Neurocomputing 483 (2022) 474-487

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

EventGraD: Event-triggered communication in parallel machine learning | &

Soumyadip Ghosh *, Bernardo Aquino, Vijay Gupta

Check for
updates

Department of Electrical Engineering, University of Notre Dame, USA

ARTICLE INFO

Article history:

Received 12 March 2021

Revised 28 July 2021

Accepted 8 August 2021

Available online 2 November 2021

Keywords:

Machine learning
Event-triggered communication
Parallel computing

ABSTRACT

Communication in parallel systems imposes significant overhead which often turns out to be a bottleneck
in parallel machine learning. To relieve some of this overhead, in this paper, we present EventGraD - an
algorithm with event-triggered communication for stochastic gradient descent in parallel machine learn-
ing. The main idea of this algorithm is to modify the requirement of communication at every iteration in
standard implementations of stochastic gradient descent in parallel machine learning to communicating
only when necessary at certain iterations. We provide theoretical analysis of convergence of our proposed
algorithm. We also implement the proposed algorithm for data-parallel training of a popular residual
neural network used for training the CIFAR-10 dataset and show that EventGraD can reduce the commu-
nication load by up to 60% while retaining the same level of accuracy. In addition, EventGraD can be com-
bined with other approaches such as Top-K sparsification to decrease communication further while

maintaining accuracy.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Artificial intelligence in general, and machine learning in partic-
ular, is revolutionizing many aspects of our life [1]. Machine learn-
ing (ML) algorithms in various applications have achieved
significant benefits through training of a large number of parame-
ters using huge data sets. Focus has now shifted to ensure that
these algorithms can be executed for complex problems in a rea-
sonable amount of time. Initial speed-ups in ML algorithms were
due to better algorithm design (e.g. using mini-batches) or hard-
ware (e.g. introduction of graphics processing units(GPUs)). How-
ever, to stay relevant, machine learning must continue to scale
up in the size and complexity of the application problem. The chal-
lenge is both in the large number of parameters that need to be
trained and the consequent large amount of data that needs to
be processed.

An obvious answer is to go from one processing element - that
may have neither the memory nor the computational capability
needed for machine learning implementations to solve complex
problems - to multiple processing elements (sometimes referred
to as parallel or distributed implementations) [2,3]. For instance,
there has been a lot of recent interest in machine learning using
artificial neural networks on large-scale clusters such as supercom-
puters [4,5]. Both data-parallel (in which the dataset is divided into

* Corresponding author.
E-mail addresses: sghosh2@nd.edu (S. Ghosh), bcruz2@nd.edu (B. Aquino),
vgupta2@nd.edu (V. Gupta).

https://doi.org/10.1016/j.neucom.2021.08.143
0925-2312/© 2021 Elsevier B.V. All rights reserved.

multiple processors, with each processor having a copy of the
entire neural network model) and model-parallel (in which the
neural network model is divided among multiple processors, with
each processor having access to the entire dataset) architectures
have been considered [6]. For some applications such as federated
learning which involves edge devices such as smartphones or
smart speakers, distributed training is often the only choice due
to data privacy concerns [7].

One of the biggest challenges of training in any parallel or dis-
tributed environment is the overhead associated with communica-
tion between different processors or devices. In high performance
computing clusters, communication of messages over networks
often takes a lot of time, consumes significant power and can lead
to network congestion [8-10]. Specifically for parallel machine
learning, during training, the processors need to exchange the
weights and biases with each other before moving to the next
training iteration. For example, in a data parallel architecture, the
weights and biases among the different processors are averaged
with each other (either directly or through a central parameter ser-
ver) before executing the next training iteration. Such an exchange
usually happens by message passing at the end of every iteration.
As the number of processing elements increases, the issue of such
communication being a major bottleneck in these implementa-
tions is known widely [11-14].

Consequently there has been a lot of research aimed at reducing
communication in parallel machine learning [11-15]. This rich
stream of work has suggested various ways of reducing the size
or number of messages as means of alleviating the communication

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.143&domain=pdf
https://doi.org/10.1016/j.neucom.2021.08.143
mailto:sghosh2@nd.edu
mailto:bcruz2@nd.edu
mailto:vgupta2@nd.edu
https://doi.org/10.1016/j.neucom.2021.08.143
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

S. Ghosh, B. Aquino and V. Gupta

overhead. In this paper, we propose a novel algorithm to reduce
communication in parallel machine learning involving artificial
neural networks. Specifically, we utilize the idea of event-
triggered communication from control theory to design a class of
communication-avoiding machine learning algorithms. In this
class of algorithms, communication among the processing ele-
ments occurs intermittently and only on an as-needed basis. This
leads to a significant reduction in the number of messages commu-
nicated among the processing elements. Note that algorithms to
reduce communication have been proposed in other applications
of parallel computing as well, such as parallel numerical simula-
tion of partial differential equations [16-18].

The core idea of our algorithm is to exchange the neural net-
work parameters (the weights and biases) only when a certain cri-
terion is satisfied, i.e., in an event-triggered fashion. We present
both theoretical analysis and experimental demonstration of this
algorithm. Experimentally, we show that the algorithm can yield
the same accuracy as standard implementations with 60% lesser
number of messages communicated among processors using a
popular residual neural network on the CIFAR-10 dataset. Our
implementation is open-source and available at [19]. A reduction
in the number of messages implies a reduction in both the time
and energy overhead of communication and can also prevent con-
gestion in the network. Theoretically, we show that our algorithm
has a bound on the convergence rate (in terms of number of itera-

. - G2, (K-1
tions) of the order Cc(1 GK-1) 4 Gp®D

Via T VR UK

iterations, n is number of processors, and G(K) and G;,;(K) are
terms related to a bound on the threshold of event-triggered com-
munication. In particular, if the bound on the threshold is chosen
to be a sequence that decreases geometrically as a function of
the iteration number, the bound on the convergence rate becomes

of the order @ (ﬁ

gence rate of parallel stochastic gradient descent in general. An
earlier version of this algorithm without theoretical results was
experimentally demonstrated as a proof of concept on the MNIST
dataset in [20]. In contrast, this paper contains a comprehensive
theoretical treatment of the algorithm with additional experiments
on the CIFAR-10 dataset. In our previous work [18], we have con-
sidered event-triggered communication for a different domain of
parallel numerical partial differential equation solvers and high-
lighted the implementation challenges similar to this paper. How-
ever we considered a fixed threshold without any mathematical
treatment in that work unlike the adaptive threshold along with
theoretical convergence results studied in this paper.

While we focus on data-parallel stochastic gradient descent in
parallel machine learning for theoretical analysis and experimental
verification of the algorithm in this paper, the idea of event-
triggered communication can be applied to model-parallel and
hybrid configurations and can be extended to other training algo-
rithms as well such as Adam, RMSProp, etc. Similarly, event-
triggered communication can also be used in federated learning
where communication can have a more severe overhead due to
the geographical separation between the devices involved in train-
ing such as smartphones.

The paper is organised as follows. Section 2 surveys related
work and Section 3 introduces the necessary background. The pro-
posed algorithm is introduced in Section 4 with theoretical analy-
sis in Section 5 and implementation details in Section 6. Section 7
contains the experimental results followed by conclusion in Sec-
tion 8. For notational convenience, we denote the abbreviation
PE to be a processing element that signifies one core of a processor.

) where K is number of

+ ﬁ) which is similar to the asymptotic conver-

475

Neurocomputing 483 (2022) 474-487
2. Related work

In this section, we review some communication-efficient strate-
gies of distributed training of neural networks from literature. We
primarily focus on parallel stochastic gradient descent [21,22]. We
also review some works on event-triggered communication and
then highlight our specific contributions on using event-triggered
communication for parallel training of neural networks.

Parameter Server — A popular approach for parallelization of
stochastic gradient descent is the centralized parameter server
approach where multiple workers compute the gradients in their
assigned sub-dataset and send them to a central parameter server.
The parameter server updates the neural network model parame-
ters using the individual gradients and sends the updated parame-
ters back to the workers, who then move on to the next iteration.
The original approach results in a synchronized algorithm. This
requirement of synchronization was relaxed by the Hogwild algo-
rithm [23] where the worker PEs can send gradients to the param-
eter server asynchronously without any lock step. Elastic
Averaging SGD proposed by [24] reduces communication by intro-
ducing the notion of an elastic period of communication between
the workers and the parameter server. Other approaches have also
been proposed in the literature [25]. There have been studies to
reduce communication with the parameter server in the context
of federated learning as well [26-28]. However, the parameter ser-
ver approach often suffers from poor scalability due to the depen-
dence on a central node, which can become a bottleneck.

AllReduce - Another popular approach for parallelization of
stochastic gradient descent does not consider a centralized param-
eter server. Rather, every PE maintains a copy of the model and the
PEs average the parameters of the model by communicating in an
all-to-all fashion among themselves using a reduction mechanism
commonly known as AllReduce [29]. Since such all-to-all commu-
nication incurs a lot of overhead, a lot of research has focused on
reducing this overhead by using optimized variants. The authors
in [14] have proposed one-bit quantization where each gradient
update is quantized to 1-bit, resulting in a reduction of the data
volume that needs to be communicated. Threshold quantization
was developed in [30] where only those gradient updates that
are greater than a specified threshold are transmitted after encod-
ing them with a fixed value. A hybrid approach combining both 1-
bit and threshold quantization was given in the adaptive quantiza-
tion proposed in [31]. Deep Gradient Compression in [13] com-
presses the size of gradients and accumulates the quantization
error and momentum to maintain accuracy. Several approaches
have been proposed to minimize communication by reducing the
precision of gradients, e.g., using half precision (16-bit) for training
[32] and mixed precision [33]. Sparsified methods that communi-
cate only the top-k most significant values have been proposed
by [34,35]. Combining the two methods of quantization and spar-
sification is presented in [36].

Reduction with neighbors - Instead of averaging the parame-
ters using all-to-all communication among all the PEs via AllRe-
duce, another approach has been proposed where the averaging
is done only with the neighboring PEs in the topology in which
the PEs are connected [37]. This approach uses ideas from consen-
sus algorithms which is now widely studied in many different
communities [38]. We would like to point out that there is confu-
sion in literature about the term “decentralized” - some works call
the AllReduce approach involving averaging among all PEs as
decentralized because of the absence of a central parameter server
[39], while others call the approach that involves averaging with
just the neighboring PEs as decentralized because it does not

S. Ghosh, B. Aquino and V. Gupta

require any central operation on all the PEs in the topology [37,40].
We adopt the latter usage and call the algorithms that require
averaging with just the neighboring PEs as decentralized. While
it might seem that such a scheme will converge slower than a cen-
tralized approach due to the delayed dissemination of information
to all the nodes, the authors in [40] showed that the convergence
rate is similar in order to the centralized approach after the same
number of iterations provided the number of iterations is suffi-
ciently large. While [40] considers that the neighbors of a particu-
lar PE remain fixed across iterations, there are interesting gossip
algorithms [41-43] that choose neighbors randomly and exchange
information. More recently, the authors in [15] propose an error-
compensated communication compression mechanism in this con-
text using bit-clipping that reduces communication costs.

Event-Triggered Communication - Event-Triggered Commu-
nication has been proposed as a mechanism for reducing commu-
nication in networked control systems [44,45]. Methods employing
event-triggered communication in consensus algorithms have
been variously proposed [46-48]. Closely related to consensus is
the problem of distributed optimization where there have been
various event-triggered approaches proposed [49-51]. Of particu-
lar relevance is [52] which suggests an event-triggered communi-
cation scheme with an adaptive threshold of communication that
is dependent on the state of the last trigger instant in a continuous
time control system.

Our Contribution - The decentralized parallel stochastic gradi-
ent descent in [40] still considers that communication of parame-
ters with neighbor PEs happens at every iteration. Since the values
of the parameters may not change significantly in every iteration,
communication at every iteration may not be necessary. Thus the
main idea behind the algorithms presented in this paper is to com-
municate these parameters in events only when their values
change by a certain threshold. We consider the scenario of data-
parallel training of a neural network in a high performance com-
puting (HPC) cluster where there are fixed neighboring PEs for
every PE and show that communicating in events with neighboring
PEs reduces the number of messages passed in the network.
Decreasing the message count decreases the overall data to be
communicated and as pointed out in literature [11-15], reducing
the data to be communicated reduces the overhead associated
with communication. More concretely, the contributions of our
work are:

e We propose an event-triggered communication algorithm
where the neural network parameters, i.e., the weights and
biases, are communicated only when their norm changes by
some threshold. The threshold is chosen in an adaptive manner
based on the rate of change of the parameters.

We derive an expression for a bound on the convergence rate of
event-triggered communication based on a generic bound on
the adaptive threshold.

We provide an open-source high performance computing (HPC)
implementation of our algorithm using PyTorch and Message
Passing Interface (MPI) in C++. We also highlight implementa-
tion challenges of this algorithm, particularly the need for
advanced features such as one-sided communication, also
called remote memory access and the requirement of the newer
PyTorch C++ frontend over its traditional Python frontend. We
believe that it is not possible to implement event-triggered
communication without remote memory access in any com-
puter network as elaborated later in Section 6. Our implementa-
tion is open-source and available at [19].

The paper closest to ours seems to be [53] where the authors
considered a federated learning scenario and proposed an event-
triggered communication scheme for the model parameters based

476

Neurocomputing 483 (2022) 474-487

on thresholds that are dependent on the learning rate and showed
reduction in communication for distributed training. As compared
to that work, we consider an adaptive threshold rather than select-
ing the same threshold across all parameters. In particular, the
threshold is adaptive to the local slope of a parameter and thus it
can adjust according to the parameter’s evolution which will
depend on factors such as the type of the parameter, the neural
network model and the dataset. Hence the adaptive threshold
makes our algorithm robust to different neural network models
and different datasets. Our theoretical results are based on a gen-
eric bound on the threshold unlike [53] which provides a bound
considering a certain form of threshold dependent on the learning
rate. Further, we highlight the implementation challenges of event-
triggered communication in an HPC environment which is differ-
ent than the federated learning setting considered in [53] that usu-
ally involves wireless communication.

3. Problem formulation

This section lays the mathematical preliminaries for the main
algorithm introduced in the next section. We consider a decentral-
ized communication graph (V, W) where V denotes the set of n PEs
and W € R™" is the symmetric doubly stochastic adjacency matrix.
Wi corresponds to the weight of the state of the i-th PE while Wj;
corresponds to the weight of the state of the j-th PE on the state of
the i-th PE. We assume that W represents a ring topology that
remains fixed throughout iterations. Now the objective of data-
parallel training of any neural network can be expressed as

-l n
min f(x) = — Z EewnFi(x; €) (1)
n o —

XeRM
=fi(x)

where D is the sampling distribution, considered to be the same in
every PE. Further, the neural network in every PE is considered to
have N parameters. These parameters are the weights and biases
in the neural network model.

For mathematical formulation, let us define the concatenation
of all local parameters X;, random samples &, stochastic gradients
OF (Xy; &) and expected gradients 9f (X) at iteration k as:

Xk = [k Xen] € RV &= &g En] R,
OF(Xii; &) = [VF1 (X135 &) VFa(Xi2; &2) VFu (X &)] € RV,
f (Xx) = [Vf1(%1) Vfa(xe2) YV (Xcn)] € RV

The algorithm is said to converge to a e-approximate solution if
K-1 2
X1
K (Z [E‘ ’Vf(k ")) <e,
k=0 n

where 1, represents a column vector of 1's.
Now the training algorithm for the decentralized stochastic gra-
dient descent mentioned in [40] can be expressed as:

Xip1 = XeW — poF (Xi; &), (2)

where 7 is the step size or learning rate. From (2), it is clear that val-
ues from neighbor PEs are needed to calculate the values in a par-
ticular PE. Thus the parameters of the neural network, i.e., the
weights and biases, are communicated between the neighbor PEs
after every iteration. For details on how to choose W optimally,
the reader is referred to [54]. Usually the values of W are taken to
be %ﬂ where .//; are the number of neighbors of the i-th PE. This
means that the parameters at the i-th PE are averaged with that
of its neighbors after every iteration. For the ring topology that
we assume, ./"; = 2 for all i. After training concludes, the models
in all the PEs are usually averaged to produce one model which is
then evaluated on the test dataset. This algorithm from [40], named
D-PSGD in that paper, is stated in pseudo code in Algorithm A. Since

S. Ghosh, B. Aquino and V. Gupta

communication between neighboring PEs happen regularly after
every iteration, we refer to this algorithm as the one with regular
communication. We modify this algorithm to include event-
triggered communication as proposed in the next section.

Algorithm A: Regular Communication in Data Parallel SGD

fork=0,1,2,... K—-1do
Randomly sample from dataset in i-th PE
Compute the local stochastic gradient
Communicate parameters to neighbors
Update parameters using (2)

end for

Obtain averaged model from all PEs

4. Proposed Algorithm: EventGraD

In the decentralized algorithm in (2), the parameters in a PE are
exchanged with neighbors in every iteration of the training. This
might be a waste of resources since the parameters might not dif-
fer a lot in every iteration. Therefore it is possible to relax this
requirement of communication with neighbors at every iteration
of training. This is the main idea of our algorithm where communi-
cation happens only when necessary in events.

Our algorithm works as follows - Every PE tracks the changes in
the parameters of its model. When the norm of a particular param-
eter in a PE has changed by some threshold, it is sent to the neigh-
boring PEs. At other iterations, that particular parameter is not sent
to the neighbors and the neighbors continue updating their own
model using the last received version of that parameter.

Fig. 1 illustrates this phenomenon. As an example, the left plot
shows the evolution of the norm of a parameter over training iter-
ations. When this norm changes by more than a threshold (0.1 in
Fig. 1) from the norm of the previously communicated values, an
event for communication is triggered as marked by an asterisk.
The first event of communication is forced to take place at iteration
k = 0 for convenience. The right plot shows the corresponding val-
ues that the receiving PE uses when averaging its parameter with
the parameter from this corresponding sending PE.

For mathematically describing the algorithm, let us first define

the vector of previously communicated values X, as

Xi:= [Xin] € RN,

3)

0

Iterations

10 20 30 40 50 60 70 80 90 100

Neurocomputing 483 (2022) 474-487

Note that each X,; is a vector of the norm of N parameters, i.e.,

Xi = [Rria Xk‘i,N]T e RV (4)

Now the event-triggered condition can be expressed as

i ||Reir — Xesriall = Ok
if Xeir — Xienigll < Ok,

Xiet1,i0

X1l = § Xkil

where dy;; is the threshold for the I-th parameter in the i-th PE at k-
th iteration. Consequently, the training algorithm gets modified
from (2) to

(5)

which represents our algorithm with event-triggered communica-
tion. The pseudo code is specified in Algorithm B.

X1 = XeW — V3F<)A(k; ik)a

Algorithm B: EventGraD - Event-Triggered Communication in
Data Parallel SGD

fork=0,1,2,.. K—-1do
Randomly sample from dataset in i-th PE
Compute the local stochastic gradient
for/=1,2,...,Ndo
if [[Xeis — Xe 140l = Opis then
Communicate parameter to neighbors
end if
end for
Update parameters using (5)
end for
Obtain averaged model from all PEs

Choosing the threshold &, ;; is a design problem. The efficiency
of this algorithm depends on selecting appropriate thresholds.
The simplest option would be to choose the same value of thresh-
old for all the parameters in all the PEs as was done in [53]. How-
ever, selecting the appropriate value would involve a lot of trial
and error. Further, when the neural network model changes, the
process would have to be repeated all over again. More impor-
tantly, the parameters in a model and across different PEs would
vary differently and selecting the same threshold for all of them
is not desired. Instead, it is better to choose a dynamic threshold
that is adaptive to the rate of change of the parameters. A metric
that is indicative of the rate of change of a parameter is the local

10 20 30 40 50 60 70 80 90 100
Iterations

0
0

Fig. 1. Illustration of change in norm of parameters over iterations (taken from [18]). The left plot shows the norm of the parameter over iterations at the sender. The right

plot shows the norm of that corresponding parameter used at the receiver.

477

S. Ghosh, B. Aquino and V. Gupta

Last Event
X
Value . Y
: ope = X
Iterations

Neurocomputing 483 (2022) 474-487

Threshold = Slope * Horizon

1

l .

I Horizon
1

1

Fig. 2. Illustration of slope-based adaptive threshold. The right green star denotes the event of current communication while the left green star denotes the event of last
communication. The slope is calculated between these two points which is then multiplied by the horizon to obtain the new adaptive threshold.

slope of the norm of the parameter. Thus we choose the threshold
of a parameter based on the local slope of its norm. Whenever an
event of communication is triggered, the slope is calculated
between the current norm and the norm at the last event. This
slope is multiplied by a horizon h to calculate the threshold as
illustrated in Fig. 2. This threshold will be kept fixed until the next
event is triggered, resulting in calculation of a new threshold. Thus
we obtain:

_ 1Xiis — XIfH‘i.IH «h,
k—k

Slope

5k.i‘1

(6)

where k is the iteration corresponding to X, i.e., when the last
value was communicated.

The intuition behind making the threshold dependent on the
slope is to ensure it is chosen according to the trend of evolution
of the parameter. This helps on saving communication as much
as possible while ensuring that communication does not stop,
i.e., happens once in a while. If a parameter is changing fast, that
means that it will satisfy the criterion for communication soon -
thus a high threshold (due to the high slope) can be suitable. How-
ever, if the parameter is changing slowly, there might a long period
before the next communication happens which might slow down
convergence of the overall algorithm. Hence the threshold is
decreased (due to the low slope) to incentivize communication.

The horizon h is a hyperparameter that is chosen by the user. Its
purpose is to serve as a look-ahead to calculate the next threshold.
It might seem that h requires tuning as well, thereby nullifying its
advantages over the static threshold. However, the same value of h
can be chosen for the different parameters because the threshold is
already modulated by the slope. If the neural network model is
changed due to change in the depth, width or type of layers, the
threshold will adjust accordingly. Choosing a different dataset
where the data follows a different distribution is also likely to
change the evolution of the neural network parameters which
the adaptive threshold can capture. Thus the adaptive threshold
selection mechanism plays a huge role in keeping our algorithm
EventGraD portable as much as possible across multiple models
and multiple datasets.

5. Analysis

The theoretical convergence properties of the proposed algo-
rithm are studied in this section. Let us consider the error or differ-
ence between the last communicated state and the current state
as:

478

(7)
8)

where &, = [e; €kn] € RV According to our algorithm, the
error is bounded by the corresponding threshold as

€kitl = Xkil — Xkil
=6 = X — X,

9

Since 4y, is different for different i and different I, considering
the different values for any theoretical analysis seems intractable.
Rather we consider the following assumption:

ll€xitll < Okir-

Assumption 1. The thresholds 6, ;; can be bounded by a function
dependent on only k as

8kl < g (k).

Assumption 1 makes analysis of the convergence properties of
the algorithm feasible by considering a bound on thresholds for
all parameters in all PEs. Further, we consider the following
assumptions that are usually used for analysis of SGD algorithms.

(10)

Assumption 2. The following assumptions hold:

1. Lipschitz Gradient: All
Gradients.

2. Spectral Gap: Given the symmetric doubly stochastic matrix W,
the value p := (max{|4,(W)|,|1,(W)]|}) satisfies p < 1 where 24
represents eigenvalues.

3. Bounded Variance: The variance of the stochastic gradient

IEiNWi([n]) Eeon, | VFi(x; &) — vf(X)HZ

functions f;(.)’s have L-Lipschitz

is bounded for any x with i sampled uniformly from {1,...,n}
and ¢ from the distribution D;. That is, there are constants ¢
and ¢, such that:

Eeen, [VFi(X;) — VFi(x)|* < 02, Vi, V&,
By | VFi(%) = VFX)I? < 62, 9x

4. We start from X, = 0 without loss of generality.

Let
(1 722 g2 (1 362 g2
= (5t = (1 -) .
K
GK) = > g(h). Gial) = 3" /&K

S. Ghosh, B. Aquino and V. Gupta

Theorem 1. Considering the assumptions, we obtain the following
convergence rate for the algorithm

2

Cl & Xkln ’ Y- ’VzLK?l ‘Of()?k)ln f(O) *f* R/ZLO'Z
?,Z;‘[Evf(n)‘* K k:O[E‘ n Hg K "
V2 314
+ 12c;1y3nL2(2L2+1)+3VL cLel, 727 ek
2K KCZ(],W)
35272 322

L GlpL2GE (K — 1) 2O 18P 12)

/ GA-p) c(1-yp)

Proof. Provided in appendix. O

Theorem 1 represents the convergence of the average of the
models in all PEs. In order to obtain a closer result, we consider
an appropriate learning rate and then state the following corollary:

Let

) (1 —\/ﬁ)2<2L2+1>

6pL*

712 +L+1
2

4=

(13)

Corollary 1. Under the same assumptions as in Theorem 1, if we set
v — 1 ; .
y = TN ey o we have the following convergence rate:

1Kk X1, 2)) :
2C3 2C4 2 X
+ (W+T>G(K_ 1) +\/_RG]/2(K_ 1)

if the total number of iterations K is large enough, in particular,

a2 9%
((1—0) + (1—\//‘))2) ,and
and

K> 4n31?
a3 (f(0)-f"+L/2)
K > 72l
(72(‘1—\/ﬁ)2’

S (Al
= \2pl?Vi+o

Proof. Provided in appendix. O

Corollary 1 shows that the bound on the convergence rate is
dependent on the threshold related terms G(K) and Gy,>(K). When
K is large enough, the 3 terms will decay faster than the J terms

and therefore the convergence rate is of the order
(1 k=1 | Gip®K-1)
6(%* K TR

Note that a threshold of 0 reduces to the regular algorithm in
[40]. Thus with g(k) = 0, we obtain G(k) =0 and G;/2(k) =0 and

hence the rate of convergence reduces to ¢ (,‘—< + ﬁ) which is con-

sistent with [40]. Now we provide a more concrete bound by
choosing g(k) according to a popular event-triggered threshold
specified in [55].

Corollary 2. If g(k) is chosen of the form g(k) = ap* where o, § are
appropriate constants and 0 < 8 < 1, then the rate of convergence is

of the order © (\/% + %K)

K1\ 2
Proof. We obtain G(K — 1) = u(l;/ﬁ;') and G ,(K) = a(“\ﬁ))

=y
The corollary then follows by noting that
K-1N 2
2C 2C 1-pK-1 '*ﬂ)
(T,?+T4)°‘< s) w(ﬂ(ﬁ) and %Oﬂ(ey) ~c<#) when K
is sufficiently large. O

479

Neurocomputing 483 (2022) 474-487
6. Implementation

There are a lot of popular frameworks for machine learning like
PyTorch, TensorFlow, CNTK, etc. Almost all of these frameworks
support parallel or distributed training. TensorFlow follows the
parameter server approach for parallelization. PyTorch provides a
module called DistributedDataParallel that implements AllReduce
based training. Horovod is another framework developed by Uber
that implements an optimized AllReduce algorithm. However,
none of these frameworks provide native support for the training
involving averaging with just neighbors. Hence we decided to
implement the proposed algorithm without using any of the dis-
tributed modules in these frameworks.

We use PyTorch and MPI for our implementation. First, we
point out why one-sided communication or remote memory access
is necessary. Usually communication in high performance comput-
ing networks is two-sided. In other words, the sending PE starts the
communication of a message by invoking a MPI_Send operation
and then the receiving PE completes the communication and
receives the message by invoking a MPI_Recv operation [29]. In
our event-triggered communication algorithm, the events for com-
munication are dependent on the change in values of the parame-
ters of the sender which is a local phenomenon. Thus, when an
event is triggered in the sending PE, it can issue a MPI_Send oper-
ation. However, since the intended receiving PE is not aware of
when the event is triggered at the sender, it does not know when
to issue a MPI_Recv operation. So two-sided communication using
MPI_Send and MPI_Recv cannot be used for our algorithm.

Hence we select one-sided communication for our purpose. In
one-sided communication, only the sending PE has to know all
the parameters of the message for both the sending and receiving
side and can remotely write to a portion of the memory of the
receiver without the receiver’s involvement - hence the alternate
name of Remote Memory Access [56]. That region of memory in
the receiver is called window and can be publicly accessed. In our
case, it is used to store the model parameters from the neighbors.
So when an event for communication is triggered in the sending
PE, it uses MPI_Put to write its model parameters directly into
the window of the corresponding neighbor PE. An illustration of
one-sided vs two-sided communication is provided in Fig. 3.

It is worth noting that PyTorch does not support one-sided com-
munication at this point. Recently, PyTorch released a C++ frontend
called Libtorch which can be integrated with traditional C++ MPI
implementations. Further, the C++ frontend is more suitable for
HPC environments unlike the Python frontend. Hence we combine
the neural network training functionalities of Libtorch with com-
munication routines in MPI to implement our algorithm. For fur-
ther details on our implementation, the reader is referred to [20].

7. Results

We perform experiments to evaluate the performance of our
algorithm. All our simulations are done on CPUs. We use an HPC
cluster of nodes with each node having 2 CPU Sockets of AMD’s
EPYC 24-core 2.3 GHz processor and 128 GB RAM per node. The
cluster uses Mellanox EDR interconnect. The MPI library chosen
is Open MPI 4.0.1 compiled with gcc 8.3.0. The version of Libtorch
used is 1.5.0. We conduct our experiments on the CIFAR-10 data-
set. We choose the residual neural network commonly used for
training on CIFAR-10 [57]. Our simulations use the ResNet-18 con-
figuration. For training this network, a learning rate of 0.01 is used
with cross-entropy as the loss function and a mini-batch size of
256. The value of horizon h used to calculate the threshold in (6)
is taken to be 1. Note that we performed experiments on the
MNIST dataset in our previous work [20].

S. Ghosh, B. Aquino and V. Gupta

’ MPI_Send

Sender PE knows
when to send

‘ MPI_Put

Sender PE knows
when to send

MPI_Recv‘

Receiver PE knows
when to receive

Receiver PE not
involved

MPI Two-sided
Communication

MPI One-sided
Communication

Fig. 3. Illustration of the difference between two-sided and one-sided
communication.

To illustrate our adaptive event-triggered threshold selection
scheme, we look at how the norm of the parameters, i.e., the
weights and biases, in the ResNet-18 model change with iterations.
Note that the ResNet-18 model has a lot of parameters, all of which
cannot be shown in this paper due to space constraints. Therefore
we show a few parameters which vary in their style of evolution in
Fig. 4. After few initial oscillations, the change of the values is grad-
ual which suggests that not all parameters need to be communi-
cated at every iteration. This paves the way for saving on
communication of messages by event-triggered communication.
The corresponding threshold evolution as calculated by the equa-
tion in (6) is shown in Fig. 5. Since the threshold is proportional
to the local slope, we see in parameter 1 and 3 that higher slopes
during the early iterations of training lead to higher thresholds fol-
lowed by a decrease in threshold due to decrease in slope. For
parameters 2 and 5, which stay relatively flat, the threshold also
follows a flat trend. It is important to note that since every param-
eter changes differently, their thresholds also vary accordingly.

The thresholds in Fig. 5 have an oscillatory behavior. This is due
to the fact that often the parameters in a neural network have local

Norm of Pargmeters

4.5
4 7
3.5 6
o O 2000 4000 0 2000 4000
2 Parameter 1 Parameter 2
>
700 8
7.5
107" 7
6.5
-2
10 6
i@ 5.5
0 2000 4000 0 2000 4000
Parameter 3 Iterations Parameter 5

Fig. 4. Plot showing the evolution of the norm of the parameters of the neural
network in a certain PE. Note that the parameters may vary in their trend of
evolution.

480

Neurocomputing 483 (2022) 474-487

5 Threshold of P@rameters
10 | 107
\
|
w |
100 100
|
S
10 10
o 0 2000 4000 0 2000 4000
% Parameter 1 Parameter 2
>
1072 10
107 ' 10°|
107 _qp10
0 2000 4000 0 2000 4000
Parameter 3 . Parameter 5
lterations

Fig. 5. Plot showing the adaptive threshold of the parameters shown in Fig. 4. The
trend of the threshold is adaptive to the trend of evolution of the corresponding
parameter.

minor oscillations because of the nature of the stochastic gradient
descent algorithm. The parameters in Fig. 4 have these local oscil-
lations, however they are not prominently visible due to the higher
scale of the plot. Further, the stochastic nature of the MPI one-
sided implementation of the algorithm amplifies the oscillations.
It is desired that the threshold reflect the aggregate trend of evolu-
tion in the parameter and not the local oscillations. In order to
solve this issue, the sender can keep a history of multiple previ-
ously communicated events instead of just one previous event.
Then the average slope is calculated which is the mean of the
slopes between two consecutive events in that history. This aver-
age slope is then multiplied by the horizon to obtain the threshold.
The length of the history is a hyperparameter which is similar in
notion to the length of a moving average filter. The higher the
length, the smoother the trend but at the cost of increased compu-
tational complexity. For our experiments, we choose the length of
this history to be 2.

Having described details of selecting the threshold, we now
look at the experimental convergence properties of the algorithm.
We compare our event-triggered communication algorithm pro-
posed in AlgorithmB with respect to the regular communication
algorithm in AlgorithmA from [40]. Fig. 6 shows the loss function
over epochs for both these algorithms, each repeated for 10 differ-
ent runs shown by the errorbars. Note that an epoch refers to pro-
cessing the entire dataset allotted to a PE once while an iteration
refers to processing a mini-batch once. Thus one epoch has multi-
ple iterations which depends on the size of the mini-batch. From
Fig. 6, we see that the decay in loss function seems similar for both
the algorithms, indicating that they have similar speed of conver-
gence. It is important to observe that the theoretical results in Sec-
tion 5 deal with a bound on convergence of the average of the
parameters in all the PEs whereas the plot in Fig. 6 is concerned
with experimental convergence of the loss function.

After demonstrating similar rate of convergence, we focus on
the main advantage of the event-triggered algorithm over the reg-
ular algorithm - reduction in the number of messages communi-
cated while attaining similar accuracy. The reduction in messages
is quantified by the percentage of messages of the regular algo-
rithm that is sent in the event-triggered algorithm. Table 1 states
the accuracy of regular and event-triggered communication as well

S. Ghosh, B. Aquino and V. Gupta

—-Regular|
—Event
0.8+
0.6+
»
17}
o
=
0.4+
0.2
0 | |
0 o 10 15 20
Epochs

Fig. 6. Plot showing the loss function over epochs. The experiments have been
repeated 10 times to account for variations which have been considered in the
errorbars. It is seen that the event-triggered communication algorithm has an
experimental rate of convergence similar to that of the regular communication
algorithm.

as the percentage of messages in event-triggered communication
after training for 20 epochs.

We see that the event-triggered communication algorithm
exchanges approximately 40% of the messages of the regular
(baseline) communication algorithm while achieving similar accu-
racy. As a reminder, the regular algorithm is the D-PSGD algorithm
specified in [40] that is also suitable for the asynchronous decen-
tralized environment that we consider. In other words, our
event-triggered algorithm saves around 60% of the messages as
compared to the baseline algorithm while maintaining similar
accuracy, thus alleviating the communication overhead. Note that
the accuracy of both the regular and event-triggered algorithms
decrease as the number of PEs increase. This is because as the ring
of PEs get larger, messages comprising of neural network parame-
ters require more hops to propagate through the entire ring. Hence,
given same number of epochs, the larger ring comprising of more
PEs will have lesser accuracy. If the algorithm is run for more
epochs on more PEs, the accuracy will not degrade. Additionally,
if the number of neighbors of each PE is increased, information
can flow sooner, resulting in more accuracy.

A noteworthy feature of our algorithm is that it is complemen-
tary to other algorithms for reduced communication that have
been proposed in the literature. In other words, our algorithm
can be combined with these algorithms. For instance, we can apply
the techniques of quantization and sparsification on top of event-
triggered communication to get even more savings in communica-
tion. It is important to clarify that most of the existing works in lit-
erature apply quantization and sparsification in the parameter
server or AllReduce architecture [14,34] which is different from
the decentralized reduction with just neighbors scenario that we
deal with. However, to demonstrate how these approaches can
be extended to our decentralized scenario and combined with

Table 1

Comparison of Regular Communication vs Event-Triggered Communication after 20
epochs. The Event-Triggered Communication algorithm drastically reduces the
number of messages to be communicated by around 60% while maintaining similar
accuracy.

Number of Regular Event-Triggered Percentage of
PEs Accuracy Accuracy Messages

4 86.5 87 43.24

8 86.3 86.2 42.98

16 84.9 84.2 45.91

32 82.5 81.9 44.89

481

Neurocomputing 483 (2022) 474-487

Table 2
Combining Top-K% Sparsification with Event-Triggered (ET) Communication for
K= 10. The percent of communication is 2 K= 20% of the percent of messages. It is
seen that the communication required here is around {-th of that in Event-Triggered
(ET) communication without sparsification while maintaining similar accuracy as in
Table 1.

Number of Sparse ET Percent of Percent of

PEs Accuracy Messages communication
4 85.4 36.6 7.3

8 85.26 37.7 7.5

16 83.09 37.7 7.5

the event-triggered approach, we focus on the sparsification
method of Top-K. Specifically, when an event is triggered, we send
just the Top-K percentage of the elements in a parameter, i.e., the
weight matrix or the bias vector. Note that for a Top-K percent
value of K, 2K percent of messages is being sent because the indices
of the Top-K percent elements have to be sent in addition to their
values.

Table 2 shows the results of combining Top-K percent sparsifi-
cation with event-triggered communication. Before we compare
the results in Table 2 with Table 1, we note some important points.
Firstly, even though all the simulation details of the event-
triggered communication are kept the same between Table 1 and
Table 2, the percentage of messages sent are different between
them. This is because sending just the Top-K elements of a param-
eter changes the overall evolution of the neural network which in
turn leads to different adaptive thresholds and hence different
sequence of events. Secondly, we have to consider the percentage
of overall communication for Top-K sparsification in contrast to
percentage of messages considered in Table 1. This is due to the
fact that the objective of Top-K sparsification is to reduce the size
of each message sent. Note that in Table 1, the percentage of over-
all communication is equivalent to the percentage of messages
mentioned since entire parameters are sent during events. How-
ever, in the case of Top-K in Table 2, the percentage of overall com-
munication is 2 K % of the percentage of messages sent. Now we
see that the accuracy in Table 2 remains almost similar to that of
Table 1 but the overall communication is approximately 7% of that
of the regular (baseline) communication algorithm. This is in con-
trast to the overall communication of around 40% in the event-
triggered algorithm in Table 1 with respect to the baseline. Thus
Top-K sparsification combined with event-triggered communica-
tion requires around !-th of the communication required in just
event-triggered communication while maintaining similar
accuracy.

8. Conclusion

This paper introduces a novel algorithm that reduces communi-
cation in parallel training of neural networks. The proposed Event-
GraD algorithm communicates the model parameters in events
only when the value of the parameter changes by a threshold.
The choice of the threshold for triggering events is chosen adap-
tively based on the slope of the parameter values. The algorithm
can be applied to different neural network configurations and dif-
ferent datasets. An asymptotic bound on the rate of convergence is
provided. The challenges of implementing this algorithm in a high
performance computing cluster, such as the requirement of
advanced communication protocols and libraries, are discussed.
Experiments on the CIFAR-10 dataset show the superior communi-
cation performance of the algorithm while maintaining the same
level of accuracy.

S. Ghosh, B. Aquino and V. Gupta
CRediT authorship contribution statement

Soumyadip Ghosh: Conceptualization, Methodology, Software,
Formal analysis, Writing - original draft, Writing - review & editing.
Bernardo Aquino: Methodology, Formal analysis. Vijay Gupta:
Supervision, Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was supported in part by the University of Notre
Dame Center for Research Computing through its computing
resources. The work of the authors was supported in part by NSF
CBET-1953090.

Appendix A

The proof for the theoretical results in this paper are provided
here. First we state some necessary lemmas. Lemma 1 and Lemma
2 are reproduced from [40]. The vector e; is the one-hot encoded
vector.

Lemma 1. Using Assumption 2, we obtain

L

2
0 <phviel2,....nkeN

_ Wk e;

Proof. Let W™ := lim,_..W*. Because of the assumptions, we get
‘7” = W™>e; Vi since W is doubly stochastic and p < 1. Thus

o = |(o)l

< - wier
= Jww[
< p.

0O

Lemma 2. Under Assumption 2, the following holds:

n
> X
i'=1
n

2

+ 3n¢?

n
Ellof ()| < Y _3eL? =X
h=1

2
Vi

+3[EHVf<Xf:”>1;

Proof. The term E||of (X;)||* is bounded as follows:

482

Neurocomputing 483 (2022) 474-487
Ellor ()]
<3eor(x) - or (e1;)

<3e|or(x;) - or (%1,

n

"3eor (1)) - vr ()1, ’
2

" 3e|vr (),

i +3nc? + 3[5”Vf(%)1;

iy

=1

n
< S 3EL7 ||
h=1

x| +3nc® + 36| ()17

O

Lemma 3. For any two vectors a, b, the following is satisfied

lla+b]* < 2flal* +2[ibJ* (14)

Proof. We start with |la + b||* = ||a||* + 2(a, b) + ||b||*. Now
llaf® + b

(a.b) < /lla*Ib]* < =

where the first is Cauchy-Schwarz inequality and the second is the
geometric mean-arithmetic mean inequality. Substituting the
above, the inequality follows. O

Proof to Theorem 1. We begin with f (@)

[Ef(x"’n‘l") _ [Ef(gk‘:“" B yoF(?k:k)lu>
Ef(@— V(‘)F(},(T;;’k)l,,)
< [Ef(L‘> - “/[E<Vf<¥>77"f@)l"> +E

(15)

2
i VF; (%)
T

i=1

where the previous step comes from the general Lipschitz property
f) <fx) +Vfx)"(y —x)+L|ly —x|*. The last term above is the
i (Reisdui)

n

VF; .
second order moment of Y7 | . Now we can write

2
=E

o

E

i VF; (Rei; &)
n

i=1

" VF;(Ri; &i) — YV (Xk.i)|
> . |

i=1

i=1

(16)
Applying (16) in (15), we obtain:

o (F) o)

n n
‘z
For the second last term, we can show that

z": VF; (Rei; 5k_ir)l — Vfi(Xi) ‘2

= nlzi]:[EH (VFi(Xki; i) — V(%)) Hz

)

" VFi(Rkj; i) — Vii(Rei)
n

(17)

E

(18)

Applying (18) into (17),

S. Ghosh, B. Aquino and V. Gupta

X X f (X)1, \ n
[Ef(ka‘“ fv[E<Vf<XkT1">: (nk) >+%zmu<v&<xk,:g;>fw,-@k_,))uz

#[E 'nA < (19)
i=1
)
[Ef<xk1n> V[E<W<xk) f(n) > P e ZL Z xk, 20)
=1

Using the property (a,b) =3 (|lal® + [1bll” — |ja

~] 2
()

2

—b||2), we can
rewrite the above as:

X1, yL(;2 y
[Ef() m 2t

,yZL — y [EHi Vfi<)A(k,i>|
n

T

= |

~ 2
1 Ve Vf<x,< n) _M (21)

n

=T

Using the Lipschitz property again, we bound the first term as:

o) <)) -

2 2
+%[EHVf(an‘"> +1 +14

£1"||2

n

&7 2

n

& 1"
n

2 2 (22)

2
+LL g 2|18

where we used the inequality ||&|2 < ng
norm.
Now we bound T; as:

(k). || ||z is the Frobenius

n 2
A f(g(\)1 2 n ZX‘”
B n j—
“:EHW(%)*+ <> P | - VA G)
i=1
(23)
N[y ?
< BT -k
i=1
3:ak.i

where Qk_,,ﬂ is the square distance of the broadcasted variable i to the
average of all broadcasted local variables. From (7) and Lemma 3,

we can conclude that Q,; < 2Qu; + 2Qg,, ie.,

2
n
i—1€kj

— Xk_’,‘ — €k (24)

2 n
+Y E
i=1

Qi Qi

2L2 n
T <o ZE

where ¢€,; contains €, for all parameters I = {1,...,
can bound Qj; as:

Qi < ng(k) (25)

which implies

N}. Now we

Neurocomputing 483 (2022) 474-487

Qui < 2Qy; + 2ng(k). (26)

Now we need to find a bound for Q;

n 2

E Xiej

=
Qii = E||—— — X

2
= E|[Xd _ Xe; | where e; is the one-hot encoded vector

‘2

— X1 We; — i1 Wey + 90F (X1 &1 e

Xk Wi, *idF(Xk 156k 1)
n

— X1 Wei +70F (X161) e

A —90F (X) 1566 1)1 ?
| n

K-1 K-1
Xolt D _aitn=r D 0P (Xt 1n

—E ‘ k=0 k=0

K-1
—XoWe; — Y & We;
k=0

n

K-1 2

+7) OF ()A(k? fk) W e

k=0

2

9 ’;Z::I ’:Z K We; — “/iz;dF(Xk Ck) (— WK-1+ke)
Y 2
E ;&(%fwe, +°E Z[)F(Xk &) (1 - we ke

(- Wey)|* + 263 6l (2~
k=K'

wey) [l llg]| (& — Wey)]|

K-1
PN EAH|
k=0

2

K-1
+7E k; OF (X &) (1 - W< e))
< [Efng(k)p +2E) v/ngk)vpv/py/ng(K)
+k/ZOE §8F(X k:k)(- W) 2
) ks Gk
k=0
< ang (k) +npd"2,/g(k)g

k=k'

+2E iaF()?k; &) (- W ke
K-1
<"P<Zr> (Giak-1))°
Qo S
y (aF(Xk; f_k) - af()?k)) (Ln” - w’“*ke,.>
2
Wl(flfkei>

where Gy (k) = Sk o1/g(k) as defined before. We then bound T, as
follows:

2

+29%F

=T,

k=0

Sor() (-

+2)2E

=T3»

K- 2

—_

=gy (0P (X) — o (Xi)) (T2 - Wi ey)
— k- 1[EH ((i?l:(Xk7 ck> 8f<)A(k>> <7n _ WK1tk l) H
c)) (27)
< [EH (8F<5Zk§ g’k) - 6f()?k)> . (1? _ WK—]+l<ei) H
k=0
K-1

< nazH(m _ WK1k)H < nazsz 1k e
k=0 k=0

S. Ghosh, B. Aquino and V. Gupta Neurocomputing 483 (2022) 474-487

4 . K-1 n
The bound for T; is as follows: Ty <333 EL2Qu [l - wh e H
2 k=0 i-1
S () (- we)| e 2
, NI L [E‘Vf(xk] >1T "—W’“"‘H
K-1 1 g
=" E|of(X (l— WK’“"e,v)H k=0
ZeaHr 3G (28) K1/ .\ g
T1 +6Z(2EL%Qy; + 2n2L%g(k) + Hw(%)ﬂ)
() g (5w
\/FK 1-k i 6nc?
=T5 1-p (1—\/ﬁ)z
K-1
<3Z [ELsz — WK1k, H
We will bound T4 and Ts separately. T, is bound as: k=0 i-1
< 1 3
K-1 N 2 Xl \ 4T n K-1-k
T o (5) (5w)| S -
k=0
! S\ /1 K—1+k 2 Kﬁl - 2 212g(k Xelo \ 4T ? N 9nc?
S Ellar (%[G - we e 2 22“ e SR KON R
(29)
L 2 K-1 n K-1
emga 3% Z[ELZka —wk- er’H Jr3,1;2 <3 Lsz _ WK1tk H
k=0 i=1 k=0 i=1
K-1 y 2 K-
g s we g \Vf<*“>f powe
k=0
K- n ~ 2 1k
o (St o ())
Ts is bound as: k=
424 12n212G(K — 1)
=S () (- W) () (- W) B2
< 5 el () - we e o () - e | | |
KK As a reminder, we have defined the following expressions as
= ’”f@) Haf@’) gkl Gk) = SF og(k), Gia(k) = Sk o+/g(k). Now we plug the above
< k;:e £ T T 2 p ’ (30) bound, along with the bound on T, to obtain the following:
/) 2 _ 0212]2 _ 2y2ng?
< 2 E(HGf(Xk)H > K1 Qi < npGip(K—1) +24y°n°L°G(K — 1) + =27
o 6 z%iﬂzé |1 WK-1-k |2
emma ~ » 2 , + 1/' ki #7 €i
e)Y (2?1 EL2 Qi + || Vf (@)1,{)p'”k'zk + K] 3nc2 pk-1-5 k=0 izt
=Ty K-1 ~ 2 5
s o (- wer|
k=0
+12 ZKi S 2612Q +[EHVf(?m>1T 2w
Now T is bounded as follows: Y —=\5 ki no)n =7 7 (1-yp)
n 2 2 <npG (K — 1) +24y?n2L2G(K — 1) + 200" 4 18702
k=K \i=1 K-1 n X . K-1 o . 2 k(35)
K-1/ n ~ 2\ K-1 2 . K—1— 2 XiIn K—1—
e Z(ZzuZQk +2n2L%g()+Hw(ﬁn‘—~>1;) 3 g 31) 12y ,;, 1H (Qui +ngth))p oy ;E‘vf< ")1"
onE Kkt K-1/ n ~ 2 ik
<6y](Zzu Qui + 2m2L2g(k) + Hw(m)ﬂ) N +12y? ZZIELZQKI-HEHW(%*I)“f,ﬁ
k=0 \ i=1 k=0 \ i=1
212 2 _ 212n02 18y2ng?
2, (K — 1) +12)2n (2L +1)G(K 1) + 200 S
1 K 51
And T is bounded as such: HZVZZEE ‘Vf(xu)f (px 1k, ffk)
K-1 , (p% - 1> (p% — \/p> n
T; = 6ng*y_p*~ =% = bn? : (32) 123 S QL (p k4 2
-
kK (VP-1)"(vp+1) k=0 i=t (p>
1
< 6n¢? 5 (33)
(1-vp)

Let M = E>_1 %,i.e., the expected average of Q, in all nodes.

Now combining Te and T; into Ts, and then Ts and T, into Ts,we We then adjust the previous equation to obtain a bound on M;
obtain the following upper bound: as follows:

484

S. Ghosh, B. Aquino and V. Gupta

My < npG3 (K — 1) + 12)2n? (2L2 + 1)G(K — 1)+ BEE | JImEe,

(1-vp)’
K-1
+12y2§:m‘v7<xﬂ >1T
k=

K 1 k)
+12y2L2n21Mk(Kk 2P
k=0

(Klk+

Now we sum it from k = 0 to K — 1 to obtain the following:

ka KnpG, (K = 1) + 12K (212 + 1) G(K = (-)

K-1K-1 ~ 2

2 Xila \1T K-1-i , 2/p° "
112y }kZO:EiZO:E‘Vf<T)1n (o2
5 2K—ll(—l i 2\/5}{714

" . —1-i
+12ny<L kEZO ?ZOM, (p +37)
2 _ 212 2 _ 2Kny2a® | 18Kmy2c?
<KnpG? (K — 1) + 12Ky?n (2L +1)G(1< 1)+ 295 s

2Kny%e® | 18Kny2c?
1) b + N

K-1
K-1 2| K-1 ZZ\/—K v
1122) € 'w(XﬂQf St |67
k=0
K-1
K-1 K-1 _ ZZ\/F'H"
+120217> "M, Zpk’l” -
k=0 i=0
2 . 2 2Kkmy20% | 18Kmy?¢?
<KnpG? ,(K — 1) + 12Ky*n? (2L + 1)(;(1@ D)+ B
362 = X 2 e O
E b + =My M
kz; ‘ () (lw)zk; ‘
Rearranging the terms, the expression becomes:
2
(_ 36”}2L)ZMI(Kan]/z()
+12Ky2n? (2L2 + 1)) + 2 (38)
K- ~ 2
18Kn,'2g2 36, Xila lT
T ()
Defining C, = <1 - 36”—'”1) we can rewrite it to:
(-7)
K-1
Y My < (Knpc1 (K — 1)+ 12Ky2n? (2L2 + 1)(;(1< - 1))
k=0
5 39)
2Kny2g? 18Kny? 2 3672 Xiln
e R LY e ’W(o
We also know that T; is bounded as such:
< L Q n](
n2 (Z ki Z g > (40)

<2 (M +ng(k))

485

inequality

ny 3
where C; = (l —

K-1
Zk 0 E
the coefficient of that term has to satisfy:
=L

2K >0
=y<i

Neurocomputing 483 (2022) 474-487

We then input this bound on T; in (22) and obtain:
B (")
~ 2
(#)
+ 2 My + g (k)

())

2
+IE My 1 pL2g (k)

< (%) +%[EHW(%)H2 e+ 57

gl

&ln
n

2162

+%g(k) +He g

<o) + 2

saglrC

< [Ef()%) Jr3»,12;”1 (k) + 2Laz ——[EHVf(X“)“
‘w’(xk)lﬂ
n

+EL2E

+ 1M,

Summing from k =0 to k =
)|
k=0

f +K Zer2

K — 1 on both sides yields:
2 K-1
_7 5 /ZE

k=0

K-1
+ N M 4 G - 1)

o (X))
n

<f(0) -

(39)
<f0) —f* + 551 4 € K pyL* Gl (K — 1)
+(126, KkyPnl (217 + 1) + LG 1) +

ofor ()|
(@2)

Rearranging the terms, dividing by K and using the Lipschitz

w(5)| <2eree)

2Ky3ng21*
G (1-p)

18Kny3 212
& (1-vp)

36y3L2

2
+ 2I%g(k) (similar to what

we have done in (22)), we obtain:

72)31%

) S eor () +

ZLO'Z

af xk

b

1(H
K 2
f+/

<1zc ynL2<2L2+1) NI /iee A

72 \G(K -1
et

1y 722 _ 2m x302L2 18ny3c212
+C2 /,DL GI/Z(K]) + (1 +C2(1*\/ﬁ)2

(43)

5 L2>. This completes the proof.

G (1-vP)
Proof to Corollary 1. First we want to remove the term

()n’

in the LHS and maintain the inequality. For that,

(44)

Now we have

S. Ghosh, B. Aquino and V. Gupta

@ e ()|

fO-f
<S¢+

2152
2n

—1,,3,,72 2 M % -
+(12C2 pnl? (217 4 1) 4 25 < (Hﬁ)z) G(K —1)
G PPLGE (K — 1) + 2P | teA 2
2 1/2 1-p) Cz(l—\/f))2
(45)
We choose y = m Also y should satisfy y < 1. In order

to satisfy that as well as (44), we enforce

1
e — < —_
2p12VR+ay/Km L1

(46)
Vi) \?
= K> (ZpLZ\/ﬁ+J)
The 7 satisfies the following as well:
V<
i (47)
=y <t

Since y < 1, we also have * < 2.

-
Now if K > % we can bound G, as C; >

also bound C; as follows:
C _ 1y 729° 2)
' (2 &(1-vp)’
1441%3

> <]T} - (wﬁ)Z) g

Finally we have:
K-1 2
s v <
k=0
+((1-vp)" (21°+1)
3(2p12VR+o/K/n)
ZpLZCf/Z(I(—l)

2p12VK+a+/K/n
< (f(())—{(’JrL/Z)

1. Further we can

7293

(48)

1
2

(fO)=f+1/2)
K

+ ”Z;KL“) GK-1)

9¢2

(1-v?)

4nL?

<0'72+

(ZpLZ\/ma\/IW)3 =5

+2GK - 1)+ QGK-1)
02

((170)

(17\/7) (2L +1) and G,
6pL?

(49)

)

12 4n312
G 2 (K- a3KvVKn

+W 1)+

where C3 — 7L +L+1

If K

> 4n31?

K>2 (fO-f+1/2)
(fO—f"+L1/2)
VK

is large in if

a2 92
(o5

. Thus the final expression is

el

enough, particular,

), the last term is bounded by

1 1
7+7
K \/Kn)

)G(K—l)

l
K<

<a0mrfv+u(

2C3 2C4
(T*T
L2
VK

which completes the proof.

G (K —1) (50)

486

Neurocomputing 483 (2022) 474-487

References

[1] Juan M Gérriz, Javier Ramirez, Andrés Ortiz, Francisco] Martinez-Murcia,
Fermin Segovia, John Suckling, Matthew Leming, Yu-Dong Zhang, Jose Ramén
Alvarez-Sanchez, Guido Bologna, et al. Artificial intelligence within the
interplay between natural and artificial computation: Advances in data
science, trends and applications. Neurocomputing, 410:237-270, 2020.

[2] Sujatha R Upadhyaya, Parallel approaches to machine learning-a
comprehensive survey, Journal of Parallel and Distributed Computing 73 (3)
(2013) 284-292.

[3] Tal Ben-Nun, Torsten Hoefler, Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis, ACM Computing Surveys (CSUR)
52 (4) (2019) 1-43.

[4] Steven R Young, Derek C Rose, Travis Johnston, William T Heller, Thomas P
Karnowski, Thomas E Potok, Robert M Patton, Gabriel Perdue, and Jonathan
Miller. Evolving deep networks using hpc. In Proceedings of the Machine
Learning on HPC Environments, pages 1-7, 2017.

[5] Junqi Yin, Shubhankar Gahlot, Nouamane Laanait, Ketan Maheshwari, Jack
Morrison, Sajal Dash, and Mallikarjun Shankar. Strategies to deploy and scale
deep learning on the summit supercomputer. In 2019 IEEE/ACM Third
Workshop on Deep Learning on Supercomputers (DLS), pages 84-94. IEEE,
2019.

[6] Ron Bekkerman, Mikhail Bilenko, John Langford, Scaling up machine learning:
Parallel and distributed approaches, Cambridge University Press, 2011.

[7] Amine Boulemtafes, Abdelouahid Derhab, Yacine Challal, A review of privacy-
preserving techniques for deep learning, Neurocomputing 384 (2020) 21-45.

[8] Keren Bergman et al. Exascale computing study: Technology challenges in
achieving exascale systems. Defense Advanced Research Projects Agency
Information Processing Techniques Office (DARPA IPTO), Tech. Rep, 15, 2008.

[9] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra,
et al., Doe advanced scientific computing advisory subcommittee (ascac)
report: top ten exascale research challenges, Technical report, USDOE Office of
Science (SC)(United States), 2014.

[10] Siddhartha Jana, Oscar Hernandez, Stephen Poole, Barbara Chapman, Power
consumption due to data movement in distributed programming models, in:
European Conference on Parallel Processing, Springer, 2014, pp. 366-378.

[11] Yuchen Zhang, John C Duchi, Martin] Wainwright, Communication-efficient
algorithms for statistical optimization, Journal of Machine Learning Research
14 (1) (2013) 3321-3363.

[12] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
Qsgd: Communication-efficient sgd via gradient quantization and encoding.
arXiv preprint arXiv:1610.02132, 2016.

[13] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient
compression: Reducing the communication bandwidth for distributed
training. In International Conference on Learning Representations, 2018.

[14] Frank Seide, Fu. Hao, Jasha Droppo, Gang Li, Yu. Dong, 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech dnns,
in: Fifteenth Annual Conference of the International Speech Communication
Association, 2014.

[15] Bo Liu, Zhengtao Ding, A consensus-based decentralized training algorithm for
deep neural networks with communication compression, Neurocomputing

(2021).
[16] A.T. Chronopoulos, Charles William Gear, s-step iterative methods for
symmetric linear systems, Journal of Computational and Applied

Mathematics 25 (2) (1989) 153-168.

[17] Mark Hoemmen. Communication-avoiding Krylov subspace methods. PhD
thesis, UC Berkeley, 2010.

[18] Soumyadip Ghosh, Kamal K Saha, Vijay Gupta, and Gretar Tryggvason. Event-
triggered communication in parallel computing. In 2018 IEEE/ACM 9th
Workshop on Latest Advances in Scalable Algorithms for Large-Scale
Systems (scalA), pages 1-8. IEEE, 2018b.

[19] URL:https://github.com/soumyadipghosh/eventgrad/tree/master/dcifar10.

[20] Soumyadip Ghosh, Vijay Gupta, Eventgrad: Event-triggered communication in
parallel stochastic gradient descent, in: 2020 IEEE/ACM Workshop on Machine
Learning in High Performance Computing Environments (MLHPC) and
Workshop on Artificial Intelligence and Machine Learning for Scientific
Applications (AI4S) IEEE, 2020, pp. 1-8.

[21] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex] Smola. Parallelized
stochastic gradient descent. In Advances in neural information processing
systems, pages 2595-2603, 2010.

[22] Léon Bottou, Frank E. Curtis, Jorge Nocedal, Optimization methods for large-
scale machine learning, Siam Review 60 (2) (2018) 223-311.

[23] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693-701, 2011.

[24] Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging sgd. In Advances in neural information processing systems, pages
685-693, 2015.

[25] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. Asynchronous parallel
stochastic gradient for nonconvex optimization. In Advances in Neural
Information Processing Systems, pages 2737-2745, 2015.

[26] Felix Sattler, Simon Wiedemann, Klaus-Robert Miiller, Wojciech Samek,
Robust and communication-efficient federated learning from non-iid data,
IEEE Transactions on Neural Networks and Learning Systems (2019).

http://refhub.elsevier.com/S0925-2312(21)01606-4/h0010
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0010
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0010
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0015
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0015
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0015
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0030
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0030
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0030
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0035
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0035
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0045
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0050
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0050
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0050
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0050
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0055
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0055
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0055
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0070
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0075
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0080
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0080
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0080
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0100
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0110
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0110
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0130
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0130
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0130

S. Ghosh, B. Aquino and V. Gupta

[27] Yang Chen, Xiaoyan Sun, Yaochu Jin, Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally weighted
aggregation, IEEE Transactions on Neural Networks and Learning Systems
(2019).

[28] Jinjin Xu, Wenli Du, Ran Cheng, Wangli He, and Yaochu Jin. Ternary
compression for communication-efficient federated learning. arXiv preprint
arXiv:2003.03564, 2020.

[29] William D Gropp, William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI:
portable parallel programming with the message-passing interface, volume 1,
MIT press, 1999.

[30] Nikko Strom, Scalable distributed dnn training using commodity gpu cloud

computing, in: Sixteenth Annual Conference of the International Speech

Communication Association, 2015.

Nikoli Dryden, Tim Moon, Sam Ade Jacobs, and Brian Van Essen.

Communication quantization for data-parallel training of deep neural

networks. In 2016 2nd Workshop on Machine Learning in HPC

Environments (MLHPC), pages 1-8. IEEE, 2016.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, Pritish Narayanan, Deep

learning with limited numerical precision, in: International Conference on

Machine Learning, 2015, pp. 1737-1746.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich

Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,

Ganesh Venkatesh, et al. Mixed precision training. In International

Conference on Learning Representations, 2018.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Nikola Konstantinov, Sarit

Khirirat, and Cédric Renggli. The convergence of sparsified gradient methods.

In Advances in Neural Information Processing Systems, pages 5973-5983,

2018.

Cédric Renggli, Saleh Ashkboos, Mehdi Aghagolzadeh, Dan Alistarh, Torsten

Hoefler, Sparcml: High-performance sparse communication for machine

learning, in: In Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis, 2019, pp. 1-15.

Debraj Basu, Deepesh Data, Can Karakus, and Suhas Diggavi. Qsparse-local-

sgd: Distributed sgd with quantization, sparsification and local computations.

In Advances in Neural Information Processing Systems, pages 14695-14706,

2019.

[37] Kun Yuan, Qing Ling, Wotao Yin, On the convergence of decentralized gradient
descent, SIAM Journal on Optimization 26 (3) (2016) 1835-1854.

[38] J. Reza Olfati-Saber, Alex Fax, Richard M Murray, Consensus and cooperation in
networked multi-agent systems, Proceedings of the IEEE 95 (1) (2007) 215-
233.

[39] Youjie Li, Mingchao Yu, Songze Li, Salman Avestimehr, Nam Sung Kim, and
Alexander Schwing. Pipe-sgd: A decentralized pipelined sgd framework for
distributed deep net training. arXiv preprint arXiv:1811.03619, 2018.

[40] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can
decentralized algorithms outperform centralized algorithms? a case study for
decentralized parallel stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 5330-5340, 2017.

[41] Michael Blot, David Picard, Matthieu Cord, and Nicolas Thome. Gossip training
for deep learning. arXiv preprint arXiv:1611.09726, 2016..

[42] Peter H Jin, Qiaochu Yuan, Forrest landola, and Kurt Keutzer. How to scale
distributed deep learning? arXiv preprint arXiv:1611.04581, 2016.

[43] Jeff Daily, Abhinav Vishnu, Charles Siegel, Thomas Warfel, and Vinay Amatya.
Gossipgrad: Scalable deep learning using gossip communication based
asynchronous gradient descent. arXiv preprint arXiv:1803.05880, 2018.

[44] Michael Lemmon, Event-triggered feedback in control, estimation, and
optimization, in: Networked control systems, Springer, 2010, pp. 293-358.

[45] Dimos V. Dimarogonas, Emilio Frazzoli, Karl H. Johansson, Distributed event-
triggered control for multi-agent systems, IEEE Transactions on Automatic
Control 57 (5) (2012) 1291-1297.

[46] Aijuan Wang, Tao Dong, Xiaofeng Liao, Distributed optimal consensus
algorithms in multi-agent systems, Neurocomputing 339 (2019) 26-35.

[47] Xin Chen, Xiaofeng Liao, Lan Gao, Shasha Yang, Huiwei Wang, Huaqing Li,
Event-triggered consensus for multi-agent networks with switching topology
under quantized communication, Neurocomputing 230 (2017) 294-301.

[48] Cameron Nowzari, Eloy Garcia, Jorge Cortés, Event-triggered communication
and control of networked systems for multi-agent consensus, Automatica 105
(2019) 1-27.

[49] Zhongyuan Zhao, Gang Chen, Mingxiang Dai, Distributed event-triggered
scheme for a convex optimization problem in multi-agent systems,
Neurocomputing 284 (2018) 90-98.

[31]

[32]

[33]

[34]

[35]

[36]

487

Neurocomputing 483 (2022) 474-487

[50] Qingguo Lii, Huaqing Li, Dawen Xia, Distributed optimization of first-order
discrete-time multi-agent systems with event-triggered communication,
Neurocomputing 235 (2017) 255-263.

[51] Dean Richert, Jorge Cortes, Distributed linear programming with event-
triggered communication, SIAM Journal on Control and Optimization 54 (3)
(2016) 1769-1797.

[52] Jin Zhang, Chen Peng, Du. Dajun, Min Zheng, Adaptive event-triggered
communication scheme for networked control systems with randomly
occurring nonlinearities and uncertainties, Neurocomputing 174 (2016)
475-482.

[53] Jemin George and Prudhvi Gurram. Distributed deep learning with event-
triggered communication. arXiv preprint arXiv:1909.05020, 2019.

[54] Stephen Boyd, Persi Diaconis, Lin Xiao, Fastest mixing markov chain on a
graph, SIAM Review 46 (4) (2004) 667-689.

[55] Georg S. Seyboth, Dimos V. Dimarogonas, Karl H. Johansson, Event-based
broadcasting for multi-agent average consensus, Automatica 49 (1) (2013)
245-252.

[56] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Using
advanced MPI: Modern features of the message-passing interface. MIT Press,
2014.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for
image recognition, in: Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

Soumyadip Ghosh is a PhD candidate in Electrical
Engineering at the University of Notre Dame. He
obtained his Bachelors in Electrical Engineering from
Jadavpur University, India. His research interests are in
areas at the intersection of systems theory and high
performance computing with applications in parallel
machine learning, optimization and numerical solution
of partial differential equations.

Bernardo Aquino received the B.S. (Hons.) degree in
electronics engineering and the M.S. degree in electrical
engineering from the Federal University of Rio de
Janeiro, Brazil in 2011 and 2014, respectively. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Electrical Engineering, University of Notre
Dame. His research interests include controls, opti-
mization, and machine learning.

Vijay Gupta is in the Department of Electrical Engi-
neering at the University of Notre Dame, having joined
the faculty in January 2008. He received his B. Tech
degree at Indian Institute of Technology, Delhi, and his
M.S. and Ph.D. at California Institute of Technology, all
in Electrical Engineering. He received the 2018 Antonio]
Rubert Award from the IEEE Control Systems Society,
the 2013 Donald P. Eckman Award from the American
Automatic Control Council and a 2009 National Science
Foundation (NSF) CAREER Award. His research interests
are broadly at the interface of communication, control,
distributed computation, and human decision making.

http://refhub.elsevier.com/S0925-2312(21)01606-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0135
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0145
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0145
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0145
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0145
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0150
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0150
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0150
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0150
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0160
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0160
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0160
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0160
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0175
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0185
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0185
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0190
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0220
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0220
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0220
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0225
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0225
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0225
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0230
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0235
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0240
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0240
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0240
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0245
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0250
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0255
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0255
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0255
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0260
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0270
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0270
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0275
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0275
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0275
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0285
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0285
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0285
http://refhub.elsevier.com/S0925-2312(21)01606-4/h0285

	EventGraD: Event-triggered communication in parallel machine learning
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Proposed Algorithm: EventGraD
	5 Analysis
	6 Implementation
	7 Results
	8 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A
	References

