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Amplituhedron
Electrical networks

1. Introduction

The prototypical example of a closed ball of interest in topological combinatorics is
a convex polytope. Over the past few decades, an analogy between convex polytopes,
and certain spaces appearing in total positivity and in electrical resistor networks, has
emerged [23,11,26,8,9]. One motivation for this analogy is that these latter spaces come
equipped with cell decompositions whose face posets share a number of common features
with the face posets of polytopes [35,14,31]. A new motivation for this analogy comes from
recent developments in high-energy physics, where physical significance is ascribed to
certain differential forms on positive spaces which generalize convex polytopes [1,3,2]. In
this paper we show in several fundamental cases that this analogy holds at the topological
level: the spaces themselves are closed balls.

1.1. The totally nonnegative Grassmannian

Let Gr(k,n) denote the Grassmannian of k-planes in R™. Postnikov [26] defined its
totally nonnegative part Gr>o(k,n) as the set of X € Gr(k,n) whose Pliicker coordi-
nates are all nonnegative. The totally nonnegative Grassmannian is not a polytope, but
Postnikov conjectured that it is the ‘next best thing’, namely, a regular CW complex
homeomorphic to a closed ball. He found a cell decomposition of Gr>o(k,n), where each
open cell is specified by requiring some subset of the Pliicker coordinates to be strictly
positive, and requiring the rest to equal zero.

Over the past decade, much work has been done towards Postnikov’s conjecture. The
face poset of the cell decomposition (described in [28,29,26]) was shown to be shellable by
Williams [35]. Postnikov, Speyer, and Williams [27] showed that the cell decomposition is
a CW complex, and Rietsch and Williams [31] showed that it is regular up to homotopy,
i.e., the closure of each cell is contractible. Our first main theorem is:

Theorem 1.1. The space Grxo(k,n) is homeomorphic to a k(n — k)-dimensional closed
ball.

It remains an open problem to establish Postnikov’s conjecture, i.e., to address ar-
bitrary cell closures in the cell decomposition of Grso(k,n)." Each of Postnikov’s cells
determines a matroid known as a positroid, and Theorem 1.1 also reflects how positroids
are related via specialization (see [6] for a related discussion about oriented matroids).

Separately, Lusztig [23] defined and studied the totally nonnegative part (G/P)>o
of a partial flag variety of a split real reductive group G. In the case G/P = Gr(k,n),

L Since this paper was completed, we verified Postnikov’s conjecture using different methods [12].



P. Galashin et al. / Advances in Mathematics 397 (2022) 108123 3

Rietsch showed that Lusztig’s and Postnikov’s definitions of the totally nonnegative part
are equivalent (see e.g. [20, Remark 3.8] for a proof). Lusztig [24] showed that (G/P)>o
is contractible, and our approach to Theorem 1.1 is similar to his (see Section 3.4). We
discuss the case (G/P)>¢ in a separate work [13].

Our proof of Theorem 1.1 employs a certain vector field 7 on Gr>o(k,n). The flow
defined by 7 contracts all of Gr>o(k,n) to a unique fixed point Xy € Gr>o(k,n). We
construct a homeomorphism from Gr>o(k,n) to a closed ball B C Gr>o(k,n) centered
at Xo, by mapping each trajectory in Gr>o(k,n) to its intersection with B. A feature of
our construction is that we do not rely on any cell decomposition of Grs¢(k,n).

1.2. The totally nonnegative part of the unipotent radical of GL,(R)

The interest in totally nonnegative spaces from the viewpoint of combinatorial topol-
ogy dates back at least to Fomin and Shapiro [11]. Edelman [10] had shown that intervals
in the poset formed by the symmetric group &,, with Bruhat order are shellable, whence
Bjorner’s results [7] imply that there exists a regular CW complex homeomorphic to a
ball whose face poset is isomorphic to &,,. Fomin and Shapiro [11] suggested that such
a CW complex could be found naturally occurring in the theory of total positivity.

Namely, let U C GL,,(R) be the subgroup of all upper-triangular unipotent matrices,
and Usg its totally nonnegative part, where all minors are nonnegative. Let V> denote
the link of the identity of Us(. The intersection of V> with the Bruhat stratification of
U induces a decomposition of V> into cells, whose face poset is isomorphic to &,,. Fomin
and Shapiro [11, Conjecture 1.10] conjectured that V¢ is a regular CW complex, which
was proved by Hersh [14]. Applying her result to the cell of top dimension implies that
V5o is homeomorphic to an ((g) — 1)—dimensional closed ball. We give a new proof of
this special case to exhibit the wide applicability of our methods. We emphasize that our
techniques in their present form are not able to address the other (lower-dimensional)
cell closures in V>(, which appear in Hersh’s result. In addition, Fomin and Shapiro’s
conjecture, as well as Hersh’s theorem, hold in arbitrary Lie types, while we only consider
type A.

1.3. The cyclically symmetric amplituhedron

A robust connection between the totally nonnegative Grassmannian and the physics
of scattering amplitudes was developed in [1], which led Arkani-Hamed and Trnka [3] to
define topological spaces called amplituhedra. A distinguishing feature that these topo-
logical spaces share (conjecturally) with convex polytopes is the existence of a canonical
differential form [2]. This brings the analogy between totally nonnegative spaces and
polytopes beyond the level of face posets.

Let k,m,n be nonnegative integers with k£ +m < n, and Z be a (k + m) x n matrix
whose (k4m) x (k+m) minors are all positive. We regard Z as a linear map R” — R¥+™
which induces a map Zg, on Gr(k,n) taking the subspace X to the subspace {Z(v) :
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v € X}. The (tree) amplituhedron A, i m(Z) is the image of Gr>o(k,n) in Gr(k, k +m)
under the map Zg, [3, Section 4]. When k = 1, the totally nonnegative Grassmannian
Gr>o(1,n) is a simplex in P"~!, and the amplituhedron A,, 1,,(Z) is a cyclic polytope in
P™ [33]. Understanding the topology of amplituhedra, and more generally of Grassmann
polytopes [20] (obtained by relaxing the positivity condition on Z), was one of the main
motivations of our work.

We now take m to be even, and Z = Z; such that the rows of Zj span the unique
element of Grxo(k + m,n) invariant under the Z/nZ-cyclic action (cf. [16]). We call
Ay k.m(Zo) the cyclically symmetric amplituhedron. When k =1 and m = 2, A, 1.2(Zo)
is a regular n-gon in the plane. More generally, A, 1.,(Zo) is a polytope whose vertices
are n regularly spaced points on the trigonometric moment curve in P™.

Theorem 1.2. The cyclically symmetric amplituhedron A, 1.m(Zo) ts homeomorphic to a
km-dimensional closed ball.

It is expected that every amplituhedron is homeomorphic to a closed ball. The
topology of amplituhedra and Grassmann polytopes is not well understood in general;
see [18,4] for recent work.

1.4. The compactification of the space of planar electrical networks

Let I" be an electrical network consisting only of resistors, modeled as an undirected
graph whose edge weights (conductances) are positive real numbers. The electrical prop-
erties of I' are encoded by the response matrix A(T") : R” — R", sending a vector of
voltages at n distinguished boundary vertices to the vector of currents induced at the
same vertices. The response matrix can be computed using (only) Kirchhoff’s law and
Ohm’s law. Following Curtis, Ingerman, and Morrow [9] and Colin de Verdiére, Gitler,
and Vertigan [8], we consider the space 2,, of response matrices of planar electrical net-
works: those I' embedded into a disk, with boundary vertices on the boundary of the
disk. This space is not compact; a compactification F, was defined by the third author
n [21]. It comes equipped with a natural embedding ¢ : E, < Gr>o(n — 1,2n). We
exploit this embedding to establish the following result.

Theorem 1.3. The space E, is homeomorphic to an (g) -dimensional closed ball.

A cell decomposition of E,, was defined in [21], extending earlier work in [9,8]. The
face poset of this cell decomposition had been defined and studied by Kenyon [17, Sec-
tion 4.5.2]. Theorem 1.3 says that the closure of the unique cell of top dimension in E,
is homeomorphic to a closed ball. In [19], the third author showed that the face poset
of the cell decomposition of F,, is Eulerian, and conjectured that it is shellable. Hersh
and Kenyon recently proved this conjecture [15]. Bjorner’s results [7] therefore imply
that this poset is the face poset of some regular CW complex homeomorphic to a ball.
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We expect that E,, forms such a CW complex, so that the closure of every cell of F,, is
homeomorphic to a closed ball. Proving this remains an open problem.

1.5. Outline

In Section 2, we prove a topological lemma (Lemma 2.3) which essentially states that
if one can find a contractive flow (defined below) on a submanifold of RY, then its closure
is homeomorphic to a ball. We use Lemma 2.3 in Sections 3 to 6 to show that the four
spaces discussed in Sections 1.1 to 1.4 are homeomorphic to closed balls. To do so, in
each case we consider a natural flow on the underlying space, and show that it satisfies
the contractive property by introducing novel coordinates on the space.

Acknowledgements. We thank Patricia Hersh and Lauren Williams for helpful comments,
and anonymous referees for many suggestions leading to improvements in the exposition.

2. Contractive flows

In this section we prove Lemma 2.3, which we will repeatedly use in establishing our
main theorems. Consider a real normed vector space (R¥,| -||). Thus for each r > 0,
the closed ball BY := {p € RY : ||p|| < 7} of radius 7 is a compact convex body in RY
whose interior contains the origin. We denote its boundary by dBY, which is the sphere
of radius r.

Definition 2.1. We say that a map f : R x RY — R¥ is a contractive flow if the following
conditions are satisfied:

(1) the map f is continuous;

(2) for all p € RY and t;,t, € R, we have f(0,p) = p and f(t; +to,p) = f(t1, f(t2,p));
and

(3) for all p# 0 and t > 0, we have || f(¢,p)|| < |Ipl-

The condition (2) says that f induces a group action of (R, +) on R¥. In particular,
f(t,p) = q is equivalent to f(—t,q) = p, so (3) implies that if ¢t # 0 and f(¢,p) = p, then
p = 0. The converse to this statement is given below in Lemma 2.2(i).

Lemma 2.2. Let f : R x RY — RY be a contractive flow.

(i) We have f(t,0) =0 for all t € R.
(ii) Let p # 0. Then the function t — || f(t,p)|| is strictly decreasing on (—oo,00).
(iii) Let p # 0. Then tli}m I &, )| =0 and , lim ||f(¢,p)| = oo.
oo —— 00

Proof. (i) By (1), the function s — || f(s,0)|| is continuous on R, and it equals 0 when
s =0.1If f(¢,0) # 0 for some t > 0, then 0 < | f(s,0)|| < ||f(¢,0)] for some s € (0,¢),
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which contradicts (3) applied to p = f(s,0) and ¢ — s. Therefore f(¢,0) = 0 for all ¢ > 0.
By (2), for t > 0 we have 0 = f(0,0) = f(—t, f(¢,0)) = f(—t,0), and so f(—¢,0) =0 as
well.

(ii) This follows from (3) and the fact that f induces a group action of R on R¥ once
we know that f(¢,p) is never 0. But if f(¢,p) = 0 then f(—¢,0) = p, which contradicts
part (i).

(iii) Let r1(p) and r2(p) denote the respective limits. By part (ii), both limits exist,
where r1(p) € [0,00) and r2(p) € (0,00]. By compactness, there exists a point ¢ € RY
with [|¢|| = r1(p), along with an unbounded increasing sequence t1,ta, ... in R satisfying
lim; 00 f(ti,p) = q. If r1(p) > 0, then using (1)—(3), we find

ri(p) = llgll > 171 @) = lim [[f(L, f(t,p))I| = lim [|f(1+ ¢, p)l| = r1(p),
a contradiction. Thus 71(p) = 0. Similarly, we get ro(p) = c0.? O
For K ¢ RY and t € R, we let f(t, K) denote {f(t,p) :p € K}.

Lemma 2.3. Let Q C RY be a smooth embedded submanifold of dimension d < N, and
f: R xRN — RN g contractive flow. Suppose that Q is bounded and satisfies the
condition

ft,Q)cQ fort>0. (2.4)

Then the closure Q is homeomorphic to a closed ball of dimension d, and Q \ Q is
homeomorphic to a sphere of dimension d — 1.

Note that any open subset of RY is a smooth embedded submanifold of dimension N.

Proof. Since @ is bounded, its closure @ is compact. By Lemma 2.2(iii) and (2.4) we
have 0 € @, and therefore 0 € Q. Because @ is smoothly embedded, we can take r > 0
sufficiently small so that B := BY N Q is homeomorphic to a closed ball of dimension d.
We let OB denote (OBY) N Q, which is a (d — 1)-dimensional sphere.

For any p € RV \ {0}, consider the curve t — f(t,p) starting at p and defined for
all t € R. By Lemma 2.2(ii), this curve intersects the sphere 9BY for a unique t € R,
which we denote by t,.(p). Also, for p € @ \ {0}, define t5(p) € (—oc,0] as follows. Let
T(p):=={t € R: f(t,p) € Q}. We have 0 € T(p), and T(p) is bounded from below by
Lemma 2.2(iii) because @ is bounded. By (2.4), if t € T(p) then [t,00) C T(p). Also,
T(p) is closed since it is the preimage of @ under the continuous map t ~— f(¢,p). It
follows that T'(p) = [ta(p), 00) for some ty(p) € (—o0,0].

Claim. The functions ¢, and t5 are continuous on @ \ {0}.

2 We thank an anonymous referee for suggesting this simpler argument.
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Proof of Claim. First we prove that ¢, is continuous on R™ \ {0}. It suffices to show that
the preimage of any open interval I C R is open. To this end, let ¢ € t.-1(I). Take t1,t5 €
I with t; < t,(q) < t2. By Lemma 2.2(ii), we have || f(t1,q)|| > r > || f(t2, ¢)||. Note that
themap 1 : RY — RN p s f(t1,p) is continuous and RN\ BY is open, so v; 1 (RV\BY)
is an open neighborhood of ¢. Similarly, defining 7o : RN — R¥ p — f(t2,p), we have
that v, * (int(BY)) is an open neighborhood of q. Therefore v; ' (RN \ BN )Ny, * (int(BY))
is an open neighborhood of ¢, whose image under ¢, is contained in (¢1,t3) C I. This
shows that ¢, is continuous on R \ {0}.
Next, let us define

R:={f(t,p): (t,p) e R x Q}. (2.5)

The map b : R x 9B — R\ {0} defined by (¢,p) — f(¢,p) is a continuous bijection.
(Recall that OB = (0BY) N Q.) Its inverse p ~— (—t.(p), f(t,(p),p)) is continuous as
well. Therefore b is a homeomorphism. We claim that @ is relatively open in R. Indeed,
since @\ {0} is a submanifold of R\ {0} of the same dimension d, we deduce that @\ {0}
is an open subset of R\ {0}. Also, ) contains the neighborhood int(BY) N R of 0 in R.
Thus @ is an open subset of R.

We now prove that the map t5 : Q\{0} — R is continuous, by a very similar argument.
Let I C R be an open interval and consider a point q € tgl(I). Take t1,t2 € I with
t1 < ta(q) < ta. By the definition of t5, we have f(t1,q) € R\ Q. By (2.4), we have
f(ta,q) € Q. Note that the map v, : R — R,p ~ f(t1,p) is continuous and R\ Q
is open in R, so 77 '(R\ Q) is an open neighborhood of ¢ in R. Similarly, defining
Y2 : R = R,p +— f(ta,p), we have that v, '(Q) is an open neighborhood of ¢ in R.
Therefore 77 H(R\ Q) N5 *(Q) N Q is an open neighborhood of ¢ in @, whose image
under ty is contained inside (¢1,t2) C I. This finishes the proof of the claim. O

Define the maps o : Q — B and §: B — Q by

a(p) = f(t-(p) —ta(p),p), Bp):= f(ta(p) —t-(p),p)

for p # 0, and «(0) := 0, 3(0) := 0. Let us verify that o sends @ inside B and 3 sends
B inside Q. If p € Q \ {0}, then f(t,.(p),p) € B and t5(p) < 0, whence the contractive
property (3) implies a(p) = f(—ta(p), f(t+(p),p)) € B. Similarly, if p € B\ {0}, then
f(ta(p),p) € Q and t(p) < 0, whence (2.4) implies 3(p) = f(—t.(p), f(ta(p).p)) € Q.

Now we check that a and § are inverse maps. For any p € @ and At € R such that
f(At,p) € Q, we have

tr(f(At,p)) = tr(p) — At,  ta(f(AL,p)) = ta(p) — Al
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Taking At := tg(p) — t,(p), we find

a(B(p)) = af(At,p)) = f(t-(f(At,p)) —ta(f(AL,p)), f(At,p)) = f(=AL, f(At,p)) = p.

We can similarly verify that S(a(p)) = p, by instead taking At :=t.(p) — ts(p).

By the claim, t, and t are continuous on @ \ {0}, so « is continuous everywhere
except possibly at 0. Also, ¢.(p) > ts(p) for all p € Q \ {0}, so a is continuous at 0 by
Lemma 2.2(ii). Thus « is a continuous bijection from a compact space to a Hausdorff
space, so it is a homeomorphism. This shows that @ is homeomorphic to a closed d-
dimensional ball.

It remains to prove that @ \ @ is homeomorphic to a (d — 1)-dimensional sphere. We
claim that o restricts to a homeomorphism from @ \ @ to OB. We need to check that
a sends Q \ Q inside OB, and 3 sends 9B inside @ \ Q. To this end, let p € Q \ Q. By
condition (2), we have p = f(—ta(p), f(ta(p),p)). Hence if t5(p) < 0, then (2.4) implies
p € @, a contradiction. Therefore ty(p) = 0, and «(p) = f(t.(p),p) € OB. Now let
q € 0B. We have t,.(q) = 0, so 8(q) = f(ta(q),q). If B(q) € Q, then f(ta(q) —t,q) € Q
for ¢ > 0 sufficiently small (as @ is open in R from (2.5)), contradicting the definition of

ta(q). Thus B(q) € Q\ Q. O
3. The totally nonnegative Grassmannian

Let Gr(k,n) denote the real Grassmannian, the space of all k-dimensional subspaces
of R™. We set [n] :={1,...,n}, and let ([Z]) denote the set of k-element subsets of [n].

For X € Gr(k,n), we denote by (AI(X))Ie([”]) e P(V)-1 the Plicker coordinates of X:
k

A(X) is the k x k minor of X (viewed as a k x n matrix modulo row operations) with
column set I.

Recall that Gr>o(k,n) is the subset of Gr(k,n) where all Plicker coordinates are
nonnegative (up to a common scalar). We also define the totally positive Grassmannian
Gr=o(k,n) as the subset of Gr>o(k,n) where all Pliicker coordinates are positive.

3.1. Global coordinates for Gr>o(k,n)

For each k and n, we introduce several distinguished linear operators on R™. Define the
left cyclic shift S € gl,,(R) = End(R™) by S(v1,...,v,) := (va,..., 0, (=1)*"1v;). The
sign (—1)*~! can be explained as follows: if we pretend that S is an element of GL,,(R),
then the action of S on Gr(k,n) preserves Gr>o(k,n) (it acts on Pliicker coordinates by
rotating the index set [n]).

Note that the transpose ST of S is the right cyclic shift given by ST (vi,...,v,) =
(=D Yo, v1,...,0p-1). Let 7 := S+ ST € End(R"). We endow R" with the stan-
dard inner product, so that 7 (being symmetric) has an orthogonal basis of eigenvectors
Uiy . .., Uy € R™ corresponding to real eigenvalues A; > -+ > A,. Let Xy € Gr(k,n) be
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the linear span of uq,...,us. The following lemma implies that X, is totally positive
and does not depend on the choice of eigenvectors uy, ..., u,.
Lemma 3.1.

(i) The eigenvalues Ay > -+ > Ay, are given as follows, depending on the parity of k:
o if ks even, A1 = g = 2cos(Z), A3 = Ay = 2cos(2), A5 = Ag = 2cos(2T), ...;
e ifkisodd, \y =1, A\g = A3 = 2008(2%), A= NA5 = QCOS(%),
In either case, we have

A = 2COS(%7T) > QCOS(%W) = Agot1-

(ii) [32] The Pliicker coordinates of Xo are given by

Ar(Xo) = H sin(%w) >0 forallle ([z]),

i,J€I, i<j

For an example in the case of Gr(2, 4), see Section 3.5. (We remark that in the example,
the Pliicker coordinates of Xy are scaled by a factor of 2 compared to the formula above.)

Proof. In this proof, we work over C. Let ¢ € C be an nth root of (—1)*~1. There are n
such values of ¢, each of the form ¢ = e?™™/" for some integer m congruent to k—1 modulo

2. Let 2y, := (1,¢,¢2,...,¢" 1) € C™. We have S(z,) = Czm and ST (2,,) = ("2, s0

T(zm) = (C+ ¢z = 2cos(Z2) 2y, (3.2)

The n distinct z,,’s are linearly independent (they form an n x n Vandermonde matrix
with nonzero determinant), so they give a basis of C" of eigenvectors of 7.

We deduce part (i) from (3.2). For part (ii), we apply Vandermonde’s determinantal
identity, following an argument outlined by Scott [32]. That is, by (3.2), the C-linear
span of ug,...,u, is the same as the span of z_py1,2 k13,2 ka5,...,2k—1. Let M be
the matrix whose rows are z_j41, 2—k+3, Z—k+5, - - - 5 Zk—1, 1-€.,

Mr,j _ 6i7r(7k71+27‘)(j71)/n for 1 <r< L and 1 Sj <n.

Then the Pliicker coordinates of X are the &k x k minors of M (up to a common nonzero
complex scalar), which can be computed explicitly by Vandermonde’s identity after
appropriately rescaling the columns. We refer the reader to [16, Proposition 2.5] for
details. O

Denote by Mat(k,n — k) the vector space of real k x (n — k) matrices. Define a map
¢ : Mat(k,n — k) — Gr(k,n) by
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@¢(A) := span(u; + Z;Zlk A jupyj 1 <i < k). (3.3)

In other words, the entries of A are the usual coordinates on the big Schubert cell of
Gr(k,n) with respect to the basis ug, ..., u, of R™ this Schubert cell being

o(Mat(k,n — k)) = {X € Gr(k,n) : X Nspan(ug41,...,u,) = 0}.

In particular, ¢ is a smooth embedding, and it sends the zero matrix to Xy. For an
example in the case of Gr(2,4), see Section 3.5.

Proposition 3.4. The image ¢(Mat(k,n — k)) contains Gr>o(k, n).

Proof. Let X € Gr>o(k,n) be a totally nonnegative subspace. We need to show that
X Nspan(tg41,...,u,) = 0. Suppose otherwise that there exists a nonzero vector v in
this intersection. Extend v to a basis of X, and write this basis as the rows of a k x n
matrix M. Because X is totally nonnegative, the nonzero k x k minors of M all have the
same sign (and at least one minor is nonzero, since M has rank k). Also let My be the
k x n matrix with rows uq,...,ur. By Lemma 3.1(ii), all k£ x k minors of M, are nonzero
and have the same sign. The vectors u, ..., u, are orthogonal, so v is orthogonal to the
rows of My. Hence the first column of MyM? is zero, and we obtain det(MoM™) = 0.
On the other hand, the Cauchy—Binet identity implies

det(MoM™) = >~ det((Mo);) det(M),
1e()

where A; denotes the matrix A restricted to the columns I. Each summand has the same
sign and at least one summand is nonzero, contradicting det(MoM7T) =0. O

We have shown that the restriction of ¢$~! to Gr>o(k,n) yields an embedding
Grso(k,n) = Mat(k,n — k) ~ RF(m=k)
whose restriction to Grso(k,n) is smooth.
3.2. Flows on Gr(k,n)

For g € GL,,(R), we let g act on Gr(k,n) by taking the subspace X to g- X := {g(v) :
v € X} Welet 1 € GL,(R) denote the identity matrix, and for x € gl,(R) we let
exp(z) == > 72, ?—J, € GL,(R) denote the matrix exponential of z.

We examine the action of exp(tS) and exp(¢7) on Gr(k,n).

Lemma 3.5. For X € Gr>(k,n) and t > 0, we have exp(tS) - X € Grso(k,n).

Proof. We claim that it suffices to prove the following two facts:
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(i) for X € Gr>o(k,n) and ¢t > 0, we have exp(tS) - X € Gr>o(k,n); and
(ii) for X € Grxg(k,n) \ Grso(k,n), we have exp(tS) - X ¢ Grxo(k,n) for all £ < 0
sufficiently close to zero.

To see why this is sufficient, let X € Gr>o(k,n) and ¢ > 0. By part (i), we have exp(¢S) -
X € Gr>o(k,n), so we just need to show that exp(t5)-X € Grso(k,n). Suppose otherwise
that exp(tS) - X ¢ Grso(k,n). Then applying part (ii) to exp(tS) - X, we get that
exp((t +t')S) - X ¢ Gr>o(k,n) for t' < 0 sufficiently close to zero. But by part (i),
we know that exp((t +t)S) - X € Grxo(k,n) for all ¢’ in the interval [—t,0]. This is a
contradiction.

Now we prove parts (i) and (ii). We will make use of the operator 145, which belongs
to GL,(R) for |t| < 1. Note that if [M; | --- | M,] is a k X n matrix representing X, then
a k x n matrix representing (1 +t5) - X is

M' = [My +tMy | My +tMs | --- | My_1 4+ tM, | M, + (=1)*"1tMy].

We can evaluate the k x k minors of M’ using multilinearity of the determinant. We
obtain

AI((l + tS) ' X) = Z t51+m+6kA{i1+61,~-7ik+6k}(X) for I = {7:17 s 7ik} - [n]7
ec{0,1}k
(3.6)

where i1 + €1,. .., + €& are taken modulo n. Therefore (1 +tS) - X € Gr>o(k,n) for
J
X € Grxg(k,n) and t € [0,1). Since exp(tS) = lim;_, o (1 + %) and Gr>o(k,n) is
closed, we obtain exp(tS) - X € Gr>o(k,n) for ¢ > 0. This proves part (i).
To prove part (ii), first note that exp(tS) = 1 +tS + O(t?). By (3.6), we have

Ap(exp(tS) - X) = Ar(X)+t Y Ap(X)+0(t?) for I € (W), (3.7)
I

where the sum is over all I’ € ([Z]) obtained from I by increasing exactly one element
by 1 modulo n. If we can find such I and I’ with A;(X) = 0 and Ap(X) > 0, then
Aj(exp(tS) - X) < 0 for all ¢ < 0 sufficiently close to zero, thereby proving part (ii). In
order to do this, we introduce the directed graph D with vertex set ([Z]), where J — J’
is an edge of D if and only if we can obtain J’ from J by increasing exactly one element
by 1 modulo n. Note that for any two vertices K and K’ of D, there exists a directed
path from K to K':

e we can get from [k] to any {i; < --- <} by shifting k to ig, k — 1 to ig_1, etc.;
e similarly, we can get from any {i; <--- <igtto{n—k+1,n—-k+2,...,n};
e we can get from {n — k+1,...,n} to [k] by shifting n to k, n — 1 to k — 1, etc.
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Now take K, K’ € ([Z]) with Ag(X) =0 and Ag/(X) > 0, and consider a directed path
from K to K'. It goes through an edge I — I’ with A;(X) = 0 and Ap(X) > 0, as
desired. O

Now we consider exp(tr) = exp(t(S + ST)). Recall that S and S are the left and
right cyclic shift maps, so by symmetry Lemma 3.5 holds with S replaced by ST. Also,
S and ST commute, so exp(t7) = exp(tS) exp(tST). We obtain the following.

Corollary 3.8. For X € Grxo(k,n) and t > 0, we have exp(t7) - X € Grso(k,n).

Let us see how exp(t7) acts on matrices A € Mat(k,n — k). Note that 7(u;) = A\;u; for
1 <i < n,soexp(tr)(u;) = e iu;. Therefore exp(t7) acts on the basis of ¢(A) in (3.3)
by

exp(t) (s + 3071 Ay juky;) = e (ug + 3077 et TA A, )

for all 1 < ¢ < k. Thus exp(t7) - $(4) = ¢(f(t,A)), where by definition f(¢t, A) €

Mat(k,n — k) is the matrix with entries
(f(t,A))ij = ePeri=2D 4, . for1<i<kand1<j<n-—Ek. (3.9)
3.8. Proof of Theorem 1.1

Consider the map f: R x Mat(k,n — k) — Mat(k,n — k) defined by (3.9). We claim
that f is a contractive flow on Mat(k,n — k) equipped with the Euclidean norm

k n—k
AP =" A3

=1 5=1

Indeed, parts (1) and (2) of Definition 2.1 hold for f. To see that part (3) holds, note
that for any 1 <i¢ < kand 1 <j<n—k with 4;; # 0, we have

[(f(t, A))iz] = |ePrri ) 4; | = e!Pwts

Ai,j| < |Ai,j| for t > O,

using the fact that A; > Ay > Agy1 > gy from Lemma 3.1(i). Therefore || f(¢, 4)|| <
[|A] if A # 0, verifying part (3).

Let us now apply Lemma 2.3 with RY = Mat(k,n — k) and Q = ¢~ 1(Grso(k,n)).
We need to know that Gr>o(k,n) is the closure of Grso(k,n). This was proved by
Postnikov [26, Section 17]; it also follows directly from Corollary 3.8, since we can express
any X € Gr>o(k,n) as a limit of totally positive subspaces:

X = lim exp(tr) - X.
t—0+
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Therefore Q = ¢~ (Gr>o(k,n)). Moreover, Grso(k, n) is closed inside the compact space
]P’(Z)*l, and is therefore also compact. So, @ is compact (and hence bounded). Finally, the
property (2.4) in this case is precisely Corollary 3.8. We have verified all the hypotheses
of Lemma 2.3, and conclude that @ (and also Grsq(k,n)) is homeomorphic to a k(n—k)-
dimensional closed ball. O

3.4. Related work

Lusztig [24, Section 4] used a flow similar to exp(¢7) to show that (G/P)>¢ is con-
tractible. Our flow can be thought of as an affine (or loop group) analogue of his flow, and
is closely related to the whirl matrices of [22]. We also remark that Ayala, Kliemann, and
San Martin [5] used the language of control theory to give an alternative development
in type A of Lusztig’s theory of total positivity. In that context, exp(¢7) (¢t > 0) lies in
the interior of the compression semigroup of Gr>o(k,n), and Xy is its attractor.

Marsh and Rietsch defined and studied a superpotential on the Grassmannian in the
context of mirror symmetry [25, Section 6]. It follows from results of Rietsch [30] (see [16,
Corollary 3.12]) that X is, rather surprisingly, also the unique totally nonnegative crit-
ical point of the ¢ = 1 specialization of the superpotential. However, the superpotential
is not defined on the boundary of Grxo(k,n). The precise relationship between 7 and
the gradient flow of the superpotential remains mysterious.

3.5. Ezample: the case Gr(2,4)

The matrix 7 = S + ST € gl,(R) and an orthogonal basis of real eigenvectors
Ui, U2,Us3,Uq are

uy = (Ovla\/ia]-)v )‘1 :\/i,
0 1 0 -1
1 0 1 0 Uy = (_\/ia _1707 1)7 )‘2 = \/57
T fr—
0O 1 0 1| _ _
-1 0 1 0 us = (\/57 1507 1)) )‘3 - \/ia
ug = (0,1, —v2,1), A= —V2

$(A) = X = u1 + aus + buy _ V2a l—a+b V2—v2b 1+a+bd

uz + cug + dug —V2++V2¢ —1—c+d —v2d 1+4c+d|’
Above we are identifying X € Gr(2,4) with a 2 x 4 matrix whose rows form a basis of
X. In terms of Pliicker coordinates A;; = Ay; j1(X), the map ¢ is given by
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A =2
Aoz =2
Asy =2
Ay =2

1—-2a+b—c+ad—bc),
1—-2d—-b+c+ad—be), A13=2(1—b—c—ad+bc),
14+2d—b+c+ad— be), Ags =2(14+b+c—ad+be),
14+2a+b—c+ad—bc),

(3.10)

—~ —~ —~

and its inverse is given by

a = (2A14 — 2A12) /9, b= (Arp — Doz — Azg 4+ A1y — V2A13 + V2 A04) /9,
d = (2A34 — 2A03) /0, c=(=Apg+ Aoz + Azy — Ay — V2A13 + V2 A0,) /6,
where § = Ao + Aoz + Agy + Arg + V2A13 + V2 Agy.

The point X = ¢(0) = span(uy, us) € Grso(2,4) has Pliicker coordinates
App=Ag3 =Agy = A1y = V2, Az =0y =2,

which agrees with Lemma 3.1(ii). The image of ¢ is the subset of Gr(2,4) where 0 #
0, which we see includes Gr>((2,4), verifying Proposition 3.4 in this case. Restricting
¢~ to Gr>((2,4) gives a homeomorphism onto the subset of R* of points (a,b,c,d)
where the 6 polynomials A;; in (3.10) are nonnegative. By Theorem 1.1, these spaces
are both homeomorphic to 4-dimensional closed balls. The closures of cells in the cell
decomposition of Gr>(2,4) are obtained in R* by taking an intersection with the zero
locus of some subset of the 6 polynomials. The 0-dimensional cells (corresponding to
points of Gr>((2,4) with only one nonzero Pliicker coordinate) are

(a,b,c,d)
= (727137170)5 (037171572)5 (03717152)7 (271a7170)7 (0a7177170)5 (0a17170)

In general, using the embedding ¢ we can describe Grso(k,n) as the subset of R¥(?—F)
where some (Z) polynomials of degree at most k are nonnegative.

4. The totally nonnegative part of the unipotent radical of GL,, (R)

Recall from Section 1.2 that U denotes the unipotent group of upper-triangular ma-
trices in GL,, (R) with 1’s on the diagonal, and Us is its totally nonnegative part, where
all minors are nonnegative. We also let V' C U be the set of € U whose superdiagonal
entries x; ;41 sum to n — 1, and define V>g := V N Usg. We may identify Vo with the
link of the identity matrix 1 in Us¢. In this section, we prove the following result. It is a
special case of a result of Hersh [14], who established the corresponding result in general
Lie type, and in addition for all the lower-dimensional cells in the Bruhat stratification.

Theorem 4.1 ([1/]). The space Vsq is homeomorphic to an (() — 1)-dimensional closed

ball. The space Usg is homeomorphic to a closed half-space in RG).
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Let e € gl,,(R) be the upper-triangular principal nilpotent element, which has 1’s on
the superdiagonal and 0’s elsewhere. We wish to consider the flow on V> generated
by exp(te), which we remark was used by Lusztig to show that Usg is contractible [24,
Section 4]. However, we must take care to define a flow which preserves V' and not
merely U. To this end, for ¢ > 0, let p(¢) € GL,(R) be the diagonal matrix with diagonal
entries (t"~1,#"72,...,1). Note that p is multiplicative, i.e., p(s)p(t) = p(st). Define
a(t) : U — U by

a(t) -z := p(1/t) exp((t — 1)e)xp(t). (4.2)
Lemma 4.3. The map a(-) defines an action of the multiplicative group Rsg on V, i.e.,
a(t)-x €V, a(l)-x =z, and a(s)- (a(t)-x) =a(st)-x foralls,t >0 andx V.

Proof. This can be verified directly, using the fact that for s, > 0, x € U, and 1 <
i,j <n,

(p(1/t) exp((s — Le)ap(t))i; = t'"t"~ (exp((s — 1)e)x)s

= .1 - 2(8_71)_[._{%17]‘. O (44)

We now introduce coordinates on V' centered at exp(e). Namely, for x € V, define
bij(x) =G — i)y —1) forl<i<j<m, (4.5)

where ¢ > 1 is a fixed real number. Note that b1 2 4+ b2 3 4+ -+ + by_1,, = 0. We use the
L*>-norm |[|z]|« := maxi<;<j<n |b; j(z)| in the b; j-coordinates. We have |lexp(e)|/sc = 0.
We also define the totally positive part Us as the set of x € Usg such that every minor
of the form det(x(;, <...cip},{ji<-<jp}) With j1 > i1,...,j& > i) is nonzero, and let
Voo :=V NUso.

Lemma 4.6. Let x € V.

(i) Ifz € Vsg and t > 1, then a(t) -z € V5.
(ii) If x # exp(e), then t — ||a(t) - z|« is a strictly decreasing function on (0, 00).

Proof. To prove part (i), we must show that exp((t —1)e)z € Usq for x € V>p and ¢ > 1.
This follows by writing the relevant minors of exp((t — 1)e)x via the Cauchy—Binet
identity, using the fact that exp((t — 1)e) € Usg (see [23, Proposition 5.9]). For part (ii),
because a(-) is multiplicative (Lemma 4.3) it suffices to prove that ¢t — |la(t) - z|| is
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decreasing at ¢ = 1. Using the description of the entries of a(t) given by setting s = ¢
in (4.4), we get

C

bij(a(t) - @) =b;;(x) + (t = 1)(j — 1) (M - bi,j(:c)> +0((t—1)?)

ast — 1, where we set bj41 () := 0if i+1 = j. Then for any i < j with |b; ;(z)| = ||z||cc,
we have |b; 11 ;(z)/c| < |b; ;(x)|, and so |b; j(a(t) - z)| is decreasing at t =1. O

Proof of Theorem 4.1. Set N := (g) —1, and consider a real N-dimensional vector space
W= {(wij)icicjcn i wi2+ -+ wn1n =0}

equipped with the L°°-norm. We have a diffeomorphism b : V' — W defined by b(z) :=
(bi,j(z))1<i<j<n. Define the continuous map f : R x W — W by setting f(t,b(x)) :=
b(a(exp(t)) - ). Then Lemma 4.3 and Lemma 4.6(ii) imply that f is a contractive flow.

Let us now show that the hypotheses of Lemma 2.3 hold, with RY = W and Q =
b(V=o). Lemma 4.6(i) implies that @ = b(V>g), and also verifies (2.4). Finally, Q is
bounded because V>q is bounded, e.g., one can prove by induction on j — 4 that for any
x € V>,

0<z; <(n—17" for1<i<j<n.

(Alternatively, see [23, proof of Proposition 4.2].) Thus Lemma 2.3 implies that Q (and
hence V() is homeomorphic to an N-dimensional closed ball.

For Usg, we use the dilation action of R~ on Usg, where t € R+ acts by multiplying
all entries x; ; on the (j — i)-th diagonal (above the main diagonal) by #/~*. Therefore
U>g is homeomorphic to the open cone over the compact space V>o. That is, Usg is
homeomorphic to the quotient space of R>o x Vo by the subspace 0 x V>, with the
identity matrix 1 € Usq corresponding to the cone point. O

1 p g
Olr:|€UiS
0 0 1

Example 4.7. Let n = 3. The trajectory in U beginning at the point x =

1 (t+p—1)/t (#2+(2r—2)t+2q—2r+1)/2t2
a(t)~x[0 1 t+r—1)/t ]
0 0 1

11 1/2
which converges to exp(e) = {O 11 ] as t — 0o. The coordinates b; ; from (4.5) are
00 1

p—1 r—1 2r—2)t+2¢—2r+1

by 2(a(t) - ) = P bos(a(t) - x) = prat by s(a(t) - x) = o

We can then try to verify Lemma 4.6 directly in this case (this is a nontrivial exercise).
O
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5. The cyclically symmetric amplituhedron

Let k, m,n be nonnegative integers with k+m < n and m even, and let S, 7 € gl,(R)
be the operators from Section 3.1. Let Ay > -+ > A, € R be the eigenvalues of 7
corresponding to orthogonal eigenvectors uq,...,u,. In this section, we assume that
these eigenvectors have norm 1. Recall from Lemma 3.1(i) that Ay > Ag41. Since m is
even, we have (—1)*™=1 = (—1)¥=1 and Ay > Mprmat-

Let Zy denote the (k4 m) x n matrix whose rows are uy, . .., Ugtm. By Lemma 3.1(ii),
the (k4+m) x (k4 m) minors of Zj are all positive (perhaps after replacing u; with —u;y).
We may also think of Zy as a linear map R™ — R**™_ Since the vectors uy,...,u, are
orthonormal, this map takes u; to the ith unit vector e; € RFt™ if § < k + m, and to
0 if ¢ > k 4+ m. Recall from Section 1.3 that Z, induces a map (Zo)ar : Gr>o(k,n) —
Gr(k,k + m), whose image is the cyclically symmetric amplituhedron A, i m(Zo). We
remark that if g € GLy4(R), then A, k.m(9Z0) and Ay, km(Zo) are related by the
automorphism g of Gr(k, k +m), so the topology of A,, 1. m(Zo) depends only on the row
span of Zy in Gr(k + m,n).

Proof of Theorem 1.2. We consider the map ¢ : Mat(k,n — k) — Gr(k,n) defined
n (3.3). We write each k x (n — k) matrix A € Mat(k,n — k) as [A’ | A”], where A’ and
A" are the k x m and k x (n — k —m) submatrices of A with column sets {1,...,m} and
{m+1,...,n— k}, respectively. We introduce a projection map

7 : Mat(k,n — k) — Mat(k,m), A=[A"|A"]— A"

We claim that there exists an embedding v : Ay, k.m(Zo) — Mat(k, m) making the
following diagram commute:

Mat(k,n — k) —— Mat(k,m)
d)—l]\ ~ (5.1)

Zo)Gr
Gr>o(k,n) HCUEN A ie,m(Zo)
Let A =[A’" | A”] € Mat(k,n — k) be a matrix such that ¢(A) € Gr>o(k,n). Then the
element (Zp)gr(¢(A)) of Gr(k, k+m) is the row span of the k x (k+m) matrix [Idy | A’],

where Id;, denotes the k x k identity matrix. Thus A, k.m(Zo) = (Zo)ar(Gr>o(k,n)) lies
inside the Schubert cell

{Y € Gr(k,k+m) : A[k] (Y) #0}.

Every element Y of this Schubert cell is the row span of [Id; | A’] for a unique A’, and
we define y(Y) := A’. Thus v embeds A,, k.m(Zo) inside Mat(k, m), and (5.1) commutes.
Now we define

Q := (¢~ (Crso(k,n))) C Mat(k,m).
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We know from Section 3.3 that ¢~!(Grso(k,n)) is an open subset of Mat(k,n) whose
closure ¢~!(Gr>o(k,n)) is compact. Note that 7 is an open map (since it is essentially
a projection R¥(=k) — R*¥™) 5o @ is an open subset of Mat(k,m). The closure Q =
(¢~ (Grso(k,n))) of @ is compact. By (5.1), @ is homeomorphic to A, x.m(Zo)-

Let f: R x Mat(k,n — k) — Mat(k,n — k) be the map defined by (3.9), and define a
similar map fo : R x Mat(k, m) — Mat(k, m) by

fo(t, A');j = et(Ak“*)"')A;j for1<i<kand1l<j<m.

That is, fo(t,7(A)) = w(f(t,A)) for all ¢t € R and A € Mat(k,n — k). We showed in
Section 3.3 that f is a contractive flow, so fj is also a contractive flow. We also showed
that

F(t, 07 (Grxo(k,n))) € ¢~ (Grso(k,n))  for t >0,
and applying 7 to both sides shows that

fot,Q) Cc@Q fort>0.

Thus Lemma 2.3 applies to @ and fy, showing that @ (and hence A, ;. ,n(Zo)) is home-
omorphic to a km-dimensional closed ball. O

Example 5.2. Let £ =1, n =4, m = 2. We have

010 1 ulz(%7%7%7%)a )‘1:27
_ 1 1 _
L 1 01 0 UQ—(ﬁvov_ﬁaO)» A2 =0,
— 101 0 1]° _ 16 1 _
1 0 1 0 u3*(07\/§a07 \/5)7 )‘3*07
u4:<%a_%7%7_%)a )‘4:_2a
1 1 1 1
2 2 2 2
Zo = % 0 —% 0
1 1
0 & o0 -

Note that this 7 differs in the top-right and bottom-left entries from the one in Sec-
tion 3.5, because k is odd rather than even. Also, here the eigenvectors are required to
have norm 1. The embedding ¢ : Mat(1,3) — Gr(1,4) sends a matrix A:=[a b c]to
the line ¢(A) in Gr(1,4) spanned by the vector

1
v:u1+auQ+bU3—|—CU4:§(1+\/§a+c,1—|—\/§b—c,1—\/§a+c,1—ﬁb—c).

This line gets sent by (Zg)c, to the row span of the matrix v- Z{ =[1 a b]. Finally,
~ sends this element of Gr(1,3) to the matrix [a b], so (5.1) indeed commutes.
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In order for ¢(A) to land in Gr>o(1,4), the coordinates of v must all have the same
sign, and since their sum is 2, they must all be nonnegative:

1+v2a+¢>0, 14+vV2b—¢>0, 1—-vV2a+¢>0, 1-v2b—c>0.

These linear inequalities define a tetrahedron in R3 ~ Mat(1,3) with the four vertices
(O,i\/i, —1) , (iﬂ,o, 1). The projection m = v o (Zp)gr © ¢ sends this tetrahedron
to a square in R? ~ Mat(1,2) with vertices (0,£+v/2), (£v/2,0). This square is a
km-dimensional ball, as implied by Theorem 1.2. We note that when k = 1, the am-
plituhedron A, 1 m(Z) (for any (k 4+ m) x n matrix Z with positive maximal minors)
is a cyclic polytope in the projective space Gr(l,m + 1) = P™ [33], and is therefore
homeomorphic to a km-dimensional closed ball. The case of k > 2 and Z # Z, remains
open. <

6. The compactification of the space of electrical networks
6.1. A slice of the totally nonnegative Grassmannian

We recall some background on electrical networks, and refer the reader to [21] and

Example 6.4 for details. Let R( ) have basis vectors ey for I € (7[12_"1), and let P("?fnl)71
denote the corresponding projective space. We define

2n
n—1

[2n]oaq i={2i —1:7 € [n]},  [2n]oven := {20 : 4 € [n]}.

Let N'C,, denote the collection of non-crossing partitions of [2n]eqq, i-e., set partitions of
[2n]oaa such that there do not exist i < j < ' < j' in [2n]oqq and distinct parts I and J
with 7,4 € I and 7,5’ € J. Each 0 € NC,, comes with a dual non-crossing partition (or
Kreweras complement) & of [2n]even, defined to be the coarsest non-crossing partition of
[27]even such that o U & is a non-crossing partition of [2n]. We call a subset I € (T[LQ_”]l)
concordant with o if every part of o and every part of 6 contains exactly one element
not in I. Let A, € R(ffl) be the sum of e; over all I concordant with o, and let H be
the linear subspace of P('zzlll)_l spanned by the images of A, for o € NC,,.

Identifying Gr(n — 1,2n) with its image under the Pliicker embedding, we consider
the subvariety &), := Gr(n — 1,2n) NH. In [21, Theorem 5.8], an embedding

t: B, ~ X, NGr>o(n—1,2n) < Grso(n —1,2n) (6.1)

was constructed, identifying the compactification of the space of planar electrical networks
with n boundary vertices E,, with the compact space X,, N Gr>o(n — 1,2n). We will need
the following property of (E,)so := X, N Grso(n — 1,2n).

Proposition 6.2. The space (E,)>o is diffeomorphic to R(EO) , and the inclusion (Ep)so <
Grso(n —1,2n) is a smooth embedding.
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Here Grso(n — 1,2n) C Gr(n — 1,2n) is an open submanifold diffeomorphic to
R—1 (1)
>0

Proof. We recall from [9, Theorem 4] that each point in (E,)so = € is uniquely
represented by assigning a positive real number (the conductance) to each edge of a well-
connected electrical network I' with (g) edges. This gives a parametrization (E,)sq =~

R(fo) . The construction I — N(T") of [21, Section 5] sends I to a weighted bipartite graph
N(T') embedded into a disk compatibly with the inclusion (6.1). The edge weights of N(T")
are monomials in the edge weights of I'. Furthermore, the underlying bipartite graph G
of N(T") parametrizes Grso(n—1,2n). That is, we can choose a set of (n—1)(n+1) edges
of G, so that assigning arbitrary positive edge weights to these edges and weight 1 to
the remaining edges induces a parametrization Grso(n — 1,2n) ~ R(;O_l)("ﬂ) (see [26]

or [34]). It follows that the inclusion R(>§0) ~ (E,)s0 — Grso(n—1,2n) ~ Rg};l)(nﬂ) is a

monomial map, and in particular a homomorphism of Lie groups. The result follows. O
6.2. Operators acting on non-crossing partitions

For each i € [2n], we define u; and d; in g[( 2n )(R) by

n—1

ws(er) erufi+1\{i}s ifiel,i+1¢1I;
iler) =
0, otherwise;

i— i}y if i € Ia i — 1 Iv
di(er) == Croti-ingy, B i ! #
0, otherwise.

Here the indices are taken modulo 2n.

For i € [2n]oqq, we let k(i) € NC,, be the non-crossing partition which has two parts,
namely {i} and [2n]oaa \ {i}. For i € [2n]even, we let p(i) € NC, be the non-crossing
partition with n — 1 parts, one of which is {i — 1,7 4+ 1} and the rest being singletons.
Given 0 € NC,, and i € [2n], we define the noncrossing partition o’(i) € NC,, as the
common refinement of o and k(i) if 7 is odd, and the common coarsening of o and p(i)
if ¢ is even. The following combinatorial lemma is essentially [21, Proposition 5.15], and
can be verified directly.

Lemma 6.3. For all i € [2n], we have

(ui i dz>(Ao,) _ {0, ZfO' = g'/(’[:);

Ay, otherwise.

Example 6.4. Let n := 3 and o := {{1,3},{5}} € NC,, so that ¢ = {{2},{4,6}},
o'(1) = 0'3) = {{1},{3},{5}}, 0'(2) = 0'(5) = o, and 0’(4) = 0'(6) = {{1,3,5}}.

Abbreviating e, 3} by €qs, we have
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Ay = e14 + €16 + €34 + e36.

Note that o # ¢’(1) and

(u1 +d1)(Ay) = (€24 + e26) + (ea6) = Asr(1)s

in agreement with Lemma 6.3 (since the dual of ¢/(1) is {{2,4,6}}). Similarly, we have
o =0'(2) and

<UQ + dg)(Ag) =04+0=0. <
We define the operator ® := 32" w; +d; € ol 20 ) (R).
n—1
Lemma 6.5. Let X € E,,. We have exp(t1) - X € (Ep)so for allt > 0.

Proof. This follows from Corollary 3.8, once we show that exp(t7) - X € H for X € &),

and t € R. To do this, we identify Gr(n — 1,2n) with its image in IP’(nzfnl)*l under the

Pliicker embedding sending X € Gr(n — 1,2n) to Zle([“]) Ar(X)er € PGI)=1 Then
n—1

for any X € X, we have a smooth curve t — exp(t7) - X in PGI)1 As in (3.7), we
find that

exp(tr) - X = X +t0(X) + O(t?) in P11

ast — 0. Therefore exp(t7)-X is an integral curve for the smooth vector field on p(.0)-1
defined by the infinitesimal action of ®. By Lemma 6.3, this vector field is tangent to H,
soexp(tT) - X e Hforallt e R. O

Proof of Theorem 1.3. We are identifying (E,)>o as a subset Grso(n — 1,2n) via the
smooth embedding of Proposition 6.2. In turn, Grsg(n — 1,2n) is smoothly embedded
inside Mat(n — 1,n + 1) by the map ¢! defined in (3.3). Thus Q := ¢~ ((E,)>0) C
Mat(n—1,n41) is a smoothly embedded submanifold of Mat(n —1,n+ 1) of dimension
(g) The map ¢! sends the compact set F,, homeomorphically onto its image ¢~ (E,,).
Since (E,)so is dense in E,, we have that ¢~!(E,) equals the closure Q of Q. Let
f:R xMat(n—1,n+1) = Mat(n — 1,n+ 1) be the map defined by (3.9). We showed
in Section 3.3 that f is a contractive flow, and Lemma 6.5 implies that (2.4) holds for
our choice of @ and f. Thus Lemma 2.3 applies, completing the proof. O

References

[1] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, J. Trnka, Grassmannian
Geometry of Scattering Amplitudes, Cambridge University Press, Cambridge, 2016.


http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3B65A0CFEFD121950AC8C705006720D0s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3B65A0CFEFD121950AC8C705006720D0s1

22 P. Galashin et al. / Advances in Mathematics 397 (2022) 108123

[2] N. Arkani-Hamed, Y. Bai, T. Lam, Positive geometries and canonical forms, J. High Energy Phys.
11 (2017) 39.
[3] N. Arkani-Hamed, J. Trnka, The amplituhedron, J. High Energy Phys. 10 (2014) 30.
[4] N. Arkani-Hamed, H. Thomas, J. Trnka, Unwinding the amplituhedron in binary, J. High Energy
Phys. 1 (2018) 16.
[5] V. Ayala, W. Kliemann, L.A.B. San Martin, Control sets and total positivity, Semigroup Forum
69 (1) (2004) 113-140.
[6] F. Ardila, F. Rincén, L. Williams, Positively oriented matroids are realizable, J. Eur. Math. Soc.
19 (3) (2017) 815-833.
[7] A. Bjorner, Posets, regular CW complexes and Bruhat order, Eur. J. Comb. 5 (1) (1984) 7-16.
[8] Y. Colin de Verdiére, I. Gitler, D. Vertigan, Réseaux électriques planaires. II, Comment. Math.
Helv. 71 (1) (1996) 144-167.
[9] E.B. Curtis, D. Ingerman, J.A. Morrow, Circular planar graphs and resistor networks, Linear Alge-
bra Appl. 283 (1-3) (1998) 115-150.
[10] P.H. Edelman, The Bruhat order of the symmetric group is lexicographically shellable, Proc. Am.
Math. Soc. 82 (3) (1981) 355-358.
[11] S. Fomin, M. Shapiro, Stratified spaces formed by totally positive varieties, Mich. Math. J. 48 (2000)
253-270, Dedicated to William Fulton on the occasion of his 60th birthday.
[12] P. Galashin, S.N. Karp, T. Lam, Regularity theorem for totally nonnegative flag varieties, arXiv:
1904.00527, 2019.
[13] P. Galashin, S.N. Karp, T. Lam, The totally nonnegative part of G/P is a ball, Adv. Math. 351
(2019) 614-620.
[14] P. Hersh, Regular cell complexes in total positivity, Invent. Math. 197 (1) (2014) 57-114.
[15] P. Hersh, R. Kenyon, Shellability of face posets of electrical networks and the CW poset property,
Adv. Appl. Math. 127 (2021) 102178.
[16] S.N. Karp, Moment curves and cyclic symmetry for positive Grassmannians, Bull. Lond. Math. Soc.
51 (5) (2019) 900-916.
[17] R. Kenyon, The Laplacian on planar graphs and graphs on surfaces, in: Current Developments in
Mathematics, 2011, Int. Press, Somerville, MA, 2012, pp. 1-55.
[18] S.N. Karp, L.K. Williams, The m = 1 amplituhedron and cyclic hyperplane arrangements, Int.
Math. Res. Not. 5 (2019) 1401-1462.
[19] T. Lam, The uncrossing partial order on matchings is Eulerian, J. Comb. Theory, Ser. A 135 (2015)
105-111.
[20] T. Lam, Totally nonnegative Grassmannian and Grassmann polytopes, in: Current Developments
in Mathematics 2014, Int. Press, Somerville, MA, 2016, pp. 51-152.
[21] T. Lam, Electroid varieties and a compactification of the space of electrical networks, Adv. Math.
338 (2018) 549-600.
[22] T. Lam, P. Pylyavskyy, Total positivity in loop groups, I: whirls and curls, Adv. Math. 230 (3)
(2012) 1222-1271.
[23] G. Lusztig, Total positivity in reductive groups, in: Lie Theory and Geometry, in: Progr. Math.,
vol. 123, Birkhauser Boston, Boston, MA, 1994, pp. 531-568.
[24] G. Lusztig, Introduction to total positivity, in: Positivity in Lie Theory: Open Problems, in: De
Gruyter Exp. Math., vol. 26, De Gruyter, Berlin, 1998, pp. 133—145.
[25] R.J. Marsh, K. Rietsch, The B-model connection and mirror symmetry for Grassmannians, Adv.
Math. 366 (2020) 107027.
[26] A. Postnikov, Total positivity, Grassmannians, and networks, http://math.mit.edu/~apost/papers/
tpgrass.pdf, 2007.
[27] A. Postnikov, D. Speyer, L. Williams, Matching polytopes, toric geometry, and the totally non-
negative Grassmannian, J. Algebraic Comb. 30 (2) (2009) 173-191.
[28] K. Rietsch, An algebraic cell decomposition of the nonnegative part of a flag variety, J. Algebra
213 (1) (1999) 144-154.
[29] K. Rietsch, Closure relations for totally nonnegative cells in G/P, Math. Res. Lett. 13 (5-6) (2006)
T75-786.
[30] K. Rietsch, A mirror symmetric construction of ¢H}(G/P)q), Adv. Math. 217 (6) (2008) 2401-2442.
[31] K. Rietsch, L. Williams, Discrete Morse theory for totally non-negative flag varieties, Adv. Math.
223 (6) (2010) 1855-1884.
[32] R.F. Scott, Note on a theorem of Prof. Cayley’s, Messeng. Math. 8 (1879) 155-157.
[33] B. Sturmfels, Totally positive matrices and cyclic polytopes, in: Proceedings of the Victoria Con-
ference on Combinatorial Matrix Analysis, Victoria, BC, 1987, vol. 107, 1988, pp. 275-281.


http://refhub.elsevier.com/S0001-8708(21)00562-4/bib0AF3EDFEFD330B1980A3F377A2749502s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib0AF3EDFEFD330B1980A3F377A2749502s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibFA868488740AA25870CED6B9169951FBs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibBE2B211DF5001B9963A88F99C6089B85s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibBE2B211DF5001B9963A88F99C6089B85s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib99A9259BE248EB31A27878FE60F14A65s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib99A9259BE248EB31A27878FE60F14A65s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibF8AC4C336296F72F7267A231154DD694s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibF8AC4C336296F72F7267A231154DD694s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE2F7FAE54FA9C642B1BF4C7482A4EE35s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib53FE50A23C537641392B8FA82B9D158Cs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib53FE50A23C537641392B8FA82B9D158Cs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibBD0D4377425C497CE0096AE1479C96D1s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibBD0D4377425C497CE0096AE1479C96D1s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE74927826DC73CEA7B2E310CAB132CB3s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE74927826DC73CEA7B2E310CAB132CB3s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib4A436C564CF21FF91983AB79399FA185s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib4A436C564CF21FF91983AB79399FA185s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3545740E8914CD6628BD0BF1055E57AEs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3545740E8914CD6628BD0BF1055E57AEs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibAD2D8EE7D788DCF41F399818F639CB64s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibB60E97A1980A6ED6909DF10EAABCF1C2s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib17D674F1446680E3D6A5C2CC38235FD6s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib17D674F1446680E3D6A5C2CC38235FD6s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE689A240936C835217744790C572D650s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE689A240936C835217744790C572D650s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib1FB6D0811825777FEDC22565362CC7FCs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib1FB6D0811825777FEDC22565362CC7FCs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib1CEC6D207C667E21530685EFE3A90F3Fs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib1CEC6D207C667E21530685EFE3A90F3Fs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib18B74381A0ED97D59F64611769391C9Ds1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib18B74381A0ED97D59F64611769391C9Ds1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib77F7A8AB564546D8EB6BE02323992438s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib77F7A8AB564546D8EB6BE02323992438s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib36B73508D151B2FC641E0C0265D3D360s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib36B73508D151B2FC641E0C0265D3D360s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib805ED588FE218B9973C2AFD003672563s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib805ED588FE218B9973C2AFD003672563s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3A3974E3F25FBDA9DE81B34D9F25F116s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib3A3974E3F25FBDA9DE81B34D9F25F116s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibD125B063FDF28D36AD76E216E24D581Es1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibD125B063FDF28D36AD76E216E24D581Es1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib489AE91DCCC827CF2EC303FC197AE1EFs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib489AE91DCCC827CF2EC303FC197AE1EFs1
http://math.mit.edu/~apost/papers/tpgrass.pdf
http://math.mit.edu/~apost/papers/tpgrass.pdf
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib04AC7B33723817563BBB981932D63EFAs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib04AC7B33723817563BBB981932D63EFAs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib221AAAE2CD58E6CDD23909489A386EB0s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib221AAAE2CD58E6CDD23909489A386EB0s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib74D7581B2BDC769C2CC2A18747BA3962s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib74D7581B2BDC769C2CC2A18747BA3962s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bibE164B9C0B306F94623772EA2811F5027s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib5C6DC3D436504B7A65191CAFE28212EEs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib5C6DC3D436504B7A65191CAFE28212EEs1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib21F63C6E971CD913A9C147E8652CA659s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib84363BCDB185C4A90742932FDF050388s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib84363BCDB185C4A90742932FDF050388s1

P. Galashin et al. / Advances in Mathematics 397 (2022) 108123 23

[34] K. Talaska, Combinatorial formulas for Le-coordinates in a totally nonnegative Grassmannian, J.
Comb. Theory, Ser. A 118 (1) (2011) 58-66.
[35] L.K. Williams, Shelling totally nonnegative flag varieties, J. Reine Angew. Math. 609 (2007) 1-21.


http://refhub.elsevier.com/S0001-8708(21)00562-4/bib4C523DD232509FFCA1C473D9A2D58984s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib4C523DD232509FFCA1C473D9A2D58984s1
http://refhub.elsevier.com/S0001-8708(21)00562-4/bib641E171A5643B435A2843BE1F5D59049s1

	The totally nonnegative Grassmannian is a ball
	1 Introduction
	1.1 The totally nonnegative Grassmannian
	1.2 The totally nonnegative part of the unipotent radical of GL(n)
	1.3 The cyclically symmetric amplituhedron
	1.4 The compactification of the space of planar electrical networks
	1.5 Outline

	2 Contractive flows
	3 The totally nonnegative Grassmannian
	3.1 Global coordinates for the totally nonnegative Grassmannian
	3.2 Flows on Gr(k,n)
	3.3 Proof of Theorem 1.1
	3.4 Related work
	3.5 Example: the case Gr(2,4)

	4 The totally nonnegative part of the unipotent radical of GL(n)
	5 The cyclically symmetric amplituhedron
	6 The compactification of the space of electrical networks
	6.1 A slice of the totally nonnegative Grassmannian
	6.2 Operators acting on non-crossing partitions

	References


