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Abstract. Through the triality of SO(8,C), we study three interrelated homogeneous basis
of the ring of invariant polynomials of Lie algebras, which give the basis of three Hitchin
fibrations, and identify the explicit automorphisms that relate them.

Key words: triality; Higgs bundles; invariant polynomials

2020 Mathematics Subject Classification: 14H60; 31A35; 33C80; 53C07

1 Introduction

This paper is dedicated to the study of the effect of triality on the ring of ad-invariant polynomials
on the Lie algebra s0(8), through the perspective of Hitchin systems. Although this result can
be deduced through topological methods (e.g., via the formulae for the Pontrjagin and Euler
classes of the spin bundles on an orientable, spinnable 8-manifold [16]) we would like to take
here a perspective we have not found elsewhere, and which fits naturally within the study of
Higgs bundles.

Triality. An avatar of triality is triality of vector spaces, which is given by a trilinear form
p: V1 x Vo x V3 — R that is non-degenerate in the sense that fixing any two non-zero vectors
yields a non-zero linear functional in the third entry. Put differently, fixing a non-zero vector
yields a duality of the two remaining vector spaces, i.e., a non-degenerate bilinear form in the
usual sense. Vector spaces that are connected via triality can be (non-canonically) identified
with a fixed vector space V which is a division algebra. To see this, consider two non-zero
vectors e; € Vi, and es € V5. Then, p induces isomorphisms V; = V5 and Vy = V3', and thus
one can identify these spaces with a vector space V. The trilinear form can then be dualized
toamap V x V — V that we shall call multiplication, and the non-degeneracy states precisely
that each multiplication has both a left- and a right-inverse, turning V into a division algebra.

The upshot of the above perspective is that triality is a very rigorous phenomenon and over
the real numbers it can only appear for vector spaces of dimensions 1, 2, 4 and 8. Across these
notes, we are interested in that of dimension 8, where the three vector spaces in question are
the vector representation Ay and the two irreducible spin representations A; and Ay of Spin(8),
all of which are 8-dimensional. The spin representations are self-dual, and so the trilinear form
connecting these vector spaces can be seen as the homomorphism Agx Ay — Ay that is obtained
by restricting the action of the Clifford algebra Cliff(8) to the vector space Ay ~ R8 = Cliff;(8)
of degree 1 elements. In terms of the trilinear form p, triality of Spin(8) means that for every
g € Spin(8) there exist unique g1, g2 € Spin(8) such that for all v; € A; one has that

p(vo, v1,v2) = p(gvo, g1v1, g2v2). (1.1)
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Higgs bundles and the Hitchin fibration. When considering triality between vector spaces and
groups, it is natural to ask about its consequences on different mathematical objects defined
through those groups and vector spaces. In this paper, we shall ask this question in relation to
Higgs bundles, which were introduced by Hitchin in 1987 for the general linear group [12], and
whose “classical” definition is the following;:

Definition 1.1. A Higgs bundle on a compact Riemann surface ¥ is a pair (F, ®) for a holo-
morphic vector bundle E on X, and the Higgs field ® € H°(3, End(F) ® K), where K = T*¥..

This definition can be generalized to encompass principal Ge-bundles, for G¢ a complex
semi-simple Lie group [13], which shall be consider across this paper.

Definition 1.2. A G¢-Higgs bundle on a compact Riemann surface ¥ is a pair (P, ®) where P is
a principal G¢-bundle over 3, and the Higgs field @ is a holomorphic section of the vector bundle
ad P ®c K, for ad P the vector bundle associated to the adjoint representation and K = T*X..

When G¢ € GL(n,C), a Gc-Higgs bundle gives rise to a Higgs bundle in the classical
sense, with some extra structure reflecting the definition of G¢. In particular, classical Higgs
bundles are given by GL(n,C)-Higgs bundles. Through what is known as the non-abelian
Hodge correspondence [5, 7, 12, 20, 23] and the Riemann—Hilbert correspondence, Higgs bundles
manifest themselves as both flat connections and surface group representations, fundamental
objects in contemporary mathematics, and closely related to theoretical physics.

By imposing stability conditions, one may form the moduli space Mg of Gc-Higgs bundles,
which in turn has a natural fibration associated to it, the Hitchin fibration. The Hitchin fibration
can be defined through a choice of a homogeneous basis {p;}¥_, for the algebra of invariant poly-
nomials of the Lie algebra g. of G¢, of degrees {d;}¥_,. Then, the Hitchin fibration, introduced
in [13], is given by

k

h: Mg — Ag. = @HO(E,Kdi), (1.2)
=1

(B, ®) — (p1(D),...,pr(P)). (1.3)

The map h is referred to as the Hitchin map: it is a proper map for any choice of basis of
invariant polynomials [13], and the space Ay, is known as the Hitchin base.!

It is important to note that through the Hitchin fibration, Mg, gives examples of hyperkahler
manifolds which are integrable systems [13], leading to remarkable applications in physics. More-
over, Hausel-Thaddeus [10] related Higgs bundles to mirror symmetry, and with Donagi—Pantev
presented M¢,. as a fundamental example of mirror symmetry for Calabi—Yau manifolds, whose
geometry and topology continues to be studied [6]. More recently, Kapustin—-Witten [15] used
Higgs bundles and the Hitchin fibration to obtain a physical derivation of the geometric Lang-
lands correspondence through mirror symmetry. Soon after, Ngé found the Hitchin fibration
a key ingredients when proving the fundamental lemma in [17].

Summary of our work. Inspired by the triality induced between three Hitchin fibrations
through the triality of Lie groups, Lie algebras and their rings of invariant polynomials, we
dedicate this short note to fill a gap we found in the literature when looking for explicit descrip-
tions of correspondences between homogenous bases of the rings of invariant polynomials of Lie
algebras arising from the triality of SO(8,C). We shall be concerned here with the action of
the triality automorphism on the corresponding moduli spaces of Higgs bundles, which has been
previously studied by other authors both from a string theory perspective (e.g., see the work of
Aganagic-Haouzi-Shakirov [1] on triality for Coulomb and Higgs branches and related papers)

Notice that the base depends only on the Lie algebra g. as indicated by the notation.
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as well as from a mathematics perspective (see the work by Anton Sancho [2] and Garcia-Prada—
Ramanan [9]). An automorphism of a Dynkin diagram does not determine a unique lift to an
automorphism of the connected, simply-connected complex Lie group it defines. Indeed, it is
known that in the case of Spin(8,C) there are two options up to conjugation by an inner auto-
morphism [24]. In particular, these can be chosen so that the fixed locus is either Gy or SL(3, C)
(e.g., see [2, 9]).

We will restrict our attention here to a lift corresponding to Ga: using a particular lift
o:50(8) — s0(8) of the triality automorphism, we shall study the effect on the base of the
Hitchin system explicitly (that is, in a particularly convenient basis). In a different direction,
the fixed locus inside the moduli space of Higgs bundles can be described on general grounds
via [9]. The present work is organized as follows: in Section 2 we shall give an overview of the
group-theoretic construction of triality. Then, in Section 3 we introduce the particular triality
automorphism o of Spin(8), which whilst not difficult to prove, had not been stated in the
literature before:

Proposition 1.3 (= Proposition 3.1). The natural map Go — Spin(8) induced by triality is
obtained by combining the action of

1 -1 -1 -1
1 1 1 -1 -1
M'_§ 1 -1 1 -1

1 -1 -1 1

on all seven quadruples giving the 28-dimensional Lie algebra so(8) in (3.1), defining an auto-
morphism o of s0(8) that preserves the Lie bracket, and whose fized subalgebra is isomorphic
to ga, the Lie algebra of Go.

Our main interest lies in the study of the above action on different homogeneous bases
of the ring of invariant polynomials of Lie algebras, since those describe the base of Hitchin
fibrations. We hence dedicate Section 4 to study the action of the triality automorphism o
described in Proposition 3.1 on the algebra of invariant polynomials of s0(8). To this end,
recall that a particular choice of basis is given by the four polynomials pi(M) = Tr (M 2),
p2(M) = Tr (M*), p3(M) = Tr (M%) and Pf(M), where the latter denotes the Pfaffian. We
then prove the following:

Theorem 1.4 (= Theorem 4.1). Under the order 3 automorphism o of $0(8) in Proposition 3.1,
the basis of C[s0(8)]5°®) transforms as

)
Tr (o(M)*) = gTr (m2)” — Lo () — 12pe(),

2
Pf(o(M)) = —6i4 Tr (M?)? + 1—16 Tr (M*) — %Pf(M),
T (o(M)%) = = T (M2)® = 2T (M2) - T (M%) = 22T (M2) - PE(AM) + T (M°).

Finally, we conclude the manuscript with some directions of further research for which we
envisage the present results shall prove very useful.

2 Triality of s0(8,C)

We shall recall here how triality appears for the complex Lie algebra so(8, C) and the associated
simply-connected Lie group Spin(8, C) from a few different perspectives, which will become useful
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across these notes. The group Out(g) of outer automorphisms of a Lie algebra is the symmetry
group of its Dynkin diagram, which for the case at hand is the group S3; of permutations
on 3 letters. In particular, these automorphisms permute the three 8-dimensional irreducible
representations of Spin(8) which are given by the vector representation Ag (modelled on C?)
and two chiral spin representations A; for i = 1, 2.

2.1 'Triality via the octonions

We shall start by describing the compact real group Gg as the group of algebra morphisms
of the octonions O, the maximal real finite-dimensional division algebra. The octonions form
a non-associative, non-commutative unital algebra that is real 8-dimensional. We recall here
some of its properties that are needed for our study of triality on Higgs bundles, following [25],
which the reader may want to consult for details.

The starting point is a particular basis {eg = 1,ey,...,er} for which e? = —1 (i # 0) and
eie; = —eje; (0 # i # j # 0). The multiplication of octonions is then completely described by
the relations encoded in the Fano plane (see Figure 1). Here, the bottom line for instance reads
e5 - €2 = e3 and cyclic permutations thereof. Note that (e, ea, e4) also forms an ordered colinear
triple in this way.

Figure 1. The Fano plane captures multiplication of octonions.

The Fano plane is encoding subalgebras: there is a canonical subalgebra isomorphic to R,
which is span{eg}. Moreover, every vertex e; of the diagram identifies a subalgebra span{eg, €;}
isomorphic to C, and every ordered colinear triple (e;, e;, e) gives a subalgebra span{ey, €;, e, ey, }
isomorphic to the quaternions H. Furthermore, every e; (i # 0) sits on exactly three lines, which
in the setting of Figure 1 are, for indices taken mod 7, given by

(€i,€it1,€i13), (€, €it2,€it6), (€, €ita,€its). (2.1)

Rotating the Fano plane by 27 /3 induces an (order 3) automorphism of O given by ey — e
and e; — eg; where ¢ € {1,...,7} is taken mod 7. Note that there are also natural order 2 auto-
morphisms given by reflection along one of the central axes, but these have to be accompanied
by a sign flip for certain elements to accommodate the correct direction of the arrows. Similar
to the quaternions, for a; € R and x € O, the octonions come equipped with

e a conjugation ag + ZZZI a;e; = ag — ZZZI a;e;,

a real part Re(z) = 3(z + @),

an inner product (Y aueu, > buey) =3 aub, =Re (X auen) - (3 buey)),
the induced norm |z| = /(z, x).

The group Gs is the group of algebra automorphisms of the octonions, i.e.,

Go = {a € Autr(0) | a(zy) = (ax)(ay) Vz,y € O}.
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The above condition implies in particular that any a € Gy obeys (az,ay) = (x,y) and hence
realises Go as a closed subgroup of

08) =0(0) ={a € Autr(0) | (ax, ay) = (x,y) Yz, y € O}.

In particular, Go is compact. It is easy to see that it acts trivially on the real part of the
octonions (as a morphism of algebras it preserves the unit: a1l = 1), and that the action can be
restricted to its orthogonal complement Q' = span{e, ..., er}, where ae; = —ae; (i =1,...,7),
so that Gg is really a subgroup of

O(7) = {a € 0(0) | al = 1}.

2.2 Outer automorphisms of Spin(8)

The assignment o;: g — g¢; from equation (1.1) is an automorphism that is in fact outer. Recall
that an inner automorphism of a group G is an automorphism coming from conjugation by some
group element h, i.e., g+ h-g-h~!' =: Cj,(g). Inner automorphisms form a normal subgroup
Inn(G) of the group Aut(G) whose quotient is the group of outer automorphisms

Out(G) := Aut(G@)/ Inn(G).

Inner automorphisms (by definition) leave the center Z(G) of G invariant and in fact for a simple
Lie group G, Inn(G) is naturally isomorphic to Goq = G/Z(G), the adjoint form of the group.
If G is additionally simply-connected, Out(G) is the symmetry group of its associated Dynkin
diagram which here is Out(Spin(8)) ~ S3, the group of permutations on 3 elements, as shown
in Figure 2.

Sp(6,C)

SO(8,C) G

Figure 2. The Dynkin diagram D, presenting its exceptional symmetries, and the two foldings
f1: 50(8) ~» sp(6), and f2: s0(8) ~ Ga.

Of fundamental importance to us will be the principle of infinitesimal triality [25, Theo-
rems 1.3.5 and 1.3.6], which is the infinitesimal version of (1.1):

Proposition 2.1. Every Dy € 50(8) determines a unique triple (D1, Do, D3) € s0(8)% such that
(D1z)y + 2(D2y) = D3(xy)

forallz,y € Q. Furthermore, Dy = 0(D1), D3 = n(D1) where o and n are outer automorphisms
of 0(8) such that 0 = n* = 1 = (no)?. In particular, ¢ and n are generators for Sz =
Out(s0(8)).

The external nodes of the Dynkin diagram correspond to the fundamental representations
Ap, A1, Ay of s0(8) (all of which are 8-dimensional), and these are permuted by outer au-
tomorphisms, e.g., by o1 and o9 as defined by o;: g — ¢; in equation (1.1). The center of
Spin(8) is Zg X Zg, which has three elements wy, w1, wy of order two, such that each w; spans
the kernel of A;. Quotienting Spin(8) by one central Zs to SO(8) breaks the S3 symmetry to
Zy ~ Out(SO(8)).

Remark 2.2. The above order 2 automorphism of SO(8) can be represented by conjugation by
an element M € O(8) of determinant —1. Conversely, the outer automorphism of SO(8) lifts to
an automorphism of Spin(8) which fixes wp and interchanges w; and ws.
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2.3 Folding and fixed point loci

The reader should note that the fact that G9 is the fixed point locus of an automorphism of
Spin(8) that is not inner is no coincidence, as we will explain on the level of Lie algebras in what
follows. Recall that any simple, multiply-laced Lie algebra can be realized as the fixed point set
of an outer automorphism of a simply-laced Lie algebra. Concretely one has the following:

e The B-series B,, = s0(2n — 1) is the fixed point locus of the outer automorphism X
n~'Xn of s0(2n) = D,,, where n = diag(—1,1,1,...,1) € O(2n) has detn = —1.

e Let Q be a non-degenerate, skew-symmetric form of rank 2n, and recall that sp(2n) is
isomorphic to the Lie algebra of (2n x 2n)-matrices X for which QX + X'Q = 0, in
other words X = Q_l(—XT)Q. The assignment X — Q_l(—XT)Q defines an outer
automorphism of sl(2n) = Ag,_1 that is not inner and whose fixed point locus is the Lie
algebra sp(2n) = C,,.

e Finally, Fy is a Lie subalgebra of Fg which is the fixed locus of an outer automorphism,
e.g., see [25, Section 3.7].

Of course, different lifts of an outer automorphism to an actual automorphism may have
non-isomorphic fixed loci. A more invariant notion is that of a folding of a Dynkin diagram of
a Lie algebra, which for completion we shall briefly recall here. Outer automorphisms of a Lie
algebra g are in bijection with symmetries of its underlying Dynkin diagram, hence an outer
automorphism ¢ acts on the simple roots {r;}ier via permutation. Let [i] € [I] denote the set
of orbits in I under o, and let

Ckm = Z ay.

g+ [91=[4]
Then, one can see that the set {aj;}je(r) is the set of simple roots for a (typically not simply-
laced) Lie algebra g, as long as o does not exchange simple roots that share an edge in the Dynkin
diagram (which excludes in particular the outer automorphism of the Dynkin diagram As,,). This
new algebra is called the folded or orbit Lie algebra [8]. In particular, an orbit Lie algebra admits
no natural map to the original Lie algebra, but it is Langlands dual to the Lie algebra obtained
by taking fixed points. Finally, we should note that it is a standard result that the following
foldings occur [22]:

)

e the series Ag,_1 folds onto B,, (n >
e the series D, folds onto C),—1 (n >
e [ folds onto Fy,

e D, folds onto G under the order 3 automorphism.

2),
3) under an order 2 automorphism,

3 Triality as an automorphism

In order to understand the appearance of triality via Higgs bundles and the Hitchin fibration, we
shall define these subgroups as fixed points of an automorphism to which we turn our attention
now, and whose action on the moduli space of Higgs bundles will be studied in the following
sections. Recall that the Lie algebra of Spin(8) is given by

50(8) = s0(0) = {D € Homg(0) | (Dz,y) + (z, Dy) = 0 Vz,y € O}

with a basis {G; ;

0 <i<j <7} defined through

Gijej =ei,  Gigei=—e;,  Gijep =0,  k#1i,].
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It is a 28-dimensional Lie algebra that admits a vector space decomposition into seven 4-
dimensional vector spaces with bases

{Goi, Git1,i+3, Git2,it6, Gita,its ) (3.1)

where i € {1,...,7}, and the indices different from 0 and 7 are understood mod 7. Notice in
particular the resemblance with equation (2.1). In this setting, the folding fi: s0(8) ~» sp(6)
is exhibited by taking the fixed locus of an order 2 automorphism, which yields a subalgebra
isomorphic to so(7). The desired sp(6) is then its Langlands dual, and it is in this sense that
folding is dual to taking fixed loci.

In order to understand the action of fa, consider the linear action of the matrix

-1 -1 -1 -1
11 1 -1 -1
M=51 11 1 4 (3.2)

1 -1 -1 1
on the four-dimensional subspaces from equation (3.1), for which one can show the following:

Proposition 3.1. The natural inclusion Gy — Spin(8) is obtained by combining the action of M
from equation (3.2) on all seven quadruples in equation (3.1), which defines an automorphism

o: $0(8) — s0(8), (3.3)
that preserves the Lie bracket and whose fixed subalgebra is 50(8)7 = go, the Lie algebra of G.

Proof. It is straightforward to check that M? = MT and that M3 = 14, i.e., M is of order 3
and so is 0. The fact that it preserves the Lie bracket is a (somewhat tedious, yet straightforward)
computation that can be done on the distinguished basis {G; ;} and can be found in [25, Lem-
ma 1.3.2].

The proof that the fixed subalgebra is isomorphic to gs is similarly convoluted and can also
be found in [25, Lemma 1.4.2], where it is again worked out using the particular basis {G;;}.
It crucially uses the infinitesimal principle of triality: D € s0(8) is fixed by o and 7 from
Proposition 2.1 if and only if

D € gy = Lie(G2) = 0et(0) = {D: (Dx)y + =(Dy) = D(zy) Vz,y € O}.

From this perspective, the true difficulty lies in showing that the two definitions of o agree
(which can only be done in the basis that the definition requires) [25]. |

Remark 3.2. It is straightforward to see that dim (50(8)") = 14, since the +1-eigenspace of M
is 2-dimensional. Using this, together with the facts that go = 14 and that the fixed locus of
a non-trivial automorphism of s0(8) is isomorphic to either gs or su(3), one might be inclined to
use a dimensional argument to conclude the final piece of Proposition 3.1. However, one would
still need to check that o is indeed an outer automorphism, which is in itself a difficult task
(even after knowing that o is of order 3).

Remark 3.3. The principle of infinitesimal triality gives the particular lift ¢ that we consider
a very geometric and intrinsic meaning, and it is for this reason that throughout these notes we
call o the triality automorphism, even though a different lift from the order-3 automorphism of
the underlying Dynkin diagram could rightfully be called “triality” as well.

Remark 3.4. The folding fa: s0(8) ~ g2 is obtained by taking the fixed locus of an automor-
phism, followed by Langlands duality. Moreover, as before, folding does not give rise to a natural
map between the two Lie algebras.

Whilst we have studied above the compact real form Go, from now on we will care about its
complexification which by abuse of notation we will also denote Gs.
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4 Triality and homogeneous invariant polynomials

Even though the foldings f; and f2 do not give rise to natural maps of Lie algebras, they
remarkably lead to maps on the level of algebras of invariant polynomials, to which we turn our
attention now. For this, we shall first consider how the eigenvalues of matrices are transformed.

4.1 The choices of homogeneous basis

In order to choose the homogeneous basis of invariant polynomials which we shall be studying,
we shall look into how the Hitchin base for different G¢-Hitchin systems are constructed, as
described in equation (1.2)—(1.3). Since we want to focus on the Lie theoretic aspect of the
research here, we shall not go into details on Hitchin systems: the interested reader can find
further details on Hitchin base in [13] for complex Lie groups, and in [18] for real Lie groups.
Moreover, recent applications and open questions in the topic can be found in [19]. In what
follows we take Gi¢ to be one of the complex Lie groups in Table 1 below.

Lie algebra g Lie group G¢  Compact real form u  dim u

04 SO(8,C) 50(8) 28
b3 SO(7,C) 50(7) 21
c3 Sp(6,C) sp(6) 21
92 Go g2 14

Table 1. The Lie groups and Lie algebras we consider.

Since we are looking to further our understanding of the effect of triality on Higgs bundles,
recall that an SO(8, C)-Higgs bundle on a compact Riemann surface ¥ is a pair (E, ®), for E
a rk 8 holomorphic vector bundle with a symmetric bilinear form (-,-), and the Higgs field
¢: F — EF ® T*%, which is a holomorphic map for which (®v,w) = —(v, Pw). In local coordi-
nates, ®(z) = M(z)dz is a holomorphic so0(8)-valued 1-form whose eigenvalues we denote by £\,
+X2, £A3, £X4. We shall be interested on how the eigenvalues change under the action induced
by the automorphism o. For ease of notation we shall denote by K := T*X. The characteristic
polynomial of the matrix valued map ® defines a curve by considering the equation

4
{H (n* —A?) = 0} C Tot(K). (4.1)

i=1

The coefficients a; € H (E, K zi) in equation (4.1) give a point in the Hitchin base. In order to
understand the transformation of this point under triality, it is useful to describe the polynomial
in equation (4.1) in terms of traces, which we can express as

4 4
n®— <Z A?) S [ DONN = [ DD NN | P+ (H A?). (4.2)
=1 i=1

1<J 1<j<k

Since the action in Proposition 3.1 can be nicely described in terms of actions on traces and
Pfaffians, it is useful to describe the characteristic polynomial of equation (4.2) in terms of those
invariant polynomials, which can be done as follows

det(® —7n-1d) = n® — (;Tr(®2)> n°® + (iTr(@z)Q + ;Tr(<134)> n*

+ <418Tr(<1>2)3 — 6Tr(®%)Tr(®1) + 8Tr(<I)6)) i + PE(®)2.
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Hence, a basis of invariant polynomials is given by the Pfaffian py = Pf(®) and

1
a1 = 5Tr(<1>2),
1 9 1
as = ZTI((I)Q) + gTr(q)‘l),
a3 = ~Te(®2)° — 6T (32)Tr () + 8Tr (35).

48

4.2 The action on the homogeneous basis

In what follows, we shall consider the values of the invariant polynomials p;(M) = Tr (M 21’) for
i=1,2,3 as well as ps(M) = Pf(M) for s0(8), as well as its Lie subalgebras so(7) and g2. Recall
that any M € s0(8) has eigenvalues that come in opposite pairs +; for i = 1,...,4. For the Lie
subalgebras mentioned these restrictions become more severe: It is an easy exercise to see that
for M € s0(7), written in the 8-dimensional representation obtained by inclusion in so(8), two
of the eigenvalues must vanish. Moreover, for M € go additionally the eigenvalues appear in
triples A3 = A1 + A2 (for the correct choice of signs). This, together with the subsequent values
of the invariant polynomials is given in Tables 2-3, which will be used to describe the induced
triality morphism on the homogeneous basis of invariant polynomials for so(8).

g Eigenvalues Tr (M 2) Tr (M 4)
50(8)  £A1, Ay, FA3, £y 254 A2 254 A
s0(7)  £A1, £Ag, +)3,0,0 253 A2 253 A

9o AL FA, £+ A2),0,0 4(AZ+ XA +A%) 402+ Mg +A2)?

Table 2. Eigenvalues and invariant polynomials, where Tr (M*) = 1/4Tr (M 2)2 for M € g,.

g Eigenvalues Tr(M°) Pf(M)
50(8)  HA1, £Ag, £z, £y 257 A\ IYEP YR YRSV
50(7)  +A,+Ag, +£X3,0,0 2573 N8

g2 A1, EAo, £(A +22),0,0 2(A8 + A + (A1 + A2)©) 0

Table 3. Eigenvalues and invariant polynomials.

The algebra of invariant polynomials for so(7) is given by C[so(7)]3°(") and admits a basis
{p1, p2, p3} with p;(M) = Tr (MZZ) as before, which gives rise to the natural map C[so(7)]5°(7) —
C[50(8)]5°®). In terms of Hitchin systems, the map Aso(7) — Aso(s) 1s onto the part of the Hitchin
base whose preimage under the Hitchin map consists of Higgs bundles with vanishing Pfaffian,
or, equivalently, onto the fixed locus under an outer involution (induced by conjugation by
a matrix A € O(8) with det A = —1). Recall that a choice of invariant bilinear form gives an
isomorphism Ag ) = Aso(r), just like it does for any pair of Langlands dual reductive groups,
and the two maps together yield the embedding of the base for the folded Lie algebra.

We shall now turn our attention to the more interesting case of go < s0(8) as the fixed
locus of the triality automorphism. The following theorem establishes how the basis of invariant
polynomials transforms:

Theorem 4.1. Under the order 3 automorphism o of s0(8) in (3.3) induced from equation (3.2),
the basis {p1,p2,p3,pa} of Cls0(8)]5°®) transforms as

Tr (0(M)?) = Tr (M?),
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2 1

Tr (o(M)*) = g Tr (M?) 5 Ir (M*) — 12Pf(M),

Pi(o(M)) = —— Tr (M?)? + Lo (M*) - %Pf(M),

64 16
Tr (o(M)°) = (13751 Tr (M?)° - % Tr (M?) - Tr (M*) - % Tr (M?) - P£(M) + Tr (M°).

Proof. The first identity is straightforward: The space of invariant polynomials of degree 2
is one-dimensional, and ¢ defines an action of Zj3 on it, hence acts through multiplication by
a cubic root of unity. It is easy to see from the definition of o that it acts purely real, hence
leaving Tr (M 2) invariant.

For the other three polynomials one need to perform some further analysis. In order to
understand the action of o, we shall consider the values of the invariant polynomials in terms
of the matrix entries of M = {M;;}. As for any antisymmetric matrix, the trace of its square is

Tr (Mz) = Z (MQ)’L’L = ZMiiji = Z _(Mij)2 = _2ZM¢23',
%,J ,J

i i<j
where 4,4,...=0,...,7 unless otherwise noted. Since M? is itself symmetric, then
4 2)2 4 2 772 2 772 2 a4 72
Tr(M*) =) (M), =2 Mj+4 Y (MEMG + MZEMS, + Mj M)
ij i<j i<j<k
+8 Z (M My Mji My — M;j M My M;; + M My M Mj).
i<j<k<l

The expression for Tr (M 6) is increasingly complicated, but can be calculated in a similar
fashion. Lastly, we can compute the Pfaffian from the expression of the determinant, see Figure 3,

to obtain
1
PEM) = o5 > sen(n) - Monqr) - My2yn(3) - My(ayn(s) - Meym(r)
neS7
1
= 1731 2 5800 Myyn)  My@yn) - Myayes) - Myoyn(r): (4.3)
nESs

where S7 (resp. Sg) is the symmetric group on the letters {1,...,7} (resp. on {0,...,7}).

= Expand[
Det[M] -

(a0l a23 ad5 a67 - ab2 al3 ad5 ab7 + a03 al2 ad5 a67 - a0l a24 a35ab7 + ab2 ald a35a67 - a4 al2 a35ab7 + abdl a25a3d ab7? -
a02 al5 a34 a67 + a@5al2 a34a67 - a@3 ald al5ab7 + a@4al3 a25ab7 + a@3 als>a24ab7 - a@5al3 a24ab7 - al4als a3 ab7 +
a05 ald a23 ab7 - a@la23 ad6a57 + a@2al3 ad6ad>7 - ab3 al2 adb a5>7 + a0l a24 a36a5>7 - ab2 ald a36a5>7 + abd4al?a36as>7 -
a0l a26 a34 a57 + a@2 alb a34 a57 - a@bal2 a34 a57 + a@3 ald a26a57 - aB4al3 al26a57 - a3 alba24a57 + ab6al3 a2d4aS7 +
a04 alb a23 a57 - a6 ald a23 a57 + a@la23 ad7 a56 - a@2 al3 a47 a56 + al3 al2 ad7 a56 - a@l a24a37 a56 + ab2 ald4 a37 a5s6 -
a@4 al2 a37 a56 + a@la27 a34a56 - ab2 al7 a34 a56 + a@7 al2 a34a56 - a@3 al4 a27 a56 + a®4al3 a27 a56 + @03 al7 a24a56 -
a@7 al3 a24 a56 - a@4 al7 a23 a56 + ad7 al4 a23 a56 - a@la25a36a47 + ab2al5a36ad7 - a05al2 ad36ad7 + adl a26 a35ad7 -
a2 alb a35 ad7 + ad6 al2 a35a47 - a03 al5>a26ad7 + ab5al3 a26ad7 + a3 alba25ad7 - abbal3 a25ad7 - ab5>al6 a3 ad7 +
al6 al5 a23 a47 + a@la25a37ad46 - ab2al5>a37ad46 + ab5al2a37ad6 - a@la27 a35ad6 + ab2al7a35a46 - ab7 al2 a35ad6 +
a03 al5 a27 ad6 - ab5al3 a27 ad6 - a3 al7 a25ad6 + ab7 al3 a25ad6 + ab5al7 a23 ad6 - a@7 al5 a23 adb - a@la26a37ad5 +
a02 al6a37 ad45 - a@6al2a37ad45 + a@la27 a36a45 - aB2al7a36a45 + ab7 al2 a36a45 - a@3 alba27 ad45 + ab6al3 a27 ad5 +
a03 al7 a26 a45 - a@7 al3 a26a45 - a@bal7 a23 ad45 + ab7 al6a23 ad45 + a@4al5a26a37 - ab5alda26ba3? - a@4al6a2s>a3d7 +
ad6 ald a25a37 + a@5alba24a37 - abbal5a24a37 - a@4al5a27ad36 + ab5alda27 a36 + a@4al7a25a36 - ad7 ald a25a36 -
a@5 al7 a24 a36 + a@7 al5a24 a36 + aB4al6a27 a35 - abb ald a27 a35 - a@4al7 a26a35 + ab7 ald4 a26a35 + ab6 al7 a24a35 -
al7 alb a24 a35 - a@5 alb a27 a34 + ab6al5 a27 a34 + ab5 al7 a26 a34 - ad7 al5 a26a34 - al6 al7 a25a34 + ad7 al6 a25a34) ~2]

Figure 3. The Pfaffian P{(M) = /det M.

One should note that the prefactor in the first line of equation (4.3) arises (compared to
Figure 3) from permuting the individual factors without the subscript 0 (alternatively, from
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imposing 7(2) < n(4) < n(6)), as well as from ordering the individual subscripts by size using
M;; = —Mj; (alternatively by imposing 7(i) < n(i + 1) for ¢ = 2,4,6), and similarly for the
second line.

Finally, recall that the automorphism o acting on s0(8) is induced from the linear action of
the matrix defined in equation (3.2) on the linear subspaces spanned for i € {1,...,7} mod 7 by

{Mo,i, Mit1,i43, Mitoive, Miyaits}
As an example, the first column of the transformed matrix X := o (M) takes the form

0
Moy + Mg + Ms7 + Mse
Moz + M35 + Mgz — My
Mo3 + My — M7 — Mos
Moy + Mo + Ms7 — M3g
Mos + Ma3 — Myg — Myz
Mog + My5 + Msy — Moz
Moz + My3 + Mag + Mays

N

By degree reasons, Tr (X 4) can be expressed as
Tr (X*) = A-Tr (M) + B-Tx (M) 4 C - PE(M),

for some constants A, B, C' which we shall determine next. To this end, note that Tr (X 4) has
the following shape

1
Tr (X*) = 5(Mé1 + My + ) + (MG Mg, + MG My + MGHME + -+ -)

+ 3(Mg M3 + Mg My + ) + 4(Mor Myo Maz Moz — Moo Moz My Myz & - - -)
— 12( Moy Mg Mays M7 — Mo MisMys Mgz & -+ ).

Since we know the coefficients for the similar terms in our basis, the constants A, B, C can be
determined from the (over-constrained) system, yielding

Tr (XY) = gTr (M?)? - %Tr (M*) — 12 PF(M)

as in Theorem 4.1. In the same way, one can find the coefficients for Tr (X°) and Pf(X), though
the computations are even more lenghthy: For the Pfaffian, one first needs to find a closed
formula for taking the square-root of the determinant, while for Tr (X 6) the linear system as
well as the individual expressions simply increase in size. |

To understand the action of the order three automorphism on the basis of homogeneous
invariant polynomials, note that the transformations from Theorem 4.1 are most conveniently
encoded by the following matrix

1 0 0
3/8  —1/2 —12
~1/64 1/16  —1/2
15/64 —15/16 —15/2

T =

— o O O

The action on a basis for homogeneous invariant polynomials of degree 6 can thus be seen as
follows

Tr (o(M)?)° 1 0 0 0 Tr (M?2)°
Tr(o(M)?)Tr (M) | _ | 3/8 —1/2 =12 0 | Tr(M?) Tr (MY)
Tr (o(M)?) Pf(o(M)) | [—-1/64 1/16 —1/2 0 Tr (M?) P£(M)

Tr (o(M)") 15/64 —15/16 —15/2 1 Tr (M)
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Moreover, a reiterated action can be computed by powers of this transformation matrix T,
through which we have

1 0 0
3/8 —1/2 12
1/64 —1/16 —1/2
15/64 —15/16 15/2

T2 =

— o O O

and T2 = I since o acts as the identity. Since o acts linearly, the fixed locus is determined by
finding the eigenspace of an associated matrix, and we find the following:

Proposition 4.2. The space of invariant polynomials of SO(8,C) of degree siz which are in-
variant under the induced action of the automorphism o is two-dimensional and spanned by

T (M?)°  and  5Tr (M?)Tr (M*) —8Tr (MS).
Proof. This is verified by computing the +1-eigenspace of T*. |

The previous proposition is important because the algebra of invariant polynomials of Gg is
generated by two homogeneous polynomials, one of degree two and one of degree six. The image
of go inside of s0(8) is contained in the set of matrices M with eigenvalues (0,0, £, £n2, £13)
such that 71 +n2+n3 = 0, see [14]. In terms of this representation, the two generating invariant
polynomials take values

ca=ni+m+n; and ez = (mn). (4.4)
The following Proposition explains their role with respect to the generating set {p1, p2, p3, pa}:

Proposition 4.3. The invariant polynomials p1, p2, ps, pa of $0(8) restrict to invariant poly-
nomials of go. As invariant polynomials of go they relate to the gemerating polynomials c1, c3
via

1 1
= _Tr(M?) ==
Cc1 2 I'( ) 2171:
3
= — — 5 8 .
C3 16171 P1P2 + 3p3

Proof. The invariant polynomials restrict by general arguments about subgroups, namely be-
cause

C[g2]®? < Cls0(8)]%2 — C[s0(8)]3°®). (4.5)

The equations are readily verified using the description of gy inside of s0(8) from above, since one
can restrict them to matrices with eigenvalues (0,0, £n;, £n2, £n3) such that n;+n2+n3 =0. B

Remark 4.4. Notice in particular that Propositions 4.2 and 4.3 verify that
Clg2]% C (Clso(8)]5°®))”

as expected. Moreover, one can see that for a matrix M € ga C s0(8) one has Pf(M) = 0 and
Tr (M 4) =1/2Tr (M 2)2, which shows the opposite inclusion. Although not explicitly done, this
can also be deduced from [21, Section 8.8, p. 144]. Moreover, we are very thankful to one of
our reviewers who pointed out that equality of the two invariant rings is explicitly stated and
proved in [4, Corollary 2.2.3(ii)].
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4.3 Final remarks on further directions

We shall conclude this short note mentioning two directions in which the present results could
be useful for. However, to maintain our focus on the Lie theoretic aspect of the research, we
shall leave these questions to future work.

A natural question arising from Proposition 4.3 is to identify the image of Ag, — Ago(s)
appearing through equation (4.5). When considering this question one should note that the
action of o on the group G = SO(8) requires a choice of splitting of the sequence 0 — Inn(G) —
Aut(G) — Out(G) — 0. This sequence is always split but not canonically so: A choice of
splitting is equivalent to a choice of Cartan and Borel for G. Further sources to investigate this
direction appear in [2, 9], and references therein. The action on M. is independent of choices,
since any two representatives differ by conjugation, which via non-abelian Hodge theory acts
trivially on Mg...

Finally, with views towards applications within Langlands duality and mirror symmetry,
it is also natural to ask what the effect of triality is on Lagrangian subspaces of the moduli
space of Higgs bundles defined through other automorphisms, such as those used in [3, 11]. In
this direction, the reader might find of interest the work in [9, Section 10] where the authors
show how the triality automorphism moves in a cyclic way the moduli spaces of Higgs bundles
corresponding to three different realizations of the real forms SOg(3,5) and SOg(1,7).

Acknowledgements

The authors are thankful to S. Rayan for his thorough comments on a draft of the manuscript.
The work of S.S. is partially supported by NSF grants DMS 1107452, 1107263, 1107367 “RNMS:
GEometric structures And Representation varieties (the GEAR Network)”. L.P.S. was partially
supported by NSF DMS 1509693 and NSF CAREER Award DMS 1749013, as well as by the
Alexander Von Humboldt foundation. This material is also based upon work supported by NSF
DMS 1440140 while L.P.S. was in residence at the Mathematical Sciences Research Institute in
Berkeley, California, during the Fall 2019 semester. Both authors are thankful for the support
of the Simons Center for Geometry and Physics during the Spring 2019 program on Geometry
and Physics of Hitchin systems.

References

1
[

[3] Baraglia D., Schaposnik L.P., Real structures on moduli spaces of Higgs bundles, Adv. Theor. Math. Phys.
20 (2016), 525-551, arXiv:1309.1195.

[4] Beck F., Donagi R., Wendland K., Folding of Hitchin systems and crepant resolutions, Int. Math. Res. Not.,
to appear, arXiv:2004.04245.

[5] Corlette K., Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988), 361-382.

[6] Donagi R., Pantev T., Langlands duality for Hitchin systems, Invent. Math. 189 (2012), 653-735,
arXivimath.AG/0604617.

[7] Donaldson S.K., Twisted harmonic maps and the self-duality equations, Proc. London Math. Soc. 55 (1987),
127-131.

Aganagic M., Haouzi N., Shakirov S., A,-triality, arXiv:1403.3657.
Antén Sancho A., Fibrados de Higgs y trialidad, Ph.D. Thesis, Universidad Complutense de Madrid, 2009.

S

[8] Fuchs J., Schellekens B., Schweigert C., From Dynkin diagram symmetries to fixed point structures, Comm.
Math. Phys. 180 (1996), 39-97, arXiv:hep-th/9506135.

[9] Garcia-Prada O., Ramanan S., Involutions and higher order automorphisms of Higgs bundle moduli spaces,
Proc. Lond. Math. Soc. 119 (2019), 681-732, arXiv:1605.05143.

ausel T., addeus M., Mirror symmetry, Langlands duality, and the Hitchin system, Invent. Math.
10] H 1 T., Thadd M., Mi Langlands duali d the Hitchi I Math. 153
(2003), 197229, arXiv:math.AG/0205236.


https://arxiv.org/abs/1403.3657
https://doi.org/10.4310/ATMP.2016.v20.n3.a2
https://arxiv.org/abs/1309.1195
https://doi.org/10.1093/imrn/rnaa375
https://arxiv.org/abs/2004.04245
https://doi.org/10.4310/jdg/1214442469
https://doi.org/10.1007/s00222-012-0373-8
https://arxiv.org/abs/math.AG/0604617
https://doi.org/10.1112/plms/s3-55.1.127
https://doi.org/10.1007/BF02101182
https://doi.org/10.1007/BF02101182
https://arxiv.org/abs/hep-th/9506135
https://doi.org/10.1112/plms.12242
https://arxiv.org/abs/1605.05143
https://doi.org/10.1007/s00222-003-0286-7
https://arxiv.org/abs/math.AG/0205236

14 L.P. Schaposnik and S. Schulz

[11] Heller S., Schaposnik L.P., Branes through finite group actions, J. Geom. Phys. 129 (2018), 279-293,
arXiv:1611.00391.

[12] Hitchin N.J., The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59-126.

[13] Hitchin N.J., Stable bundles and integrable systems, Duke Math. J. 54 (1987), 91-114.

[14] Hitchin N.J., Langlands duality and G2 spectral curves, Q. J. Math. 58 (2007), 319-344,
arXiv:math.AG/0611524.

[15] Kapustin A., Witten E., Electric-magnetic duality and the geometric Langlands program, Commun. Number
Theory Phys. 1 (2007), 1-236, arXiv:hep-th/0604151.

[16] Lawson Jr. H.B., Michelsohn M.L., Spin geometry, Princeton Mathematical Series, Vol. 38, Princeton Uni-
versity Press, Princeton, NJ, 1989.

[17] Ngo B.C., Le lemme fondamental pour les algebres de Lie, Publ. Math. Inst. Hautes Etudes Sci. 111 (2010),
1-169, arXiv:0801.0446.

[18] Schaposnik L.P., Spectral data for G-Higgs bundles, Ph.D. Thesis, University of Oxford, 2013,
arXiv:1301.1981.

[19] Schaposnik L.P., Higgs bundles — recent applications, Notices Amer. Math. Soc. 67 (2020), 625-634,
arXiv:1909.10543.

[20] Simpson C.T., Constructing variations of Hodge structure using Yang—Mills theory and applications to
uniformization, J. Amer. Math. Soc. 1 (1988), 867-918.

[21] Slodowy P., Simple singularities and simple algebraic groups, Lecture Notes in Math., Vol. 815, Springer,
Berlin, 1980.

[22] Springer T.A., Linear algebraic groups, 2nd ed., Modern Birkhduser Classics, Birkhduser Boston, Inc.,
Boston, MA, 2009.

[23] Uhlenbeck K., Yau S.-T., On the existence of Hermitian—Yang—Mills connections in stable vector bundles,
Comm. Pure Appl. Math. 39 (1986), S257-S293.

[24] Wolf J.A., Gray A., Homogeneous spaces defined by Lie group automorphisms I, J. Differential Geometry
2 (1968), 7T7-114.

[25] Yokota I., Exceptional Lie groups, arXiv:0902.0431.


https://doi.org/10.1016/j.geomphys.2018.03.014
https://arxiv.org/abs/1611.00391
https://doi.org/10.1112/plms/s3-55.1.59
https://doi.org/10.1215/S0012-7094-87-05408-1
https://doi.org/10.1093/qmath/ham016
https://arxiv.org/abs/math.AG/0611524
https://doi.org/10.4310/CNTP.2007.v1.n1.a1
https://doi.org/10.4310/CNTP.2007.v1.n1.a1
https://arxiv.org/abs/hep-th/0604151
https://doi.org/10.1007/s10240-010-0026-7
https://arxiv.org/abs/0801.0446
https://arxiv.org/abs/1301.1981
https://doi.org/10.1090/noti2074
https://arxiv.org/abs/1909.10543
https://doi.org/10.2307/1990994
https://doi.org/10.1007/BFb0090294
https://doi.org/10.1007/978-0-8176-4840-4
https://doi.org/10.1002/cpa.3160390714
https://doi.org/10.4310/jdg/1214501139
https://arxiv.org/abs/0902.0431

	1 Introduction
	2 Triality of so(8,C)
	2.1 Triality via the octonions
	2.2 Outer automorphisms of Spin(8)
	2.3 Folding and fixed point loci

	3 Triality as an automorphism
	4 Triality and homogeneous invariant polynomials
	4.1 The choices of homogeneous basis
	4.2 The action on the homogeneous basis
	4.3 Final remarks on further directions

	References

