
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Environmental Science & Health
Engineering of managed aquifer recharge systems to optimize
biotransformation of trace organic chemicals
Uwe Hübner1, Christian Wurzbacher1, Damian E. Helbling2 and
Jörg E. Drewes1
Abstract
Managed aquifer recharge (MAR) systems provide effective
removal of many water contaminants including suspended
solids, organic matter, pathogens, and numerous trace organic
chemicals (TOrCs). TOrC removal is primarily driven by bio-
transformations performed by subsurface microbial commu-
nities. However, variable extents of TOrC biotransformation
have been reported across MAR systems. This review dis-
cusses major parameters affecting the biotransformation of
TOrCs and summarizes recent efforts to enhance its efficiency
in MAR systems. Approaches to enhance biotransformation of
TOrCs during MAR include optimization of environmental con-
ditions (redox conditions, substrate availability), inoculation of
specific TOrC degraders and stimulation of degrader activity by
providing growth substrates or co-factors. While concepts to
optimize environmental conditions have been tested at different
scale, inoculation and biostimulation approaches were mostly
tested as a means to remove contaminants in biologically active
sand filters or for the remediation of contaminated groundwater.
Their application in MAR systems needs further research.
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Introduction
The influent of municipal wastewater treatment plants
(WWTPs) contains a complexmixture of pharmaceuticals,
www.sciencedirect.com
personal care products, household chemicals, and other
down-the-drain chemicals that are collectively known as
trace organic chemicals (TOrCs) [1]. Wastewater micro-
bial communities can biotransform many TOrCs to some
degree, but many other TOrCs persist during biological

wastewater treatment [2]. Consequently, the effluent of
municipal WWTPs contains a complex mixture of TOrCs
and their biotransformation products [3]. The occurrence
of these chemicals in downstream surface water systems
has been linked with adverse effects within aquatic eco-
systems [4] and can compromise the production of safe
drinking water.

In recent years, municipal WWTPs have adopted addi-
tional physical (e.g., activated carbon adsorption) and
chemical (e.g., ozonation) treatment processes as a

means to more completely remove TOrCs from waste-
water prior to discharge to the aquatic environment
[5,6]. Although physical and chemical treatment pro-
cesses can be effective at removing many TOrCs from
water, upgrading WWTPs to include these advanced
treatment processes is generating additional costs and
energy demand [7]. Multiple studies have also demon-
strated that many types of TOrCs can also be removed
during managed aquifer recharge (MAR) [8] which is
the intentional recharge of water (e.g., municipal WWTP
effluent, surface water, stormwater) to aquifers for the

purposes of water treatment and/or storage [9]. As water
percolates through the unsaturated and saturated zones
during infiltration or after direct injection into the
aquifer, TOrCs can be removed by means of adsorption
to aquifer media or biotransformed by subsurface mi-
crobial communities [8]. The contribution of these
mechanisms to the mitigation of individual TOrCs in
MAR systems depends on several factors including
aquifer characteristics, environmental conditions, and
physico-chemical properties of the respective sub-
stance. This review is focused on the biotransformation

of TOrCs, which is considered to be a sustainable pro-
cess that can potentially result in TOrC mineralization
(e.g. Ref. [8]).

At the most fundamental level, the biotransformation of
TOrCs during MAR depends on the chemical structure
of an individual TOrC and the presence of an enzyme
catalyst to initiate the biotransformation [10]. The
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chemical structure of the TOrC can influence its
partitioning behavior in the aquifer and its bioavail-
ability (e.g., speciation, presence of labile functional
groups, etc.) [11]. The presence of a relevant enzyme
catalyst is dependent on the composition of the sub-
surface microbial community which is determined by
the prevailing environmental conditions, such as the
redox conditions, temperature, pH, and presence or

absence of co-substrates and other nutrients [12]. Other
physiological factors including mass transfer limitations
(i.e., chemical uptake into the cell) and growth-linked
versus co-metabolic biotransformations are also rele-
vant because TOrCs are often present at concentrations
that are several orders of magnitude lower than the bulk
organic carbon content. To optimize the performance of
aquifer microbial communities for the biotransformation
of TOrCs in MAR systems, we need a better under-
standing of the mechanisms by which certain TOrCs are
biotransformed and how the environmental conditions

shape the composition and the physiology of the aquifer
microbial community. Improved insights in these areas
could lead to strategies that enhance the biotransfor-
mation of TOrCs in MAR systems.

In this review, we will discuss the current knowledge on
the underlying principles and mechanisms for the
biotransformation of TOrCs in MAR systems and review
new ideas and concepts for optimizing the performance
of subsurface microbial communities in MAR systems
for the biotransformation of TOrCs. We specifically

address the optimization of environmental conditions,
the inoculation of specific microbial degraders or en-
zymes (i.e., bioaugmentation), and the stimulation of
specific microbial physiologies (i.e., biostimulation).

Biotransformation of TOrCs in MAR
systems
Optimal physicochemical conditions for
biotransformation of TOrCs
Several studies have addressed the biotransformation of
TOrCs in batch-, column- and field-scale experiments

representing MAR systems characterized by different
environmental conditions [13]. As expected, physico-
chemical conditions such as the redox conditions, tem-
perature, pH, and presence or absence of co-substrates
and other nutrients influence the biotransformation of
TOrCs in these experiments [11, 14-16]. Whereas the
temperature and pH are determined by the site-specific
conditions and are not easy to modify given practical
considerations, the redox conditions and the presence or
absence of co-substrates and other nutrients could
potentially be manipulated in MAR systems for the

purposes of optimizing the biotransformation of TOrCs
and warrant more careful evaluation.

Predominant redox conditions are a major driver for the
biotransformation of individual TOrCs in MAR systems.
Anoxic or anaerobic conditions in MAR systems can lead
Current Opinion in Environmental Science & Health 2022, 27:100343
to the biotransformation of some otherwise recalcitrant
TOrCs including halogenated chemicals (e.g., iodinated
contrast media) or the antibiotic sulfamethoxazole
[17,18]. However, most TOrCs are more efficiently bio-
transformed under oxic conditions [17,16,19], although it
is not always clear whether aerobic biotransformations
result in mineralization or the formation of persistent
biotransformation products [20]. These studies suggest

that oxic redox conditions should be maintained to
facilitate a more comprehensive biotransformation of
TOrCs in MAR systems.

The presence or absence of co-substrates and other
nutrients is another major driver for the biotransforma-
tion of individual TOrCs in MAR systems. The
biotransformation of some TOrCs is positively associ-
ated with the abundance of dissolved organic carbon
(DOC) and dissolved oxygen in both laboratory-scale
systems and in field studies [13,21], demonstrating

greater extents of biotransformation in systems with
greater microbial activity. However, in some cases the
available organic matter can also adversely affect the
attenuation of TOrCs as it was observed for algal organic
matter [22]. In general, the biotransformation of some
TOrCs is favored only in carbon- or nutrient-limited
systems [12]. Carbon-limited systems support the
growth of more taxonomically and functionally rich mi-
crobial communities [23] which can have a positive
effect on the biotransformation of otherwise recalcitrant
TOrCs [24,25]. These findings were also corroborated

in a recent study that examined compound-specific
removal patterns for a diverse group of TOrCs in
controlled column experiments [26]. Whereas many
TOrCs were rapidly biotransformed in columns with a
high abundance of DOC, the biotransformation of
others was only effective under carbon-limited condi-
tions. A comparison of initial reactions reported in the
literature suggested that microbial communities under
carbon-limited conditions utilize different enzymes to
initiate the biotransformation of TOrCs [26]. These
studies suggest that a combination of different substrate
conditions might lead to a more comprehensive

biotransformation of TOrCs in MAR systems.

It should be noted that conclusions on the effect of
physicochemical parameters are mostly derived from
column studies under controlled conditions. Aquifers in
full-scale MAR systems are typically characterized by
highly heterogeneous conditions leading to tortuous
flow with variable hydraulic retention times and redox
conditions [27]. Also, spatially variable sorption and
desorption behavior of contaminants may affect the
growth of microbial communities in heterogeneous en-

vironments. Especially in MAR systems with surface
infiltration (e.g., induced bank filtration, soil-aquifer
treatment), microorganisms are also shaped by sea-
sonal variations of temperature, flow rates, and redox
conditions [28]. System heterogeneity is a challenge for
www.sciencedirect.com
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systematic evaluation of TOrC biotransformation in full-
scale MAR systems. Some studies utilized statistical
data evaluation from different MAR sites to elucidate
how redox conditions and hydraulic retention times
affect TOrC removal [13,29]. Results from parallel
monitoring of two infiltration basins operated with
different feed waters indicate that temporal changes of
redox conditions can adversely affect biotransformation

of TOrCs [30], but to the best of our knowledge sys-
tematic studies that address the effect of physical sub-
surface heterogeneity on biotransformation of TOrCs
are limited.

Physiological mechanisms of TOrC biotransformation
in MAR systems
The biotransformation of TOrCs in any environmental
system (including in MAR systems) is unique in that
TOrCs are often present at concentrations that are
several orders of magnitude lower than the bulk organic
carbon content. The prevailing paradigm on the physi-
ological mechanism of TOrC biotransformation is that
Figure 1

Different physiological mechanisms that can b

www.sciencedirect.com
environmental concentrations of TOrCs are too low to
support the growth of a microbial community. Under
this paradigm, biotransformation of TOrCs would be
catalyzed by promiscuous enzymes in co-metabolic
processes, during mixed substrate growth of microor-
ganisms with a diverse enzyme pool, or through cross-
feeding by a diverse microbial community (Figure 1).
Evidence for co-metabolism includes an apparent lack of

adaptation periods for TOrC biotransformation under
carbon-limited conditions [24,31] and associations with
the availability or removal of potential co-substrates like
ammonia or humic acids [32,33]. However, other studies
found no association between TOrC biotransformation
and the utilization of refractory humic substances [34],
showed that direct effects of ammonia-oxidizing bacte-
ria are limited to a few TOrCs [35,36], and have re-
ported microbial adaptation to individual substances at
concentrations less than 1 mg/L [37,38]. These latter
results suggest that biotransformation of TOrCs might

also involve metabolic processes. A potential strategy is
the co-utilization of different substrates or so-called
e involved in biotransformation of TOrCs.

Current Opinion in Environmental Science & Health 2022, 27:100343
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mixed substrate growth [39]. Under such conditions,
diverse and promiscuous enzymes readily interact with a
variety of potential substrates in growth-linked re-
actions. Another concept is the symbiotic growth of
different microorganisms by cross-feeding, i.e., the uti-
lization of products and intermediates from each other’s
metabolism. These concepts match the ecological
theory on energy tradeoffs for generalists (mixed TOrCs

use) versus specialists (individual TOrC use) when
TOrCs are considered as substrates. In reality, complex
mixtures of TOrCs are likely biotransformed under a
continuum of physiological mechanisms that range be-
tween co-metabolic processes, mixed substrate growth,
cross-feeding, and other growth-linked processes.

Standard methods commonly applied in engineering or
microbiology are not appropriate to elucidate physio-
logical mechanisms of TOrC biotransformations in MAR
systems with mixed bacterial communities. The

biotransformation of low concentrations of TOrCs with a
massive level of chemical diversity likely involves a va-
riety of different, potentially interdependent microor-
ganisms, which limits the adaptation of research
concepts established for the biotransformation of envi-
ronmental contaminants that are present at higher
concentrations (e.g., isolation of single degrader strains).
A recent perspective paper [40] outlined new concepts
that could be useful for identifying the taxa and en-
zymes involved in TOrC biotransformation, deter-
mining biotransformation pathways for individual

TOrCs, and understanding and predicting microbial
transformation of TOrCs in the environment. For
example, one suggested approach explores correlations
between metagenomics or metatranscriptomics datasets
and the rates or extent of TOrC biotransformation
across gradients of environmental conditions [41]. Pos-
itive and significant correlations that are identified in
this way could be further evaluated with additional
knowledge on initial biotransformations to improve the
identification of key functional genes or transcripts
[26,42] and to limit the rate of false positives [41].
Other potential approaches include developing model

microbial communities with a smaller number of taxa
that can represent complex interactions in natural sys-
tems [43,44] or metabolic modeling based on (thermo-
dynamic) flux balance analysis [45]. To the best of our
knowledge, these concepts have not yet been adapted to
investigate biotransformation of TOrCs.

Optimizing the biotransformation of TOrCs
in MAR systems
Optimization of environmental conditions for
biotransformation
One strategy to optimize the biotransformation of
TOrCs in MAR systems is to manipulate the environ-
ment to control the redox conditions and/or the pres-
ence or absence of co-substrates and other nutrients
(Figure 2). Because some TOrCs are known to be
Current Opinion in Environmental Science & Health 2022, 27:100343
biotransformed only under oxic or anoxic to anaerobic
conditions and because variable biotransformation of
TOrCs has been reported at high and low DOC and
nutrient concentrations, one could expect that a MAR
system that exploited all of these conditions would
exhibit the best performance with respect to compre-
hensive TOrC biotransformation. Conventional MAR
systems that receive municipal WWTP effluent are

characterized by a rapid consumption of DOC in the top
layer of the infiltration zone corresponding to a rapid
depletion of dissolved oxygen [46] and resulting in
suboxic and anoxic conditions in deeper layers. There-
fore, conventional MAR systems are characterized by an
upper layer of carbon-rich and oxic conditions and a
lower layer of carbon-limited and anaerobic or anoxic
conditions. To obtain the more favorable carbon-limited
and oxic conditions, one could incorporate pre-
treatment to reduce DOC and oxygen demand, or
supply additional dissolved oxygen (e.g., through addi-

tion of hydrogen peroxide or ozonation) [47].

A new concept that more explicitly exploits controlled
redox and co-substrate or nutrient conditions to
enhance the biotransformation of TOrCs is the
sequential managed aquifer recharge technology
(SMART) [48]. In SMART, water from an initial infil-
tration step (under carbon-limited and anaerobic or
anoxic conditions) is pumped to the surface, re-aerated
to generate oxic conditions, and infiltrated or injected
for a second time under oxic and carbon-limited condi-

tions [48]. The SMART approach leads to enhanced
biotransformation of TOrCs relative to conventional
MAR [49] and has been validated at full-scale [30]. The
optimal conditions for application of SMARTare defined
by the oxygen demand of the water, which should be
between approximately 8-9 mg/L (saturation in water at
20 �C) and 16e18 mg/L (two times saturation in water).
For feed water conditions with constantly higher oxygen
demand (e.g., using only partially nitrified wastewater
[47]), the second infiltration step cannot be maintained
under oxic conditions. Because the biotransformation of
some TOrCs is sensitive to minor and short-term

changes of redox conditions [30], short-term variations
of water quality should be minimized. Other potential
practical limitations of SMART include the additional
physical footprint for a second infiltration system, cross
contamination from vegetation or algae blooms in infil-
tration basins, and potential clogging and preferential
flow paths caused by reduced iron and manganese
mobilized in a first anoxic infiltration step (e.g., induced
bank filtration, aquifer recharge and recovery). These
problems, however, can potentially be managed using
new approaches for subsurface trench infiltration [50]

and in-situ oxygen injection [51].

Although previous studies clearly demonstrate the po-
tential of SMART to enhance the biotransformation of
TOrCs relative to conventional MAR systems, they also
www.sciencedirect.com
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Figure 2

Different strategies to enhance biotransformation of TOrCs.
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revealed some general limitations in the biotransforma-
tion of TOrCs in MAR systems. For example, some
TOrCs exhibit variable extents of biotransformation in
different experimental systems despite prevailing oxic
and carbon-limited conditions [34]. Other TOrCs, like
carbamazepine are persistent in MAR systems (including
SMART systems) although its capacity for biotransfor-
mation has been shown elsewhere [52]. Biotransforma-
tion of apparently persistent TOrCs might be limited by
slow reaction rates, specific conditions needed for
degrading microbes, the lack of specific degraders or

enzymes in microbial communities, or the low chemical
concentrations reducing bioavailability for bacteria. New
optimization strategies are needed to stimulate the
biotransformation of apparently persistent TOrCs.

Other attempts to enhance the biotransformation of
different TOrCs may include the concept of habitat
heterogeneity. Kassen et al. [53] showed that the pro-
ductivity and diversity of microbial communities is
determined by a heterogeneous environment and [54]
suggested to exploit this phenomenon for engineered

applications such as bioremediation. In other words, the
www.sciencedirect.com
success of MAR systems compared to activated sludge
systems may be related to the heterogeneity of habitats,
which is achieved by establishing various redox and
substrate gradients. We may also extend such a concept
to diverse MAR media that may foster different types of
biofilms, facilitating combined TOrC adsorption and
biotransformation. The application of highly porous and
sorptive filter media has been suggested for biofiltration
[55], constructed wetlands [56], and MAR systems
[57], but long-term benefits of combined sorption and
biotransformation on TOrC removal might be limited

[58]. Concepts to manipulate heterogeneity of infiltra-
tion zones or the aquifer with the purpose of increasing
microbial diversity have not been implemented so far.
Such approaches, however, need to be handled carefully
as they may also induce clogging or the establishment of
preferential flow.

Bioinoculation of MAR systems
One approach to stimulate the biotransformation of
apparently persistent TOrCs is to inoculate MAR sys-
tems with specialized bacteria, a concept that is well-
known from bioaugmentation of contaminated sites
Current Opinion in Environmental Science & Health 2022, 27:100343
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[59]. However, the inoculation of bacteria that bio-
transform TOrCs is challenging because selective ad-
vantages for growth of specific allochthonous bacteria
are limited by the limited concentrations of TOrCs and
therefore a general lack of ecological selection. More-
over, from a microbial ecology perspective, inoculated
strains or more complex coalescing communities (i.e., a
naı̈ve engineered community mixed with a resident

community) are at a disadvantage unless there are local
factors (e.g., new niches in form of carriers or a change in
local factors) that rule out priority, propagule, diversity,
and overall fitness effects of the established resident
community and their interactions [60-63].

While there are no field studies on MAR systems so far,
in an analogous system, enhanced biotransformation of
2,6-dichlorobenzamide (BAM) was reported in drinking
water sand filters inoculated with specific degrading
bacteria [64]. However, removal could not be main-

tained for longer periods. The period of efficient BAM
degradation could be prolonged by providing new
niches, when the inoculated degrader strain was
immobilized on specific carriers, but low substrate
conditions did not support continuous growth in drink-
ing water filters [65]. As more diverse communities are
more resistant to less diverse invaders [63], functional
degrader communities are theoretically more promising
for long-term operations than single strains. Therefore, a
niche expansion for functional invaders by e.g. material
use may facilitate a more long-term success for bio-

inoculation. One promising new concept maybe to
simultaneously expand the metabolic niche by a well
designed inoculum. Oña et al. showed that compounds
inaccessible to single strains may be used by cross-
feeding of the same strains when combined to main-
tain microbial growth [66]. This metabolic niche
expansion was positively correlated with phylogenetic
distance, therefore, the design of novel inocula may be
most successful with members from diverse phyla and
also across domains, a concept that hasn’t been tested so
far, and that may be particularly relevant for mixed
substrate growth described above.

Another concept of bioaugmentation that avoids the
problem of invasion failure into an existing community is
to provide the functional genes for pollutant degradation
to the established microbial community. For example,
plasmids may be maintained in a complex microbial
community for a longer time without an explicit selection
pressure [67]. Moreover, this plasmid persistence may be
positively linked to microbial diversity [68]. Similarly, a
laboratory pilot study confirmed that communities from
rapid sand filter material for groundwater treatment are

susceptible for plasmids across many microbial commu-
nity members [69]. However, early efforts on plasmid
bioaugmentation with sequencing batch biofilm waste-
water reactors showed that plasmids could only be
maintained at lab-scale but not at pilot-scale treatment
Current Opinion in Environmental Science & Health 2022, 27:100343
[70]. This degrader-independent concept is promising
and future work could be extended to other mobile ele-
ments such as prophages or transposons, however,
biosafety regulations often need to be taken into
consideration for modified mobile genetic elements and
may hamper a broader application under field conditions.
Stimulation of new biotransformation reactions
Different strategies have been discussed to stimulate the
biotransformation of TOrCs by either increasing the
overall removal potential or by stimulating the activation
of specific enzymes involved in biotransformation of
TOrCs. To activate promiscuous enzymes for co-
metabolic biotransformation, the addition of hardly
biodegradable substrates has been suggested [71].
However, more fundamental knowledge on the correla-
tion of refractory organic matter with TOrCs in biological
systems, the structural similarities between different

substrates and TOrCs, and potential effects of substrate
addition are needed to turn this conceptual approach into
technical applications. In several studies, removal of
TOrCs has been associated with the activity of ammo-
nium monooxygenases (AMO) [35,72], but direct
participation of AMO in biotransformation could only be
evidenced for few TOrCs [36]. Pre-adaptation strategies
with elevated concentrations of a specific TOrC to
stimulate the generation of specific enzymes have been
proposed, for example, to remove metaldehyde during
drinking water biofiltration [73]. The success of this
approach depends on the capability of the microbial

community to generate TOrC-specific enzymes, and also
on the potential to maintain microbial degradation at
environmentally relevant concentrations. Besides
thresholds for microbial growth, this might also be
determined by other factors such as the general
bioavailability of the target TOrC or mass transfer limi-
tations. In any case, the spiking of significant amounts of
ammonia, individual TOrCs, or other chemicals to
enhance biotransformation of TOrCs is not warranted in
many cases where drinking water quality may be affected.

Classical ways to increase the microbial biomass and
therefore increase the overall removal potential [74],
may include the addition of enzymatic cofactors, or the
adjustment of the C:N:P ratio to remove the main mi-
crobial growth limiters [75]. However, to the best of our
knowledge, these concepts still have to be tested in
MAR systems.
Conclusions
Specific conclusions of this review include:

- Biotransformation of TOrCs in MAR systems depends
on many factors including environmental conditions,
substrate availability, and abundance of degrading mi-
croorganisms or interactions. Most effective removal for
many TOrCs has been reported under oxic conditions.
www.sciencedirect.com
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- Assessment of biotransformation mechanisms, path-
ways, and relevant enzymes is challenging due to low
environmental concentrations of TOrCs and their
massive structural diversity. New analytical and
experimental concepts are needed.

- Sequential managed aquifer recharge technology
(SMART) has been proposed to enhance TOrC
biotransformation under controlled oxic and carbon-
limited conditions.

- Inoculation of specific TOrC degraders in MAR sys-
tems is difficult because low concentrations of TOrCs

provide little advantage compared to autochthonous
microorganisms. New concepts might involve niche
expansion or the introduction of functional genes (on
plasmids). These approaches have not been tested in
MAR systems.

- Biostimulation by addition of either heterogeneity,
growth substrates or co-factors for enzymes is a
promising tool in groundwater remediation. Trans-
ferability to MAR systems, however, is limited due to
the high variability of different TOrCs as well as the
potential adverse effects on ground- and drinking
water quality from spiking of chemicals such as nitrate

or phosphorus.
- The implementation of the aforementioned concepts
to enhance biotransformation of TOrCs must always
be precluded by consideration of site-specific factors
such as subsurface heterogeneity, water flow dy-
namics, and soil chemistry as these parameters can
strongly affect the applicability of individual
approaches.

- Besides characterization and optimization of TOrC
biotransformation, research is needed to develop
concepts to validate reliability of treatment perfor-

mance in MAR systems. Potential indicator chemicals
and surrogate parameters for monitoring of TOrCs
biotransformation have been suggested in previous
studies [76,77].
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