trajectory in U beginning at the point x =

[1 p q
0 1 r
0 0 1

]
∈ U is

a(t) · x =
[1 (t + p− 1)/t (t2 + (2r − 2)t + 2q − 2r + 1)/2t2

0 1 (t + r − 1)/t
0 0 1

]
,

which converges to exp(e) =
[1 1 1/2

0 1 1
0 0 1

]
as t → ∞. The coordinates bi,j from (4.5) are

b1,2(a(t) · x) = p− 1
ct

, b2,3(a(t) · x) = r − 1
ct

, b1,3(a(t) · x) = (2r − 2)t + 2q − 2r + 1
c2t2

.

We can then try to verify Lemma 4.6 directly in this case (this is a nontrivial exercise). 
�
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5. The cyclically symmetric amplituhedron

Let k, m, n be nonnegative integers with k+m ≤ n and m even, and let S, τ ∈ gln(R)
be the operators from Section 3.1. Let λ1 ≥ · · · ≥ λn ∈ R be the eigenvalues of τ
corresponding to orthogonal eigenvectors u1, . . . , un. In this section, we assume that 
these eigenvectors have norm 1. Recall from Lemma 3.1(i) that λk > λk+1. Since m is 
even, we have (−1)k+m−1 = (−1)k−1 and λk+m > λk+m+1.

Let Z0 denote the (k+m) ×n matrix whose rows are u1, . . . , uk+m. By Lemma 3.1(ii), 
the (k+m) ×(k+m) minors of Z0 are all positive (perhaps after replacing u1 with −u1). 
We may also think of Z0 as a linear map Rn → Rk+m. Since the vectors u1, . . . , un are 
orthonormal, this map takes ui to the ith unit vector ei ∈ Rk+m if i ≤ k + m, and to 
0 if i > k + m. Recall from Section 1.3 that Z0 induces a map (Z0)Gr : Gr≥0(k, n) →
Gr(k, k + m), whose image is the cyclically symmetric amplituhedron An,k,m(Z0). We 
remark that if g ∈ GLk+m(R), then An,k,m(gZ0) and An,k,m(Z0) are related by the 
automorphism g of Gr(k, k+m), so the topology of An,k,m(Z0) depends only on the row 
span of Z0 in Gr(k + m, n).

Proof of Theorem 1.2. We consider the map φ : Mat(k, n − k) → Gr(k, n) defined 
in (3.3). We write each k× (n − k) matrix A ∈ Mat(k, n − k) as [A′ | A′′], where A′ and 
A′′ are the k×m and k× (n −k−m) submatrices of A with column sets {1, . . . , m} and 
{m + 1, . . . , n − k}, respectively. We introduce a projection map

π : Mat(k, n− k) → Mat(k,m), A = [A′ | A′′] �→ A′.

We claim that there exists an embedding γ : An,k,m(Z0) ↪→ Mat(k, m) making the 
following diagram commute:

Mat(k, n− k) Mat(k,m)

Gr≥0(k, n) An,k,m(Z0)

π

φ−1

(Z0)Gr

γ . (5.1)

Let A = [A′ | A′′] ∈ Mat(k, n − k) be a matrix such that φ(A) ∈ Gr≥0(k, n). Then the 
element (Z0)Gr(φ(A)) of Gr(k, k+m) is the row span of the k×(k+m) matrix [Idk | A′], 
where Idk denotes the k× k identity matrix. Thus An,k,m(Z0) = (Z0)Gr(Gr≥0(k, n)) lies 
inside the Schubert cell

{Y ∈ Gr(k, k + m) : Δ[k](Y ) �= 0}.

Every element Y of this Schubert cell is the row span of [Idk | A′] for a unique A′, and 
we define γ(Y ) := A′. Thus γ embeds An,k,m(Z0) inside Mat(k, m), and (5.1) commutes.

Now we define

Q := π(φ−1(Gr>0(k, n))) ⊂ Mat(k,m).
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We know from Section 3.3 that φ−1(Gr>0(k, n)) is an open subset of Mat(k, n) whose 
closure φ−1(Gr≥0(k, n)) is compact. Note that π is an open map (since it is essentially 
a projection Rk(n−k) → Rkm), so Q is an open subset of Mat(k, m). The closure Q =
π(φ−1(Gr≥0(k, n))) of Q is compact. By (5.1), Q is homeomorphic to An,k,m(Z0).

Let f : R × Mat(k, n − k) → Mat(k, n − k) be the map defined by (3.9), and define a 
similar map f0 : R × Mat(k, m) → Mat(k, m) by

f0(t, A′)i,j := et(λk+j−λi)A′
i,j for 1 ≤ i ≤ k and 1 ≤ j ≤ m.

That is, f0(t, π(A)) = π(f(t, A)) for all t ∈ R and A ∈ Mat(k, n − k). We showed in 
Section 3.3 that f is a contractive flow, so f0 is also a contractive flow. We also showed 
that

f(t, φ−1(Gr≥0(k, n))) ⊂ φ−1(Gr>0(k, n)) for t > 0,

and applying π to both sides shows that

f0(t, Q) ⊂ Q for t > 0.

Thus Lemma 2.3 applies to Q and f0, showing that Q (and hence An,k,m(Z0)) is home-
omorphic to a km-dimensional closed ball. �
Example 5.2. Let k = 1, n = 4, m = 2. We have

τ =

⎡
⎢⎣

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

⎤
⎥⎦ ,

u1 =
( 1

2 ,
1
2 ,

1
2 ,

1
2
)
, λ1 = 2,

u2 =
(

1√
2 , 0,−

1√
2 , 0

)
, λ2 = 0,

u3 =
(
0, 1√

2 , 0,−
1√
2

)
, λ3 = 0,

u4 =
( 1

2 ,−
1
2 ,

1
2 ,−

1
2
)
, λ4 = −2,

Z0 =

⎡
⎢⎢⎣

1
2

1
2

1
2

1
2

1√
2 0 − 1√

2 0

0 1√
2 0 − 1√

2

⎤
⎥⎥⎦ .

Note that this τ differs in the top-right and bottom-left entries from the one in Sec-
tion 3.5, because k is odd rather than even. Also, here the eigenvectors are required to 
have norm 1. The embedding φ : Mat(1, 3) ↪→ Gr(1, 4) sends a matrix A := [a b c ] to 
the line φ(A) in Gr(1, 4) spanned by the vector

v = u1 + au2 + bu3 + cu4 = 1
2

(
1 +

√
2a + c, 1 +

√
2b− c, 1 −

√
2a + c, 1 −

√
2b− c

)
.

This line gets sent by (Z0)Gr to the row span of the matrix v · ZT
0 = [1 a b ]. Finally, 

γ sends this element of Gr(1, 3) to the matrix [a b ], so (5.1) indeed commutes.
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In order for φ(A) to land in Gr≥0(1, 4), the coordinates of v must all have the same 
sign, and since their sum is 2, they must all be nonnegative:

1 +
√

2a + c ≥ 0, 1 +
√

2b− c ≥ 0, 1 −
√

2a + c ≥ 0, 1 −
√

2b− c ≥ 0.

These linear inequalities define a tetrahedron in R3 � Mat(1, 3) with the four vertices (
0,±

√
2,−1

)
, 
(
±
√

2, 0, 1
)
. The projection π = γ ◦ (Z0)Gr ◦ φ sends this tetrahedron 

to a square in R2 � Mat(1, 2) with vertices 
(
0,±

√
2
)
, 
(
±
√

2, 0
)
. This square is a 

km-dimensional ball, as implied by Theorem 1.2. We note that when k = 1, the am-
plituhedron An,k,m(Z) (for any (k + m) × n matrix Z with positive maximal minors) 
is a cyclic polytope in the projective space Gr(1, m + 1) = Pm [33], and is therefore 
homeomorphic to a km-dimensional closed ball. The case of k ≥ 2 and Z �= Z0 remains 
open. �
6. The compactification of the space of electrical networks

6.1. A slice of the totally nonnegative Grassmannian

We recall some background on electrical networks, and refer the reader to [21] and 

Example 6.4 for details. Let R( 2n
n−1) have basis vectors eI for I ∈

( [2n]
n−1

)
, and let P ( 2n

n−1)−1

denote the corresponding projective space. We define

[2n]odd := {2i− 1 : i ∈ [n]}, [2n]even := {2i : i ∈ [n]}.

Let NCn denote the collection of non-crossing partitions of [2n]odd, i.e., set partitions of 
[2n]odd such that there do not exist i < j < i′ < j′ in [2n]odd and distinct parts I and J
with i, i′ ∈ I and j, j′ ∈ J . Each σ ∈ NCn comes with a dual non-crossing partition (or 
Kreweras complement) σ̃ of [2n]even, defined to be the coarsest non-crossing partition of 
[2n]even such that σ ∪ σ̃ is a non-crossing partition of [2n]. We call a subset I ∈

( [2n]
n−1

)
concordant with σ if every part of σ and every part of σ̃ contains exactly one element 
not in I. Let Aσ ∈ R( 2n

n−1) be the sum of eI over all I concordant with σ, and let H be 

the linear subspace of P ( 2n
n−1)−1 spanned by the images of Aσ for σ ∈ NCn.

Identifying Gr(n − 1, 2n) with its image under the Plücker embedding, we consider 
the subvariety Xn := Gr(n − 1, 2n) ∩H. In [21, Theorem 5.8], an embedding

ι : En � Xn ∩ Gr≥0(n− 1, 2n) ↪→ Gr≥0(n− 1, 2n) (6.1)

was constructed, identifying the compactification of the space of planar electrical networks 
with n boundary vertices En with the compact space Xn ∩Gr≥0(n − 1, 2n). We will need 
the following property of (En)>0 := Xn ∩ Gr>0(n − 1, 2n).

Proposition 6.2. The space (En)>0 is diffeomorphic to R
(n2)
>0 , and the inclusion (En)>0 ↪→

Gr>0(n − 1, 2n) is a smooth embedding.



20 P. Galashin et al. / Advances in Mathematics 397 (2022) 108123
Here Gr>0(n − 1, 2n) ⊂ Gr(n − 1, 2n) is an open submanifold diffeomorphic to 
R(n−1)(n+1)

>0 .

Proof. We recall from [9, Theorem 4] that each point in (En)>0 = Ω+
n is uniquely 

represented by assigning a positive real number (the conductance) to each edge of a well-
connected electrical network Γ with 

(
n
2
)

edges. This gives a parametrization (En)>0 �
R

(n2)
>0 . The construction Γ �→ N(Γ) of [21, Section 5] sends Γ to a weighted bipartite graph 

N(Γ) embedded into a disk compatibly with the inclusion (6.1). The edge weights of N(Γ)
are monomials in the edge weights of Γ. Furthermore, the underlying bipartite graph G
of N(Γ) parametrizes Gr>0(n −1, 2n). That is, we can choose a set of (n −1)(n +1) edges 
of G, so that assigning arbitrary positive edge weights to these edges and weight 1 to 
the remaining edges induces a parametrization Gr>0(n − 1, 2n) � R(n−1)(n+1)

>0 (see [26]

or [34]). It follows that the inclusion R
(n2)
>0 � (En)>0 ↪→ Gr>0(n −1, 2n) � R(n−1)(n+1)

>0 is a 
monomial map, and in particular a homomorphism of Lie groups. The result follows. �
6.2. Operators acting on non-crossing partitions

For each i ∈ [2n], we define ui and di in gl( 2n
n−1)(R) by

ui(eI) :=
{
eI∪{i+1}\{i}, if i ∈ I, i + 1 /∈ I;
0, otherwise;

di(eI) :=
{
eI∪{i−1}\{i}, if i ∈ I, i− 1 /∈ I;
0, otherwise.

Here the indices are taken modulo 2n.
For i ∈ [2n]odd, we let κ(i) ∈ NCn be the non-crossing partition which has two parts, 

namely {i} and [2n]odd \ {i}. For i ∈ [2n]even, we let μ(i) ∈ NCn be the non-crossing 
partition with n − 1 parts, one of which is {i − 1, i + 1} and the rest being singletons. 
Given σ ∈ NCn and i ∈ [2n], we define the noncrossing partition σ′(i) ∈ NCn as the 
common refinement of σ and κ(i) if i is odd, and the common coarsening of σ and μ(i)
if i is even. The following combinatorial lemma is essentially [21, Proposition 5.15], and 
can be verified directly.

Lemma 6.3. For all i ∈ [2n], we have

(ui + di)(Aσ) =
{

0, if σ = σ′(i);
Aσ′(i), otherwise.

Example 6.4. Let n := 3 and σ := {{1, 3}, {5}} ∈ NCn, so that σ̃ = {{2}, {4, 6}}, 
σ′(1) = σ′(3) = {{1}, {3}, {5}}, σ′(2) = σ′(5) = σ, and σ′(4) = σ′(6) = {{1, 3, 5}}. 
Abbreviating e{a,b} by eab, we have
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Aσ = e14 + e16 + e34 + e36.

Note that σ �= σ′(1) and

(u1 + d1)(Aσ) = (e24 + e26) + (e46) = Aσ′(1),

in agreement with Lemma 6.3 (since the dual of σ′(1) is {{2, 4, 6}}). Similarly, we have 
σ = σ′(2) and

(u2 + d2)(Aσ) = 0 + 0 = 0. �
We define the operator Φ :=

∑2n
i=1 ui + di ∈ gl( 2n

n−1)(R).

Lemma 6.5. Let X ∈ En. We have exp(tτ) ·X ∈ (En)>0 for all t > 0.

Proof. This follows from Corollary 3.8, once we show that exp(tτ) ·X ∈ H for X ∈ Xn

and t ∈ R. To do this, we identify Gr(n − 1, 2n) with its image in P ( 2n
n−1)−1 under the 

Plücker embedding sending X ∈ Gr(n − 1, 2n) to 
∑

I∈( [2n]
n−1) ΔI(X)eI ∈ P ( 2n

n−1)−1. Then 

for any X ∈ Xn, we have a smooth curve t �→ exp(tτ) ·X in P ( 2n
n−1)−1. As in (3.7), we 

find that

exp(tτ) ·X = X + tΦ(X) + O(t2) in P ( 2n
n−1)−1

as t → 0. Therefore exp(tτ) ·X is an integral curve for the smooth vector field on P ( 2n
n−1)−1

defined by the infinitesimal action of Φ. By Lemma 6.3, this vector field is tangent to H, 
so exp(tτ) ·X ∈ H for all t ∈ R. �
Proof of Theorem 1.3. We are identifying (En)>0 as a subset Gr>0(n − 1, 2n) via the 
smooth embedding of Proposition 6.2. In turn, Gr>0(n − 1, 2n) is smoothly embedded 
inside Mat(n − 1, n + 1) by the map φ−1 defined in (3.3). Thus Q := φ−1((En)>0) ⊂
Mat(n −1, n +1) is a smoothly embedded submanifold of Mat(n −1, n +1) of dimension (
n
2
)
. The map φ−1 sends the compact set En homeomorphically onto its image φ−1(En). 

Since (En)>0 is dense in En, we have that φ−1(En) equals the closure Q of Q. Let 
f : R × Mat(n − 1, n + 1) → Mat(n − 1, n + 1) be the map defined by (3.9). We showed 
in Section 3.3 that f is a contractive flow, and Lemma 6.5 implies that (2.4) holds for 
our choice of Q and f . Thus Lemma 2.3 applies, completing the proof. �
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