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ABSTRACT

GPUs are increasingly used for high-performance and interactive
data analytics workloads due to their capability to accelerate com-
putation using massive parallelism. A key constraint of GPU-based
data analytics today is the limited memory capacity in GPU devices.

Data compression is a powerful technique that can mitigate the
capacity limitation in two ways: (1) fitting more data into GPU
memory and (2) speeding up data transfer between CPU and GPU.
However, compression schemes for GPU today are still limited in
compression ratio and/or decompression speed. We identify two
limiting factors of existing approaches. First, existing decompres-
sion solutions require multiple passes of scanning the global mem-
ory to decode layers of compression schemes, incurring significant
memory traffic and hurting performance. We present the tile-based
decompression model to decompress encoded data in a single pass
over global memory and inline with query execution. Second, we
develop an efficient implementation of bit-packing-based compres-
sion schemes and their optimization techniques in the context of
GPU. Our evaluation shows that our schemes can achieve similar
compression rates to the best state-of-the-art compression schemes
in GPU (i.e., nvCOMP) while being 2.2x and 2.6X faster in decom-
pression speed and query running time.
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1 INTRODUCTION

In the past decade, special-purpose graphics processing units
(GPUs) have evolved into general-purpose computing devices, with
general-purpose parallel programming models, such as CUDA [2]
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and OpenCL [8]. Because of GPUs’ high compute power, they
have seen significant adoption in deep learning and high perfor-
mance computing [3]. GPUs also have great potential to accelerate
memory-bound applications such as database systems, because
GPUs utilize High-Bandwidth Memory (HBM), a new class of RAM
that has significantly higher bandwidth compared to traditional
DDR RAM used with CPUs. A single modern GPU can have up to
80 GB of HBM which is capable of delivering up to 2 TBps of mem-
ory bandwidth and 19.5 Tflops of compute compared to 100GBps
of memory bandwidth and < 1 Tflops on a single CPU. This rise
in memory capacity, coupled with the ability to equip a modern
server with several GPUs (up to 20), means that it’s possible to have
hundreds of gigabytes of GPU memory on a modern server.

Several commercial systems, including Omnisci [7], Kinetica [4],
and BlazingDB [1], aim to provide real-time analytics capabilities
by using GPUs to store a large fraction (or all) of the working set.
A key constraint in these systems is the GPU memory capacity.
Currently, GPUs have at most 80 GB of memory which is used
both to cache the working set and as scratch memory for query
execution. Therefore, to accommodate working set larger than GPU
memory capacity, sharding between CPU and GPU or between
multiple GPUs is necessary [32, 36]. However, this approach will
incur performance penalty due to slower communication across
PCle. Data compression can play a critical role to address this issue
by achieving two goals: (1) Fit in more working set in a single
GPU memory and (2) Reduce the data transfer time across PCle
by transferring the compressed data instead. Furthermore, data
compression is also applicable beyond the database field as link
bandwidth is often the bottleneck in many applications that use
GPUs such as machine learning and image processing.

We identify two major limitations in GPU data compression
solutions today:

1) Cascading Decompression

GPU-based systems [18, 30] have looked at frame-of-reference
(FOR) [21, 52], delta coding (DELTA) [29], dictionary compression
(DICT) [10, 52], run-length encoding (RLE) [10], and null suppres-
sion (NS) [10]. To minimize the size of the compressed data, existing
systems cascade multiple compression schemes such that the output
of one scheme is the input to another scheme. The database engine
decompresses one layer at a time. Such a cascading decompression
strategy leads to suboptimal performance as multiple GPU kernels
are launched and each requires reading from and writing data back
to the global memory. This causes high memory traffic which may
lead to much worse performance compared to a design that does
not use any compression.

In this paper, we improve decompression performance by treat-
ing a thread block as the basic decompression unit, that decodes
one block of encoded entries. This way, we are able to cache a block
of data in on-chip caches and inline multiple decoding steps into
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a single kernel, resulting in a single pass over the data. Moreover,
we can even inline the decompression with query execution, re-
sulting in a single round-trip to the global memory for the whole
decompression step and query execution.

We call this tile-based decompression model which is inspired by
Crystal [40]. Tile-based decompression allows us to decode at close to
memory bandwidth speed, resulting in a very low decompression
overhead over the previous compression work for GPU. It also
eliminates the need for sophisticated compression planners used by
past works [18, 30], since instead of balancing the trade-off between
decompression time and compression ratio, we can simply choose
the scheme with the best compression ratio — all schemes achieve
similar performance. To the best of our knowledge, this is the first
paper to decompress cascaded compression schemes in a single
kernel pass and inline with the query execution.

2) Efficient Decompression of Bit-Packed Schemes

Besides the organization of different compression schemes, the
decompression speed of individual schemes is also limited in GPU
today. Prior works on CPU compression [16] have shown that bit-
aligned packing compression schemes manage to achieve better
compression ratio compared to byte- and word-aligned packing.
Supporting efficient bit-level packing in GPU is challenging due to
the SIMT programming model and the relatively limited instruction
set to perform bit-level alignment, which is not a problem in CPU
compression schemes due to more powerful CPU instructions.

In this paper, we design optimized bit-packing based compres-
sion schemes and their optimization techniques in the context of
GPU. Specifically, we introduce three new bit-packing based com-
pression schemes: GPU-FOR does bit-packing in conjunction with
Frame-Of-Reference (FOR) and work well with uniform data and
can handle skew; GPU-DFOR uses delta encoding with bit-packing
and FOR, targeting sorted or semi-sorted data; GPU-RFOR uses RLE
encoding with bit-packing and FOR, targeting data with high av-
erage run length. These schemes are designed to offer improved
compression ratios while still being able to decode data in parallel
across thousands of threads at close to memory bandwidth speeds.
Overall, our compression schemes can be decoded 2.2X faster than
previous implementations.

We integrate the tile-based decompression model and GPU-FOR,
GPU-DFOR, and GPU-RFOR into the Crystal framework [40], an open-
source highly optimized GPU data analytics engine. We encapsu-
late decompression into a device function that enables program-
mers to change a kernel operating on an uncompressed array to a
compressed column with a single line of code. Our compression
schemes target integer, decimal, and dictionary-encoded strings
and support all query operations that run on these data types. In
data analytics workloads, prior works [14, 34, 40] and commercial
systems [7] typically apply dictionary encoding on top of string
columns to encode them to integers.

In summary this paper makes the following contributions:

o We introduce tile-based decompression, a decompression strategy
that allows us to decode the data in a single pass at close to
memory bandwidth speed and inline with query execution.

o We present three optimized bit-packing based compression
schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR) that can be used
to store data compactly on the GPU.

e We present an integration of the decompression routines into
the Crystal framework and demonstrate ease of use.

e We present an evaluation! on multiple synthetic benchmarks
and on the Star Schema Benchmark (SSB). On SSB, our schemes
can achieve similar compression rates to the best state-of-the-art
compression schemes in GPU (i.e., nvCOMP) while being 2.2x
and 2.6X faster in decompression speed and query running time.

The rest of the paper is organized as follows: related work and
background are discussed in Section 2. We introduce the tile-based
decompression model in Section 3. We present the data format and
the unpacking implementation on the GPU for GPU-FOR, GPU-DFOR,
and GPU-RFOR in Section 4, 5, and 6 respectively. Section 7 discusses
the integration into Crystal. Section 8 discusses the usage and choice
of compression scheme, parameter, and other relevant discussion.
Section 9 evaluates the performance and compression ratio of our
approach against other schemes on GPU. Finally, we conclude in
Section 10.

2 BACKGROUND AND RELATED WORK

In this section, we review the basics of GPU architecture and de-
scribe past approaches to data compression on GPUs and CPUs.

2.1 GPU Architecture

Performance of database operations on GPU is bound by the mem-
ory subsystem (either shared or global memory) [49]. The lowest
and largest memory in the hierarchy is the global memory. A mod-
ern GPU can have global memory capacity of up to 80 GB with
memory bandwidth of up to 2000 GBps. Each GPU has a number
of compute units called Streaming Multiprocessors (SMs). Each SM
has a number of cores and a fixed set of registers. Each SM also
has a shared memory (SMEM) which serves as a scratchpad that is
controlled by the programmer and can be accessed by all the cores
in the SM. Accesses to global memory from a SM are cached in the
L2 cache (L2 cache is shared across all SMs) and optionally also in
the L1 cache (L1 cache is local to each SM).

Processing on the GPU is done by a large number of threads
organized into thread blocks (each run by one SM). Thread block
size can vary from 32 to 1024 threads. Thread blocks are further
divided into groups of threads called warps (usually consisting of
32 threads). The threads of a warp execute in a Single Instruction
Multiple Threads (SIMT) model, where each thread executes the
same instruction stream on different data. The device groups global
memory loads and stores from threads in a single warp such that
multiple loads/stores to the same cache line are combined into a
single request. Maximum bandwidth can be achieved when a warp’s
accesses to global memory target neighboring locations.

The programming model allows users to explicitly allocate global
memory and shared memory. Shared memory has an order of mag-
nitude higher bandwidth than global memory (10 TBps vs. 900 GBps
on the Nvidia V100 GPU) but has much smaller capacity (a few MB
vs. multiple GB). Finally, registers are the fastest layer of the mem-
ory hierarchy. If a thread block needs more registers than available,
register values spill over to global memory.

The source code is available at https://github.com/anilshanbhag/gpu-compression
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2.2 Compression Techniques

Lossless compression techniques have been heavily exploited in
modern column-store databases for efficient query processing and
can be categorized into two buckets: lightweight and heavyweight.
Lightweight algorithms are mainly used in in-memory column
stores while heavyweight algorithms like Huffman [27] and Lem-
pel Ziv [51] (together with lightweight techniques) are used in
disk-based column stores. In this paper we focus on lightweight
techniques. We show later in Section 9 that most of the compression
gains can be achieved with just lightweight techniques.

There are five basic lightweight techniques to compress a se-
quence of values: frame-of-reference (FOR) [21, 52], delta coding
(DELTA) [29], dictionary compression (DICT) [10, 52], run-length
encoding (RLE) [10], and null suppression (NS) [10].

FOR represents each value in a sequence as a difference to a given
reference value. FOR is applied to a block of integers and the refer-
ence value chosen is usually the minimum value to make all values
positive. FOR is good when the block of integers have similar values.
DELTA represents each value as a difference to its predecessor
value. DELTA is good when the array is sorted or semi-sorted.
DICT replaces each value by its unique key in the dictionary. DICT
is effective for columns with low cardinality.

RLE replaces uninterrupted sequences of occurrences of the same
values (called runs) by the value and length of the sequence. Hence a
sequence of values is replaced by a sequence of pairs (value, length).
NS removes leading zeros from an integer’s bit representation. NS
is useful when a column contains many small integers.

FOR, DELTA, DICT, and RLE work at the logical level where a
sequence of values is compressed into another sequence. NS ad-
dresses the physical level of bits with the basic idea of removing
leading zeros in the bit representation of small integers. There are
many different NS techniques proposed which can broadly be cate-
gorized as (i) bit-aligned, (ii) byte-aligned, and (iii) word-aligned.
Bit-aligned NS algorithms compress an integer to a minimal num-
ber of bits; byte-aligned NS compress an integer with a minimal
number of bytes; word-aligned NS encodes as many integers as
possible into 32/64-bit words. The NS algorithms also differ in their
data layout. We distinguish between horizontal layout [31, 46] and
vertical layout [19, 29, 31]. In the horizontal layout, the compressed
representation of subsequent values is situated in subsequent mem-
ory locations. In the vertical layout, each subsequent value is stored
in a separate memory word in a striping fashion. Cascading multi-
ple compression schemes together has been done on both CPU and
GPU to achieve a better compression ratio [5, 18, 29, 30], where the
input of one scheme is the output of another scheme.

CPU-based compression. Wang et al. [44] presented a survey
of bitmap and inverted list compression in the area of database
and information retrieval. Among these schemes, VB [15, 17] is a
variant of NS algorithm with variable byte-aligned packing. PFOR
and its variants [48, 53] encode a block of integers such that the
majority of the integers can be encoded into b-bits and store the
rest of the integers at the end. Simple-N and its variants [11, 12,
50] are word-aligned compression methods with 4 status bits to
represent N combinations of bitwidth and 28 data bits used to store
the data. All these schemes are typically a NS algorithm cascaded
with Delta/RLE since they run on sorted datasets. Li and Patel [31]
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Figure 1: Bit-packing with vertical data layout

proposed Bitweaving which includes Horizontal Bit-Parallel (HBP)
and Vertical Bit-Parallel (VBP) storage layouts. HBP achieves better
decompression performance but VBP achieves better compression
rates. ByteSlice [19] improves the performance of VBP by striping
in bytes instead of bits but at the cost of larger storage footprint.

Across various compression schemes, the best performing ones

are SIMD-scan [37, 46] which uses bit-aligned packing with a hori-
zontal data layout and SIMD-BP128 [29] (and its variants) which use
bit-aligned packing with a vertical data layout. SIMD-scan stores
column values in a tightly bit-packed horizontal layout, ignoring
any byte boundaries. SIMD-BP128 processes data in blocks of 128
integers at a time and stores these integers in a vertical layout
using the number of bits required for the largest of them. Figure 1
illustrates the vertical layout where the first four integers Int1,
Int2, Int3, Int4 start out in four different 32-bit words. Int5 is im-
mediately adjacent to Int1, Int6 is adjacent to Int2, etc. Later in
Section 4.3, we discuss the difference between our schemes and
SIMD-scan/SIMD-BP128.
GPU-based compression. Fang et al. [18] and HippogriffDB [30]
support the cascading of five basic lightweight techniques. They
evaluated two byte-aligned schemes: NSF and NSV. NSF encodes ev-
ery element in the input array with a fixed number of bytes whereas
NSV allows each value to be encoded in a variable length of bytes.
To generate the compression schemes, these designs use a com-
pression planner to generate a plan for each column. Based on the
column properties (i.e., sorted/unsorted, average run length, num-
ber of distinct values, etc.), the planner will generate a plan with
the best compression ratio. During decompression, these designs
treated each compression scheme as independent layers. There-
fore, during decompression of cascaded scheme, different kernels
will be called in succession to decode one compression layer at a
time (see Figure 4 (left)). This leads to suboptimal decompression
performance.

Mallia et al. [33] introduced two new NS algorithms (GPU-BP and
GPU-VByte). GPU-BP encodes the data in a horizontal layout similar
to SIMD-Scan. GPU-VByte decodes the input array with a variable
length of bytes similar to NSV in [18]. This work, however, does not
support cascading compression schemes which limits its compres-
sion rate. nvCOMP [5] is a generalized CUDA-based compression
library that supports cascaded compression schemes consisting of
the five basic lightweight techniques. Their bit-packing scheme
does not saturate memory bandwidth. Further, nvCOMP does not
support the end-to-end pipelining of multiple decompression steps
with query execution. This leads to suboptimal performance dur-
ing query execution. We will evaluate the performance of all the
previous GPU compression schemes in Section 9.4.

2.3 Query Execution on GPUs

A flurry of recent work [20, 26, 32, 40, 49] and a number of
commercial systems (e.g, Omnisci [7], Kinetica [4], and Blaz-
ingSQL [1]) use GPU(s) to accelerate query performance. These



works can be broadly categorized into two categories. The first cat-
egory [1, 4, 7, 40] uses one or more GPUs to store all or significant
fraction of the working set directly in GPU memory and aim to de-
liver interactive query response time; the main constraint is the lim-
ited GPU memory capacity. The second category [20, 26, 30, 32, 49]
uses the GPU as an accelerator, where data is stored primarily in
CPU and moved to the GPU at query execution time. Some of these
works focused on accelerating individual database operations such
as selection [42], join [24, 25, 28, 36, 38, 39, 41, 47], and sort [22, 43].
Recently, Lutz et al. [32] showed that using the hybrid system with
CPU and GPU connected using the high-bandwidth NVLink can de-
liver significant performance improvement over a CPU-only system.
For this category, the bottleneck is the amount of data moving over
the interconnect. Our work makes it possible to use bit-packing to
compress columns leading to smaller storage footprint in category
1 and reduces data transfer time for category 2.

A recent work, Crystal [40], presented a library of CUDA device
functions that can be composed together to execute analytic queries
on GPUs. Crystal adopts the idea of tile-based execution model,
which instead of viewing each thread as an independent execution
unit, views a thread block as the basic execution unit with each
thread block processing a tile of entries at a time. Compared to a
single thread, a single thread block can hold a significantly larger
group of elements collectively in shared memory. This group of
elements is called a tile. The key advantage of this model is that
after a tile is loaded into shared memory, subsequent passes over
the tile will be read directly from shared memory, avoiding multiple
round-trips to the global memory. As a result, Crystal could execute
analytic queries close to memory bandwidth speed. In this paper,
we introduce tile-based decompression which adopts the idea for
decompression routines (see Section 3).

3 TILE-BASED DECOMPRESSION

Cascading compression schemes achieve better compression ratio
than individual compression schemes [18, 30]. However, decom-
pressing a cascaded scheme can degrade performance as intensive
decompression overburdens the GPU. The reason behind the bad
performance was that past work decoded one layer of compres-
sion at a time and thus required multiple passes to decode the
compressed data and execute the query. Figure 2 (left) illustrates
this approach for decompression of table data consisting of delta
encoding, frame of reference, and fixed length byte-aligned pack-
ing (Delta+FOR+NSF). To fully decode the column and execute the
query, these systems have to (1) do a first pass to unpack the byte-
packed data (decompress NSF), (2) do a second pass to add the data
with the base reference (decompress FOR), (3) do a third pass to
delta decode the data (decompress Delta), and finally (4) launch
the query kernel on top of the the fully decoded data. Step (2)
and (3) can potentially be merged together into a single step —
adding the reference while unpacking the byte-packed data. Prior
works [18, 30], however, separated the kernels to support more
flexible compression plans. If the query requires multiple encoded
columns, steps (1)—(3) will have to be repeated for each column. In
this model, decompression is expensive since the intermediate data
is read and written to the global memory after every kernel pass,
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(Delta+FOR+NSF) wusing cascaded decompression (left)
and using tile-based decompression (right)

incurring significant memory traffic. We will refer to this model as
the cascading decompression model.

In this work, we introduce the tile-based decompression model
which is inspired by tile-based execution model [40]. In the tile-
based decompression model, each thread block collectively loads
a block of encoded data into shared memory, which is called a
tile. Next, multiple steps of decompression are applied on the tile
directly in shared memory, avoiding multiple passes to the global
memory. Figure 2 (right) shows how to decompress the cascaded
scheme Delta+FOR+NSF with tile-based decompression. The three
decompression steps can now be encapsulated into a single function
which can be called from inside the query kernel during execution.
This would enable us to decompress cascaded compression schemes
in a single pass over the column. Further, this decompression can be
inlined with query execution. Compared to cascading decompression,
the intermediate data transfer of tile-based decompression is X times
less, where X is the depth of the compression layers.

Applying tile-based decompression requires each compression
scheme in the cascade to have the following two properties:

Property 1: Tile-granularity data format

In tile-based model, the data needs to be partitioned and encoded
in the granularity of tiles where each tile fits in shared memory.
This allows us to decode each tile independently.

Property 2: Tile-based decompression routine

During decompression, we want to read the encoded data from
global memory only once. To achieve this for cascaded schemes, we
should be able to express the decompression routine as a function
that takes a tile in shared memory as input and outputs a tile to
shared memory.

In the next three sections, we will show that FOR, Delta, RLE
and bit-aligned NS obey the above two properties. We will intro-
duce three new bit-packing based compression schemes (GPU-FOR,
GPU-DFOR, and GPU-RFOR) and discuss how they can be integrated
with the tile-based decompression model. We will also discuss the
integration with Crystal system in Section 7.



4 FAST BIT UNPACKING

While Section 3 has demonstrated that tile-based decompression
could solve the cascading decompression problem in GPU. However,
individual compression schemes such as bit-packing have not been
sufficiently optimized on GPU. Addressing this issue will be the
main focus of the next three sections.

In this section, we describe the GPU-FOR compression format,
which uses bit-packing in conjunction with Frame-of-Reference
(FOR) to store data compactly on the GPU and the fast bit unpacking
routine used to decompress it efficiently on the GPU. GPU-FOR can
be used to efficiently compress attributes of type integer, decimal,
or dictionary-encoded string (i.e. sequence of integers) in a column
store. At runtime, the executor decompresses data and runs the
query on the decompressed data. Hence, optimizing the perfor-
mance of decompression is critical for analytic workloads. In the
rest of the section, we describe first the bit-packing representation
we use and then the kernel implementation on the GPU. We present
a series of optimizations that allow us to decode bit-packed data
while saturating memory bandwidth.

4.1 Data Format

Bit-packing is a process of encoding small integers in [0, 2b) using
b bits; b can be arbitrary and not just 8, 16, 32, or 64. Each number
is written using a string of length b. Bit strings of fixed size b
are concatenated together into a single bit string, which can span
several 32-bit words. If some integer is too small to use b bits, it is
padded with zeros. Compressing 32-bit integers to b bits achieves a
compression ratio of 32/b, which can be significant.

Choosing a common bit size b for an entire array would mean
that the occurrence of a single large value would increase the num-
ber of bits needed to encode the values. Hence, bit-packing is gener-
ally used in conjunction with FOR encoding. In GPU-FOR, the array
of values is partitioned into blocks of 128 integers, which is the
tile that will be processed by a thread block. The range of values
in the block is first found and then all the values are written in
reference to the minimum value. For example, if the values in a
block are integers in the range [100,130], then using a reference of
100, we can store them using 5 bits (log2 (130 + 1 — 100)). Each block
is further divided into sequences of 32 integers called miniblocks.
For each miniblock, we choose a bit-width based on the maximum
number of bits needed to encode the largest value.

The choice of block size and miniblock size is to ensure they
align on a 32-bit boundaries (shared memory access granularity).
Having 32 integers in one miniblock means that for any bitwidth,
the miniblock always ends on 32-bit boundary. This would allow us
to use 32-bit arithmetic while decoding and make shared memory
accesses efficient. The bitwidth for a miniblock can then be stored
in 1 byte. Since we want to align along 32 bit boundaries, we group
4 miniblocks into a single block and store the 4 bitwidths at the
start of the block using a single integer. Hence, each block now
consists of 128 integers.

The bit-packed array needs to be decoded in parallel across a
large number of threads. For this, we store the start index of the
blocks in a separate array called block starts. Finally we store the
metadata associated with the encoding: block size (i.e., the number
of integers within each block), miniblock count (i.e., number of
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miniblocks per block), and the total count (i.e., total number of
integers in the data array) in the header. Figure 3 shows a schematic
of the format we use to store data.

Figure 4 shows an example of encoding 16 integers into a block
with 2 miniblocks. The minimum value in the block (i.e., 99) is used
as the reference. We calculate the difference of the block values
from the reference. Each miniblock contains 8 integers. We see
that the first miniblock needs 2-bits per block while the second
miniblock needs 4-bits per block. We encode each miniblock with
their respective bitsizes and store the reference and bitwidths at
the start of the block.

Our encoding format with horizontal data layout is similar to pre-
vious approach on CPU [37, 46]. We will discuss the key difference
between our design and existing CPU designs later in Section 4.3.

4.2 Implementation

In this section, we describe a number of optimizations at the imple-
mentation level that we applied to achieve decompression at close
to GPU memory bandwidth speed. To give an impression of the
importance of each optimization, we end every subsection with the
time taken to decode a compressed dataset of 500 million integer
values drawn from a uniform distribution U (0, 216). The details of
the experimental setup can be found in Section 9.1.

Base Algorithm: Algorithm 1 shows the pseudocode that would
run in parallel on each thread (n threads are allocated for n-element
dataset). Each thread block (of size 128 threads) is assigned to decode
a block (of 128 elements) with each thread decoding one element in
the block based on its index. Each thread starts by reading the block
start pointer of the block to find where in the data array the block
starts (line 1-2). Each thread then reads in the bitwidth_word,
and uses it to compute the offset of its miniblock in the data ar-
ray (miniblock_offset) (lines 7-10). In computing the miniblock
offset, we use the fact that if entries in a miniblock are encoded
with b bits, then the miniblock occupies 4b bytes (since there are 32
entries per miniblock). Next, we compute the offset in bits within
the miniblock (line 12). Since the entries are bit-packed, they are
not byte-aligned and can span byte boundaries. Using starting bit
index, we calculate the starting integer index (start_intindex)
of the entry (lines 13-14). We then load an 8-byte block starting at



Algorithm 1: Fast Bit Unpacking on GPU — The follow-
ing code runs on each of the 128 threads within a thread
block in parallel.
Input :int[] block_starts; int[] data; int block_id;
int thread_id
Output:int item

int block_start = block_starts[block_id];

uint * data_block = &data[block_start];

int reference = data_block[0];

uint miniblock_id = thread_id/32;

5 uint index_into_miniblock = thread_id & (32 - 1);
uint bitwidth_word = data_block[1];

uint miniblock_offset = 0;
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for j = 0; j < miniblock_id; j++ do
L miniblock_offset += (bitwidth_word & 255);

o ®

1 bitwidth_word >=8;

5]

uint bitwidth = bitwidth_word & 255;
12 uint start_bitindex = (bitwidth * index_into_miniblock);

1

oy

13 uint header_offset = 2;

14 uint start_intindex = header_offset + miniblock_offset +
start_bitindex/32;

15 uint64 element_block = data_block[start_intindex] |
(((uint64)data_block[start_intindex + 1]) < 32);

16 start_bitindex = start_bitindex & (32-1);

uint element = (element_block & (((1<bitwidth) - 1) <

start_bitindex)) > start_bitindex;

1

S

18 item = reference + element;

start_intindex (element_block) (line 15). This block contains
the entire element, we use bitshift arithmetic to extract the en-
try (lines 16-17). Finally, we add reference and return the result.
The result resides in a register and is used subsequently during
query execution. In Section 7, we describe in greater detail how the
algorithm is used during query execution.

This algorithm takes 18 ms to decompress the dataset described
at the start of the section. Reading an uncompressed dataset of 500
million 4-byte integers takes 2.4 ms. This means decompressing the
dataset is 7.5X slower than reading the uncompressed data. Below
we describe a number of optimizations to bridge the gap:

Optimization 1: Operating in Shared Memory

Each thread makes multiple requests to the data array which sits in
global memory. Since, all the requests made by all threads within a
thread block touch one data block, in this optimization, we load the
entire block into shared memory once at the start of the operation.
Each thread block starts by reading block_start[BlockId] and
block_start[BlockId+1] to determine the boundaries of the data
block to be processed and then loads it into its shared memory in
a coalesced manner. All subsequent requests are made to the data
block in shared memory. Recall that the shared memory is an order
of magnitude faster than global memory. This optimization shifts
global memory reads to shared memory reads, thereby improving
performance. This optimization results in runtime reduction from
18ms to 7ms on the sample dataset.

Optimization 2: Processing Multiple Blocks
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Figure 5: Decompression performance with varying number
of data blocks per thread block (D)

The granularity of reads from global memory is 128 bytes [40]. This
is achieved when warps (group of 32 threads) access a 4-byte integer
array of size 32. In the sample dataset, if all integers end up being
encoded with 16 bits, the block size is 258 bytes (2 bytes for block
header + 256 bytes for miniblocks). When a thread block of size 128
reads in the data block from global memory, some warp accesses
do not result in an aligned full segment being read from global
memory. The same issue occurs when we access the block_start
array, we are reading in only two values from global memory, again
leading to loss of efficiency.

In this optimization, we attempt to reduce the impact of
these irregular accesses to global memory by processing multi-
ple data blocks per thread block. Each thread block is assigned
D(=2/4/8/16/32) data blocks to process. At the start, each thread
block reads in D + 1 block_start entries from global memory.
Next they read in the data blocks block_start[DxBlockId] and
block_start[DxBlockId + D] from global memory into shared
memory. As a result, we have reduced the number of irregular
accesses to both the block_start and the data array.

Figure 5 shows the runtime for decompression of the sample
dataset with varying D. As we can see from the figure, the largest
reduction comes from going from D = 1to D = 4. Going from D = 4
to D = 16 improves the performance, however the improvement is
marginal. Finally, when we go to D = 32 the performance deterio-
rates significantly. This is because the number of registers required
and the shared memory requirement increases proportional to D.
On an Nvidia V100 GPU, each thread can only use 65 registers and
48 bytes of shared memory per thread at full occupancy. As a result,
when we go to D = 16, each thread requires 64 bytes of shared
memory which reduces occupancy slightly. When we go to D = 32,
each thread requires 128 bytes of shared memory which results in
significant reduction in occupancy and register spilling — hence
the slowdown.

When we run full SQL queries, we have to store D values per
output column in registers until the end of the query. We noticed
in our evaluation on the Star Schema Benchmark (discussed later
in Section 9.4) that there is little difference in performance with
D = 4/8 and choosing D > 8 leads to deterioration in performance.
This is because each query has 3-4 output columns and choosing
higher values of D leads to register spilling and reduced occupancy.
Hence, we choose to simply use D = 4 in the rest of the paper. Note
that D is a parameter and users can choose higher value of D in
case they are just decoding a single column.



Optimization 3: Precomputing Miniblock Offsets

Computing the miniblock_offset involves a for loop (lines 8-
11 in Algorithm 1). We can make two observations: (1) miniblock
offsets are a exclusive prefix sum over the bitwidths array (2) with
D = 4, there are only D * 4 = 16 unique miniblocks offsets to
compute, while Algorithm 1 performs this computation on all 128
threads redundantly. In this optimization, we reduce the compute
load of the algorithm by precomputing the D * 4 miniblock offsets
once at the start and storing them in shared memory. On the first
D4 = 16 threads (i.e. thread_id € [0, 16)), we task by each thread
one miniblock offset/bitwidth pair to compute. Each such thread
loads the corresponding bitwidth word and computes a prefix sum
over it (this can be done using bitshift arithmetic). Finally we extract
the relevant offset and bitwidth for the miniblock and store it in
shared memory. These values are read by each thread when they
need it. The optimization eliminates the for loop in lines 8-11 in
Algorithm 1 and reduces the runtime from 2.39ms to 2.1ms, which
is lower than the time taken to read the uncompressed data.

4.3 Discussion

GPU-FOR vs CPU Designs: As described earlier in Section 2.2,
there are two variants of bit-packing based on the data layout:
horizontal and vertical.

For horizontal data layout, the best performing scheme is
SIMD-scan. While the original work focused on decoding an entire
column using a single bitwidth, they could be modified to work
with GPU-FOR-like data format that combines FOR with bit-packing.
While the data format is similar, the implementations are distinct.
SIMD-scan uses register shuffling using SIMD instructions to de-
code the data which does not directly work on the GPU. GPU-FOR
decodes directly from GPU’s fast shared memory and uses optimiza-
tions to minimize shared memory and global memory accesses.

For vertical data layout, the best performing schemes are
SIMD-BP128 (and its variants). SIMD-BP128 uses SSE instructions
with each SSE register holding 4 32-bit integers. The data is encoded
with 4 lanes each with 32 integers allowing the data to be decoded
efficiently by mapping each lane to a different vector lane of the SSE
register. Each block encodes 128 integers. To ensure 16-byte align-
ment, SIMD-BP128 groups 16 blocks together, storing the bitwidths
used in each block at the start. This is similar to GPU-FOR format
with each block having 16 miniblocks, with each miniblock having
128 integers and encoded with a vertical layout.

On the GPU, if we consider a SIMD lane as equivalent to a GPU
thread in a warp, we can directly translate the SIMD-BP128 style
vertical storage layout to the GPU. Let’s call this GPU-SIMDBP128.
We go from having 4 lanes on the CPU to 32 lanes on the GPU
(warp size is 32 threads). As a result, on a typical thread block size
of 128, with each thread having 32 integers to ensure their lane
terminates in 32-bit boundaries, we would need a block size of 4096
vs 128 on the CPU. We implemented GPU-SIMDBP128 and compared
the performance of GPU-FOR vs GPU-SIMDBP128 on the same mi-
crobenchmark. GPU-FOR (with D = 16) takes 1.55ms compared to
GPU-SIMDBP128 which takes 4.3ms. Hence GPU-SIMDBP128 is 2.7X
slower than GPU-FOR.

On the GPU, vertical packing like SIMD-BP128 is slower because
the number of registers available per thread is limited. Decoding

the vertical layout would require space for 32 4-byte entries and
32 registers to store output. Similar to the case when D = 32,
this leads to reduced occupancy. If we have a query with only 3
columns needed for result computation, we would need more than
2X the registers available per thread resulting in significant register
spilling. To get a sense for the performance impact, we evaluated
the Star Schema Benchmark q1.1 (described later in Section 9.4)
with columns encoded using GPU-FOR vs with columns encoded
using GPU-SIMDBP128. The query uses 4 columns. The performance
with GPU-SIMDBP128 was 14X slower than with GPU-FOR. Another
downside of using GPU-SIMDBP128 is the large block size (4096 vs
128). Large block sizes mean that one skewed value could lead to
large bitwidth for the entire block, reducing compression gains.
Bit-packing without Miniblocks: Instead of having 4 miniblocks,
one could instead just have one miniblock encoded with a single
bitwidth. There is no difference in terms of memory space overhead
as both schemes store a bitwidth(s) as a single 4-byte integer. How-
ever, there is reduced computation as we don’t have to calculate the
miniblock offsets. We implemented this scheme and found the per-
formance to be marginally better. The performance on the sample
dataset improves from 2.1ms to 2ms. When we experimented fur-
ther to see if it is possible to reduce runtime by reducing compute
load by having a single bitwidth across blocks or using zero as ref-
erence, we could not achieve any further improvement. This leads
us to believe that the performance is close to saturating bandwidth
given our global memory access pattern.

5 FAST DELTA DECODING

Delta encoding (also called differential encoding) is a common
approach used (typically in conjunction with other techniques) to
compress sorted or partially-sorted integer/decimal arrays. Instead
of storing the original array of integers (x1, x2, x3...), delta encoding
keeps only the difference between successive integers together
with the initial integer (x1, 52 = x1 — x1, 03 = x3 — x2, ..). Since the
differences are typically much smaller than the original integers,
delta encoding allows for more efficient compression. In this section,
we describe the GPU-DFOR coding scheme that uses delta encoding
in conjunction with bit-packing and frame of reference to achieve
good compression ratios and can be decoded efficiently.

The sequential form of delta encoding requires just one subtrac-
tion per value (§; = x; — xj—1). During decoding, we require one
addition per value (x; = §; + xj—1). For an array A of k elements,
the prefix sum p4 is a k-element array where pa[j] = Z{z_ol Aj=
palj— 1] + Aj. Hence, the process of delta decoding is equivalent
to computing the prefix sum. Efficient parallel prefix sum routines
have been proposed [23] that could be used to decode delta encoded
data on the GPU. A simple approach to delta encode + bit-pack
the data would be to do it as two separate steps: first compute the
deltas for the entire array and then bit-pack the deltas. The decod-
ing would then be a two-step process: the first pass would use the
bit unpacking routine described in Section 4.2 to decode the deltas
and write it to global memory; the second pass would use the prefix
sum routine to decode the data. This is the approach used by past
work [18, 30] and is inefficient as it requires multiple passes over
the data. Later in this section we describe how we can combine the
delta decoding step and the bit unpacking step into a single pass.
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5.1 Data Format

Delta encoding an entire array as x, 81, d2... makes it hard to par-
allelize as decoding the n*" block requires the (n — 1)*# block to
have been decoded already. To enable parallel decoding, we build
our data format on GPU-FOR encoding scheme (Section 4.1) by par-
titioning the array into sets of D blocks where each block contains
128 integers and delta encoding each set of D blocks independently
(where D is the number of blocks processed per thread block), as
shown in Figure 6. Encoding x integers generates x — 1 deltas. Dur-
ing encoding, we pad the deltas with 0 to ensure every block has
128 entries. We store the first value separately before every D"
block, with start pointers still pointing to the start of each block.

GPU-DFOR compresses better than GPU-FOR on sorted and semi-
sorted arrays, e.g., sorted primary keys or posting lists in search
workloads. Consider a dataset of n = 500 million integers with
entries from 1 to n sorted. This dataset when compressed using
GPU-DFOR uses 1.8 bits per integer vs 7.8 bits per integer used by
GPU-FOR. Using it for unsorted data could lead to worse compression
ratios compared to simply bit-packing the data. For example, for an
array of integers drawn uniform randomly from [0, 32), the deltas
will be in the domain [-31, 31]. In this case, GPU-DFOR will likely
require more bits per integer than GPU-FOR.

5.2 Implementation

With the data format described above, each tile of D blocks can be
decoded independently. During decoding, we first start by loading
the D block segments into shared memory and use the fast bit
unpacking routine (described in Section 4.2) to decode the deltas.

After bit unpacking the deltas, we have D deltas per thread. The
output data entries can be calculated using prefix sum over the
deltas of all threads within the thread block. We can use block-wide
prefix sum to compute the prefix sum over the deltas based on the
work-efficient prefix sum algorithm proposed by Blelloch et al. [13].
For an array of n integers, the algorithm is able to compute the
prefix sum of the array in parallel using ©(log n) steps. Interested
reader can refer to [13, 40] for more details.

Although prefix sum has been used widely in libraries like
Thrust [9], doing prefix sum over an entire array is expensive and
involves multiple passes over data. A key observation we make is
that since we do delta coding in each tile (set of D blocks) separately,
prefix sum can happen entirely within a thread block in shared
memory. This also allows us to fuse bit unpacking and delta de-
coding steps into a single kernel which allows our implementation
to perform decompression in a single pass over the data blocks
in global memory compared to multiple passes required by previ-
ous works [18, 30]. The bit unpacking and delta decoding share
the same shared memory buffer. In our implementation, we reuse

an existing block-wide prefix sum implementation from Crystal.
The total resource requirement of the kernel is D 4-byte entries in
shared memory and D registers to store the output per thread.

6 FAST RUN LENGTH DECODING

Run length encoding (RLE) is a common approach used to com-
press a data sequence with consecutive runs of values. For example,
given an original array of integers (x, x, x, x, Y, , 2, z, z), run length
encoding stores the original array as two separate arrays: the val-
ues (x, y, z) and the run length of the values (4, 2, 3). For data set
with high average run length, RLE can greatly reduce the total
memory footprint. In this section, we describe the GPU-RFOR cod-
ing scheme that uses RLE in conjunction with bit-packing and
frame of reference to achieve good compression ratios and efficient
decompression time.

To enable parallel decoding, we once again build our data format
on the GPU-FOR encoding scheme (Section 4.1) by partitioning the
array into blocks of 512 integers and applying RLE to each block
independently to create the value array and the run length array.
We then apply FOR on top of both arrays separately. In addition to
reference and bitwidths (see Section 4.1), we store extra metadata
of the run length/values count at the beginning of each block. The
two compressed representations of run length and values arrays
are stored separately.

With the data format described above, each block can be decoded
independently. During decoding, we first start by loading one block
of compressed run length and one block of compressed values into
shared memory and use the fast bit unpacking routine (described in
Section 4.2) to obtain the uncompressed run length and values array
for the corresponding block. After bit unpacking both columns, the
output data block entries can be calculated using the four steps
described in [18] for all the threads within the thread block. These
steps include 2 scatter and 2 inclusive prefix sum operations. We use
the same block-wide prefix sum as the one described in Section 5.

Since each block can be decoded independently, the four decod-
ing steps of RLE can be served completely by the shared memory.
This allows us to fuse bit unpacking and run length decoding steps
into a single kernel which allows our implementation to perform de-
compression in a single pass over the data blocks in global memory.
GPU-RFOR, however, requires twice more resources than GPU-DFOR
since there are two input columns (value and run length) resulting
in twice more blocks to be loaded into the shared memory.

7 DATABASE INTEGRATION

Given the efficient massively parallel bit-unpacking implementa-
tions described in the previous sections, we were naturally inter-
ested in its usability in a full system. As a proof of concept, we im-
plemented the decompression routines as CUDA device functions?
and show how they can be used with an existing GPU analytical
engine. In particular, we chose Crystal [40], an open-source GPU
analytics framework developed recently.

Crystal is based on the idea of a tile-based execution model. Previ-
ous work [40] has shown that SQL query operators and analytical
queries implemented with Crystal can saturate memory bandwidth
and thereby deliver an-order-of-magnitude speedup compared to

2Device functions are functions that can be called from kernels on the GPU



CPU-based implementations. We have implemented the decom-
pression routines for GPU-FOR, GPU-DFOR, and GPU-RFOR as CUDA
device functions LoadBitPack, LoadDBitPack, and LoadRBitPack
respectively. These functions can be used in queries implemented
in Crystal easily and can be used more broadly in any CUDA
kernel as well. To integrate them into Crystal, the only required
changes are to replace the load routines (BlockLoad) in Crystal with
LoadBitPack. Therefore, the user can run the query on compressed
data by just changing a single line of code. Readers interested in
Crystal can refer to [40].

One key drawback of bit-packed data is that it lacks random
access. Accessing any element requires loading the entire data
block. As a result, when selections or joins filter data entries, we
still have to read the entire column. We will show in Section 8 why
this would not lead to material impact on performance.

Since the routines LoadBitPack, LoadDBitPack, and
LoadRBitPack are ordinary device functions, they can be
used directly in user’s CUDA code in conjunction with other GPU
frameworks like Thrust and Cub [9], and they can also be called
directly from NVVM (a compiler internal representation based on
LLVM IR designed to represent GPU compute kernels) [6].

8 DISCUSSION

In this section, we discuss certain key aspects that we haven’t
covered with respect to usage and choice of compression method.
Choice of Compression Scheme: The rule-of-thumb when
choosing a compression scheme is to use the one that has the
lowest storage footprint for each column. Therefore, data distribu-
tion plays a very important role in such cases. In general, GPU-DFOR
is suitable for sorted or semi-sorted columns with high number
of distinct values. GPU-RFOR is suitable for columns which have
a low number of distinct values or columns with a high average
run length. Other columns which do not have such properties are
typically suited for GPU-FOR. Since each column can be decoded
with different schemes, we will refer to this hybrid scheme as GPU-*
for the remainder of the paper. We will show how GPU-* performs
when we measure the end-to-end system performance in Section 9.
Hyperparameter Tuning: The number of blocks processed per
thread block D is the only hyperparameter in the schemes we
propose. As discussed in 4.2, we will choose D = 4 in our evaluation.
As GPUs improve, it is likely they will have more shared memory
and registers per thread, thereby allowing us to use higher values
of D during query processing.

Compression Speed: In data analytics workload, data compres-
sion is generally a one-time activity that happens on the CPU side.
However, in the event of updates, the data need to be recompressed
and transferred again to the GPU memory to replace the old data.
We measure the time required to compress the data to simulate such
cases. Compressing 250 million entries of random dataset using
GPU-FOR and GPU-DFOR on a 6 cores CPU machine takes approxi-
mately 1.2s and 1.3s respectively. GPU-RFOR is not suitable for this
distribution and therefore takes longer to compress (2.2s).
Out-of-core Dataset: In the event that the compressed dataset
does not fit in the GPU memory, the GPU as a co-processor model
can be leveraged. In such case, the compressed data will be trans-
ferred from CPU to GPU before running each query. Compression

still brings benefits since it reduces the total amount of data being
transferred through the limited PCle interconnect. We show the
benefit of compression for out-of-core dataset in Section 9.5.
Random Access Performance: We measure and compare the
performance of our compression schemes against uncompressed
data under random access patterns. To simulate random access
behavior, we generate a predicate bitvector to filter random 250
million data entries and sweep the selectivity from 0 to 1. For
our compressed schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR), we
achieve good performance when ¢ < 1/TILE_SIZE since we can
skip loading the entire compressed tile. When o > 1/TILE_SIZE,
however, we will have to load the entire compressed tile from the
global memory and decompress it before applying the bitvector.
This result in the constant performance of 2.1 ms for GPU-FOR and
GPU-DFOR.

For uncompressed data, since the granularity of access in GPU
global memory is 128B, when the selectivity is above (o > 1/32),
we would have to read the entire cache line for every random
access which results in reading the whole dataset. This results in
the constant performance of 2.5 ms. Our performance is better since
the reduction in data size reduces the total data read which often
compensates for the loss of efficiency in the case of a selective filter.
This shows that random access does not have a material impact on
performance in a compressed setting.

9 EVALUATION

In this section, we evaluate the performance characteristics of the
different compression schemes (GPU-FOR, GPU-DFOR, and GPU-RFOR)
to understand (1) impact of applying tile-based decompression, (2)
impact of data distribution, (3) performance within SQL queries,
and (4) performance of our encoding schemes compared to the
existing schemes from previous works.

The rest of the section is organized as follows: we discuss the
experiment setup in Section 9.1. In Section 9.2 we evaluate the per-
formance of different encoding schemes on synthetic dataset with
varying bitwidths and illustrate the impact of tile-based decompres-
sion on our encoding schemes. In Section 9.3, we evaluate the impact
of data distributions to different encoding schemes. In Section 9.4,
we evaluate the end to end systems performance against previous
works using the Star Schema Benchmark. Finally, in Section 9.5, we
discuss the case when GPU is used as a coprocessor.

9.1 Setup

Hardware configuration: For the experiments, we use a virtual
machine instance that has an Nvidia V100 GPU which is connected
to Intel Xeon Platinum 8167M CPU via PCle3. The Nvidia V100
GPU has 16 GB of HBM2 memory. The global memory read/write
bandwidth is 880 GBps. The Intel Xeon Platinum CPU has 6 virtual
cores and 180 GB DRAM. The bidirectional PCle transfer bandwidth
is 12.8 GBps. The system is running on Ubuntu 18.04 and the GPU
instance uses CUDA 11.2.

Measurement: In our evaluation except for Section 9.5, we ensure
that data is already loaded into the GPU memory before experi-
ments start. We run each experiment 3 times and report the average
measured execution time.
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9.2 Performance with Varying Bitwidths

In this section, we test the performance of our proposed compres-
sion algorithms (GPU-FOR, GPU-DFOR, and GPU-RFOR) against exist-
ing encoding schemes on workloads with varying bitwidths. We
will compare the performance against the following schemes:

e None: Data is stored as 4-byte integers uncompressed.

o NSF: Null suppression with fixed length encoding. The entire
array is encoded as 1, 2, or 4 byte entries depending on the
maximum number of bits needed for any integer in the column.

e FOR+BitPack: Using GPU-FOR encoding scheme but adopting cas-
cading decompression routine. Hence, it will decode the schemes
in two kernel passes — the first pass will decode bit-packing and
the second pass will decode frame of reference.

e Delta+FOR+BitPack: Using GPU-DFOR encoding scheme but
adopting cascading decompression routine. Hence, it will decode
the schemes in three kernel passes — the first two passes to
decode FOR+BitPack followed by a prefix sum to decode Delta.

e RLE+FOR+BitPack: Using GPU-RFOR encoding scheme but adopt-
ing cascading decompression routine. It decodes the schemes in
eight kernel passes — the first four passes to decode FOR+BitPack
for both the run length and values columns and the last four
passes to decode RLE following the steps described in [18].

For this comparison, we use a synthetic dataset with varying
bitwidth. We generate 15 unsorted datasets each with 250 million
entries, such that all data elements in the i-th dataset have exactly
i effective bits, i.e., the value range is [0, Zi) for i = 2,4,..,30. Within
each range, the values are uniformly distributed.

Figure 7a shows the decompression time of these eight schemes
for varying bitwidth. In this figure, we are (1) reading the com-
pressed data from the global memory, (2) decoding it, and (3) writing
back the uncompressed data to the global memory. Note that (3) is
constant across bit widths while (1) will incur higher global memory
operation (read) as the bitwidth increases which would translate
directly to slightly increasing decompression time for all schemes.
In all measurements, GPU-FOR, GPU-DFOR, and GPU-RFOR perform
significantly better compared to their correspondence without tile-
based decompression. GPU-FOR achieves 2.6X better performance
compared to FOR+BitPack. GPU-DFOR achieves 4x better perfor-
mance compared to Delta+FOR+BitPack. GPU-RFOR achieves 8x
better performance compared to RLE+FOR+BitPack. This shows
the benefit of applying tile-based decompression on our schemes.

The performance of NSF is a staircase pattern where the runtime
is based on whether the entry size is 1, 2, or 4 byte. Both None and
NSF saturate memory bandwidth. The performance of GPU-FOR is
slightly worse than NSF with the worst case gap of 15% achieved at
bitwidth 7. The gap is due to slightly larger data size and irregular
access pattern associated with accessing the block_starts array
used to find the block offsets in the data array. The decompres-
sion performance of GPU-DFOR is comparable but slightly worse
to GPU-FOR as it has a slightly larger storage footprint. The de-
compression performance of GPU-RFOR is worse than GPU-FOR and
GPU-DFOR. Apart from the fact that the random dataset is not suit-
able for this compression scheme, decoding GPU-RFOR also requires
twice as much resource in terms of GPU registers and shared mem-
ory capacity and operations compared to GPU-DFOR.

Figure 7b shows the compression rate of five compression algo-
rithms. The bit-packing schemes achieve the finest possible granu-
larity and thus can perfectly adapt to any bitwidth. Consequently,
the compression rate is a linear function of the bitwidth. The over-
head for GPU-FOR is 0.75 bit per int (1 block start word + 1 reference
word + 1 bitwidth word per block of 128 integer entries). The over-
head for GPU-DFOR is 0.81 bit per int (0.75 + 1 first value word per
D = 4 blocks). As the data is not sorted, the deltas vary in the range
[0, 2) and require one additional bit; our experiments in Section 9.3
show the benefit of GPU-DFOR on sorted data. Since the dataset
generates random values, GPU-RFOR is not suitable for this dataset.
Nevertheless, the compression rate is still a linear function of the
bitwidth since the bit-packing scheme is applied on top of the RLE
columns. The overhead for GPU-RFOR is slightly less than GPU-FOR
since this scheme uses 512 integer entries per block, resulting in
less compression metadata (the block start word and the reference
word is stored every 512 entries).

Overall, this experiment shows that (1) tile-based decompression
can significantly improve the performance compared to cascaded
decompression model, and (2) our bit-packing schemes manage to
achieve very good compression rates with almost no overhead on
decompression speed.

9.3 Performance Across Data Distributions

In this section, we test the robustness of various compression
schemes by evaluating their performance using various data dis-
tributions. In addition to the schemes we compare against in the
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Figure 8: Comparison of compression schemes on different data distributions

previous section, we also compare to the performance of two more
compression schemes:

e RLE: Represents runs of the same value as a pair: (value, run-
length). Values and run lengths are stored in two separate
columns.

o NSV: Represents each value with a variable number of bytes (1,2,3
or 4). In a separate array it maintains the number of bytes used
using 2 bits per value. This scheme is good for handling skew.

In this experiment, we generate synthetic workloads with the size of
250 million entries with the following three different distributions.

e D1: a sorted array where we vary the number of unique values
from 4 to 228, Typically a table is sorted based on one column,
which D1 is designed to resemble.

e D2: a normal distribution with a standard deviation of 20 and
mean varying from 64 to 230,

e D3: a Zipfian distribution with the exponent alpha characterizing
the distribution varying from 1 to 5 (1 is least skewed, 5 is most
skewed). D3 resembles dictionary encodings of tweets or text
corpora where distribution of words follows Zipf’s law. For this
distribution, we also compare against NSV.

We will not evaluate RLE/GPU-RFOR on D2, D3 as they are not suit-
able for these data distributions.

The results for D1 can be found in Fig. 8 (a-b). The bit-aligned
algorithms GPU-FOR, GPU-DFOR, and GPU-RFOR achieve better com-
pression ratios compared to None and NSF due to use of FOR. As
the number of unique values increases beyond 2%2, the block of
128 integers is likely to have different values. As the dataset is
sorted, GPU-DFOR can encode such cases with fewer bits compared
to GPU-FOR and GPU-RFOR. In the extreme case, when the num-
ber of unique values equals 228 i.e., each value is unique and the

array is sorted, GPU-DFOR encodes the data with just 1.8 bits per
int vs 7.8 bits per int used by GPU-FOR and 8 bits per int used by
GPU-RFOR. The performance of GPU-DFOR (Fig. 8 (b)) is bounded by
shared memory bandwidth which results in a performance gap in
comparison to GPU-FOR.

GPU-RFOR and RLE achieve a very good compression ratio when
the number of distinct values is less than 222. Beyond that, the
compression ratio of these two schemes worsened with GPU-RFOR
still better than RLE due to the use of FOR. GPU-RFOR is also 2.5X
faster than RLE due to the use of tile-based decompression (Fig. 8(b)).
Decompressing RLE is a 4-step process as explained in Section 6,
which even after optimizations is similar to GPU-FOR making 4
passes over an array of size n. Across the entire range, we can
see that GPU-RFOR is a better choice when the number of distinct
values is low while GPU-DFOR is a better choice when the number
of distinct values is high in a sorted dataset.

For D2 (Fig. 8 (c-d)), we can make the same general observations.
When using GPU-FOR/GPU-DFOR, each block’s entries generally lie
within 3 standard deviations of the mean and occasional occurrence
of a value outside this range does not move the compression rate
significantly. For mean greater than 26, the bit-aligned schemes
achieve 3x reduction in storage footprint compared to the other
schemes and showcases the use of FOR.

For D3 (Fig. 8 (e-f)), we see that the bit-aligned schemes can adapt
to change in skew and achieve both better compression rate and
lower runtime compared to NSF and NSV. NSV is better at adapting
to skew compared to NSF, however its performance is significantly
worse compared to all the other schemes. Decoding NSF suffers
from the same issues that affect RLE, it requires multiple steps that
lead to multiple reads and writes, the decoding can’t be inline with
query execution and it requires buffer space for intermediates.
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Overall, this experiment shows that compared to existing
schemes, our bit-packing schemes are robust under various data
distributions.

9.4 Performance on SSB

For the full query evaluation, we use the Star Schema Benchmark
(SSB) [35] which has been widely used in various data analytics
research studies [20, 30, 45, 49]. SSB is a simplified version of the
more popular TPC-H benchmark. It has one fact table lineorder and
four dimension tables date, supplier, customer, and part which are
organized as a star schema. There are a total of 13 queries in the
benchmark, divided into 4 query flights. Query flight 1 (q1.1, q1.2,
and q1.3) are selection queries whereas query flights 2, 3, and 4
are join queries. In our experiments we run the benchmark with a
scale factor of 20 which will generate a fact table with 120 million
tuples. To enable efficient query execution in GPU, we dictionary
encode the string columns into integers prior to data loading and
the queries run directly on dictionary-encoded values. The total
dataset size is around 13GB.

In this experiment, we compare the performance of our compres-
sion schemes with four existing systems:

e Planner: We use the compression planner from [18] to generate
compression plans for all the column. Note that this work does
not support bit-packing-based schemes. For decompression, this
work uses cascading decompression as explained in Section 3.

e GPU-BP: Mallia et al. [33] introduced two bit-packing schemes:
GPU-BP and GPU-VByte. We compare against GPU-BP in this work
since it has superior compression ratio and decompression per-
formance. This scheme, however, only consists of a single com-
pression layer without the use of FOR, Delta, or RLE. It also lacks
optimization techniques which we introduced in Section 4.2.

system. GPU-* is the hybrid scheme that chooses between GPU-FOR,
GPU-DFOR, and GPU-RFOR as explained in Section 8. Each column in
SSB has different properties. For example, 1o_orderkey is a sorted
column with high average run length (similar to D1 in Section 9.3);
lo_orderdate, lo_ordtotalprice, and lo_custkey are unsorted
but also has high average run length. On average, GPU-* manages
to reduce the total memory footprint by 2.8X compared to no com-
pression (None).

Comparing to GPU-BP, GPU-* achieves 50% better compression
rates. This is because GPU-BP only supports a single bit-packing
layer without frame-of-reference. Therefore, GPU-BP has poor per-
formance for columns with RLE pattern such as lo_orderkey,
lo_orderdate, lo_ordtotalprice, and lo_custkey. GPU-BP also
performs poorly on date columns such as lo_commitdate due to
absence of frame-of-reference in GPU-BP.

Comparing to Planner, GPU-* achieves 40% better compression
rates and outperforms Planner across all columns. Planner has
poor performance on columns with large random integers such
as lo_extendedprice, lo_revenue, and lo_supplycost. These
columns can only be compressed using bit-packing schemes which
are not supported by Planner. For columns with certain dis-
tribution (lo_orderkey, lo_orderdate, lo_ordtotalprice, and
lo_custkey), Planner performs well as it is distribution-aware.
GPU-*, however, still outperforms Planner on every column.

nvCOMP and GPU-* achieves similar compression rates across
all columns while GPU-* is slightly superior by 2%. This is due
to the fact that both of these schemes support the same set of
compression schemes. It utilizes RLE based scheme for columns
with consecutive runs of values and FOR based scheme for columns
with large random integers. The 2% gain for GPU-* comes from
our more compact data format which requires less metadata and
therefore could store the compressed data more efficiently. Despite
supporting the same compression schemes, we will show in the next
experiment how GPU-* is superior in decompression performance
and query running time compared to nvCOMP.

Figure 10a shows a detailed one-on-one decompression time
comparison between different schemes in nvCOMP and GPU-*. It can
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be seen from this figure that despite supporting the same set of 00 = o
. GPU-*

compression schemes, GPU-* outperform nvCOMP in each scheme.
GPU-FOR outperform nvCOMP(FOR+BitPacking) by 2.4x, GPU-DFOR
outperform nvCOMP(Delta+FOR+BitPacking) by 3.5X, and GPU-RFOR
outperform nvCOMP(RLE+FOR+BitPacking) by 2x.

Figure 10b shows the geomean of decompression performance
across all columns for each system. For nvCOMP and GPU-*, we
choose the scheme which results in the best performance thereby
resulting in a smaller performance gap compared to Figure 10a.
Overall, GPU-* outperforms Planner, GPU-BP, and nvCOMP by 5.5X,
2x%, and 2.2X respectively. The performance gap is due to the use
of tile-based decompression and our optimization techniques pre-
sented in Section 4.2.

Figure 11 shows the end-to-end query performance across all
systems. For the runtime comparison, we compare the performance
of Crystal without any encoding (None) against Crystal with the
decompression routines of GPU-* and nvCOMP. We also compare
our system with Planner, GPU-BP, and OmniSci.

Comparing GPU-* with None, None is 1.35x faster. This is to be
expected since there are overhead of decompressing the columns,
especially the lo_orderdate and lo_custkey columns which uti-
lizes GPU-RFOR. These two columns are used in almost every query
in SSB. Comparing GPU-* with OmniSci, GPU-* is 12X faster. This
result is consistent with result from prior works [40]. This is be-
cause the query execution engine in OmniSci does not support the
tile-based execution model. Comparing GPU-#* with other compres-
sion schemes (Planner, GPU-BP, and nvCOMP), GPU-* outperform
these schemes by 4%, 2.4, and 2.6X respectively. Not only decom-
pressing individual columns by GPU-* is faster, all these schemes
cannot decompress the columns inline with the query execution.
Therefore, these schemes will have to decompress each individual
column one by one before executing each query, which results in a
much higher total query runtime.

Overall, our experiment shows that GPU-* can achieve similar or
better compression rates to the best state-of-the-art compression
schemes in GPU (i.e., nvCOMP) while being 2.2X and 2.6X faster
in decompression speed and query running time. For GPU-based
DBMS systems, using GPU-#* results in significantly lower storage
footprint with minimal performance degradation.

9.5 GPU as a Coprocessor

Many systems use GPU strictly as a coprocessor [20, 26, 32, 49].
These systems move data from CPU to GPU across an interconnect

L

Time Taken (in ms

b

geomean

5
400
300
200
100
0
ql.l q2.1 q3.1 q4.1

Queries
Figure 12: Benefit of data compression in GPU as coproces-

sor model

like PCIe or NVLink when processing every query. The compression
ratio of each compression scheme would play a big role as runtime is
bound by the time taken to ship data over the interconnect (transfer
time). We have shown that GPU-FOR/GPU-DFOR/GPU-RFOR achieve
the best compression rate across a variety of data distributions and
using them would reduce the amount of data moving across the slow
interconnect thereby reducing transfer time. To evaluate this, we
ran one SSB query from each flight (q1.1, q2.1, q3.1, q4.1) with data
initially stored on the CPU. The encoded data will then be shipped
to GPU over 12GB/s bidirectional PCle. GPU will then decode the
data and execute the query. In this experiment, we will compare
the query performance of GPU-* against uncompressed data (None).
Figure 12 shows that after applying compression, the query runtime
is 2.3% faster. This shows that our compression scheme is useful
when the working set is sharded across CPU-GPU or potentially
multiple GPUs.

10 CONCLUSION

This paper advances the state-of-the-art for GPU data compres-
sion by introducing (1) tile-based decompression which allows a
database to decompress a cascade of compression schemes in a
single pass and (2) GPU-FOR, GPU-DFOR, and GPU-RFOR bit-packing
based compression schemes and efficient massively parallel bit un-
packing routines for them. Our evaluation shows that our schemes
can achieve similar compression rates to the best state-of-the-art
compression schemes in GPU while being 2.2X and 2.6X faster in
decompression speed and query running time.
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