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ABSTRACT: The goal of this research was to identify functional groups that
determine rates of micropollutant (MP) biotransformations performed by
wastewater microbial communities. To meet this goal, we performed a series
of incubation experiments seeded with four independent wastewater
microbial communities and spiked them with a mixture of 40 structurally
diverse MPs. We collected samples over time and used high-resolution mass
spectrometry to estimate biotransformation rate constants for each MP in
each experiment and to propose structures of 46 biotransformation products.
We then developed random forest models to classify the biotransformation
rate constants based on the presence of specific functional groups or observed
biotransformations. We extracted classification importance metrics from each
random forest model and compared them across wastewater microbial communities. Our analysis revealed 30 functional groups that
we define as either biotransformation promoters, biotransformation inhibitors, structural features that can be biotransformed based
on uncharacterized features of the wastewater microbial community, or structural features that are not rate-determining. Our
experimental data and analysis provide novel insights into MP biotransformations that can be used to more accurately predict MP
biotransformations or to inform the design of new chemical products that may be more readily biodegradable during wastewater
treatment.

KEYWORDS: biotransformation, random forest, micropollutants, wastewater, biotransformation kinetics, biotransformation products,
microbial community

■ INTRODUCTION

The influent to municipal wastewater treatment plants
(WWTPs) contains hundreds of organic micropollutants
(MPs) including pharmaceuticals, personal care products,
pesticides, and industrial chemicals.1−4 Wastewater microbial
communities residing in the biological processes of WWTPs
can biotransform some MPs to variable extents, but it is
difficult to predict which types of MPs will be biotransformed
in any specific WWTP or the extent of biotransformation.5−8

At the fundamental level, MP biotransformation depends on
the presence of specific enzyme catalysts and a chemical
structure that is amenable to biotransformation by one or more
specific enzyme catalyst. However, it has been difficult to
identify causal associations between specific enzyme catalysts
and MP biotransformations because MPs are typically present
in wastewater at very low concentrations and in the presence of
relatively high concentrations of readily biodegradable organic
carbon substrates; as a result, MPs are unlikely to serve as
growth substrates, and instead, their biotransformation is
frequently attributed to cometabolic processes.2,9,10

Without a known link to specific enzyme catalysts, the
prediction of MP fate during wastewater treatment is generally
based on links between chemical structures and specific types

of biotransformations. For example, the Eawag-pathway
prediction system (Eawag-PPS)11,12 relies on a curated
database of 1503 literature-reported biotransformations to
derive 249 biotransformation rules (btrules) that predict
specific biotransformations at certain functional groups.
Similarly, the BIOWIN modules within EPISUITE13 estimate
the probability of rapid biodegradation of organic chemicals
with empirical constants derived for certain functional groups
based on the results of standardized biodegradation tests and
regression techniques. Despite the value of these tools, the
majority of data used to develop them were derived from either
pure culture systems and/or in a mineral medium in which the
test chemical was present as the primary carbon source at a
high concentration. These conditions are selected to induce
metabolic processes and are unlikely to represent MP
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biotransformations performed by wastewater microbial com-
munities.
In recent years, a number of studies have reported on the

biotransformation of certain types of MPs in self-consistent
test systems that are more representative of WWTPs.8,14−18

Data from these studies have enabled a more generalized
understanding of the types of biotransformations performed by
wastewater microbial communities. For example, a study of
amide-containing MPs revealed differences in biotransforma-
tions driven by the extent of N-substitution,19 and a study of
amine-containing MPs revealed a set of previously unreported
biotransformations involving N-acylation reactions.20 How-
ever, few studies have considered trends in biotransformations
performed by wastewater microbial communities simultane-
ously among multiple functional groups as a means to more
broadly generalize our understanding of MP biotransforma-
tions. Machine learning algorithms have been increasingly used
in the field of environmental science and engineering and
provide a new approach to analyzing complex environmental
systems where patterns across multiple variables are not easily
recognizable.21 We expect that coupling broad and self-
consistent MP biotransformation datasets with emerging
machine learning algorithms will lead to novel insights into
the ways in which MPs are biotransformed during wastewater
treatment.
The objectives of this study were to: (i) estimate the

biotransformation rate constants for 40 MPs in bioreactors
seeded with four independent wastewater microbial commun-
ities; (ii) identify the biotransformation products for the 40
MPs in each of the four independent wastewater microbial
communities as a means to infer specific biotransformations;
and (iii) use machine learning algorithms to discover links
between the chemical structure or observed biotransformations
and estimated biotransformation rates. We used random forest
models to classify the estimated biotransformation rates for
each of the four wastewater microbial communities as “fast” or
“slow” based on the presence and absence of specific functional
groups or observed biotransformations. Our experimental data
and analysis allowed us to identify 30 functional groups that we
define as either biotransformation promoters, biotransforma-
tion inhibitors, structural features that can be biotransformed
based on uncharacterized features of the wastewater microbial
community, or structural features that are not rate-determin-
ing.

■ MATERIALS AND METHODS
MP Selection. We selected 40 MPs that contain either

amide, amine, ester, or ether functional groups for this study.
These four functional groups were selected because many MPs
contain one or more of these functional groups, and we expect
biotransformation at these locations to be an important
determinant of MP fate during wastewater treatment.19,20 A
list of the selected MPs categorized by their major functional
group along with their commercial use, CAS number, and
chemical structure is provided in Table S1 of the Supporting
Information (SI). A stock solution of each MP was prepared at
1 g L−1 in the respective solution solvent; a list of MP
suppliers, purities, and solution solvents is provided in Table
S2. A MP solution mixture was then prepared with each MP
present at 90.9 mg L−1 in a solution of 6.6:3.3:1
MeOH:H2O:EtOH. The MP solution mixture was used for
preparing calibration standards and for spiking incubation
experiments and was stored at −20 °C until use. Details of the

preparation of the MP solution mixture and suppliers of all
solvents and consumable reagents are provided in the
Supporting Information.

Wastewater Microbial Communities. We sampled
wastewater microbial communities from three WWTPs in
New York State. The WWTPs were selected to represent
different types of aerobic biological processes including
conventional activated sludge (WWTP1), a sequencing batch
reactor (WWTP2), and conventional activated sludge with an
extended aeration system (WWTP3). From WWTP1, we
sampled in the winter (WWTP1_win) and summer
(WWTP1_sum) to assess temporal differences in the
functioning of a wastewater microbial community from a
single WWTP. We used a 0.5 L plastic bucket affixed to a 3 m
aluminum pole to sample wastewater microbial communities
from the center of each aeration basin at a depth of at least 0.3
m. Sampled wastewater microbial communities were trans-
ferred to two 1 L amber glass bottles, capped, and immediately
transported to our laboratory where 0.5 L of each sample was
then combined into a single 1 L amber glass bottle and
prepared for incubation experiments. More details of WWTP
sampling dates and operating conditions are provided in Table
S3.

Incubation Experiments. All incubation experiments
were conducted in 100 mL amber glass reactors (Corning)
and in triplicate as previously described.22−24 Briefly, triplicate
reactors were prepared by combining 28.8 mL of a wastewater
microbial community with 1.2 mL of phosphate buffer (pH
7.0, concentration: 500 mM). The reactors were then spiked
with the MP solution mixture to achieve a starting
concentration of 100 μg L−1 for each MP and placed on a
rotary shaker at 20 °C; all incubation experiments were spiked
within 5 h of sample collection at the respective WWTP. We
note that a starting concentration of 100 μg L−1 is on the high
end of the range of MP concentrations expected in the influent
of WWTPs25 but was essential for this study to allow for the
detection of biotransformation products that are formed in
relatively low abundance.22 We further note that our
experimental procedure results in trace amounts of organic
solvent (<0.1%) in our bioreactors; previous studies have
demonstrated that this amount of organic solvent has no effect
on the biotransformation of certain tested MPs.19,26 We
collected 0.5 mL samples from each reactor after 5 min, 2 h, 6
h, 18 h, and 30 h, transferred the samples to a 1.5 mL
centrifuge tube (Eppendorf), and centrifuged the samples at
13,000 rpm for 5 min at 4 °C. Then, 400 μL of the supernatant
was transferred to a 2 mL amber glass vial (VWR), capped, and
stored at −20 °C until analysis. We note that the incubation
experiment from WWTP3 was sampled at 42 h after spiking
instead of at 30 h. Control experiments were conducted with
the same procedure, except control reactors were autoclaved
twice (120 °C, 1.3 bar, 20 min, 4 h apart) and spiked 24 h after
the start of the active incubation experiment.

Sample Analysis. We adopted a previously described
analytical method for MP quantification.3,22,23 Briefly, we used
reversed-phase liquid chromatography (Ultimate 3000, Ther-
mo Scientific) coupled to high-resolution quadrupole-orbitrap
mass spectrometry (HRMS, QExactive, Thermo Scientific)
with 20 μL injections of samples stored at 4 °C during the
analysis. Samples were separated using a mobile phase gradient
consisting of LC−MS grade water (OmniSolv, 58201, solvent
A) and methanol (OmniSolv, 58215, solvent B)both
containing 0.1% (v/v) formic acidover an XBridge C18
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column (Waters, 186003021, particle size: 3.5 μm, flow rate:
0.2 mL/min, gradient properties: 0−5 min: 5% B, 5−21 min:
5% B − 95% B (linear increase), 21−25 min: 95% B, 25−30
min: 5% B). We collected full-scan mass spectrometry (MS)
data (100−800 m/z, resolution 140,000) in electrospray
ionization (ESI) mode using rapid polarity switching. Data-
dependent MS2 scans were triggered using the masses (m/z) of
all parent MPs and their predicted biotransformation products
with dynamic exclusion set at 6 s. For absolute quantification
of MPs, we analyzed a calibration series (concentration range:
2−100 μg/L) prepared in a filter-sterilized, matrix-matched
extract (activated sludge centrifuged and filtered with a 0.22
μm PVDF syringe filter) that was autoclaved twice.
Concentrations were then calculated using peak areas obtained
with Xcalibur Quan Browser (Thermo Scientific, Version 3.1).
Limits of quantification were determined by the lowest linear
calibration point with five sticks and the presence of a
diagnostic fragment. More details of the analytical and
acquisition parameters for each of the 40 MPs are provided
in Table S4 of the Supporting Information.
Biotransformation Product Analysis. We used the

Eawag-PPS11 to generate a list of predicted biotransformation
products for each of the 40 MPs as previously described.22,27,28

The Eawag-PPS uses a database of btrules to predict
biotransformation products based on recognized structural
features of the parent MP (e.g., bt0024 is triggered by an ester
functional group and results in the prediction of ester
hydrolysis products). A list of relevant btrules, triggering
functional groups, product functional groups, reaction types,
and aerobic likelihoods is provided in Table S5; the btrules
triggered by each of the 40 MPs are provided in Table S1. We
used the Eawag-PPS to predict initial biotransformations for
each MP with relative reasoning turned off and including all
aerobic likelihoods. For amine-containing MPs, we also
manually predicted the structures of the acylation products
described in the study by Gulde et al.20 We generated SMILES
for each of the predicted biotransformation products and used
JChem for Excel (2019 version 19.26.0.571) to calculate the
exact mass of the [M + H]+ and [M − H]− ions for each
predicted TP. We then used Xcalibur Qual Browser (Thermo
Scientific, Version 3.1) to manually screen the HRMS
acquisitions for evidence of biotransformation product
formation. Evidence of biotransformation product formation
includes: (i) peak areas greater than 1E5; (ii) reasonable peak
shape; (iii) presence of a peak in the active reactors and
absence of a peak (or a peak area less than 1E4) in control
reactors; and (iv) increasing or increasing and then decreasing
peak area over time.20 The resulting list of candidate
biotransformation products was further vetted by comparing
MS spectra and MS2 fragmentation data to theoretical MS
spectra or in silico MS2 fragments generated by Mass Frontier
(ThermoScientific). We assigned confidence levels to our final
list of putative biotransformation products based on con-
ventions established in the field29 as follows: all experimental
and analytical evidence supports a single biotransformation
product structure (level 2); all experimental and analytical
evidence supports multiple biotransformation product isomers
(level 3); experimental evidence supports the biotransforma-
tion product structure but no MS2 fragments match in Mass
Frontier (level 3a); experimental evidence supports the
biotransformation product structure but noisy MS scan (level
3b); experimental evidence supports the biotransformation

product structure but no MS2 data are acquired because of the
intensity of parent ions (level 3c).

Data Analysis and Random Forest Classification
Models. We used data from the active and control incubation
experiments to estimate pseudo-first-order biotransformation
rate constants for each MP in each of the four experiments as
previously described19,26 and detailed in the Supporting
Information. We then used random forest classification models
to identify predicted btrules or observed biotransformations
that are important in classifying the biotransformation rates of
the MPs in each wastewater microbial community.30 We opted
to use a decision tree-based algorithm because of the nonlinear
dependence of biotransformation rates on chemical character-
istics.30,31 All random forest classification models were created
using the R computing environment32 in RStudio33 (R version
4.0.4, RStudio version 1.1.463) using the package random-
Forest.34,35 We used binary matrices (1 for presence and 0 for
absence) of either predicted btrules or observed biotransfor-
mations for each MP in each wastewater microbial community
as the predictor variables used for model classifications. If
multiple biotransformations could be assigned to one observed
biotransformation product (e.g., monohydroxylations), all
possible btrules for that observed biotransformation product
were given a value of 1. We selected a biotransformation rate
constant of 0.5 d−1 as a threshold to define “fast” and “slow”
biotransformations. This threshold defines a rate that results in
approximately 50% disappearance of a MP over the course of
our incubation experiments. Model performance was evaluated
using prediction accuracy and out-of-bag (OOB) error
estimates resulting from bootstrap aggregation as a means of
cross-validation. We assessed the sensitivity of the model
accuracy and OOB error by systematically changing the
number of variables to be randomly selected at each tree split
(mtry) from 1 to 64 and the number of trees (ntree) produced
in the model ensemble from 1 to 1000; changes in these
parameters resulted in only small changes in OOB error;
therefore, typical values were chosen for the final models (mtry
= 8 and ntree = 1000). We also evaluated the sensitivity of the
model accuracy and OOB error by systematically changing the
biotransformation rate constant threshold from 0.1 to 1.0 d−1

and confirmed that a biotransformation rate constant threshold
of 0.5 d−1 was appropriate for this study.

■ RESULTS AND DISCUSSION
Examination of Progress Curves. The raw experimental

data for the biotransformation of the 40 MPs spiked in reactors
seeded with the four wastewater microbial communities are
plotted as progress curves (concentration versus time) in
Figure S1 through Figure S4. Several important observations
are worth noting. First, the biotransformation experiments
were repeatable as demonstrated by nearly identical progress
curves across triplicate reactors with no apparent biodegrada-
tion lag times. Second, no significant abiotic transformations
were observed for the MPs in the control reactors, with the
exception of bupropion, which was abiotically transformed in
all of the control reactors. Third, the progress curves of
phthalimide and acetylsalicyclic acid exhibit erratic concen-
trations in all of the bioreactors, and the progress curves of
sertraline exhibit zero or negative concentrations in bioreactors
seeded from WWTP3; therefore, phthalimide and acetylsali-
cyclic acid are not included in further analyses and sertraline is
not included in further analyses of WWTP3. Finally, several
other MPs either exhibit unexpectedly high concentrations in
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the bioreactors (e.g., 2,6-dimethoxyphenol and serotonin in
WWTP1_win, WWTP1_sum, and WWTP2) or >50%
adsorption in the control reactors (e.g., amitriptyline and
haloperidol); however, these phenomena did not affect our
ability to estimate pseudo-first-order biotransformation rate
constants (because pseudo-first-order rate constants are not
influenced by the initial concentration19,26) or identify putative
biotransformation products.
Biotransformation Kinetics. We used the raw exper-

imental data to estimate pseudo-first-order biotransformation
rate constants as described in eq S1. The average and standard
deviation of the estimated biotransformation rate constants are
provided in Table S6. When we observed complete
disappearance of an MP by the second sampled time point
(e.g., for acetaminophen, DCD, and serotonin), the estimated
biotransformation rate constants were in the range of 30 to 50
d−1; because we cannot be certain that complete biotransfor-
mation did not occur more rapidly than this, we report the
estimated rate constant as >30 d−1. The average values of the
estimated biotransformation rate constants are presented in
box plots organized by their primary functional group in Figure
1.
Based on data from previous studies, we hypothesized that

amide- and ester-containing MPs would be biotransformed
rapidly and that amine- and ether-containing MPs would be
biotransformed slowly.19,36−38 To test this hypothesis, we
selected a biotransformation rate constant of 0.5 d−1 as a
threshold to define relatively fast and slow biotransformations.
We found that, in aggregate and in agreement with our
expectation, ester-containing MPs were biotransformed rela-
tively fast and that ether-containing MPs were biotransformed
relatively slowly. However, in contrast to our expectation,
amide-containing MPs were biotransformed relatively slowly
and amine-containing MPs were biotransformed relatively fast.
We attribute these deviations from our expectations to two
separate phenomena. First, the distribution of biotransforma-
tion rate constants for the amide-containing MPs is bimodal

with three MPs (acetaminophen, gabapentin lactam, and
propachlor) undergoing fast biotransformations across all
wastewater microbial communities and the remaining MPs
mostly undergoing slow biotransformations. Therefore,
although we selected amide-containing MPs that had relatively
simple structures, there are electronic or steric factors that limit
the biotransformation rates of some of the selected amide-
containing MPs.19 Second, the distribution of biotransforma-
tion rate constants for the amine-containing MPs is skewed by
data from WWTP3, which had estimated biotransformation
rate constants >0.43 d−1 for all of the amine-containing MPs.
Therefore, we conclude that catalytic activity unique to the
wastewater microbial community derived from WWTP3 is
driving the unexpected aggregate findings for the amine-
containing MPs. We suspect that this phenomenon can be
explained by the higher solid retention time in the extended
aeration system in WWTP3.14

Despite these aggregate observations, the biotransformation
rate constants among MPs in each of the primary functional
group categories span three to four orders of magnitude, and
there are individual MPs in each functional group category that
have biotransformation rate constants that can be classified as
very fast (>5 d−1) or very slow (<0.05 d−1). Additionally, there
are MPs from all primary functional group categories that
exhibit both fast and slow biotransformation rate constants
across the four incubation experiments; these include DEET
(amide-containing MP), albuterol, and pseudoephedrine
(amine-containing MPs), gibberellic acid and warfarin (ester-
containing MPs), and gemfibrozil (ether-containing MP).
Together, this analysis of biotransformation rate constants
demonstrates that the primary functional groups are, alone, not
rate-determining and that other features of the MP structure or
the microbial community are important in determining
biotransformation rates across wastewater microbial commun-
ities.

MP Biotransformations. We next aimed to identify
biotransformation products for each of the MPs as a means

Figure 1. Distribution of pseudo-first-order biotransformation rate constants of MPs organized by their primary functional group. The solid
horizontal line in the middle of each box represents the median, and box ends are the 25th and 75th percentiles. The threshold selected to define
relatively fast and relatively slow biotransformation rate constants (0.5 d−1) is marked on the plot with a solid line.
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to confirm the expected biotransformations at the primary
functional group or identify other biotransformations. The
Eawag-PPS predicted 227 initial biotransformations for 38 of
the MPs (phthalimide and acetylsalicylic acid excluded as
described in the preceding). We identified 46 biotransforma-
tion products for 23 of the MPs with a confidence of level 2 or
level 3. The observed biotransformations are summarized in

Table 1. Observed biotransformations included the expected
amide (bt0067) and ester (bt0024) hydrolyses and amine
(bt0063) and ether (bt0023) dealkylations along with at least
one amide N-dealkylation (bt0243), monohydroxylation
(bt0011, bt0012, bt0013, bt0036, bt0241, bt0242, bt0332,
bt0333, and bt0334), dihydroxylation (bt0005 and bt0353),
hydrolytic dehalogenation (bt0022), reductive dehalogenation

Table 1. List of Biotransformation Products Identified in Each Wastewater Microbial Community with Citations to Previous
Reports in the Literature
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(bt0029), alcohol oxidation (bt0001, bt0002, and bt0044),
phosphoester hydrolysis (bt0361), and hydration of a double
bond (bt0291), all of which are biotransformations that have
been previously observed to be performed by wastewater
microbial communities.14,15,18,19,26,39−44 Details of the ob-
served biotransformation products and the analytical data that
support their tentative identification are provided in Table S7
through Table S10 and Figure S5 through Figure S50. We note
that we were unable to identify biotransformation products for
several MPs that exhibited fast biotransformation. This
includes acetaminophen, coumarin, gabapentin lactam, sero-
tonin, and 2,6-dimethoxyphenol. This could be the result of
biotransformations that were not predicted by the Eawag-PPS,
subsequent rapid biotransformation of the initial biotransfor-
mation products such that they escape detection in our
experiments, or formation of predicted biotransformation
products that were not detected by our analytical method
(e.g., biotransformation products that have an exact mass (m/
z) less than 100 Da are highly polar and are not retained on the
analytical column, or are not efficiently ionized during ESI).45

Finally, as noted in Table 1 and to the best of our knowledge,
37 of the 46 biotransformation products that we identified are
reported to be formed in wastewater microbial communities
for the first time.
Random Forest ModelsPredicted Biotransforma-

tions (btrules). Because the four primary functional group
categories were not comprehensively predictive of biotransfor-
mation rates, we next sought to identify important structural
features of the MPs that are predictive of the estimated
biotransformation rates in each of the wastewater microbial
communities. We used random forest classification models to
classify the biotransformation of each MP in each wastewater
microbial community as “fast” or “slow” using a 0.5 d−1

biotransformation rate constant threshold and a binary matrix
of predicted btrules as the predictor variables. The prediction
accuracy of the random forest models was high (>95%)
although the OOB error ranged between 24 and 42%.
Nevertheless, the ensemble of decision trees developed from
recursive partitioning on the data provides valuable insight into
the relative importance of each btrule in determining the rate
of MP biotransformation. The relative importance of each
btrule was evaluated using the mean decrease in accuracy
(MDA), which is calculated by recording the change in
prediction error on OOB samples after permuting every
predictor variable in each single tree (see the Supporting
Information for more details on MDA). We extracted the
MDA values for every btrule in each of the four random forest
classification models, aggregated these values into new
matrices, and used hierarchical clustering to determine trends
among predicted btrules for rate classification across waste-
water microbial communities. The results of this analysis are
provided in Figure 2 in which we identify two main clusters of
btrules.
Cluster 1 contains 16 btrules that were generally important

for classifying biotransformation rates across the WWTPs
(average MDA = 4.9 ± 2.7), indicating that functional groups
triggering these btrules improve the accuracy of random forest
model rate classifications. The distributions of rate constants
measured for MPs that trigger these btrules are provided in
Figure S51. From these distributions, we can see that MPs that
trigger these btrules tend to have either mostly fast or mostly
slow biotransformation rates. Therefore, the functional groups
that trigger these btrules can be categorized as rate-

determining biotransformation promotors or rate-determining
biotransformation inhibitors, respectively. The clearest exam-
ples of this phenomenon are demonstrated by the four btrules
in Cluster 1A: bt0064 (triggered by a 1-hydroxy-4-
unsubstituted benzenoid), bt0286 (alkylsulfonic acid deriva-
tive), bt0029 (organohalide), and bt0242 (secondary ali-
phatic). All MPs that contain a 1-hydroxy-4-unsubstituted
benzenoid moiety and most MPs that contain a secondary
aliphatic moiety are biotransformed rapidly (>0.5 d−1) by all of
the wastewater microbial communities. We therefore catego-
rize the functional groups linked to bt0064 and bt0242 as rate-
determining biotransformation promotors. Conversely, all MPs
that contain an alkylsulfonic acid derivative and most MPs that
contain an organohalide moiety are biotransformed slowly
(<0.5 d−1) by all of the wastewater microbial communities. We
therefore categorize the functional groups that trigger bt0286
and bt0029 as rate-determining biotransformation inhibitors.
These observations agree with the literature,31,46,47 and it is
validating to identify these four structural features as very
important in determining biotransformation rates among the
selected MPs performed by wastewater microbial communities.
It is important to note that MPs containing functional groups
that are categorized as rate-determining biotransformation
promotors or inhibitors may actually exhibit relatively slow or
fast biotransformations, respectively, as demonstrated in Figure
S51 for bt0242 and bt0029. This can be due to the presence of
other functional groups in the same MP that could likewise be
rate-determining. For example, certain functional groups
adjacent to a rate-determining biotransformation promotor
may limit MP biotransformations because of steric hindrance,
whereas labile functional groups simultaneously present in an

Figure 2. Heatmap of MDA for 30 predicted biotransformation rules
with nonzero MDA values. Cells colored on a scale from orange to
gray indicate a scale of rule importance from high to low based on
accuracies of rate predictions in a specific WWTP model when
including each rule.
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MP with a rate-determining biotransformation inhibitor may
result in fast biotransformations of that MP. This is precisely
why the ensemble of decision trees generated by the random
forest models and analysis of MDA is essential to identify rate-
determining biotransformation promotors and inhibitors while
considering the whole structure of the MP and why the box
plots in Figure S51 cannot be interpreted in isolation.
Clusters 1C and 1D likewise contain 10 btrules categorized

as rate-determining biotransformation promoters or inhibitors,
though their importance is not as high as the btrules in Cluster
1A. The functional groups that trigger bt0024 (ester), bt0011
(unsubstituted benzenoid at the ortho position), bt0005 (vic-
unsubstituted aromatic), and bt0014 (1-hydroxy-2-unsubsti-
tuted aromatic) are categorized as rate-determining biotrans-
formation promotors, whereas functional groups that trigger
bt0243 (N-substituted amide), bt0430 (tertiary amide),
bt0023 (ether), bt0036 (aromatic methyl), bt0218 (2-
hydroxyethylamine), and bt0013 (unsubstituted benzenoid at
the para position) are categorized as rate-determining
biotransformation inhibitors. Although some btrules in
Clusters 1C and 1D have an almost equal distribution between
fast and slow biotransformation rates associated with each rule
(e.g., bt0023, bt0013), the information gained from including
these rules in the random forest model nevertheless improves
MP rate classifications. This analysis confirms that ester groups
are important for determining relatively fast biotransformations
and that ether groups are important for determining relatively
slow biotransformations performed by wastewater microbial
communities. Furthermore, this analysis suggests that N-
substituents on amide groups can be rate-inhibiting, which
helps to explain why the amide-containing MPs selected for
this study have a bimodal distribution of biotransformation
rate constants. Finally, it is interesting to note that bt0011
(unsubstituted benzenoid at the ortho position) is categorized
as a rate-determining biotransformation promotor and bt0013
(unsubstituted benzenoid at the para position) is categorized
as a rate-determining biotransformation inhibitor. These rules
are triggered by the same structural feature (unsubstituted
benzenoid) but result in a monohydroxylation at the ortho or
para positions, respectively. Our findings suggest that MPs with
a benzenoid that is unsubstituted at the ortho position are
likely to be biotransformed at a faster rate than MPs with a
benzenoid that is unsubstituted at the para position.
Cluster 1B contains two btrules that are important for

determining biotransformation rates in WWTP1_win,
WWTP1_sum, and WWTP2 but not in WWTP3. The
functional groups that trigger bt0002 (secondary alcohol)
and bt0332 (aliphatic methyl [H0]) can generally be
categorized as rate-determining biotransformation inhibitors,
but MPs that trigger these btrules are biotransformed rapidly in
WWTP3. This interesting observation supports our conclusion
that the wastewater microbial community derived from
WWTP3 has unique catalytic activity that promotes bio-
transformations associated with specific types of structural
features. Therefore, we conclude that the functional groups
triggering bt0002 and bt0332 are sometimes rate-determining
biotransformation inhibitors, but some wastewater microbial
communities can have catalytic enzymes to transform MPs that
contain these functional groups under certain conditions.
Cluster 2 contains 14 btrules that are generally not

important for classifying biotransformation rates across the
WWTPs (average MDA = −2.0 ± 1.5), indicating that the
functional groups triggering these btrules are not rate-

determining. The distributions of rate constants measured
for MPs triggering these btrules are provided in Figure S52.
These distributions again demonstrate that MPs that trigger
these btrules can have fast or slow biotransformation rates.
However, the functional groups triggering the btrules in
Cluster 2 (and Cluster 2B in particular) are not important for
determining these distributions. Nevertheless, there are
interesting nuances that can be discovered in these
distributions, particularly for btrules contained in Cluster 2A
and Cluster 2C. Cluster 2A contains three btrules that are
important for determining biotransformation rates in WWTP3.
The MPs that trigger bt0063 (amine), bt0022 (halomethyl or
dihalomethyl derivative), and bt0051 (2- or 3-substituted
carboxylate) tend to have biotransformation rates that are both
fast and slow across WWTP1_win, WWTP1_sum, and
WWTP2 but are biotransformed rapidly in WWTP3. Cluster
2C contains four btrules that are important for determining
biotransformation rates in WWTP1_win and WWTP1_sum.
The MPs that trigger bt0012 (unsubstituted benzenoid at the
meta position), bt0241 (tertiary aliphatic), bt0001 (primary
alcohol), and bt0270 (aromatic methyl derivative) tend to have
biotransformation rates that are both fast and slow across
WWTP2 and WWTP3 but are biotransformed rapidly with
more consistency in WWTP1_win and WWTP1_sum. There-
fore, we conclude that these btrules that show variable levels of
importance across the four wastewater microbial communities
represent structural features that are amenable to variable
degradation based on the catalytic activity of the microbial
community. Finally, we note that bt0067 (amide hydrolysis) is
generally unimportant for predicting biotransformation rates
within the four wastewater microbial communities. This is
notable because it challenges our initial hypothesis but is in
agreement with recent literature that demonstrates the
importance of structural features around the amide bond in
determining the extent of amide hydrolysis.22,48

Random Forest Models − Observed Biotransforma-
tions. We were also interested in determining whether the
biotransformations that we observed would be more predictive
of biotransformation rates than predicted btrules. With a
complete set of biotransformation data, one would expect the
actual biotransformations to be more predictive of bio-
transformation rates, but it is likely that our analysis of
biotransformation products was incomplete and some
important and rate-determining biotransformations that were
predicted may not have been observed (e.g., for acetamino-
phen or gabapentin lactam). Nevertheless, we used a binary
matrix of the observed biotransformations to construct random
forest models for each of the four wastewater microbial
communities. Unlike the random forest models developed with
predicted btrules, the binary matrix for observed biotransfor-
mations was different for each wastewater microbial
community depending on the biotransformation products
that were observed in each experiment. The prediction
accuracy of the four random forest models was lower
(>78%) than the models developed with predicted btrules,
and the OOB error ranged between 37 and 68%. We extracted
the MDA values for each observed btrule and present the
resulting heat map in Figure 3 in which we identify three main
clusters of btrules. Rate constant distributions among the three
clusters are provided in Figures S53 and S54.
Cluster 1 and Cluster 2B consist of observed biotransforma-

tions represented by rule bt0024 (ester hydrolysis) and bt0242
(monohydroxylation of a secondary aliphatic) and are
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categorized as rate-determining and relatively fast biotransfor-
mations in the analysis of observed biotransformations. This
agrees with the analysis of predicted btrules and is
corroborated by our frequent observation of the expected
biotransformation products for most of the MPs triggering
these btrules in each of the four wastewater microbial
communities. Cluster 2A, Cluster 2C, and Cluster 3A contain
seven observed biotransformations that exhibit variable degrees
of importance across the four wastewater microbial commun-
ities. These include bt0063 (amine dealkylation), bt0241
(monohydroxylation of tertiary aliphatic), bt0002 (oxidation of
secondary alcohol), bt0332 (monohydroxylation of an
aliphatic methyl [H0]), bt0012 (monohydroxylation of an
unsubstituted benzenoid at the meta position), and bt0036
(monohydroxylation of an aromatic methyl). These bio-
transformations all exhibited similar patterns in the analysis
of predicted btrules. The only biotransformation that exhibits
different behavior in the analysis of observed biotransforma-
tions is bt0334 (hydroxylation of aliphatic methyl [H2]). Rule
bt0334 was not important for determining rates when we
considered predicted btrules, but it is important for predicting
rates in WWTP1_sum when we consider observed bio-
transformations. However, none of the observed biotransfor-
mation products assigned to bt0334 were unequivocal; all were
level 3 annotations as monohydroxylation products. This
highlights another challenge of using observed biotransforma-
tions as a means to understand biotransformation rates across
wastewater microbial communities. The analysis of observed
biotransformations demonstrates that observed biotransforma-
tions can be used to identify important rate-determining
biotransformations; however, limitations in the size and

completeness of the dataset lead us to conclude that more
robust or comprehensive analyses can still be conducted with
predicted btrules.

Data Compilation and Context. From our analyses, we
have identified 30 structural features of MPs that can be
classified as: (1) biotransformation promoters (bt0005,
bt0011, bt0014, bt0024, bt0064, and bt0242); (2) bio-
transformation inhibitors (bt0013, bt0023, bt0029, bt0036,
bt0218, bt0243, bt0430, and bt0286); (3) structural features
that can be biotransformed based on uncharacterized features
of the wastewater microbial community (bt0001, bt0002,
bt0012, bt0022, bt0051, bt0063, bt0241, bt0270, and bt0332);
and (4) not rate-determining (bt0065, bt0067, bt0071, bt0291,
bt0333, bt0334, and bt0353). These findings improve our
fundamental understanding of the determinants of biotrans-
formation rates in wastewater microbial communities and
provide insight into the distribution of generalist and specialist
functions within wastewater microbial communities.49,50

We next aimed to compare our method of functional group
categorization with existing methods that use structural
features to predict MP biodegradability. We used BIOWIN
models 1, 2, 5, and 6 within the EPISUITE13 software from the
U.S. EPA to predict the biodegradability of each of the MPs
included in our study and compare the results to our observed
biotransformation rates. It is important to note that the
BIOWIN models were developed with data from experiments
conducted under conditions that are unlikely to represent MP
biotransformations performed by wastewater microbial com-
munities and that represent different biodegradation endpoints
(e.g., ultimate biodegradation or oxygen demand of the test
chemical). Nevertheless, the BIOWIN models return pre-
dictions of “readily” or “not readily” biodegradable, which we
directly compared to our classification of “fast” and “slow”
biotransformations based on a biotransformation constant
threshold of 0.5 d−1. We found that the BIOWIN models could
only accurately bin between 43 and 66% of our MPs across the
four models and the four experiments. We attribute errors in
these predictions to differences between the types of
biotransformations generated in experiments conducted to
train the BIOWIN models and the types of biotransformations
performed by wastewater microbial communities. For example,
all BIOWIN models predict that methadone will not be readily
biodegradable because of the tertiary amine group. However,
the biotransformation rate of methadone was fast in all of our
experiments, which can be explained by the presence of a
secondary aliphatic functional group (bt0242) that was
identified as a rate-determining biotransformation promoter
in our study. The BIOWIN models were best at predicting the
biodegradability of ester-containing MPs (75% of ester-
containing MP predictions from BIOWIN were correct) and
the worst for amine-containing MPs (40% of amine-containing
MP predictions from BIOWIN were correct). We also
examined the likelihoods provided in the Eawag-PPS for
each of the btrules we classified as biotransformation
promoters and inhibitors. We found that the six biotransfor-
mation promotors were assigned likelihoods of likely (4) or
neutral (2), whereas the eight biotransformation inhibitors
were assigned likelihoods of very unlikely (1), unlikely (3), or
neutral (4). These likelihood assignments likewise add support
to the categorizations proposed in this study.

Environmental Implications. Despite decades of research
on the removal or biotransformation of MPs during biological
wastewater treatment, it remains difficult to manage MP

Figure 3. Heatmap of MDA values for observed biotransformation
rules across the four WWTPs. The color scale from dark gray to dark
green, where dark gray represents the most negative MDA values, and
dark green shows the most positive.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.1c06429
Environ. Sci. Technol. 2022, 56, 984−994

991

https://pubs.acs.org/doi/10.1021/acs.est.1c06429?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06429?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06429?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.1c06429?fig=fig3&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.1c06429?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


removal during wastewater treatment or to predict MP
biotransformations and associated biotransformation rates. In
this study, we identified functional groups that promote or
inhibit MP biotransformations across four independent
wastewater microbial communities. We contend that the
biotransformations associated with rate-determining biotrans-
formation promoters represent generalist microbial community
functions that can be readily performed by wastewater
microbial communities. It is important to note that this
contention warrants further validation with other MPs and
other wastewater microbial communities, but this insight can
be used to make predictions about promoter-containing MP
biotransformations during wastewater treatment and to inform
about the design of new chemical products that may be more
readily biodegradable during biological wastewater treatment.
We also identified functional groups that can be biotrans-
formed based on uncharacterized features of the wastewater
microbial community. We argue that the biotransformations
associated with these functional groups represent specialist
microbial community functions that can be performed by
certain types of wastewater microbial communities. Future
research should be directed to identify the taxa or
metagenomic content that is causally associated with these
functions as a means to more rapidly characterize the
metabolic potential of a wastewater microbial community or
to optimize the performance of biological wastewater treat-
ment processes.
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