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Physarum polycephalum is a unicellular slime mould that has been intensely
studied owing to its ability to solve mazes, find shortest paths, generate Stei-
ner trees, share knowledge and remember past events and the implied
applications to unconventional computing. The CELL model is a cellular
automaton introduced in Gunji et al. (Gunji et al. 2008 J. Theor. Biol. 253,
659–667 (doi:10.1016/j.jtbi.2008.04.017)) that models Physarum’s amoeboid
motion, tentacle formation, maze solving and network creation. In the pre-
sent paper, we extend the CELL model by spawning multiple CELLs,
allowing us to understand the interactions between multiple cells and, in
particular, their mobility, merge speed and cytoplasm mixing. We conclude
the paper with some notes about applications of our work to modelling the
rise of present-day civilization from the early nomadic humans and the
spread of trends and information around the world. Our study of the inter-
actions of this unicellular organism should further the understanding of how
P. polycephalum communicates and shares information.

1. Introduction
Physarum polycephalum is a unicellular slime mould. The main portion of Physar-
um’s life cycle is spent in the plasmodium stage, where Physarum forms a
network of tubes. According to [1], small Physarum fragments (microplasmodia)
fuse to form macroplasmodia, forming one giant plasmodium connected by
tubes. These tubes contain protoplasm, which flows between these tubes
through rhythmic contractions. As protoplasm flows, these tubes can grow or
shrink, causing the plasmodium to reshape itself to find food or move [2].
Recent research [3] has shown that the growth and shrinkage of tubes is
caused by a softening agent that serves as a way to encode memory.

Experiments have shown that P. polycephalum in this plasmodium state is
able to solve mazes, find the shortest path, build high-quality networks
between multiple points, adapt and respond to stimuli and remember past
events [4–6]. Physarum has also been shown to be able to share information
and fuse with other Physarum organisms [7]. Recently, several mathematical
models inspired by Physarum have been developed to approach problems
such as the shortest path or Steiner tree problems [8–11].

The behaviour of P. polycephalum can be studied, in particular, using cellular
automata, as done in [8], through what the authors called the CELL model. In
this model, a Physarum cell is modelled on a grid with cytoplasm and cytoske-
leton. At each iteration, the cytoplasm and cytoskeleton is slightly reshaped
with the introduction of an outside bubble. As shown in [8], this model can
be used to simulate amoeboid motion with tentacle formation, maze solving,
shortest path finding and network creation.

Inspired by [8], we take a novel approach which allows us to discern several
interesting patterns. When considering cells, one expects to observe certain
behaviours. In particular

1. the time it takes for two cells to merge should increase directly with the dis-
tance between them;
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2. it should be fastest and most likely for cells to merge with
the cell closest to them;

3. the smaller a cell is, the more mobile it should be;
4. the smaller cells are, the better they should fuse in terms of

cytoplasm mixing.

We shall begin this paper by introducing in §2 some of the
different models used in the literature to study P. polycepha-
lum, paying particular attention to the flow-conductivity
model [10], the cellular model [8], the multi-agent model [9]
and the shuttle-streaming model [11].

After introducing these models, we dedicate §3 to the
main findings of our work. By considering cells at different
distances apart and studying the number of iterations it
took for them to merge, we could see that

— the relationship between distance and iterations is linear,
as shown in §3.1.

By considering three cells and adjusting the distance between
them, we measured which cells merge first and the number of
iterations it took them to do so, allowing us to see that

— the two closest cells are most likely to merge together, fol-
lowed by the next two closest cells, followed by the two
furthest cells;

— the two closest cells take the least number of iterations to
merge, followed by the next two closest cells, followed by
the two furthest cells.

We also considered cells of different sizes and measured
mobility using the average distance from the spawn point,
the maximum distance from the spawn point and speed,
leading to the following results:

— the relationship between average distance and size is
exponentially decreasing;

— the relationship between maximum distance and size is
exponentially decreasing;

— the relationship between speed and size is also exponen-
tially decreasing.

Finally, by considering the fusion of two cells of varying
sizes, we measured cytoplasm mixing using Lacy’s mixing
index [12], leading to the following findings:

— there is a decreasing exponential relationship between the
mean mixing index and cell area;

— there is a decreasing logistical relationship between
the maximum mixing index and cell size.

We conclude this paper by expanding on the analysis and
applications of the above findings in §4. In particular, we
explore the applications of our work to modelling the rise
of present-day civilization from the early nomadic humans
and the spread of trends and information around the world.

2. Modelling Physarum polycephalum
We shall dedicate this section to reviewing four models
inspired byP. polycephalum, whichwe shall consider in the pre-
sent paper when building a new model to study cell fusion
between multiple cells. We shall begin by reviewing a flow-
conductivity model in §2.1, a cellular model in §2.2 and a
multi-agent model in §2.3. Finally, we shall conclude the

section by introducing a shuttle-streaming model in §2.4.
A good overview of the current literature on P. polycephalum
can be found in [13].

2.1. Flow-conductivity model
Inspired by the idea that within P. polycephalum tubes of the
plasmodium grow thicker as more protoplasm flows through
that tube, the authors of [10] introduced a flow-conductivity
model which we shall review below. In this setting, two
further observations about Physarum’s behaviour come into
play

— when two tubes connect to the same food source, the
longer one usually disappears;

— open-ended tubes are likely to disappear.

In what follows, we shall describe this model following the
ideas of [10]. Consider nodes N1, N2…, and let N1 be the
source node (start) and N2 be the sink node (end). The
tube/edge connecting nodes Ni and Nj is denoted as Mij.
Let Qij be the flux through Mij, let pi be the pressure at
node i, let Lij be the length of Mij and let Dij be the conduc-
tivity of Mij. Then, we have

Qij ¼
Dij

Lij
ðpi # pjÞ: ð2:1Þ

By Kirchhoff’s law,
X

i
Qij ¼ 0 ðj = 1, 2Þ: ð2:2Þ

Since N1 and N2 are the start and end nodes, respectively,
X

i
Qi1 þ I0 ¼ 0 ð2:3Þ

and
X

i
Qi2 # I0 ¼ 0: ð2:4Þ

The adaptation of the tube thickness can be modelled
using the following equation:

d
dt

Dij ¼ f ðjQijjÞ # rDij, ð2:5Þ

where f (Q) must be an increasing function with f(0) = 0, and
thus for the purposes of this model one may consider f (Q) =
α|Q|. Setting p2 = 0, one can compute all the pi0s using
equations (2.2)–(2.4) and therefore all Qij. The flow-conduc-
tivity model has been used to find Steiner trees [14], solve
the travelling salesman problem [15] and design fault-tolerant
networks [16]. It has been applied to creating a shortest path
navigation system across the US interstate highway [10],
designing railroad networks similar to the Tokyo railroad
system [17], designing transportation networks with chan-
ging traffic distributions [18], identifying focal nodes for
disease spread in epidemiological networks [19] and solving
supply chain network design problems [20].

Example 2.1. In order to illustrate how the flow-conductivity
model can be used, consider the graph in figure 1, where 1
is the source node and 6 is the sink node.

Starting with a flux of I0 = 10 into node 1, and assuming
all tubes start off with the same conductivity Dij = 2, one
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has the following system of equations:

2
2
ðp2 # p1Þ þ 10 ¼ 0,

2
2
ðp1 # p2Þ þ

2
3
ðp3 # p2Þ þ

2
7
ðp4 # p2Þ ¼ 0;

2
3
ðp2 # p3Þ þ

2
5
ðp4 # p3Þ þ

2
4
ðp5 # p3Þ ¼ 0,

2
7
ðp2 # p4Þ þ

2
5
ðp3 # p4Þ þ

2
1
ðp5 # p4Þ ¼ 0,

2
4
ðp3 # p5Þ þ

2
1
ðp4 # p5Þ þ

2
6
ðp6 # p5Þ ¼ 0

and
2
6
ðp5 # p6Þ # 10 ¼ 0:

Setting p6 = 0 and solving this system leads to the values
p1 = 57; p2 = 47; p3 = 38; p4 = 33; and p5 = 30. Then, from
equation (2.1) one has Q12 = 10; Q23 = 6; Q24 = 4; Q34 = 2;
Q35 = 4; Q45 = 6; and Q56 = 10. Updating Dij using ΔDij =
α|Qij|− r Dij, and taking α = 1 and r = 1, one has that

DD12 ¼ 8; DD23 ¼ 4; DD24 ¼ 2

and

DD34 ¼ 0; DD35 ¼ 2; DD45 ¼ 4; D56 ¼ 8:

The updated values of Dij then are

D12 ¼ 10; D23 ¼ 6; D24 ¼ 4

and

D34 ¼ 2; D35 ¼ 4; D45 ¼ 6; D56 ¼ 10:

After repeating this process several times, a path appearswhen a
lot of theDij are close to zero and then the rest are much greater.

2.2. Cellular model
In the cellular model as described in [8], or CELL model, a cell
is a mass of cytoplasm surrounded by a membrane, which is
placed on a lattice grid where every square has an assigned
number/state. State 2 represents cytoskeleton, state 1 rep-
resents cytoplasm and state 0 represents squares that are
not part of the CELL. In biological Physarum organisms, pro-
toplasmic tubes consist of an outer layer of actin–myosin
cytoskeleton with cytoplasm inside. The cytoskeleton period-
ically contracts, moving cytoskeleton and allowing Physarum
to respond to a stimulus [2,21]. With this in mind, the CELL
model is based on the following assumptions:

1. the membrane is the part of the cell where the cytoskele-
ton is concentrated and hardened;

2. when a cytoskeleton assembly is taken apart and the
membrane softens, the cytoplasm is distributed to other
areas of the cell;

3. cytoplasmic flow is accompanied by transportation of the
cytoskeleton and distribution of cytoskeleton assemblies.

The CELL model has two phases: development and foraging. In
the development phase, the cell grows, forming a diamond-
shaped model with cytoskeleton around the edges and cyto-
plasm inside. In the foraging stage, the model ‘eats’ zero,
which leads to a redistribution of cytoplasm and cytoskele-
ton/membrane. The algorithm is as follows:

1. Chose a site with state 2, the stimulus point.
2. Randomly choose a neighbour of the stimulus point in

state 0 and replace the state of the stimulus point with
the state of the chosen neighbour, so zero invades the
cell. We call the zero a bubble.

3. Replace state 1 with 2 so all non-zero cells are 2. Set
number of moves to zero.

4. Mark the site with the bubble.
5. Decide whether s sites of the bubble’s neighbours are in

state 0 or not. If yes, go to 8 otherwise go to 6.
6. Decide whether the number of moves exceeds threshold n.

If yes, go to 8 otherwise go to 7.
7. Randomly choose one of the bubble’s non-marked neigh-

bours which is in state 2. Replace the state of the bubble
with the state of the chosen neighbour. Add 1 to
the number of moves, go to 4.

8. Reorganize the boundary and inside using the algorithm
described above. For example, if the site with state 2 is sur-
rounded by only neighbours with state 2, its state is
changed to 1. Return to 1.

It should be noted that, depending on the location of the
stimulation, the model behaves differently. If the stimulus
point is chosen randomly, the CELL moves like an amoeba.
If the stimulus is chosen from several active zones, an
adaptive network with tentacles forms.

Example 2.2. In order to illustrate the model, we shall con-
sider the CELL model in a 5 × 5 grid. After the initial
growth stage, the CELL model is seen in figure 2a. By ran-
domly choosing a cell (seen in grey) to be the stimulus
point, and choosing a neighbour and swapping, one can
see the following step in figure 2b.

In the following steps, the bubble is randomly swapped
with neighbours more times. By repeating this step multiple
times, one obtains figure 3a. Finally, one can reassign states to
the cells, leading to figure 3b.

A typical CELL has bubbles within its cytoplasm. If
enough of these bubbles group together, a chamber can
form within the CELL. When this chamber bursts, tentacles
are formed, as illustrated in figure 4.

This model can also be used to form networks and find
the shortest path. This is mainly done by creating active
zones in which the stimulus point is always chosen from.
For example, in figure 5, active zones are created in three
regions of the cell, leading to the cell forming a tree between
the three active zones. Finally, this model has been previously

3

4

43

47

21
2

5 6
65

Figure 1. Node 1 is the source node and node 6 is the sink node. The
number on each edge represents the length of that edge.
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used to solve mazes, generate spanning trees [8] and model
crowd evacuation [22].

2.3. Multi-agent model
Inspired by the many different behaviours Physarum demon-
strates, the authors of [9] introduced a multi-agent model
where Physarum is made out of agents that travel throughout
Physarum. As these agents move, they make their decisions
based on a chemoattractant map and also deposit chemicals

onto this map. The multi-agent model also exhibits multiple
properties consistent with those observed in actual Physarum
such as the disappearance of open-ended tubes, minimization
of path length, movement of agents similar to that in shuttle
streaming and amoeboid movement [23].

We shall represent the model as a large grid similar to the
CELL model, and consider an agent to fill a cell of the grid.
Each agent also has three sensors which sample values
a sensor offset (SO) distance away. The agents then use the read-
ings from the three sensors and orient themselves towards the
strongest chemoattractant reading from the sensors.

There are two important parameters which need to be
considered in this set-up:

— there is sensor angle (SA), which is the angle between two
of the three sensors;

— there is the rotation angle (RA), which is the amount the
agent rotates to the strongest chemoattractant reading.

For example, if RA < SA, contraction behaviour is increased,
but if RA > SA, spontaneous branching happens.

The agent first reads from each of its three sensors. It
turns by the RA in the direction of the greatest sensor.
After the agent has rotated accordingly, the agent attempts
to move forwards. If it can move forwards (the cell is
not occupied), chemoattractant is deposited (and the grid is
updated) and the agent moves. Agents are randomly
chosen to rotate and then move. In addition, a 3 × 3 mean
filter is applied on the grid to simulate diffusion. A damping
factor is usually added to this mean filter to create steeper
gradients from food sources. Depending on where one initia-
lizes agents, and what the SA and RA are, one gets different
behaviours for the system, which can be summarized as
follows:

— Filamentous condensation method. Initialize a few agents at
random locations and orientations. Then, a network
forms. Add food sources which emit chemoattractants
and the network will form a Steiner tree.

— Filamentous foraging method. Initialize agents at food
sources.

— Plasmodial shrinkagemethod.Randomly remove agents; other
agents will move and form a minimum spanning tree.

Example 2.3. To understand the multi-agent model described
above, we shall consider the chemoattractant map shown in
figure 6a, and assume that one has an agent with SA and
RA = 45 at the shaded square in figure 6a. The rightmost
sensor will then sense the highest chemoattractant (29) and
the agent will rotate 45° to the right. The sensor then
moves forwards if possible and deposits chemoattractant on
the map (we shall assume it always deposits 5), and thus
the next step in the model can be seen in figure 6b.

To simulate diffusion, we then apply a 3 × 3 mean filter to
the map. Each cell of the map is assigned a value of 0.9 (0.1
dampening factor) times the average of the 3 × 3 surrounding
box, leading to the chemoattractant map shown in figure 7.

Finally, it should be noted that through this model one
can see that the agents gradually move from being randomly
distributed to forming a network, as shown in figure 8.

0

(a) (b)

0 2 0 0

0 2 1 2 0

2 1 1 1 2

0 2 1 2 0

0 0 2 0 0

0 0 2 0 0

0 2 2 2 0

2 2 2 2 2

0 2 2 0 2

0 0 2 0 0

Figure 2. The first two steps in a CELL model on a 5 × 5 grid.

0

(a) (b)

0 2 0 0

0 2 0 2 0

2 2 2 2 2

0 2 2 2 2

0 0 2 0 0

0 0 2 0 0

0 2 0 2 0

2 1 2 1 2

0 2 1 2 2

0 0 2 0 0

Figure 3. The last two steps in a CELL model on a 5 × 5 grid.

Figure 4. An example image from the implementation of the described CELL
algorithm.

Figure 5. An example image from the implementation of the CELL algorithm
with active zones for tree formation.
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2.4. Shuttle-streaming model
We shall next describe the shuttle-streaming model following
[11]. This model is based on three biological observations
about P. polycephalum:

— open-ended tubes gradually disappear;
— when two tubes connect the same food sources, the

longer one disappears;
— outside changes such as the addition of nutrients can

cause changes to the rhythmic contractions and shuttle
streaming of Physarum.

Shuttle streaming is the flow of protoplasm through Physar-
um’s tubes and plays an important role in chemical
signalling. When the organism contracts periodically (1–3
min), the direction of the shuttle streaming changes as hydro-
static pressure is produced.

In order to find the shortest path from node vS to node vF,
which are two food sources, one considers two different proto-
plasmic flows, originating at each of the two nodes vS and vF.

2.4.1. Forward flow (vS to vF)
The amount Ref ((vi, vj), t) of nutrients received from node vi
through edge (vi, vj) during forward flow is given by

Ref ððvi, vjÞ, tÞ ¼ Sef ððvi, vjÞ, tÞ # hLij, ð2:6Þ

where Se((vi, vj), t) is the amount of nutrients sent through edge
(vi, vj) at node vi, the value Lij is the length of the edge and η is the
absorption rate per unit length of the tube wall. Additionally,
totRe(vj, t) is the total amount of nutrients that node vj receives.

The node vj distributes the total amount of nutrients
received in forward flow proportionally to the amount
received in previous backward flow. Hence, the amount of
nutrients sent out through edge (vj, vk) by node vj is given by

Sef ððvj, vkÞ, tÞ ¼ totRef ðvj, tÞ &
Rebððvk, vjÞ, t# dtÞ
totRebðvj, t# dtÞ ,

totRef ðvj, tÞv ¼
X

8vi[ðvi ,vjÞ
Ref ððvi, vjÞ, tÞ

and totRebðvj, t# dtÞ ¼
X

8vk[ðvk ,vjÞ
Rebððvk, vjÞ, t# dtÞ:

2.4.2. Backward flow at time t + δt
Similar to the forward flow, one has that

Rebððvp, vqÞ, tþ dtÞ ¼ Sebððvp, vqÞ, tþ dtÞ # hLpq:

The corresponding equations for

f : ¼
Ref ððvr, vqÞ, tÞ
totRef ðvq, tÞ

are given by

Sebððvq, vrÞ, tþ dtÞ ¼ totRebðvq, tþ dtÞ & f,

totRebðvq, tþ dtÞ ¼
X

8vp[ðvp ,vqÞ
Rebððvp, vqÞ, tþ dtÞ

and totRef ðvq, tÞ ¼
X

8vr[ðvr ,vqÞ
Ref ððvr, vqÞ, tÞ:

The two nodes vS and vF act as both source and sink
nodes depending on the direction of the protoplasmic flow.
Assuming that the amount of nutrients the tubular network
absorbs per one forward or backward flow session is Nin,

(a) (b)

16 10 18 10 1 2

21 23 26 11 17 39

11 15 7 29 19 13

10 16 15 22 21 12

19 13 6 9 11 32

12 23 1813 17 28

16 10 18 10 1 2

21 23 26 11 17 39

11 15 7 29 19 13

10 16 15 22 21 12

19 13 6 9 11 32

12 23 1813 17 28

Figure 6. The first two steps in a multi-agent model on a 6 × 6 chemoattractant map. The agent at the grey box in (a) moves forwards and deposits 5 on the
chemoattractant map.

11.7 11.1 15.6 16.95 17.4 14.625

14.4 14.9 16.9 17.2 18.3 18.15

14.4 15.2 15.4 14.3 14.1 13.65

15.3 15.7 13.1 11.4 13.2 15.3

13.95 13 12 10.3 12.8 13.65

15.075 12.9 12.3 11.1 17.25 19.8

Figure 7. The chemoattractant map after a 3 × 3 mean filter with a dam-
pening factor is applied to the map shown in figure 6b.

Figure 8. Images from a multi-agent model implementation.
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the amount of nutrients sent and received by nodes vs, vF can
be computed in the following fashion.

At t = 0, one can compute the number of nutrients sent
from node vj as follows:

Sef ððvj, vkÞ, T ¼ 0Þ ¼
totRef ðvj, t ¼ 0ÞP

8vk[ðvj ,vkÞ 1
: ð2:7Þ

This can be thought of as the total amount of nutrients divided
by the number of edges.When the amount of nutrients carried
by an edge is zero or negative, we can discard the edge since
biologically it would die without nutrients. One continues to
do this until the end of the optimization process is reached, at
which point each node only has one edge that nutrients flow
in from and one edge that nutrients flow out of.

Example 2.4. To illustrate this model, consider a similar
graph to the flow-conductivity model of figure 1, as shown
in figure 9.

Let Nin = 10, which means that one puts in 10 nutrients
every time. The starting values can then be computed using
equation (2.7). Let η = 0.1. Then we have that

Sef ðð1, 2Þ, 0Þ ¼ 10,
Ref ðð1, 2Þ, 0Þ ¼ 9:8,
Sef ðð2, 3Þ, 0Þ ¼ 4:9,
Ref ðð2, 3Þ, 0Þ ¼ 4:6,
Sef ðð2, 4Þ, 0Þ ¼ 4:9,
Ref ðð2, 4Þ, 0Þ ¼ 4:2,
Sef ðð3, 5Þ, 0Þ ¼ 4:6,
Ref ðð3, 5Þ, 0Þ ¼ 4:2,
Sef ðð4, 5Þ, 0Þ ¼ 4:2,
Ref ðð4, 5Þ, 0Þ ¼ 4:1,
Sef ðð5, 6Þ, 0Þ ¼ 8:3

and Ref ð5, 6Þ ¼ 7:7:

The values of totRef (v, 0) can be computed in a similar
manner, and are given by

totRef ð1, 0Þ ¼ 10,
totRef ð2, 0Þ ¼ 9:8,
totRef ð3, 0Þ ¼ 4:6,
totRef ð4, 0Þ ¼ 4:2,
totRef ð5, 0Þ ¼ 8:3

and totRef ð6, 0Þ ¼ 7:7:

Now it is time for backward flow. Starting from the oppo-
site end, one sets Seb((6, 5), 1) = 10, and so Reb((6, 5), 1) = 9.4.
Then, one has that

Sebðð5, 3Þ, 1Þ ¼ 4:7566267,
Rebðð5, 3Þ, 1Þ ¼ 4:3566267,
Sebðð5, 4Þ, 1Þ ¼ 4:64337,
Rebðð5, 4Þ, 1Þ ¼ 4:54337,
Sebðð3, 2Þ, 1Þ ¼ 4:3566267,
Rebðð3, 2Þ, 1Þ ¼ 4:0566267,
Sebðð4, 2Þ, 1Þ ¼ 4:54337,
Rebðð4, 2Þ, 1Þ ¼ 3:84337,
Sebðð2, 1Þ, 1Þ ¼ 7:9

and Rebðð2, 1Þ, 1Þ ¼ 7:7:

As done with forward flow, one can compute totReb and then
repeat the same procedure with forward flow. After repeating

the procedure several times, the flow through certain edges
will eventually become very small, at which point one can
remove such edges until the shortest path is obtained.

Since the model is a shortest path algorithm, it can be
thought of as being very similar to flow conductivity, so
any of the shortest path applications such as traffic routing
should be possible, although this model has been shown to
not always give the shortest path.

3. Exploring interactions between multiple cells
In what follows, we shall introduce a modified version of the
CELL model described theoretically in [8] with memorized
flow. After creating code to model our new algorithm
(source code and a video demonstration are available at
[24,25]), we shall investigate the interactions between mul-
tiple cells. To do this, our new model incorporates a unique
ID corresponding to a colour for each cell, so that each cell
is spawned with a unique colour, allowing us to distinguish
between the cytoplasm of each cell.

Example 3.1. An example of our model is shown in figure 10,
where one can see two CELLs initially spawned in a diamond
shape. After a few iterations, one can see that the cells lose
their diamond shape and become more circular, and there
are multiple chambers within the cells.

By the third image of figure 10, the cells have made con-
tact. In the fourth image, cytoplasm continues to flow
between the two newly connected cells. In the fifth and sixth
images, cytoplasm continues to flow further between the
two cells. Finally, in the seventh image, the cytoplasm appears
to start becoming well mixed; in the eighth image, the cell
seems to have taken on a more circular or compact shape
after initially being elongated owing to two cells combining.
In the ninth image, the cell seems circular and the cytoplasm
is well dispersed. In the following sections, we shall see further
analysis of how cells fuse through our model.

3.1. Time to cell fusion in relation to spawn distance
We shall dedicate this section to understanding how the dis-
tance that two CELLs are spawned apart affects the number
of iterations it takes for the cells to contact. Across this sec-
tion, we use the following parameters: n = 1000, s = 3, and
define two CELLs contacting as a cytoplasm of one ID
being adjacent to a cytoplasm of another CELL. To illustrate
this definition, figure 11 is an example of the first place
that two CELLs contact.

651

17

4

3

3 4

2
2 6

Figure 9. Graph as in figure 1 but without the edge between nodes 3 and
4. The numbers on each edge represent the length of that edge.
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To understand the behaviour of two cells through our
model, we run 1025 trials of each spawn distance from 16
to 34. We graph the average iterations of each trial versus
the spawn distance in figures 12 and 13. These plots show
that there are extreme upper outliers, which is expected
given the random nature of the cell model. The boxplot
also shows an overall increasing trend in the number of iter-
ations as the spawn distance increases.

In order to understand the results inferred from our
experiments, we fit our findings to curves of linear, exponen-
tial and logistical functions

y ¼ mxþ b, ð3:1Þ
y ¼ a ' bx þ c ð3:2Þ

and y ¼ L
1þ e#kðx#x0Þ

þ b: ð3:3Þ

The 10% trimmed mean of each spawn distance is given
in figure 14, where one can see that these data appear to be
linear (equation (3.1)) with values of m = 18 873.73644734
and b =−291 495.3914131. It can be seen that the linear func-
tion gives an r2 value of 0.9707 and appears to fit the data,
allowing us to conclude that the relationship between time
to merge and the distance apart is linear.

3.2. Analysis of cell fusion with three cells
The premise of this experiment is that we spawn three CELLs
in a straight line. We adjust the distances between the cells in
order to see which cells fuse first as well as gather data on the
number of iterations taken for the first cell fusion event to
occur. We try different distances between the three CELLs
ranging from 16 to 29 inclusive. We keep track of how
many iterations it takes for the first two CELLs to merge
and which two cells end up merging. We perform 350
trials. In general, the distance between cells 1 and 2, or dis-
tance 1, will be greater than or equal to the distance
between cells 2 and 3, or distance 2. We always spawn cell 2
in the centre of the image and then spawn cells 1 and 3 the
set distance away from cell 2. For example, in figure 15, the
cells are from left to right 1, 2 and 3.

In order to visualize the data from our experiments, we
use a three-dimensional scatterplot in figure 16, through
which we see that there are extreme outliers when both
distances are very large.

Moreover, one can see that, for every set of distances,
there are three different possibilities: cells 1 and 2 join, cells
2 and 3 join or cells 1 and 3 join. For each of these

possibilities, we compute the mean number of iterations it
took for the cells to fuse. This is displayed in figure 17. One
sees that, as the distances increase, so does the number of iter-
ations. In general, it appears that the number of iterations for
cells 1 and 3 (green bar) to join is overall much larger than the
number of iterations for 1 and 2 or 2 and 3.

In order to understand how and when two cells fuse
together, we compute the probability that a certain two
cells will join, depicted in figure 18. Overall, one sees that
the probability that cells 1 and 3 join is the lowest, which is
expected since cell 2 is between cells 1 and 3. Cells 2 and 3
have the highest probability of joining, which is consistent
with the fact that they are closer.

The number of iterations it takes for two out of the three
cells to fuse steeply increases as the distance between the cells
does, and this is shown in figure 19. It is important to note
that distance 1 was always greater than distance 2, so the
upper triangle of this plot had no data.

3.3. The impact of cell size on movement
In what follows, we shall show the importance of the CELL’s
size in its ability to move. In this section, we measure mobility
by computing three values: the average distance from the
spawn point, the furthest distance from the spawn point and
the total distance travelled. After every iteration of the cell
algorithm, we compute the centre of mass of the cell by iterat-
ing through all pieces of cytoplasm and computing the average
x and y values. We then compute the distance from the spawn
point using the distance formula with the cell’s current centre of
mass and the spawn point (49, 49). Finally, we compute the
total distance travelled by summing the distance between the
current centre of mass and the centre of mass an iteration
before. For each calculation, we have 2000 trials of each cell size.

We shall begin by analysing the average distance from the
spawn point. To do this, we compute the 10% trimmed mean
of the average distance for each given cell size, and then fit an
exponential curve to these data. The results are shown in figure
20. The exponential curve (equation (3.2)) a = 8.0305104, b =
0.91459648 and c = 0.36077371 appears to fit the data points
very well, suggesting that the relationship between the average
distance and size resembles that of exponential decay.

In what follows, we shall consider the largest distance
from the spawn point: this value represents the furthest
point that a cell has travelled to. We first compute the 10%
trimmed mean of the average distance for each given cell
size. We then fit the exponential curve (equation (3.2) with
values a = 15.91026266, b = 0.91514874 and c = 0.71778398, as
shown in figure 21, allowing us to conclude that the relation-
ship between the largest distance and area resembles that of
exponential decay.

Finally, we shall analyse the speed of the fusion: at each
iteration of our modified CELL model, we compute the dis-
tance of the centre of mass from the previous centre of
mass. Averaging all the distances to find the average speed
of the cell, we see that the data fit an exponential curve, as
shown in figure 22.

3.4. Cytoplasm mixing in cell fusion
In this section, we shall further consider how the sizes of cells
can impact their fusion. To do so, we spawn two cells of vary-
ing size and measure how well the cytoplasms of each cell
mix together. We use Lacy’s mixing index M, described in

(1) (2) (3) (4)

(6) (7) (8) (9)

(5)

Figure 10. The spawn of two CELLs at (15, 20) and (35, 20), with par-
ameters: size = 15, s = 3, n = 1000.

Figure 11. In this image, the two cells have just contacted for the first time.
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Figure 12. Graph of the 1025 trials of each distance: the distance between the centre of the spawn points is on the x-axis, and the number of iterations until they
merge is on the y-axis.
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Figure 13. The 1025 trials of each distance: the distance between the centre of the spawn points is on the x-axis and the number of iterations until they merge
is on the y-axis.
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Figure 14. To deal with the heavily skewed data as evidenced by the scatter and box plots, we trim 10% from both the upper and lower ends of the data. We then
compute the trimmed mean. We use the scipy.optimize.curve_fit function to fit these data to a linear function (equation (3.1)) with the values m =
21 892.74674907 and b =−354 967.6942326. This gives an r2-value of 0.970675949.
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[12], to measure the mixing of cytoplasm. Here, the variable
M ranges from 0 to 1, where 0 is not mixed at all and 1 is com-
pletely mixed, and is defined in equation (3.4)

M ¼ S20 # S2

S20 # S2R
, ð3:4Þ

where S0 and SR are defined in (3.5) and (3.6), respectively;

S20 ¼ qp ð3:5Þ

and

S2R ¼ qp
N

, ð3:6Þ

for q the proportion of the mixture that is of the first sub-
stance, p the proportion of the mixture that is of the second
substance and N the number of particles in the samples.

The standard deviation over n samples is shown in (3.7),
where we define xi to be the proportion of the sample that is
the first substance, and set !x to equal p,

S2 ¼ 1
n

Xi¼n

i¼1

ðxi # !xÞ2: ð3:7Þ

As a point of reference, figure 23 has a mixing index of 0.726.
Considering a starting cell of size 15, we then spawn

another cell of varying size from 15 to 49 (odd sizes only),
and run 1000 trials for each of the sizes. Each trial consists
of 10 000 iterations of our modified CELL model. The cells
are spawned so that they are initially barely touching, as
shown in figure 24. In each iteration, we compute the
mixing index as discussed above. We sample the current
state of the CELLs by taking all 3 × 3 squares in the grid. If
more than half of the 3 × 3 square is not cytoplasm, we disre-
gard the sample. For each of the trials, we compute the mean
value of the mixing index as well as the largest mixing index.

We shall first analyse the mean mixing index M with
respect to area, which is proportional to size, and which we
have been analysing in the previous sections, squared. For
each area size, we trim the lower and upper 10% of the data-
set and graph the 10% trimmed mean in figure 25. These data
are clearly best fitted by an exponential function.

We now analyse the maximum mixing index, or the high-
est amount of mixing achieved in the 10 000 iterations. We see
in figure 26 that the maximum mixing index decreases as size
increases and has more lower outliers than upper outliers.

Finally, we compute the 10% trimmed mean of the maxi-
mum mixing index, and fit these data to a logistical function
in figure 27.

4. Concluding remarks
In the present paper,wehavemodified the original CELLmodel
[8] in order to be able to study interactions between multiple
CELLs of varying sizes and at different distances. Four different
experiments were run. The first of these experiments measured
the time it took for two cells to come into contact based on the
distance between them. The second of these experiments
tested which two cells out of three would merge first. The
third of these experiments tested the mobility of cells in relation
to cell size. The fourth of these experiments measured the
mixing of cytoplasm of two cells in relation to cell size.

4.1. Summary of results
Our observed results corroborate multiple expected Physarum
behaviours: merging time increases with distance, cells merge
with closer cells, cells are more mobile and smaller cells fuse
better. This further validates the CELL model as well as the
modified CELL model with multiple CELLs of varying sizes
and at varying distances. Furthermore, we have been able to
identify the relationship between important characteristics
such as speed versus distance (experimental decay) which
would have been difficult to determine by experimentally
growing Physarum.

From the first experiment, we were able to identify
that the correlation between the time to contact and the

Figure 15. Three cells of size 15, labelled from left to right as 1, 2 and
3. The distance between cells 1 and 2 (distance 1) is 27 and between
cells 2 and 3 (distance 2) is 23.
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Figure 16. Using the Python package matplotlib, we create a three-dimen-
sional scatterplot. On the xy plane are the distances between the three cells
and on the z-axis is the number of iterations it takes for two cells to combine.
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Figure 17. Using the Python package matplotlib, we compute the mean of
each set of distances. For each distance, we have three bars: one for each of
the possible two CELLs combining.
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distance between CELLs is linear. In the second experiment,
we determined that CELLs most often merge with the
CELLs closest to them and do so quicker than merging
with other CELLs. In the third experiment, we determined
that there is an exponential decay relationship between

measures of mobility (speed, distance from start) and size.
In the fourth experiment, we identified the relationship
between the mean mixing index and area as exponen-
tial decay and between the maximum mixing index and
size as logistical decay.
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Figure 18. Using the Python package matplotlib, we compute the probability that, for a given set of distances between CELLs, each combination of two cells (1 2,
1 3, 2 3) will be the ones that combine first.
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Figure 19. Using the Python package matplotlib, we create a contour plot. On the xy plane are the distances between the three cells; the colour gradient
represents the number of iterations it takes for two cells to combine.
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Figure 20. We compute the 10% trimmed mean of each cell size. We then fit an exponential curve to the data.
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4.2. Applications
We foresee many applications of our work. In particular, our
modified CELL model can be used in the following set-ups:

1. Fusion between multiple CELLs can also be used to model
the rise of present-day civilization from the early nomadic
humans [26]. Each tribe or group is modelled as a cell.
Smaller groups or tribes are able to travel faster. As the
size grows, they become less and less mobile until
permanent settlement occurs. As the groups travel
around, they meet other groups where they could
merge. As with the results described in this paper,
groups closer together have a closer connection than
groups further apart.

2. Multiple CELLs can be used to model the spread of
knowledge among groups of people. Following the
ideas of [27], certain groups would begin with certain
knowledge; when they encounter another group, they
would combine and both share the knowledge, which is
possibly modified. In such a way, one could potentially
understand the spread and deformation of ideas and
information.

In addition, there is more biological work that can be done
to verify these results and further validate the CELL model
[8] as well as our generalized CELL model. In particular,
each of the experiments done with the CELL model can
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Figure 21. We compute the 10% trimmed mean of each cell size. We then fit an exponential curve to the data.
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Figure 22. We compute the 10% trimmed mean of the 1000 trials. We then attempt to fit the data to the exponential curve (equation (3.2)) with values a =
0.10144046, b = 0.9192343 and c = 0.0046737.

Figure 23. Two cells of size 15 and 20, respectively. After 5000 iterations,
the mixing index is 0.726373742358510.

(a) (b)

Figure 24. Here, we have two CELLs of size 15 (a) and 23 (b). The CELLs
have just been spawned so that they are barely touching each other at
the centre of the image.
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be done with physical P. polycephalum. In addition, multiple
Physarum organisms can share information and communi-
cate prior to protoplasm fusion through the mucus that
surrounds Physarum [28]. New models can be developed
or existing models can be modified to represent this
additional aspect of multiple Physarum fusing. The fusion
of Physarum is very complex, and the model presented in
this paper can be further developed and tweaked to better
represent it.

There is also potential to use multiple Physarum organ-
isms to solve problems that a single Physarum has already
solved, such as maze solving and tree formation, and this is
currently being studied in [29].

4.3. Final comments
Exploring the interaction between multiple P. polycephalum
organisms is essential to discovering more about Physarum’s
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Figure 25. We compute the 10% trimmed mean of the mean mixing index. We fit these data to an exponential function (equation (3.2)) pictured in blue with
values a = 0.67188919, b = 0.99891735 and c = 0.21859742.
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Figure 26. We graph the data from our 1000 trials of each size ranging from 15 to 49 (odd only) using a scatterplot and boxplot.
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unique ability as a unicellular organism to communicate with
other cells and rememberpast events.More research intoPhysar-
um’s unique learning, communication andmemory capabilities
will allow us to discover more about possible unconventional
solutions to the world’s largest problems.
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