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Abstract—TIrregular applications, such as graph analytics and
sparse linear algebra, exhibit frequent indirect, data-dependent ac-
cesses to single or short sequences of elements that cause high
main memory traffic and limit performance. Data compression
is a promising way to accelerate irregular applications by reduc-
ing memory traffic. However, software compression adds substan-
tial overheads, and prior hardware compression techniques work
poorly on the complex access patterns of irregular applications.

We present SpZip, an architectural approach that makes data
compression practical for irregular algorithms. SpZip acceler-
ates the traversal, decompression, and compression of the data
structures used by irregular applications. In addition, these ac-
tivities run in a decoupled fashion, hiding both memory access
and decompression latencies. To support the wide range of access
patterns in these applications, SpZip is programmable, and uses
a novel Dataflow Configuration Language to specify programs
that traverse and generate compressed data. Qur SpZip imple-
mentation leverages dataflow execution and time-multiplexing to
implement programmability cheaply. We evaluate SpZip on a
simulated multicore system running a broad set of graph and
linear algebra algorithms. SpZip outperforms prior state-of-the
art software-only (hardware-accelerated) systems by gmean 3.0 x
(1.5x) and reduces memory traffic by 1.7 x (1.4x). These benefits
stem from both reducing data movement due to compression, and
offloading expensive traversal and (de)compression operations.

I. INTRODUCTION

Irregular applications, like graph analytics and sparse linear
algebra, are an increasingly important workload domain [66,
80]. These applications are often memory bandwidth-bound, as
they suffer frequent memory accesses with poor locality. For ex-
ample, graph algorithms process sparse graphs whose footprint
far exceeds on-chip storage [26, 60] and take few instructions
to process each vertex and edge, which requires reading or
updating small elements scattered over gigabytes of memory.

Since many irregular algorithms are memory bandwidth-
bound, data compression is an attractive way to accelerate
them. Compressing data reduces main memory traffic by both
reducing transfer sizes and increasing effective on-chip capacity.

However, data compression is hard to apply to irregular ap-
plications. Irregular applications use sparse data structures that
store only meaningful relations, like nonzero elements in a
matrix or neighbors in a graph. Sparse data structures induce
frequent indirect, data-dependent accesses to single or short
sequences of elements. These indirections arise either within a
data structure (e.g., when traversing a sparse matrix) or across
data structures (e.g., when visiting neighboring vertex data in a
graph algorithm). These complex access patterns already limit
performance, and software compression overheads would make

data accesses even more expensive. Practical support for com-
pression thus requires hardware acceleration.

In this work, we propose architectural support to make data
compression practical for irregular algorithms. Our approach
builds on two key insights. First, ideally, we should optimize the
representation and compression algorithm of each data struc-
ture for the data statistics and access patterns generated by
the application. For example, some graph algorithms, like BFS,
only process the neighbors of a subset of vertices each iteration;
in this case, we must support efficient access to the neighbors of
a single vertex, but each neighbor set can itself be compressed.
But other algorithms, like PageRank, traverse the neighbors of
all vertices in sequence, so multiple neighbor sets can be com-
pressed together, increasing efficiency. Second, specialized hard-
ware should handle both the traversal and the decompression
of these data structures, because these operations are naturally
interleaved. For example, BFS as described above first accesses
a frontier data structure to find which vertices to visit, then the
graph data structure to fetch and decompress the neighbors of
each vertex, and finally accesses each neighbor’s data.

Following from these insights, we propose SpZip, specialized
hardware support for traversing and generating compressed data
structures. SpZip combines two desirable characteristics. First,
it is programmable to handle a broad range of complex access
patterns and data structures. Second, it exploits decoupled exe-
cution to hide the latencies of compression/decompression and
memory accesses: cores offload data structure traversals to a
separate unit, which runs them ahead of execution.

Prior work lacks some or all of these ingredients. Compressed
main memory and cache architectures [7, 8, 9, 30, 55, 56, 57]
compress individual cache lines or pages transparently to soft-
ware. Though they support random accesses, they are unaware
of application semantics, so they sacrifice significant opportuni-
ties to compress small, variable-sized chunks of data. Moreover,
they do not exploit decoupled execution, slowing down critical-
path accesses. As we will see in Sec. V-D, these systems achieve
limited benefits on irregular applications. Some processors fea-
ture hardware compression engines, but they support only long
data streams that are accessed sequentially [1, 4, 69]. Prior work
has also proposed specialized fetchers and prefetchers [5, 6, 13,
44, 73] for specific access patterns (e.g., single indirections).
Though these techniques reduce access latency, they are not
programmable, so they are limited to specific access patterns
and data formats, and do not support compression.

SpZip hardware consists of two main components:
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1) The SpZip fetcher accelerates the data traversal and decom-
pression tasks offloaded by the core. Each fetcher is decou-
pled from the core, and runs the traversal ahead of time to
hide memory access and decompression latencies. Internally,
the fetcher uses a novel design that exploits decoupling and
time-multiplexing to implement programmability cheaply.

2) The SpZip compressor is the dual of the fetcher, compressing
newly generated data before it is stored off-chip. This enables
applications to compress read-write data, rather than being
limited to read-only data structures.

To make SpZip programmable, we introduce the Dataflow
Configuration Language (DCL), which allows one to express
programs that traverse or generate compressed data structures.
DCL programs consist of an acyclic graph of simple, compos-
able operators: memory-access operators that fetch/write data
streams, and decompression/compression operators that trans-
form these streams. SpZip adopts the DCL as its hardware-soft-
ware interface, enabling it to support both a wide range of access
patterns, and data representations tailored to these patterns.

To demonstrate SpZip’s effectiveness, we apply it to several
graph applications and sparse linear algebra kernels. We en-
hance a multicore CPU with SpZip, with per-core fetchers and
compressors. We find that SpZip substantially accelerates irreg-
ular applications, due to both offloading costly data structure
traversals and data compression. However, we find that com-
pression has limited benefits on basic (Push or Pull) algorithms,
because memory traffic is dominated by scattered accesses to
single elements, where compression is ineffective. To boost the
benefits of compression, we study three optimized execution
strategies that were proposed to improve locality in irregular ap-
plications: Update Batching (a.k.a. propagation blocking) [15,
36], PHI [46], and preprocessing techniques [10, 21, 70]. These
optimizations reduce or eliminate incompressible accesses, and
in the case of preprocessing, improve value locality (clustering
similar values), so compression often reduces data movement
by over 2x. SpZip significantly benefits all execution strategies,
including those that were the most effective, and compression
sometimes changes which strategy is most effective.

We evaluate SpZip using detailed simulation on a wide range
of irregular algorithms processing large inputs. Over a multicore
without hardware support, SpZip improves performance by
gmean 3.0x and up to 5.2, and traffic by 1.7x. Over PHI [46],
a state-of-the-art hardware technique to reduce data movement
in irregular applications, SpZip improves performance by gmean
1.5x (1.8x with preprocessing) and up to 1.9x, and traffic
by 1.4x (1.7x with preprocessing). Finally, SpZip is cheap,
adding only 0.2% of area to each core. These results show that,
with the right hardware support, compression is an effective
approach to improve performance on irregular applications.

II. THE SpZip DCL AND ITS APPLICATIONS

The Dataflow Configuration Language (DCL) is SpZip’s
hardware-software interface. In this section, we first give an
overview of the DCL (Sec. II-A). Then, we present the DCL
by example, showing how it can be used to traverse sparse
data structures (which are common in irregular applications),

optimize their representation (Sec. II-B), and to accelerate more
complex traversals that span multiple data structures (Sec. II-C).
Finally, we introduce prior optimizations for irregular applica-
tions and show that they are synergistic with SpZip, by making
compression more effective (Sec. II-D). For concreteness, we
focus on graph applications, though SpZip also supports other
irregular applications (like sparse linear and tensor algebra).

This section serves a dual purpose: it presents all necessary
background on irregular applications and motivates SpZip and
the DCL by showing its generality and effectiveness. By intro-
ducing the DCL early, we can present this background under
a common framework.

A. SpZip DCL overview

The SpZip DCL allows expressing algorithms that traverse
or create data structures that may be compressed. The DCL en-
codes each algorithm as an acyclic graph of memory-access and
(de)compression operators. Operators communicate through
streams: each operator takes in a single input stream and streams
outputs to one or more consumers.

Memory-access operators can be either indirections or range
fetches. An indirection operator takes a sequence of indices ¢
as input, and for each 4, it fetches and outputs A[i]. A range
fetch operator takes a sequence of index pairs ¢ : j as input, and
for each pair, it fetches and outputs A[i], A[¢ +1], ..., A[j —1].
Each operator is configured with some static metadata, like the
address of A and the size of each element.

Decompression/compression operators change the represen-
tation of their input stream, implementing decompression (for
traversals) or compression. Each system may support multi-
ple compression formats (e.g., delta encoding [57], run-length
encoding [67], BPC [35], etc.), each resulting in a different
compression and decompression operator.

Queues implement the input and output streams of operators.
Queues connect operators and also serve as the inputs and out-
puts from/to cores. Queues enable decoupled execution [63],
externally (the traversal runs ahead of the core) and dataflow
execution [25] internally (each operators runs as soon as its in-
puts are available), hiding the latency of memory accesses and
decompression and exposing pipeline parallelism. Because op-
erators fetch and produce variable-sized chunks of data, queues
include markers to denote the start and end of each chunk.

B. Applying the DCL to sparse data structures

Sparse data structures represent collections of mostly zero
elements by representing only nonzero values and their coordi-
nates. They are commonly used in irregular applications where
the traversal of sparse data manifests as multiple levels of in-
direct, data-dependent accesses to single or short sequences of
elements in the memory. Therefore, understanding sparse data
structures helps to uncover the challenging access patterns and
compression opportunities in irregular applications.

Fig. 1 illustrates the Compressed Sparse Row (CSR) format,’
which encodes a sparse matrix row by row. CSR uses two arrays,

IThe term compressed here means that zeros are not explicitly stored. To
avoid confusion, in this paper we use the term compression only to refer to
data (entropy) compression, and refer to CSR simply as a sparse data structure.
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C0|§ Compressed Sparse Row (CSR) format
0 1 b 3 01234
0 a offsets |0|24|5|7
21|c|0]d
22 e rows [La[2,b[0,cl2,d[3e]1f[2zg]
3 f g - {coordinate, value} pairs
Fig. 1. Compressed Sparse Row (CSR) matrix format.
Memory
offsets[4] rows[3] _marker (row-end
[0:5]Range [2:4]Range [0cR[2b]La =
inputQ offsetsQ rowsQ

Fig. 2. DCL pipeline that traverses CSR matrix from Fig. 1.

offsets and rows. For each row index i, offsets[i] stores
the starting location of the i** row in the rows array. Each
element of the rows array stores the column coordinate of a
nonzero element and its value.

Fig. 2 shows how the DCL encodes the traversal of the sparse
matrix in Fig. 1, using a simple pipeline with two
operators. The first operator fetches the contents of the offsets
array, and the second operator interprets these offsets as ranges
to the rows array to fetch the contents of each row.

With this implementation, the core specifies ranges of rows
to be fetched by enqueueing them to the input queue, and then
consumes the rows by dequeueing from the output queue. In
the example, the core has enqueued the range 0:5, denoting
a traversal of the whole matrix (traversing smaller ranges is
also useful, e.g., with parallel processing). Note how queues
decouple operation: the first range-fetch operator is currently
fetching the last offset (7), the second operator is fetching the
second element of the second row (2,d), and the core has not yet
consumed anything. Because rows are variable-sized, a marker

denotes the end of each row (4 between and ).
Memory
[T 1Tl T T={Decompress j= T T =
input offsets Compressed rows rows

Fig. 3. DCL pipeline for matrix where each sparse row is entropy-compressed.

Data compression can further reduce the size of sparse data
structures. For example, consider a variant of the CSR format
in Fig. 1 where each row is individually compressed, e.g., with
delta encoding, and the offsets array points to the start of
each compressed row. Ligra+ [62] uses such a format to reduce
bandwidth and graph size. But Ligra+ achieves small speedups
because it decompresses rows in software. SpZip avoids these
overheads by supporting decompression operators in the DCL.

Fig. 3 shows a DCL pipeline to traverse this CSR variant with
data-compressed rows. Compared to Fig. 2, the key change is
the addition of a operator that takes compressed
rows as input and produces uncompressed rows. As before, this
decompress operator is decoupled from the core and other stages
through queues, allowing SpZip to hide decompression latency.
DCL’s generality: Though we have focused on a specific data
format and access pattern, the DCL supports many other access
patterns and data structures. For instance, compressing each
row individually is sensible if we require accesses to random
rows; for programs that access long chunks, we could compress
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several rows at once, and offsets could also be compressed.
Fig. 1 shows coordinates and values stored contiguously, but
applications often store them separately; the DCL can handle
them with two parallel range fetch operators. The DCL can
also handle many other sparse formats, which recent work has
systematized as a composition of access primitives that the
DCL supports [19, 37, 67], including matrices in DCSR, COQO,
DIA, or ELL; higher-dimensional tensors and tiled variants; and
graphs in adjacency lists and their blocked variants, common
in streaming graph analytics [27, 39]. Moreover, the DCL is
not limited to a single data structure, as we will see next.

C. Applying the DCL to graph algorithms

Irregular applications are characterized by indirect, data-
dependent accesses across or within data structures. So far we
have seen how DCL expresses the traversal of a single sparse
data structure. Since most irregular applications use multiple
data structures, effective acceleration requires handling access
patterns that span data structures, including read-only and read-
write data. To illustrate this, we focus on graph algorithms.

Most graph algorithms proceed in iterations. On each iter-
ation, the data of each vertex is updated based on the data
of neighboring vertices. There are two basic execution styles:
Push (source-stationary) and Pull (destination-stationary). In
Push algorithms, source vertices (i.e., those whose values must
be propagated) are processed one by one, and each vertex prop-
agates (pushes) its update to its outgoing neighbors. In Pull
algorithms, destination vertices are processed one by one, and
each vertex reads (pulls) updates from its incoming neighbors.

Push and Pull algorithms

3 @@ vertices 0123
use the same main data struc- offsets m....
tures: the graph adjacenc
graph adjacency  oi" @) neighs (T oRIEMAD]

matrix, usually in CSR for-
mat as shown in Fig. 4, en-
codes the outgoing (Push) or incoming (Pull) edges of each
vertex; and one or more arrays that hold algorithm-specific
per-vertex or per-edge data.

Fig. 4. Adjacency matrix in CSR.

1 def PageRankIter(Graph g, Array scores,
2 Array contribs):
3 for src in range(g.numVertices):
4 for dst in g.neighs[g.offsets[src]:
5 g.offsets[src+1]]:
6 scores[dst] += contribs[src]
Listing 1. Single iteration of Push PageRank.
Listing 1 Source Vertex Data  contribs
shows pseu- (Range] 2l

docode for Adjacency Matrix

one iteration [ [1(Range}= T T} > [ [ =
input offsets neighbors

of Push  (srcrange) Destination Vertex Data T

PageRank. (Prefetch Only) ndir

In this code, Fig. 5. DCL pipeline for Push PageRank.

vertices push updates (contribs) to their out-neighbors,
adjusting their scores (in a second phase, not shown, the
score and contrib of each vertex are updated for the next
iteration). Accesses to destination scores require two indirec-
tions (offsets—neighbors—scores) that span two data
structures (the adjacency matrix and the scores array).
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1 def BFS(Graph g, VertexId root):

2 curDist =

3 frontier = [root], nextFrontier = []

4 Array dists(g.numVertices, INFINITY)

5 while !frontier.empty():

6 for src in frontier:

7 for dst in g.neighs[g.offsets[src]:
8 g.offsets[src+1]]:
9 if dists[dst] == INFINITY:
10 dists[dst] = curDist
11 nextFrontier.append(dst)
12 curDist += 1
13 frontier = nextFrontier
14 nextFrontier = []
15 return dists

Listing 2. Push-based BFS.
Frontier Adjacency Matrix

T {Range J=» | T={ indir =T}

input active offsets neighbors
(frontier vertex Destination Vertex Data }-
range) ids (Prefetch Only) ll m

Fig. 6. DCL pipeline for non-all-active, Push BFS.

To accelerate PageRank with SpZip, the DCL encodes a pro-
gram that traverses all data structures, and the core is dedicated
to the compute operations (line 6 of Listing 1). Fig. 5 shows
the DCL pipeline that achieves this, divided in three regions.
The region traverses the adjacency matrix and fetches
neighbor ids (dst); the region fetches source vertex data
(contribs); and the region prefetches destination ver-
tex data (scores). In this case, destination vertex data are not
passed to the core, because updates to scores must be done with
atomics (as with parallel execution, multiple cores may update
the same destination). This prefetching is accomplished with
an indirection operator (which accesses scores[dst] for each
dst at its input queue) that does not have an output queue. Be-
cause the fetcher is colocated with the core, this prefetch leaves
data nearby (at the core’s L2 cache in our implementation).
All-active and non-all-active algorithms: Some graph algo-
rithms, like PageRank in Listing 1, are all-active: they process
all graph vertices on each iteration. By contrast, non-all-active
algorithms maintain a subset of active vertices, known as the
frontier, and process only the active vertices on each iteration.

Listing 2 shows the code for a non-all-active algorithm, Push

Breadth-First Search (BFS). BFS keeps the active source ver-
tices in the frontier data structure. Fig. 6 shows the DCL
program for BFS, which fetches neighbor (destination vertex)
ids and prefetches their distances. Compared to PageRank, BFS
has another level of indirection, shown in grey, to access the
frontier and fetch active vertex ids. Due to this extra indirection,
BFS has non-contiguous accesses to offsets.
Data compression can be added to DCL application pipelines
just like we saw in Sec. II-B. In general, compression oppor-
tunities exist whenever the application accesses contiguous
sequences of elements, i.e., after range fetch operators. For ex-
ample, in PageRank, we could compress neighbors and offsets
(or chunks of them), and in BFS, we could compress neigh-
bors and the frontier (but not offsets, which are accessed non-
contiguously). In this way, we can tailor the representation of
each data structure to the application’s specific access patterns,
maximizing the benefits of compression.
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Fig. 8. Performance and traffic of BFS on uk-2005 with preprocessing,
normalized to Push with preprocessing.

SpZip benefits: Fig. 7 reports the performance (left) and mem-
ory traffic (right) for different variants of the non-all-active
BFS, processing a large web graph on a 16-core system (see
Sec. IV for methodology). The two leftmost bars compare a
software-only Push implementation and the Push implemen-
tation enhanced with SpZip. SpZip is 1.7x faster than Push.
However, this speedup stems almost exclusively from acceler-
ating traversals, and compression barely helps: both variants
incur about the same memory traffic.

To see why, Fig. 7 breaks down traffic by data type.? First,
scatter updates to dominate, con-
suming over 80% of traffic. Because these are accesses to single
elements, SpZip does not compress them. Second, most of the
remaining traffic is to the , for which SpZip
compresses neighbor sets. However, this graph has neighbor
ids that are highly scattered, so compression barely helps.

Overall, SpZip outperforms Push because it relieves cores
from costly traversals and misses, effectively saturating memory
bandwidth. To improve performance further, we must reduce
memory traffic. To this end, we now discuss optimized exe-
cution strategies that improve locality and make compression
more effective.

D. Graph processing optimizations

Update batching (UB) [15, 36] also known as propagation
blocking [15] or DRAM-conscious clustering [36], improves
the spatial locality of Push algorithms by transforming the
cache misses from scatter updates, which often dominate traffic
(Fig. 7), into batches of sequential memory accesses.

Listing 3 shows an example UB application, serial PageRank.
UB splits execution into two phases, binning and accumula-
tion. In the binning phase, each source vertex generates updates
(contribs) for its neighbors from its vertex data. Instead of
directly applying these updates to destination vertices as Push
does, updates are buffered in bins (as {dst, contribs[src]}
tuples). Each bin collects updates destined to a cache-fitting
range of destination vertices. In the accumulation phase, the al-
gorithm applies updates bin by bin to update the vertex scores.

2This BFS is a different variant from the one in Listing 2: it builds the BES
tree (Sec. IV), so it has , as Fig. 7 shows.
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1 def PageRankIter(Graph g, Array scores,

2 Array contribs):

3 # Binning phase

4 for src in range(g.numVertices):

5 for dst in g.neighs[g.offsets[src]:

6 g.offsets[src+1]]:
7 bId = dst / verticesPerBin

g bins[bId].append({dst,contribs[src]})
10 # Accumulation phase

11 for bin in bins:

12 for {dst, contrib} in bin:

13 scores[dst] += contrib

Listing 3. Serial PageRank using Update Batching (UB).

UB reduces traffic thanks to spatial locality: though binned
updates are large and are spilled to main memory, each bin is
written sequentially, resulting in streaming writes that use full
cache lines, unlike scatter updates. In the accumulation phase,
these scatter updates still happen, but they mostly result in hits
because each bin is restricted to a cache-fitting slice of vertices.

The DCL pipeline for the binning phase of UB-based PageR-
ank (Listing 3) is the same as Fig. 5 except it does not prefetch
destination vertex data. The DCL pipeline for the accumulation
phase consists of one range fetch operator for the bins (and one
decompression operator after it if the bins are compressed).

Fig. 7 shows that UB reduces memory traffic significantly,
by 2.7x. Traffic is now dominated by sequential accesses to
updates, and traffic is small since
it enjoys perfect reuse. Overall, UB is 2.5x faster than Push.

More importantly, UB enables effective compression: each
bin is accessed sequentially, so bins can be compressed well,
reducing the dominant contribution to memory traffic. (We
will see how SpZip compresses bins in detail in Sec. III-C.)
Fig. 7 shows that UB+SpZip reduces update traffic by 1.6x and
overall traffic by 1.4x over UB. Since SpZip also handles UB’s
traversals, it is 2.4x faster than UB and 6.0x faster than Push.
PHI [46] builds on UB and further reduces traffic by adding
hardware support, and provides state-of-the-art data movement
reductions. PHI builds on the observation that the updates in
many algorithms are commutative and associative. PHI lever-
ages this to opportunistically coalesce updates to the same
destination vertex in the cache hierarchy before binning and
spilling them off-chip. Cores push updates to caches, which
buffer and coalesce them. Updates are binned lazily: when a
cache line with updates is evicted from the LLC, its updates
are written into bins. Bins are then spilled to main memory.

PHI and SpZip offer complementary ways to reduce data
movement. Fig. 7 shows that, on BFS, PHI and UB+SpZip
achieve similar traffic and performance. But PHI and SpZip can
be combined to yield even larger benefits: PHI+SpZip reduces
update traffic by a further 1.3x and improves performance
by 26%. Overall, PHI+SpZip is 7.4x faster than Push.
Preprocessing techniques reorder sparse data structures to im-
prove locality [31, 70, 74, 78, 79, 82]. In graph algorithms,
preprocessing reorders vertex ids in the adjacency matrix.

Preprocessing is beneficial only when the graph is reused
enough times to amortize preprocessing cost, which is often
much higher than the algorithm itself. Thus, prior work has pro-
posed lightweight and heavyweight preprocessing techniques.
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Several lightweight techniques use degree sorting [10, 28, 79].
They group high-degree vertices, which are accessed more fre-
quently, improving spatial locality. Other lightweight techniques
use topological sorting, reordering vertices according to their
topology, e.g., through a BFS [21] or DFS [12, 74] traversal or-
der. These algorithms group vertices with many connections, im-
proving temporal and spatial locality. Heavyweight techniques
like GOrder [70] improve locality further, but use complex
algorithms that are orders-of-magnitude slower [10, 45].

Preprocessing improves locality and makes compression
more effective. Fig. 8 shows results for the same experiments
as in Fig. 7, but when the graph is preprocessed with DFS.
Preprocessing dramatically reduces Push’s destination vertex
traffic, as most updates happen to nearby data. By contrast, be-
cause UB does not exploit temporal locality, preprocessing does
not reduce memory traffic, making it far worse than Push. PHI
achieves similar memory traffic as Push but higher performance
thanks to hardware support.

The SpZip variants of each algorithm significantly improve
performance and reduce traffic by about 1.5 thanks to com-
pression. In both Push and PHI, the now
dominates traffic. But while SpZip compression was ineffective
in the original graph, the preprocessed graph has high value
locality: since related vertices are placed nearby, each neighbor
set often has similar ids. Thus, SpZip reduces its size by 2.3 x.
Overall, PHI+SpZip provides the highest speedups: 6.3 over
Push with preprocessing, and 7.4x without preprocessing.

These results show that the best algorithm variant to use
depends on the graph and available optimizations (e.g., whether
preprocessing is practical). We will also later see (Sec. V) that
compression favors topology-based preprocessing algorithms
because they improve value locality further than degree-sorting
preprocessing, which is more widely used without compression.

III. SPZIpP DESIGN

A. SpZip overview | Main Memory

SpZip  consists
of two key com- 2 [ ]
ponents:  fetchers [Fetcher](Compressor - [Fetcher|(Compressor]
that traverse and FH =] E= ERE
decompress  data l Core l Core |

structures and feed Fig. 9. SpZip architecture overview.

them to cores, and compressors that compress new data before
they are stored off-chip. We implement SpZip in a multicore
system. Fig. 9 highlights SpZip’s additions and shows how
they fit into the system: each core has a fetcher, which issues
accesses to the core’s private L2 cache, and a compressor,
which issues accesses to the LLC.

Each core communicates with its fetcher and compressor
through queues: the input and output queues of these units
are exposed to the core. The core uses enqueue and dequeue
instructions to move data between queues and registers.

We first present SpZip’s fetcher (Sec. III-B) and compressor
(Sec. III-C), then discuss system-level issues (Sec. III-D), and
conclude by analyzing SpZip’s small area costs (Sec. III-E).
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B. SpZip fetcher

The SpZip fetcher runs DCL programs to traverse and decom-
press data structures, as we saw in Sec. II. Each core’s fetcher
issues accesses to its L2 cache. This keeps data in compressed
form in the L2 and LLC, increasing their effective capacity.

To begin execution, the core loads a DCL program in the
fetcher, and enqueues some initial inputs to it. The fetcher then
runs decoupled from the core: it issues accesses autonomously
and runs the traversal and data decompression ahead of the
core, filling its output queues with data that the core can then
dequeue. Importantly, unlike prior indirect prefetchers [5, 6,
13, 73], SpZip does not monitor the core’s accesses to infer
which accesses to perform. This is simpler, more efficient, and
supports decompressing data in ways that prefetchers cannot.
However, it does require changes to programs.

We first discuss the microarchitecture of the fetcher, then
explain how to modify programs to use it. (Though we show
application code using SpZip directly for illustration purposes,
our implementation uses SpZip through a Ligra-style runtime,
and leaves application code unchanged—see Sec. III-D.)
Fetcher microarchitecture: The key challenge in implement-
ing the SpZip fetcher is how to implement programmability
efficiently. Prior fetch units [38, 40, 44] implemented either a
fixed-function pipeline, or provided some configurability by
disabling or configuring components within a fixed pipeline.
But SpZip requires a more flexible approach.

A possible fetcher implementation would be to adopt a re-
configurable design, with multiple fetch and decompression
operators and queues that can be wired through a configurable
interconnect to implement DCL programs. However, this is
costlier than needed. Instead, we observe that, when each op-
erator is implemented as a specialized unit with reasonable
throughput (e.g., a range fetcher or decompressor that can pro-
duce up to 32 bytes/cycle), operators have relatively low activity
factors: to consistently run ahead of cores, it suffices for one
operator to fire 33% of the cycles in our applications.

This observation leads us to a time-multiplexed fetcher design,
shown in Fig. 10, where operators and queues share the same
physical units. The fetcher has three types of components:

o The scratchpad stores the queues of the DCL program. Each
queue uses a region of the scratchpad, and is managed as a
circular buffer, with head and tail pointers as shown in Fig. 10.

o Two functional units (FUs), the access unit and the decom-

pression unit, implement the functionality needed by the

memory-access and decompression DCL operators.

The scheduler chooses which operator to execute each cycle.

It keeps multiple operator contexts. Each context holds the

configuration and input/output queue ids of a single operator

in the DCL program. The scheduler tracks which operators
are ready to execute, and picks one each cycle.

This design achieves high throughput by exploiting dataflow

execution and by decoupling operators through queues: each

operator fires only when its input queue has an element to pro-
cess and its output queues have sufficient space, and operators
can run ahead and buffer results in queues, hiding memory and

SpZip Fetcher

cess u
agen resp

Decomp unit |
Delta BPC }

Scheduler ]

ctxt 0]« ctxt k
[m]
min head tai ma): Scratchpad

enqueue - W dequeue
Core

Fig. 10. SpZip programmable fetcher microarchitecture.

configure

decompression latencies. This design supports any DCL pro-
gram with as many operators as contexts and as many queues
as the scratchpad can track (16 each in our implementation).
Access Unit (AU): The AU implements both memory-access
operators: indirections and range fetches. The AU is internally
decoupled to support many outstanding memory requests, as
shown in Fig. 10: the address generator (agen) issues a mem-
ory request for each indirection or range fetch, and the response
handler (resp) tracks of outstanding requests and writes data
to output queues as responses are received. Memory requests
are sent to the L2 cache, but they often miss, so the AU sup-
ports multiple outstanding requests (up to 8 cache lines in our
implementation) to hide memory latency.

Decompression Unit (DU): The DU implements decompres-
sion operators. Its implementation includes decompression logic
for all supported compression algorithms.

We use two algorithms in our design, delta encoding [57] and
Bit-Plane Compression (BPC) [35], because we observe that
no algorithm dominates. Our delta-encoding implementation
simply subtracts the previous and current inputs, and emits an N-
byte output if their delta (plus a small length prefix) fits within
N bytes (some prior work calls this a byte code [62]). BPC uses
a more sophisticated encoding but needs longer chunks (e.g.,
32 elements) to compress effectively. Thus, delta encoding is
preferable on short streams, like individual neighbor sets, and
BPC on longer chunks, like bins in Update Batching.
Scheduler: The scheduler decides which operator context to
execute and arbitrates reads and writes to the queues. It uses
queue occupancy to determine which operators are ready. An
operator is ready if its input queue has an element, its output
queues have sufficient free space, and its functional unit (FU) is
available (e.g., the AU may be filled with inflight requests). The
scheduler follows a round-robin policy among ready operators.
To issue an operation, the scheduler feeds the head of the input
queue to the FU, along with the context id. (Though contexts
are shown separately in Fig. 10, each context is specialized
to an FU, and tracks FU-specific information, e.g., the current
index for each range fetch.) The scheduler also arbitrates writes
to queues performed by the access and decompression units.
Queues and markers: Queues are held in the scratchpad. Each
queue is managed as a circular buffer, and tracked with the
usual pointers: min/max and head/tail. Queues take and serve
elements of various widths, as specified by their operators. For
example, a range fetch can consume 8, 16, 32, or 64-bit indexes.

Queues implement markers to support variable-length chunks:
each 32-bit word is tagged with a marker bit; if set, the word is
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id Qmin maxg head tail ~ang! ID?
0 0 64 0 0 - N

T Fange- T} Range Tl i o Tl
2 320 | 832 | 320 | 320
3 | 832 |89 | 832 | 832 | pecompression Unit Contexts Tl
4 | 869 |1408| 896 | 896 | type inQ outQs width lastVal 5
5 [1408|1920]1408[1408] [delta] 4 [2,5] 4 [ 0 |

Access Unit Contexts For range fetch useEndAs marker
type inQ outQs idxSz (B) elemSz (B) baseAddr curldx rangeEnd NextStart value

range | 0 1 8 8 contribs 0 0 No 0

range | 0 3 8 4 offsets 0 0 No

range | 3 4 4 4 cNeighs 0 0 Yes 1

indir | 5 - 4 8 scores - - - -
Fig. 11. DCL pipeline (top right) and fetcher configuration (queue configuration

and FU contexts) for Push PageRank with compressed neighbors.

i

\ def PageRankIter(Graph g, Array scores,

Array contribs):
spzip_fetcher_cfg(...) # load Fig.11 pipe
inQ = 0, contribsQ = 1, neighQ = 2
enqueue (inQ, {0, g.numVertices})
while contrib = dequeue(contribsQ)

is not marker:
dequeue (neighQ)
is not marker:
scores[dst] += contrib

while dst

SOOI N W —

—_

Listing 4. Serial Push PageRank using SpZip fetcher.

interpreted as a marker instead of data. The range fetch operator
emits a marker after finishing each range, and the decompression
operator interprets each range as the end of a compressed chunk.
Each range fetch operator can specify a value associated with
each marker, and all operators have pass-through semantics for
markers: each marker at the input is copied to the output queues.
This lets the core infer the semantics of dequeued elements. For
example, in the BFS pipeline from Fig. 6, the core can identify
the end of each neighbor set thanks to markers produced by
the range fetch, and the end of each frontier range
thanks to markers produced by the earlier frontier range fetch.
Fetcher usage and API: To load a DCL program in the fetcher,
the core writes the configuration (sizes and locations) of all
queues, as well as the configuration of each operator context.
Fig. 11 shows the configuration for a variant of Fig. 5’s PageR-
ank pipeline where, in addition, neighbor sets are compressed.
This configuration is done rarely, through memory-mapped I/O.

Listing 4 shows pseudocode for an iteration of serial Push
PageRank (similar to Listing 1) using the DCL program from
Fig. 11. The spzip_fetcher_cfg(...) runtime function con-
figures the fetcher as described above, and enqueue() and
dequeue() translate to specialized instructions. The initial
enqueue starts a traversal of the full compressed graph (by
enqueueing the range {0, g.numVertices} to queue O in
Fig. 11). The code then dequeues contribs and neighbor ids,
and applies each source’s contrib to its neighbors’ scores. The
dequeue instruction reads the value and whether it is a marker,
and the code exits each loop upon finding a marker. (Our imple-
mentation uses x86, so the marker bit is stored in the overflow
flag; ISAs without flags can use a second output register in-
stead.)

C. SpZip compressor

The SpZip compressor is the dual of the fetcher: it com-
presses newly generated data before it is written back to main
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Fig. 12. SpZip compressor microarchitecture.

memory. The compressor shares many features with the fetcher:
it is a decoupled engine; the core communicates with it us-
ing queues, and configures it using memory-mapped I/O; it is
programmable; and it uses a similar time-multiplexed implemen-
tation. However, the compressor has two key differences. First,
it issues LLC accesses rather than L2 accesses. This avoids
polluting private caches with data that is unlikely to be reused
before being evicted, and lets the engine use the larger LLC to
buffer yet-to-be-compressed data. Second, compressors have a
different mix of operators, to compress and write data streams.

We focus our compressor design on handling either a single
stream (e.g., the frontier in BFS) or many streams (e.g., the
update bins in Update Batching). With simple extra functional
units, the compressor could produce all elements of compressed
sparse data structures (like the CSR with compressed rows from
Sec. II-B; the compressor can currently produce the rows, but
not the offsets, which a core would need to produce). But we
do not need this in the applications we study.
Compressor microarchitecture: Fig. 12 shows the design of
the compressor, which includes a scratchpad for local queues,
several functional units, and a scheduler, just like the fetcher.

The functional units include a compression unit (CU), a
stream writer unit (SWU), and a memory-backed queue unit
(MQU). The first two are used to compress a single stream, and
the last one uses (cached) memory to implement a large number
of queues. This is needed when compressing many streams so
that we can leverage the LLC to buffer them. We explain these
units through DCL pipelines for one and many streams.
Compressing a single stream: Compressed Memory
Fig. 13 shows the DCL {]jmc k| 1

. Compress ‘-b:I:D-D[StreamWr]

pipeline for compressing a

Fig. 13. DCL pipeline to compress a
single stream, like the frontier single stream.
or a sequence of rows. The compression operator processes
the uncompressed input stream, and the stream writer writes
it sequentially to (cached) memory, starting at a configured
address, and tracks the length of the compressed stream. The
input stream uses markers to delimit the chunks to compress
(e.g., to separate rows or denote the end of the frontier).
Compressing many parallel streams: Fig. 14 shows the DCL
pipeline for compressing the bins in Update Batching (UB),
which is the most impactful use of on-the-fly compression in our
applications. Conceptually, each bin is a separate stream. But
UB needs many parallel streams, because each bin is limited to
a cache-fitting slice. For example, a graph with 32 GB of vertex
data and a 32 MB LLC needs 1024 bins. This would take 2048
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Fig. 14. DCL pipeline to compress UB bins (multiple streams).

queues in the fetcher if we followed the single-stream approach
in Fig. 13 (which uses two queues per stream). This would
demand a too-large queue scratchpad.

Instead, the memory-backed queue unit (MQU) implements
queues in conventional memory (without changing the inter-
nals of the cache): both the queue storage and its pointers
are kept in memory. The MQU interacts with memory through
conventional loads and stores (issued to the LLC in our imple-
mentation). The MQU context is simply the number of queues,
and the starting address of an array that holds min, tail, and max
pointers of each queue. The MQU interprets its input queue as
(queueld, value) tuples, and enqueues value to the queue
with queueId. This requires reading and writing the tail pointer,
and writing the value to memory. When an in-memory queue
fills up or the input is a marker, the MQU streams the queue
through its output (as the queueId followed by the contents of
the in-memory queue), and marks the queueId queue empty;
or, if MQU has no output queue, it quiesces and interrupts a
core (e.g., to allocate more space for the queue).

Fig. 14 begins with an MQU that manages one queue per bin.

These queues store uncompressed bin data, and their purpose
is to build large enough chunks (e.g., 32 updates per bin) that
can be compressed efficiently. Once a queue fills up, the chunk
is passed through the compressor from the first MQU. The
compressed chunk is then handled the second MQU, which
manages the compressed bins. Software allocates an initial
amount of space per bin (e.g., 2 MB), and allocates more space
on demand, when the bin fills up, using the interrupt mechanism.
With this approach, the first MQU manages a limited amount
of space that the LLC holds easily, whereas the second MQU
appends to the much larger compressed bins. Compressed bins
typically exceed the LLC’s capacity, so conventional evictions
displace them to main memory.
Compression optimizations for order-insensitive data: As de-
scribed in Sec. III-B, we implement delta-encoding and
BPC [35] compression. In addition, we find that in many cases
compressed data is often order-insensitive: the order in which it
is encoded is irrelevant. For instance, bins store sets of updates,
and the frontier stores the set of active vertices, so reordering
the elements in these streams does not affect semantics.

We leverage this by optionally sorting the elements of a
chunk (32 elements in our implementation) before compressing
it. This places similar values nearby, which improves compres-
sion ratios in both delta encoding and BPC.

Compressor usage and API: Like the fetcher, the compressor
is configured by writing its queue and operator contexts through
memory-mapped I/O. Listing 5 shows pseudocode for serial
UB PageRank. In the binning phase, the fetcher fetches and
decompresses contribs and neighbor ids (like in Listing 4), and
the compressor compresses each bin. In the accumulation phase,
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1 def PageRankIter(Graph g, Array scores,

2 Array contribs):

3 spzip_fetcher_cfg(...) # Fig.11 w/o indir
4 spzip_comp_cfg(...) # Fig.14 pipe

5 inQ=0, contribsQ=1, neighQ=2, binsQ=8

6 enqueue (inQ, {0, g.numVertices})

7 # Binning phase

8 while contrib = dequeue(contribsQ)

9 is not marker:

10 while dst = dequeue(neighQ)

11 is not marker:

12 binId = dst / verticesPerBin

13 enqueue (binQ, {binId, {dst,contrib}})
14 # close bins & wait till they’re produced
15 for binId in range(numBins):

16 enqueue (binQ, {binId, endMarker})

17 spzip_comp_drain() # wait

18

19 # Accumulation phase

20 for cBin in compressedBins:

21 spzip_fetcher_cfg(...)# decompress cBin
22 spzip_comp_cfg(...) # Fig.13 pipe

23 enqueue (inQ, {0, cBin.size})

24 while {dst, contrib} = dequeue(binQ)

25 is not marker:
26 scores[dst] += contrib

Listing 5. Serial UB PageRank using SpZip compressor and fetcher.

the fetcher fetches each compressed bin, and the code applies
the updates in each bin to neighbor scores.

D. System-level integration

Using SpZip: While we have so far shown code that uses
SpZip explicitly, we do not expect application programmers
to write DCL programs directly. Instead, application code can
use specialized runtimes or compilers. In fact, we use a Ligra-
style graph processing framework (Sec. IV), and change only
framework code to use SpZip, not application code. The DCL
program is manually extracted via analyzing the data struc-
tures and their traversal pattern in the graph processing frame-
work. Moreover, domain-specific languages like TACO [37]
and Graphlt [18, 80] encode all the needed information to au-
tomatically generate DCL programs from high-level code.
Parallelism and load balancing: Although prior examples
show serial execution, we use SpZip in a parallel fashion. Our
runtime divides either the vertices (in all-active) or frontier (in
non-all-active algorithms) into chunks, and divides them among
threads. Threads then enqueue traversals to fetchers chunk by
chunk, and perform work-stealing of chunks to avoid load im-
balance. In Update Batching, in the binning phase, threads (and
their compressors) produce bins in parallel; in the accumulation
phase, each bin is also chunked and consumed in parallel by
multiple threads (and their fetchers).

Virtual memory: SpZip operates on virtual addresses. Like
prior indirect prefetchers and fetchers, each SpZip fetcher and
compressor use their core’s address translation hardware [5, 44,
73]. Specifically, fetcher and compressor use the core’s L2 TLB.
If a unit causes a page fault, it interrupts the core, so the OS
can handle the page fault. The unit stops issuing accesses after
a fault, and the OS reactivates it after the fault is handled.
Coherence and consistency: SpZip issues coherent memory
accesses, and does not affect coherence or consistency. But
SpZip engines operate autonomously, like separate threads,
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without any synchronization other than through queues. This
suffices for SpZip to fully handle both read-only data (e.g.,
the adjacency matrix) and read-write data that is produced and
consumed in different phases (e.g., bins in UB and the frontier
in non-all-active algorithms). Some shared read-write data, like
destination vertex data in Push, incurs parallel read-modify-
writes that must happen atomically. In this case, the fetcher
does not serve this shared read-write data directly, though it still
prefetches it (as we saw in Sec. II-C), and leaves the atomics
to the core. These prefetches hide most of the cost of these
accesses, which are frequently served by main memory.

Context switches: Similar to prior fetchers and systems with
explicit queues [42, 44, 49], fetcher and compressor have archi-
tecturally visible state that must be saved and restored when a
thread is context-switched. If the OS deschedules a thread, it
needs to quiesce its fetcher and compressor, save their contexts,
and restore them when the thread is rescheduled. This needs
to be done only when switching to a different process, not on
exceptions or syscalls (just like these do not save FPU state).

TABLE I

E. Area analysts SPZIP AREA BREAKDOWN.

We implement the Fetcher  Area(um?)| Compressor Area (um?)
fetcher and compres- AccU 10.1k  |[MQU & SWU 5.8k

sor in RTL and syn- DecompU  22.5k CompU 25.0k
thesi th . Scratchpad 6.8k Scratchpad 6.8k

esize them zsnﬁg Scheduler ~ 7.9k | Scheduler 7.9k
yosys [71] and the = o0 5 = 45.5k

45nm FreePDK45 li-
brary [48]. We use CACTI [11] to estimate SRAM area. Each
engine uses a 2 KB scratchpad for queues. Our BPC [35] imple-
mentation supports 32- or 64-bit elements, and uses a simple
byte-level symbol encoding for each bitplane.

Table I shows the area cost of each engine. Fetcher and
decompressor add minimal overheads, requiring 0.2% of the
area of a general-purpose core (the Intel Haswell core used in
the evaluated system, scaled to the same technology node).

IV. EXPERIMENTAL METHODOLOGY

Simulation infrastructure: We perform microarchitectural, ex-
ecution-driven simulation using zsim [59]. We simulate a 16-
core system with parameters given in Table II. The system
uses out-of-order cores modeled after and validated against In-
tel Haswell cores. Each core has private L1 and L2 caches, and
all cores share a banked 32 MB last-level cache. The system
has four memory controllers, like Haswell-EP systems [32].

Applications We use seven benchmarks. Three are all-active al-
gorithms: PageRank (PR) ranks vertices in a graph [53]; Degree
Counting (DC) computes the incoming degree of each vertex
and is often used in graph construction [14]; and Sparse Matrix-
Vector Multiplication (SP) is a key sparse linear algebra kernel.
Four are non-all-active: PageRank Delta (PRD), is an optimized
PR variant that only processes vertices with enough change
in their PageRank score each iteration; Breadth-First Search
(BFS) produces the breadth-first tree from a root vertex [14];
Connected Components (CC) partitions vertices of a graph into
disjoint subsets (or components) so that no edge crosses subsets

TABLE 11
CONFIGURATION OF THE SIMULATED SYSTEM.

Cores 16 cores, x86-64 ISA, 3.5 GHz, Haswell-like OOO [59]

L1 caches 32KB per core, 8-way set-associative, split D/I, 3-cycle latency
L2 cache 256 KB, core-private, 8-way set-associative, 6-cycle latency
L3 h 32MB, shared, 16 banks, 16-way hashed set-associative,
cache inclusive, 24-cycle bank latency, DRRIP replacement
4x4 mesh, 128-bit flits and links, X-Y routing, 1-cycle
Global NoC pipelined routers, 1-cycle links
Coherence  MESI, 64 B lines, in-cache directory, no silent drops
Memory 4 controllers, FR-FCFES, DDR3 1600 (12.8 GB/s per controller)

[20]; and Radii Estimation (RE) performs parallel BFS’s from
a few vertices to estimate the radius of each vertex [43].

Datasets: We evaluate TABLE III
graph algorithms on INPUT DATASETS.
ﬁve large Web and Graph Vertices(M) Edges(M) Source
social graphs shown in arb 22 640 arabic-2005 [24]
ukl 39 936 uk-2005 [24]
Table HI. For SpMV, twi 41 1468  Twitter followers [41]
Wwe use a matrix repre- it 41 1150 it-2004 [24]
. web 118 1020 webbase-2001 [24]
sentative of structured
nlp 27 760 nlpkk240 [24]

optimization problems.

We evaluate preprocessed and non-preprocessed variants of
each input. Since several input graphs are already preprocessed,
for the non-preprocessed variants we randomize the vertex ids of
the input graph. Preprocessed variants use DFS by default [12],
and we also study the sensitivity to preprocessing techniques.

Graph algorithms run for several iterations. Since these graph
are large, to avoid long simulation times, we use iteration sam-
pling, simulating every 5th iteration and fast-forwarding others.
This is accurate since the characteristics of graph algorithms
change slowly over iterations. Even with iteration sampling,
we simulate over 100 billion instructions for the largest graph.
Schemes: We use three baselines: Push, Update Batching (UB),
and PHI. We use optimized implementations from the authors
of Propagation Blocking [15] for UB, and from PHI [46].

We enhance these strategies with SpZip. For Push, we com-
press the adjacency matrix, but not vertex data; for UB and
PHI, we compress all structures (adjacency matrix, update bins,
and vertex data); destination vertex data is compressed after
applying each bin in the accumulation phase. We compress the
adjacency matrix using delta encoding, and each application
uses the best of BPC [35] and delta encoding for the other
structures. To integrate PHI and SpZip, we change PHI so that,
when a line with updates is evicted from an LLC bank, we
send the line’s updates to the compressor in the same chip tile.
Framework: We implement all algorithms on a carefully op-
timized framework based on Ligra [61]. We modify the frame-
work’s code to implement all of the above schemes; application
code remains unchanged.

V. EVALUATION
A. SpZip improves performance and reduces memory traffic

Fig. 15 reports the performance (higher is better) and off-
chip memory traffic (lower is better) for all schemes without
and with DFS preprocessing. All results are normalized to Push.
Each bar groups shows results for all schemes on one appli-
cation, averaged across all inputs. The last group of each plot
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Fig. 15. Per-application speedups and memory traffic breakdowns for all schemes. S:Push, T:Push+SpZip, U:UB, C:UB+SpZip, H:PHI, Z:PHI+SpZip. Normalized

to Push, averaged across all inputs.

(shaded darker) shows results across applications. Averages are
geometric means for speedups and arithmetic means for traffic.
Results without preprocessing: Fig. 15a shows that SpZip
improves performance for all schemes: SpZip accelerates Push
by gmean 1.6x, UB by 3.0x, and PHI by 1.5x. PHI+SpZip is
consistently the fastest technique: it is gmean 6.1 x faster than
Push (up to 15.4x on DC), and 4.8 faster than UB, the best-
performing software-only scheme. If one does not wish to mod-
ify the cache hierarchy, which PHI does, UB+SpZip offers sim-
ilar speedups (PHI is gmean 8% faster) without PHI’s changes.
These results show SpZip is highly versatile and effective.
Fig. 15b shows that SpZip’s impact on off-chip traffic tracks
what we saw in Sec. II: Push+SpZip barely reduces traffic over
Push because compression is ineffective (except in SP, where
the input is more structured). However, SpZip reduces traffic
substantially over UB and PHI because their access patterns are
more compressible. Across benchmarks, Push and UB achieve
nearly the same traffic (UB is worse on RE and SP). UB+SpZip
reduces traffic by 1.9x on average over Push, PHI by 2.2 x, and
PHI+SpZip by 3.3x (and up to 7.2x on DC). Fig. 15b shows
that SpZip’s data movement reductions stem primarily from
compressing updates, and secondarily from compressing vertex
data. Compression benefits all applications. Its benefits are more
muted on PR and PRD because they have floating-point values
with little value locality, making them harder to compress.
Overall, memory traffic reductions track speedups for
Push+SpZip, UB+SpZip, and PHI+SpZip, as well as for PHI.
This is because these schemes saturate memory bandwidth,
showing that SpZip effectively avoids core bottlenecks by of-
floading traversals. By contrast, Push and UB often do not
saturate memory bandwidth, as traversals bottleneck cores.
Results with DFS preprocessing: Preprocessing changes the
tradeoffs among techniques like we saw in Sec. II: Fig. 15¢ and
Fig. 15d shows that Push now outperforms UB, which is 41%
slower and incurs 3.1 x more traffic. This is because preprocess-
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ing improves locality for destination vertex data in Push, but
does not help UB, which streams all updates to memory even
when they have high locality. Despite its traffic gains, Push is
only 41% faster than UB due to the overheads of atomic updates
to shared vertex data. PHI’s traffic is similar to Push’s because
coalescing updates exploits temporal locality, and is 3.4 x faster
than Push because it avoids synchronization overheads.

Regardless of these changes, SpZip substantially improves
performance across all techniques: SpZip accelerates Push by
gmean 1.5x, UB by 4.2x, and PHI by 1.8x. PHI+SpZip is
consistently the fastest technique: it is gmean 5.9 faster than
Push (up to 16.9x on DC). Despite UB being worse than Push,
UB+SpZip outperforms Push+SpZip because it avoids synchro-
nization overheads, as compression reduces the overhead of
streaming updates to memory. UB+SpZip is also close to PHI
(gmean 36% slower), making it a reasonable approach if im-
plementing PHI is not desirable.

Fig. 15d shows that SpZip’s compression now benefits all
techniques. In Push, compression significantly reduces adja-
cency matrix size and traffic, by 2.3x on average, because
neighbor sets now have similar ids. Thus, Push+SpZip reduces
total memory traffic by 1.4x over Push. UB and PHI also enjoy
the reductions in adjacency traffic, and in addition, see lower up-
date and vertex data traffic. Overall, UB+SpZip reduces traffic
by 2.1x over UB, and PHI+SpZip by 1.7x over PHIL

Results on individual inputs: Fig. 16 and Fig. 17 show re-
sults across all graph applications and inputs without and with
DFS preprocessing. While speedups change per input, the above
trends remain. First, PHI+SpZip is the fastest on all applications
and inputs. Without/with preprocessing, PHI+SpZip achieves
up to 17x/24x speedup (DC on arb) and up to 9.5x/6.2x traf-
fic reduction (DC on twi) over Push. Second, UB+SpZip and
PHI+SpZip yield consistent speedups and bandwidth savings
over Push, UB, and PHI. Third, UB+SpZip is nearly as com-
petitive as (and sometimes better than) PHI most of the time.
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Fig. 16. Per-input memory traffic (top) and performance (bottom) without preprocessing, normalized to Push.
B Push 0 Push+SpZip B UB B UB+SpZip W PHI W PHI+SpZip
.58 € ' &3 @ &3 PP &
£e 2.0 2.0- 2.0- 2.0- 2.0- 2.0-
S 15- 1.5- 15- 1.5- 15- 1.5-
20
g% 1.0- 1.0- 1.0- 1.0- 1.0- 1.0-
2Eo05- 0.5- 0.5- 0.5- 05- 0.5-
o
= c"o‘arb ukl twi it web 0.0- arb ukl twi it web 0.0 arb ukl twi it web 0.0- arb ukl tW| it web 0.0 arb ukl twi it web 0.0- arb ukl twi it web
< L [ [ 4- [
§ 12.5 8 25 2 10
= 10.0~ L 2.0- 3F 8-
g 6 15-
3 75- Ak 15- oF 6-
3 so- 1.0+ 10- ak
§ 2s 2- d 05- 1 5- 2- J
@ 00 arb ukl twi it web 0 arb ukl twi it web 0.0 arb ukl twi it web 0 arb ukl twi it web 0 arb ukl twi it web 0 arb ukl twi it web
(a) PR (b) PRD (c) CC (d) RE (e) DC (f) BFS
Fig. 17. Per-input memory traffic (top) and performance (bottom) with DFS preprocessing, normalized to Push.
Adjacency Source Destination s PHI mm +Adjacency Matrix ~ BmE  +Bin W +Vertex (=PHI+SpZip)
Matrix Vertex Vertex Dl ates —
: z z65
2810~ a
EZ 5 1.5 5 2.0°
ge 3 315
2% 05- o 107 o
22 3 gL
© ..
gt l l l K g% gos:
5 0.0~ o
c n 0.0~ & 0.0-
None DegreeSort BFS GOrder PRD CC RE DC BFSGmean PR PRD CC RE DC BFSGmean

Fig. 18. Memory traffic breakdown of uk-2005 with
different preprocessing algorithms. H:PHI, Z:PHI+SpZip.
Normalized to PHI without preprocessing (None/H), av-

eraged across all graph applications. all inputs.

Without preprocessing, trends are similar across inputs. Pre-
processing benefits inputs differently: in some, preprocessing
uncovers plentiful structure, and Push enjoys good locality. But
other graphs, especially twi, have little community structure,
and preprocessing is less effective: Push suffers significant desti-
nation vertex data misses, the adjacency matrix compresses less
well, and UB and PHI are preferable because batching updates
is a better tradeoff, especially with SpZip’s compression.

B. Impact of preprocessing technique

We have so far used DFS preprocessing; we now study the ef-
fect of compression on preprocessing techniques. Fig. 18 shows
traffic breakdowns (lower is better) of graph uk-2005 for PHI
and PHI+SpZip without preprocessing and with four prepro-
cessing algorithms: degree sorting, BFS, DFS, and GOrder. The
results are averaged across all six graph applications.

Degree sorting is widely used [10, 28, 29, 79], and without
compression (PHI alone), it achieves similar memory traffic to
other preprocessing techniques. But with compression, degree
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(a) Speedup factor analysis w/o preprocessing (b) Speedup factor analysis w/ preprocessing
Fig. 19. SpZip compression factor analysis over PHI. +Adjacency Matrix: enables adjacency matrix
compression, +Bin: adds update compression, +Vertex: adds vertex compression. Averaged across

sorting has a 1.3x gain, whereas the benefits of BFS, DFS, and
GOrder increase to about 1.7 . This is because these algorithms
improve the compression ratio of the adjacency matrix, by
2.3x for BFS, and 2.4x for DFS and GOrder, vs. only 1.4x
for DegreeSort. This happens because topological sorting and
GOrder place highly connected vertices nearby, improving value
locality in neighbor sets: many neighbor ids have similar values,
easing compression. Since DFS and DegreeSort are similarly
lightweight [70, Table 9], and DFS nearly matches heavyweight
GOrder, we use DFS in other experiments.

C. Sensitivity studies

Impact of compression: Fig. 19 shows the impact of com-
pressing different data structures. Each bar group reports per-
formance for a single application, averaged across inputs like
in Fig. 15. Within each group, the leftmost bar is PHI, and the
other bars show how performance grows as more data structures
are compressed (and handled by SpZip): first the adjacency ma-

Authorized licensed use limited to: MIT Libraries. Downloaded on June 02,2022 at 19:58:21 UTC from IEEE Xplore. Restrictions apply.



trix, then the update bins, and finally vertex data. The rightmost
bar, where all data structures are compressed, is PHI+SpZip.

As shown in Fig. 19, compressing each structure helps per-
formance. Without preprocessing, compressing the bins helps
the most overall, as they are the dominant contribution to traffic.
With preprocessing, compressing the adjacency matrix helps
the most overall, as it is the dominant contribution to traffic and
preprocessing makes it compressible. Nonetheless, compressing
vertex data also helps performance by reducing data movement,
especially in all-active applications where both source and des-
tination data are compressed, or in DC, where degree counts
are small and highly compressible integers.

We also evaluate the impact of reordering order-insensitive
data by running CC on UB. Across all inputs, sorting binned
updates in UB improves their compression ratio from 1.26x
to 1.55x. We see similar trends on other applications.
Decoupled fetching vs.
compression: Fig. 20

W PHI +Decoupled Fetching

I +Compression (=PHI+SpZip)

compares the effect ,, 20
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. . 4 [
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. =1 °
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bar reports performance & &

averaged across all appli- 0.0
cations and inputs. The
middle bar ( Fig. 20. Effect of decoupled fetching vs.
compression.

) uses
SpZip without any compression. Decoupling improves PHI’s
performance by a modest 9% and 14% without and with
preprocessing, respectively. By contrast, PHI+SpZip achieves
speedups of 1.5x and 1.8x. Since the system is already
memory bandwidth-bound, decoupling yields minor gains, and
compression is needed to improve performance further.
Sensitivity to queue sizes: Fig. 21

0.0

s None OutDF:

shows the performance of PHI+SpZip £ i
on CC processing the uk-2005 graph £ 1.00-
with different fetcher scratchpad sizes: §°75°
1KB, the default 2KB, and 4KB. §*°°
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all cases. When going from 1KB to = & 2B K8

Fig. 21.  Sensitivity to

2 KB, performance improves by 2.6%
(no preprocessing) and 10% (prepro-
cessing), as deeper queues enable more decoupling. But there
is negligible benefit from further decoupling: a 4 KB scratchpad
has nearly the same performance. This shows that our default
scratchpad size offers sufficient decoupling to hide latency, but
does not incur needless overheads.

fetcher scratchpad size.

D. Benefits of compressed memory hierarchies

Fig. 22 shows results for Push and UB on the same 16-
core system with a compressed memory hierarchy (CMH), con-
sisting of a compressed last-level cache and main memory.
This system uses a VSC [7] LLC with 2x the tags and the
Base-Delta-Immediate (BDI) [57] compression algorithm, and

(a) w/o preprocessing. (b) w/ preprocessing.
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Fig. 22. Speedup and memory traffic of a compressed memory hierarchy
(CMH) over Push on a normal system, averaged across all inputs.

main memory is compressed using Linearly Compressed Pages
(LCP) [56]. LCP can reduce bandwidth by fetching multiple
compressed cache lines per DRAM access [56, Sec. 5.1]). Each
bar in Fig. 22 compares the performance and memory traffic of
an application over the baseline system without a compressed
hierarchy using Push. Results are averaged across all inputs.

Without preprocessing, CMH yields no speedups on Push
and accelerates UB by only 11%. Because Push is dominated
by compression-unfriendly scatter updates (Fig. 15b), CMH
does not reduce memory traffic and compression hurts access
latency; by contrast, SpZip’s prefetching boosts Push’s perfor-
mance. With preprocessing (which is more friendly to compres-
sion), CMH accelerates Push and UB by only 3% and 28% (vs.
1.5% and 4.2x in SpZip). Memory traffic reductions show that
CMH achieves much smaller compression ratios than SpZip,
since it does not exploit application semantics. For example, it
compresses fixed-size lines, which causes larger deltas across
neighbor sets. More importantly, these systems are not decou-
pled, so they are forced to use simple compression algorithms
and layouts to reduce decompression overhead. For example,
to support fast addressing, LCP compresses all lines in a page
to the same size. Thus, a few incompressible lines in the page
make LCP ineffective on the whole page.

By contrast, SpZip does not have these limitations, and im-
proves both performance and memory traffic by tailoring com-
pression to the access pattern and exploiting decoupling to hide
decompression latency.

VI. ADDITIONAL RELATED WORK

We now discuss additional related work not covered so far.
Accelerators for irregular applications: Prior work proposes
specialized accelerators for graph processing and sparse linear
algebra using ASICs [3, 31, 33,47, 52, 54, 58, 64, 65, 76, 77, 81]
or FPGAs [22, 23, 34, 50, 51, 72]. Though we have prototyped
SpZip on a multicore, it would also benefit these accelerators,
in two ways. First, these accelerators do not compress data, so
SpZip would reduce memory traffic. Second, these accelera-
tors use fixed-function pipelines to fetch and write data, which
limits the data structures and algorithms they support. SpZip’s
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programmability would enable them to support more formats
and workloads.
Memory hierarchy optimizations for irregular applications:
Prior work has proposed indirect prefetchers to handle indirec-
tions in irregular workloads [5, 6, 13, 73]. These prefetchers
are limited in the access patterns they handle. Concurrently
with SpZip, recent work has proposed programmable prefetch-
ers [68, 75] that overcome this problem, but they do not reduce
data movement, and only hide memory latency. As we have
seen, irregular applications often saturate memory bandwidth,
so improving performance requires reducing data movement.
HATS [44] is a specialized fetcher that performs locality-
aware graph traversals to reduce data movement. HATS
achieves some of the benefits of preprocessing by running
bounded-depth DFES traversals. HATS and SpZip are comple-
mentary: SpZip’s fetcher could be enhanced to perform locality-
aware traversals, and HATS does not perform compression.
GRASP [29] reduces data movement with a combination
of preprocessing and hardware support: it applies a variant of
degree-sorting (DBG) to segregate high-degree vertices, and
changes the replacement policy to prioritize them. OMEGA [2]
applies the same approach to a hybrid memory hierarchy, pin-
ning high-degree vertices to a scratchpad instead.
Graph compression: Prior work introduces compression algo-
rithms tailored to the adjacency matrix. These software tech-
niques mainly seek to reduce memory capacity, not bandwidth:
since the adjacency matrix is the largest structure, compression
enables in-memory processing of very large graphs. Ligra+ [62]
compresses neighbor sets with simple techniques. But soft-
ware decompression overheads limit its speedup to 14%. Web-
Graph [16, 17] achieves order-of-magnitude capacity savings,
but makes graph operations many times slower. SpZip could
adopt complex compression formats like WebGraph, though
maximizing performance requires handling data beyond the
adjacency matrix.

VII. CONCLUSION

We have presented SpZip, an architectural technique that
makes data compression practical for irregular algorithms.
SpZip targets the wide gap that exists between two extremes:
conventional compression algorithms that work only on long
sequential streams, and compressed memory hierarchies that
support random accesses but are access-pattern-unaware. In the
middle, there are many applications that access short but com-
pressible data chunks, of which irregular applications are a key
example. Since data accesses and (de)compression operations
are naturally interleaved, SpZip accelerates the traversal, decom-
pression, and compression of data structures. To achieve high
performance, these activities run in a decoupled tashion, hiding
both memory access and decompression latencies. To support
a wide range of access patterns, SpZip is programmable, and
uses a novel Dataflow Configuration Language to specify pro-
grams that traverse and generate compressed data. As a result,
SpZip achieves large performance gains and data movement
reductions on a wide set of irregular applications and optimized
execution strategies.
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