Taylor & Francs
Communications in Statistics - Simulation and
Computation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/Issp20

Tweedie gradient boosting for extremely
unbalanced zero-inflated data

He Zhou, Wei Qian & Yi Yang

To cite this article: He Zhou, Wei Qian & Yi Yang (2020): Tweedie gradient boosting for extremely
unbalanced zero-inflated data, Communications in Statistics - Simulation and Computation, DOI:
10.1080/03610918.2020.1772302

To link to this article: https://doi.org/10.1080/03610918.2020.1772302

% Published online: 11 Jul 2020.

\]
CA/ Submit your article to this journal

||I| Article views: 309

A
& View related articles &'

PN

(&) view Crossmark data &

CrossMark

@ Citing articles: 5 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=Issp20


https://www.tandfonline.com/action/journalInformation?journalCode=lssp20
https://www.tandfonline.com/loi/lssp20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2020.1772302
https://doi.org/10.1080/03610918.2020.1772302
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03610918.2020.1772302
https://www.tandfonline.com/doi/mlt/10.1080/03610918.2020.1772302
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2020.1772302&domain=pdf&date_stamp=2020-07-11
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2020.1772302&domain=pdf&date_stamp=2020-07-11
https://www.tandfonline.com/doi/citedby/10.1080/03610918.2020.1772302#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/03610918.2020.1772302#tabModule

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATION® Taylor & Francis

https://doi.org/10.1080/03610918.2020.1772302 Taylor &Francis Group

‘ W) Check for updates

Tweedie gradient boosting for extremely unbalanced zero-
inflated data

He Zhou?, Wei Qian®, and Yi Yang®

3School of Statistics, University of Minnesota, Minneapolis, Minnesota, USA; "Department of Applied
Economics and Statistics, University of Delaware, Newark, Delaware, USA; “Department of Mathematics and
Statistics, McGill University, Montreal, Quebec, Canada

ABSTRACT ARTICLE HISTORY
Tweedie’s compound Poisson model is a popular method to model insur- Received 19 November 2019
ance claims with probability mass at zero and nonnegative, highly right- Accepted 17 May 2020

skewed distribution. In particular, it is not uncommon to have extremely

unbalanced data with excessively large proportion of zero claims, and

even traditional Tweedie model may not be satisfactory for fitting the o N
. . . 4 . severity; EM algorithm;

data. In this paper, we propose a boostmg—asswte(.:l.zero—lnflated Tweedie gradient boosting; Zero-

model, called EMTboost, that allows zero probability mass to exceed a inflated insurance

traditional model. We makes a nonparametric assumption on its Tweedie claims data

model component, that unlike a linear model, is able to capture nonlinear-

ities, discontinuities, and complex higher order interactions among predic-

tors. A specialized Expectation-Maximization algorithm is developed that

integrates a blockwise coordinate descent strategy and a gradient tree-

boosting algorithm to estimate key model parameters. We use extensive

simulation and data analysis on synthetic zero-inflated auto-insurance

claim data to illustrate our method’s prediction performance.

KEYWORDS
Claim frequency and

1. Introduction

Setting premium for policyholders is one of the most important problems in insurance business,
and it is crucial to predict the size of actual but unforeseeable claims. For typical portfolios in
property and casualty insurance business, the policy claim for a covered risk usually has a highly
right-skewed continuous distribution for positive claims, while having a probability mass at zero
when a claim does not occur. This phenomenon poses unique challenges for data analysis as the
data cannot be transformed to normality by power transformation and special treatment on zero
claims is often required. In particular, Jorgensen and Paes De Souza (1994) and Smyth and
Jorgensen (2002) used generalized linear models (GLM; Nelder and Wedderburn 1972) with a
Tweedie distributed outcome, assuming Poisson arrival of claims and Gamma distributed amount
for individual claims, to simultaneously model frequency and severity of insurance claims.
Although Tweedie GLM has been widely used in actuarial studies (e.g., Mildenhall 1999; Murphy,
Brockman, and Lee 2000; Sandri and Zuccolotto 2008), its structure of the logarithmic mean is
restricted to a linear form, which can be too rigid for some applications. Yang, Qian, and Zou (2018)
proposed the sparse penalized Tweedie GLM model and Fontaine et al. (2019) extended it to the multi-
task sparse learning case. Zhang (2013) modeled the nonlinearity by adding splines to capture nonli-
nearity in claim data, and generalized additive models (GAM; Hastie and Tibshirani 1990; Wood 2006)

CONTACT Yi Yang @ yi.yangé@mcgill.ca e Department of Mathematics and Statistics, McGill University, Montreal, QC,
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can also model nonlinearity by estimating smooth functions. The structures of these models have to be
determined a priori by specifying spline degrees, main effects and interactions to be used in the model
fitting. More flexibly, Yang, Qian, and Zou (2018) proposed a nonparametric Tweedie model to iden-
tify important predictors and their interactions.

Despite the popularity of the Tweedie model under linear or nonlinear logarithmic mean
assumptions, it remains under-studied for problems of modeling extremely unbalanced (zero-
inflated) claim data. However, it is well-known that the percentage of zeros in insurance claim
data can often be well over 90%, posing challenges even for traditional Tweedie model. In statis-
tics literature, there are two general approaches to handle data sets with excess zeros: the
“Hurdle-at-zero” models and the “zero-inflated” models. The Hurdle models (e.g., Cragg 1971;
Mullahy 1986) use a truncated-at-zero strategy, whose examples include truncated Poisson and
truncated negative-binomial models. On the other hand, “zero-inflated” models typically use a
mixture model strategy, whose examples include zero-inflated Poisson regression and zero-
inflated negative binomial regression (e.g., Lambert 1992; Hall 2000; Frees, Lee, and Yang 2016),
among many notable others.

In this paper, we aim to tackle the extremely unbalanced insurance data problem with exces-
sive zeros by developing a zero-inflated nonparametric Tweedie compound Poisson model. To
our knowledge, no existing work systematically studied the zero-inflated Tweedie model and its
computational issues. Under a mixture model framework that subsumes traditional Tweedie
model as a special case, we develop an Expectation-Maximization (EM) algorithm that efficiently
integrates a blockwise coordinate descent algorithm and a gradient boosting-type algorithm to
estimate key parameters. We call our method as EMTboost for brevity.

The EMTboost method assumes a mixture of Tweedie model component and a mass zero
component. As one interesting feature, it can simultaneously provide estimation for the zero
mass probability as well as the dispersion/power parameters of the Tweedie model component,
which are useful information in understanding the zero-inflated nature of claim data under ana-
lysis. In addition, we employ boosting techniques to fit the mean of the Tweedie component.
This boosting approach is motivated by its proven success for nonparametric regression and clas-
sification (Freund and Schapire 1997; Breiman 1998, 1999; Friedman 2001, 2002; Hastie,
Tibshirani, and Friedman 2009). By integrating a gradient-boosting algorithm with trees as weak
learners, the zero-inflated model can learn nonlinearities, discontinuities and complex higher
order interactions of predictors, and potentially reduce modeling bias to produce high predictive
performance. Due to the inherent use trees, this approach also naturally handles missing values,
outliers and various predictor types.

The rest of the article is organized as follows. Sec. 2 briefly presents the models. The main
methodology with implementation details is given in Sec. 3. We use simulations to show perform-
ance of EMTboost in Sec. 4, and apply it to analyze an auto-insurance claim data in Sec. 5. Brief
concluding remarks are given in Sec. 6.

2. Zero-inflated Tweedie model

To begin with, we give a brief overview of the Tweedie’s compound Poisson model, followed by
the introduction of the zero-inflated Tweedie model. Let N be a Poisson random variable denoted
by Pois(4) with mean 4, and let Z,’s (d = 0,1,...,N) be iid Gamma random variables denoted
by Gamma(a, 7) with mean oy and variance a)?. Assume N is independent of Z’s. Define a com-
pound Poisson random variable Z by

Z—Q ) ~ if N=0o,
T\ Zi+Z,+ -+ Zy fN=1,2,.0
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Then Z is a Poisson sum of independent Gamma random variables. The compound Poisson dis-
tribution (Jergensen and Paes De Souza 1994; Smyth and Jergensen 2002) is closely connected to
a special class of exponential dispersion models (Jorgensen 1987) known as Tweedie models
(Tweedie 1984), whose probability density functions are of the form

where a(-) and «(-) are given functions, with § € R and ¢ € R*. For Tweedie models, the mean
and variance of Z has the property E(Z) := p = &(0), Var(Z) = ¢i(0), where i(0) and i(0)
are the first and second derivatives of «(0), respectively. The power mean-variance relationship is
Var(Z) = ¢u? for some index parameter p € (1,2), which gives 0 =pu'"*/(1—p), x(0) =
1>* /(2 — p) and i(0) = w’. If we re-parameterize the compound Poisson model by

Sonl2l0, §) = alz ) exp {

1 pr 2—-p
= — N o = N
p2—p p—1
then it will have the form of a Tweedie model Tw(y, ¢, p) with the probability density function

1—- 2—
fralel ¢.p) = a(z, ¢, p)exp (% (Z 3 _; 3= :)) v

y=dlp -1,

where

1, if z=0,

o0

1
ey — | 22O

1 zt*

25 (p- )" - p) T (1)’

with o = (2—p)/(p—1) and 1 < p < 2. When z>0, the sum of infinite series > o, W; is an
example of Weight’s generalized Bessel function.

With the formulation above, the Tweedie model has positive probability mass at zero with
P(Z =0) = P(N = 0) = exp (—4). Despite its popularity in actuarial studies, Tweedie models do
not always give ideal performance in cases when the empirical distribution of claim data (e.g., in
auto insurance), is extremely unbalanced and has an excessively high proportion of zero claims,
which will be illustrated in the numerical exposition. This motivates us to consider a zero-inflated
mixture model that combines a Tweedie distribution with probability g and an exact zero mass
with probability 1 — g:

if z>0,

v — {Z, with probability g, where Z ~ Tw(u, ¢, p), 2)

0, with probability 1 — gq.

We denote this zero-inflated Tweedie model by Y ~ ZIF-Tw(y, ¢, p,q). The probability density
function of Y can be written as

far-re (VI 6 0,9) = afr (VI 6, p) + (1 — 9)[{y = 0},
so that P(Y = 0) = gexp (—éﬂ) +(1—g) and E(Y) = qu.

2—p

3. Methodology

Let Z, = Y3, Z4 be the total claim amount, and the number of claims N,, is Poisson distributed
Pois(Aw). Here w is the duration, ie., the length of time that the policy remains in force.
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Conditional on N,,, assume Z;s (d =1,...,N) are iid. Gamma(a,7y). Let Y(w) = Z,,/w be the
total claim amount averaged over the duration w. We can show that Y(w) ~ Tw(y, ¢/w, p): first,
we can see that Y(1) ~ Tw(u, ¢, p) as defined in (1)

E(Y(1)) = E(E(Y(1)|N1)) = Aay,
Var(Y(1)) = E(Var(Y(1)|Ny)) + Var(E(Y(1)|Ny)) = Aay? + Jo*y>.

Therefore
1
E(Y(W)) = _E(ZW) = ;)VWO(“/ = Lay,
1
Var(Y(0) = 55 Var() = i+ 157 .

Since the mean-variance relation for Y(1) is Var(Y(1)) = ¢[E(Y(1))]”, we can obtain the mean-
variance relation for Y(w)

Var(¥(w) = Var(¥(1)) = £ (B(V(1)))" =

By the scale-invariance property of Tweedie distribution, we see that indeed Y(w) ~
Tw (1, &/wp).

Now consider a portfolio of polices D = {(y;.x;,®;)}._, from n independent insurance policy
contracts, where for the ith contract, y; is the policy pure premium, x; is a p-dimensional vector
of explanatory variables that characterize the policyholder and the risk being insured, and w; is
the policy duration. If we assume that each policy pure premium Y; under unit duration is an
observation from the zero-inflated Tweedie distribution Y; ~ ZIF-Tw(y;, ¢, p,q). Then we know
that Y; ~ ZIF-Tw(;, ¢/w;, p,q) as defined in (2). For now we assume that the value of p is given
and in the end of this section we will discuss the estimation of p. Assume p; is determined by a
regression function F: R — R of x; through the log link function

log (1;) = log {E(Yi[x;)} = F(x;).
Let 0 = (F,¢,q) € F x R" x [0,1] denote a collection of parameters to be estimated with F
denoting a class of regression functions (based on tree learners). Our goal is to maximize the log-
likelihood function of the mixture model
0 = argmax log £(6; D).

0cO

where
£(6;D):= [ [ frre-rw (il exp (F(x:)), &/ p. ) 3)
i=1

but doing so directly is computationally difficult. To efficiently estimate 8 = (F, ¢, q), we propose
a gradient-boosting based EM algorithm, referred to as EMTboost henceforth. We first give an
outline of the EMTboost algorithm and the details will be discussed further in Secs. 3.1 and 3.2.
The basic idea is to first construct a proxy Q-function corresponding to the current iterate by
which the target likelihood function (3) is lower bounded (E-step), and then maximize the
Q-function to get the next update (M-step) so that 3 can be driven uphill:

E-Step Construction We introduce n independent Bernoulli latent variables IT, ..., I, such that for
i=1,..,nP(Il; =1) = q, and I1; = 1 when y; is sampled from Tweedie(y;, ¢/w;, p) and IT; = 0 if

y; is from the exact zero point mass. Denote IT = (IT;,..., T1,)". Assume predictors x;’s are fixed.
Given IT; € {0,1} and 0, the joint-distribution of the complete model for each observation is
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£ T10) == (q- frw (il exp (F(xi)). 6. 1)) " (1 = q) - I{yi = 0})' ™"
The posterior distribution of each latent variable IT; is
f (- 11:10) .
f (i 1L[0) + f (yi, 1 — T1,|0)

For the E-step construction, denote 0’ = (F,¢',q') the value of @ during tth iteration of the
EMTboost algorithm. The Q-function for each observation is

Qi (0|0t) = EH,.Nf(ni\yhol) [logf(yi, Hiw)]

= f(IT; = 1ly;, 0") log f (y, TT; = 1/0) + f (TI; = 0|y,, 0') logf (y; T, = 0|0)
= 81,,(6") log (q - frw (yil exp (F(x:)), §, i) + &, ,(6") log (1 — g)I{y: = 0},

f(Hi|}’is 0) =

where
L, if y; > 0;
fexp (wi <_ exp (F'(x;)(2 — p))))
,(0) = £(IL; = 1]y,,0') = R =0
I I ) b
(4)
3,1(0") = £ (T = 0]y;, 0') = 1 - 5] (0" (5)

Given n observations of data D = {(y;.x;.®;)}\_,, the Q-function is

Q(0)0") = ZQ, 0/0)

——25 (0')1og (q - frv (yi] exp (F(x:)), §, 7)) + 8 ,(0") log ((1 — q) - I{y; = 0})

Za (6" log{qa(y,,qb/co,, p)exp {% (yi exp ((1— p)F(x;)) exp((2— p)F(xJ))H

1—p 2—p

+ Z d5,,(0") log (1 — q)

ty, 0}
(6)
M-Step Maximization
Given the Q-function (6), we update 0' to 0! through maximization of (6) by
0! — (Ft+1’¢t+1)qt+1) - argl;iaé(Q(G\ot),
S
in which F‘*1, ¢! and g'*! are updated successively through blockwise coordinate descent
FiH1 (F F.gt gt

« argmax Q( F|(F', ¢',q')) (7)
P — argmaXQ(¢|(Ft+l’¢t) q’)) 8)

peRT
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gt — argmqaxQ(q‘(F‘H,(]St“,qt)) 9)

Specifically, (7) is equivalent to update
F e argmaxZ& (F', ', q"\¥Y(yi, F(xi), 1), (10)

where the risk function W is defined as

(11)

exp (F(xi)(1 - p)) _exp (F(xi)(2 - p))>
1-p 2—p ’

W (yi, F(xi), ;) = wi( i

We use a gradient tree-boosted algorithm to compute (10), and its details are deferred to Sec. 3.1.
After updating F'*! we then update ¢'*" in (8) using

o arg max 25 (F, ¢, q ){ loga(yi, ¢/wi, p),
w; ( ‘ exp ((1 — p)pt+1(xi)) 3 exp ((2 _ p)Ft+1(xi))> }
P Vi =, 5, .

Conditional on the updated F'*! and q', maximizing the log-likelihood function with respect to ¢
in (12) is a univariate optimization problem that can be solved by using a combination of golden
section search and successive parabolic interpolation (Brent 2013).

(12)
+

After updating F'*! and ¢'™', we can use a simple formula to update g'*! for (9)
_Zé Ft+l t+1 t). (13)

We repeat the above E-step and M-step iteratively until convergence. In summary, the complete
EMTboost algorithm is shown in Algorithm 1.

Algorithm 1. EMTboost Algorithm
Input: Dataset D = {(y;,x;, ®;)}_, and the index parameter p.
Output: Estimates 0 = (F, $,§).

1 Initialize 6° = (F°, ¢’, p"). Compute the index set Z = {i: y; = 0} and initialize {Jy 0} }, .
by setting 1; = 1,00; = 0 for i ¢ 7.

2fort=0,1,2,..,T do

3 E-step: Update {9 ;0] ;},c7 by (4) and (5).

4  M-step: Update 6! = (F'*1,¢'*!, g"*1) by using (10) that calls Algorithm 3, (12) and (13).

FHl argrgleafo(FKFt, ¢, qt))
t+1 t+1 t
¢'*" — arg max Q(@l(F*,¢',q))

gt — argmanQ(q‘(FtJrl)d)tJrl)qt))

5 end
6 Return 0 = (F, $,4) = (FT, ¢7,q").
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So far we only assume that the value of p is known when estimating 0 = (F, ¢,q). Next we
give a profile likelilhood method to jointly estimate (0,p) = (F,¢,q,p) when p is unknown.
Following Dunn and Smyth (2005),we pick a sequence of K equally-spaced candidate values
{p1>.-»px} on the interval (1, 2), and for each fixed py, k=1,...,K, we apply Algorithm 1 to
maximize the log-likelihood function (3) with respect to 0, = (Fy,, ¢,,.4,,), which gives the cor-

responding estimators épk = (I:“pk,qAﬁ pod,,) and the log-likelihood function E(épk;D, pi). Then
from the sequence {p,, ..., px} we choose the optimal p as the maximizer of L.

p =arg max {C(é,,;D,p)}.

pe{p1> - Pxc}

We then obtain the corresponding estimator 0, = (F, ) »»4;)- This profile likelihood algorithm

is shown in Algorithm 2.

Algorithm 2. Profile Likelihood for EMTboost
Input: Dataset D = {(y;.x;, w,)}l 1
Output: Estimates 0 = (F,, b, 2 4p)-

1 Pick a sequence of K equally-spaced candidate values {p,, ..., px } on the interval (1, 2).
fork=1,....K do
2 Set p = py.

3 Call Algorithm 1 to compute 9ﬂk = (F p> ®p,»4,,) and the corresponding

log-likelihood function £(0 oo Ds pr)-
4 end
5 Compute the optimal p

p =arg max {E(ép;D,p>}.

pe{p1> - Pxc}

6 Return the final estimator 0, = (F, $pq;)-

3.1. Estimating F(-) via tree-based gradient boosting

To minimize the weighted sum of the risk function (11), we employ the tree-based gradient
boosting algorithm to recover the predictor function F(-):

F() = i 01, ¥ (yi, F(xi), i),
() argFr(l}glf; L (0 F(xi), 1)
Note that the objective function does not depend on ¢. To solve the gradient-tree boosting, each

candidate function F € F is assumed to be an ensemble of L-terminal nodes regression trees, as
base learners:

F[O +Zﬁ X ém]

= F ¢ Zﬁ[’“] {Zu}m]l(x € RW)}
m=1 I=1

where F9 is a constant scalar, " is the expansion coefﬁcient and h(x; EM) is the mth base

learner, characterized by the parameter & = {Rgm] }1 L with R belng the disjoint regions
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representing the terminal nodes of the tree, and constants ”1 bemg the values assigned to
each region.

The constant £ is chosen as the 1-terminal tree that minimizes the negative log-likelihood. A

forward stagewise algorithm (Friedman 2001) builds up the components ﬂ[m]h(x; &MY sequentially
through a gradient-descent-like approach with m = 1,2, ..., M. At iteration stage m, suppose that

the current estimation for F(-) is P[m_l](-). To update from i ]( )) to i ]( -), the gradient-tree
boosting method fits the mth regression tree h(x; &™) to the negative gradient vector by least-

squares function minimization:

n

gl ml (e )]
¢ fargmmZ[gi h(an )}>

L —

where (ggm], g,[f"])T is the current negative gradient vector of ¥ with respect to (w.r.t.) F b=,
g[m] _ _B\P( i> F(Xi)> (l)j) )
! 8F(X,) F(xi):ﬁ[M7l](x[)

When fitting this regression trees, first use a fast top-down “best-fit” algorithm with a least-
squares splitting criterion (Friedman, Hastie, and Tibshirani 2000) to find the splitting variables

and the corresponding splitting locations that determine the terminal regions {IAQEM]}ZLZI, then esti-

mate the terminal-node values {itgm]}lL:l. This fitted regression tree h(x;{ﬁ%ml,ﬁlm}}le) can be
viewed as a tree-constrained approximation of the unconstrained negative gradient. Due to the

disjoint nature of the regions produced by regression trees, finding the expansion coefficient

[m] 5 [m]

can be reduced to solving L optimal constants #, " within each region R, ". And the estimation of

F for the next stage becomes

plml _

F xeRl ), (14)

I\Mh

where 0 < v <1 is the shrinkage factor that controls the update step size. A small v imposes
more shrinkage, while =1 gives complete negative gradient steps. Friedman (2001) has found
that the shrinkage factor reduces overfitting and improve the predictive accuracy. The complete
algorithm is shown in Algorithm 3.

Algorithm 3. TDboost Algorithm
Input: Dataset D = {(y;,x;, ®;)}._, and the index parameter p.

Output: Estimates E.

1 Initialize £ = log (%)

Dj
2form=0,1,2,...,M do
3 Compute the negative gradient vector (g, ... gi")"

gl.[m] = a),-{—yl- exp [(1 — p)f:[m_ll( )} + exp [( )ﬁ[ - ]( )] }’i: L..,n

4  Fit the negative gradient vector to (Xj,...,X,) by an L-terminal node regression tree, giving

the partition {IAZEm] [
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5 Compute the optimal terminal node predictions n}m] for each region ﬁgm],l =12,..,L

~ [m—1]
S e oiesp (1= p)F" x)

A [m—1]
th,veizg'"] ;y; exp [(2 — p)F " (xi)}

m]

" = log

6 Update F "] for each region figm] by (14).
7 end
8 Return F = F [M].

3.2. Implementation details

Next we give a data-driven method to find initial values for parameter estimation. The idea is that we
approximately view the latent variables as IT; ~ I{y; # 0}. That is, we treat all zeros as if they are all from
the exact zero mass portion, which can be reasonable for extremely unbalanced zero-inflated data. If the
latent variables were known, it is straightforward to find the MLE solution of a constant mean model:

0° = arg max log[,(H; D,II),
<0
where ® = C x R* x [0,1], C={F =15 | n € R}, and 7 is a constant scalar. We then find initial

values successively as follows:
Initialize F° by

0 _ - , . . .
F = argl;lel]él ;I{y, #£0} -y ;)

Yo i A0}y o

=1lo =
’ Zizll{)’i # 0} - w;

Initialize ¢° by

O — arg min S~ I{y, o) 2 @, @R (F(=p) e (P2 p)
¢—argg;;g;m#0}<loga<yz,¢/w,,p>+d)(y, — ).

Initialize q° by

i=

1 n
q = ;ZI{% # 0}.
1
Given 0° obtained above, we can then initialize (&; ;, Jo,;) by Equations (4) and (5), giv-
ing (58,1" 5(1),1')-
As a last note, when implementing EMTboost algorithm, for more stable computation, we

may want to avoid that the probability g converges to 1 (or 0). In such case, we can add a regu-
larization term rlog (1 — g) on g so that each M-step in Q-function (6) becomes

PQ(0]0") = Q(0]0") + rlog(1—gq), (15)
larizati t
regu arization term

where r € R" is a non-negative regularization parameter. Apparently, when maximizing the
penalized log-likelihood function (15), larger q will be penalized more. We establish the EM algo-
rithm similar as before, and only need to modify the Maximization step of (13) w.r.t. g:



10 H. ZHOU ET AL.

¢
gt = w210, (16)
P r+1 "~

pulling the original update ¢! =1%"" 511. toward 0 by fraction r+ 1. Alternatively, if in some
cases, we want to avoid that the EMTboost model degrades to an exact zero mass, the regulariza-
tion term can be chosen as rlog (1 — |1 — 2q|). The updating step with respect to q becomes a
soft thresholding update with the threshold r:

1 S’<1 - %Z?:@i,i)

qH/—l - _
L) 2(r+1)

where S,(-) is the soft thresholding function with S,(x) = sign(x)(|x| —r),. We apply these
penalized EMTboost methods to the real data application in Appendix C.1.

4. Simulation studies

We have implemented our proposed method in R, the source code is publicly available on
GitHub at https://github.com/emeryyi/EMTboost.git. In this section, we compare the EMTboost
model (Sec. 3) with a regular Tweedie boosting model (i.e. ¢ = 1; TDboost) and the Gradient
Tree-Boosted Tobit model (Grabit; Sigrist and Hirnschall 2019) in terms of the function estima-
tion performance. The Grabit model extends the Tobit model (Tobin 1958) using gradient-tree
boosting algorithm. We here present two simulation studies in which zero-inflated data are gener-
ated from zero-inflated Tweedie model (Case 1 in Sec. 4.2) and zero-inflated Tobit model (Case 2
in Sec. 4.3). An additional simulation result (Case 3) in which data are generated from a Tweedie
model is put in Appendix B.

Fitting Grabit, TDboost and EMTboost models to these data sets, we get the final predictor
function F(-) and parameter estimators. Then we make a prediction about the pure premium by
applying the predictor functions on an independent held-out testing set to find estimated expect-
ation: ji(x) = E(y|x). For the three competing models, the predicted pure premium is given by
equations

A5 () = o (~Frane(x)) + Forane(x) (1~ D(~Foran(x)),
ﬂTDbOOSt (X) = €Xp (PTDboost (X)),

AEMTboost(X) = exp (ﬁEMTboost(X)),

it

where ¢(-) is the probability density function of the standard normal distribution and ®(-) is its
cumulative distribution function. The predicted pure premium of the Grabit model is derived in
detail in Appendix A. As the true model is known in simulation settings, we can compare the dif-
ference between the predicted premiums and the expected true losses. For the zero-inflated Tobit
model in case 2, the expected true loss is given by Egzp-Tobit [y|F(x)] =
qlo(—F(x)) + F(x)(1 — ®(—F(x)))], with g being the probability that response y comes from the
Tobit model and F(x) the true target function. For our zero-inflated Tweedie mode, the expected
true loss is Ezip-1v [y|F(x)] = qexp (F(x)).
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4.1. Measurement of prediction accuracy

Given a portfolio of policies D = {(y;.xi.®;)}!_;, y; is the claim cost for the ith policy and j, is
denoted as the predicted claim cost. We consider the following three measurements of prediction
accuracy of {j,}" .

Ginilndex(Gini*)  Gini index is a well-accepted tool to evaluate the performance of predictions.
There exists many variants of Gini index and one variant we use is denoted by Gini®: for a
sequence of numbers {si,...,s,}, let R(s;) € {1,...,n} be the rank of s; in the sequence in an
increasing order. To break the ties when calculating the order, we use the LAST tie-breaking
method, i.e., we set R(s;) > R(s;) if s; =sj, i <j. Then the normalized Gini index is referred to
as:

Z?:lﬁllRO/i) _ z" . n—itl
i=

s oa iz "
Gini® = =% .
Do RO S | neitl
" Ji =l n
.

Note that this criterion only depends on the rank of the predictions and larger Gini” index means
better prediction performance.

Ginilndex(Gini®)  We exploit a popular alternative-the ordered Lorentz curve and the associ-
ated Gini index (denoted by Gini’; Frees, Meyers, and Cummings 2011, 2014) to capture the dis-
crepancy between the expected premium P(x) = ji(x) and the true losses y. We successively
specify the prediction from each model as the base premium and use predictions from the
remaining models as the competing premium to compute the Gini® indices. Let B(x) be the “base
premium” and P(x) be the “competing premium”. In the ordered Lorentz curve, the distribution
of losses and the distribution of premiums are sorted based on the relative premium R(x) =
P(x)/B(x). The ordered premium distribution is

S B(x)I{R(x;) < s}
Drl) == by

and the ordered loss distribution is

~ ’~1_ iI R x;) <s
DL(S) _ szly {n ( ) }
D
Then the ordered Lorentz curve is the graph of (Dp(s),Di(s)). Twice the area between the

ordered Lorentz curve and the line of equality measures the discrepancy between the premium
and loss distributions, and is defined as the Gini” index.

MeanAbsoluteDeviation(MAD)  Mean Absolute Deviation with respect to the true losses
{yi}}, is defined as L lyi — #]. In the following simulation studies, we can directly compute

the mean absolute deviation between the predicted losses {j/i}:’zl and the expected true losses
{E[yilxi] }:':1 to obtain 137" | |E[yi|x;] — y,|, while in the real data study, we can only compute
the MAD against true losses {y;}"_ .

4.2, Case 1

In this simulation case, we generate data from the zero-inflated Tweedie models with two differ-
ent target functions: one with two interactions and the other generated from Friedman’s (2001)
“random function generator” (RFG) model. We fit the training data using Grabit, TDboost, and
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Table 1. Simulation results for case 1.1 with MADs.

Competing models

EMTboost

q TDboost Grabit p=15 p=17 Tuned p

1.00 0.597 (.013) 0.746 (.029) 0.594 (.016) 0.598 (.012) 0.598 (.015)
0.85 0.565 (.015) 0.761 (.032) 0.554 (.017) 0.555 (.017) 0.562 (.016)
0.75 0.561 (.018) 0.706 (.026) 0.489 (.010) 0.485 (.011) 0.503 (.010)
0.50 0.454 (.024) 0.674 (.044) 0.365 (.012) 0.375 (.014) 0.361 (.012)
0.25 0.301 (.013) 0.382 (.019) 0.240 (.010) 0.242 (.011) 0.237 (.010)
0.10 0.135 (.005) 0.169 (.009) 0.122 (.004) 0.124 (.004) 0.124 (.004)

EMTboost. In all numerical studies, five-fold cross-validation is adopted to select the optimal
ensemble size M and regression tree size L, while the shrinkage factor v is set as 0.001.

4.2.1. Two interactions function (case 1.1)
In this simulation study, we demonstrate the performance of EMTboost to recover the mixed
data distribution that involves exact zero mass, and the robustness of our model in terms of pre-
mium prediction accuracy when the index parameter p is misspecified. We consider the true tar-
get function with two hills and two valleys:

2

75(17x1)2+x§ + e*Sfor(lfxz) , (17)

F(x1,x) = e
which corresponds to a common scenario where the effect of one variable changes depending on
the effect of the other. The response Y follows a zero-inflated Tweedie distribution
ZIF-Tw(u, ¢, p,q) with Tweedie portion probability g:

Y~ Z, with probability g,Z ~ Tw(y, ¢, p),
0, with probability 1 —g,

where

U= exp (F(xl,xg)),xl,xzhf]g'Unif(O, 1),

with ¢ =1,p = 1.5 and q chosen from a decreasing sequence of values: g € {1, 0.85, 0.75, 0.50,
0.25, 0.10}.

We generate n =500 observations {x; y;}._, for training and n’ = 1200 for testing, and fit the
training data using Grabit, TDboost and EMTboost models. The true target functions are known,
and we use MAD (against expected true premium) and Gini? index as performance criteria.

When fitting EMTboost, we design three scenarios to illustrate the robustness of our method
w.r.t. p. In the first scenario, set p = 1.5, which is the true value. In the second scenario, set p =
1.7, which is misspecified. In the last scenario, we use the profile likelihood method to esti-
mate p.

The resulting MADs and Gini® indices of the three competing models on the held-out testing
data are reported in Tables 1 and 2, which are averaged over 20 independent replications for
each g. Boxplots of MADs comparing Grabit, TDboost and EMTboost (with estimated p) are
shown in Figure 1. In all three scenarios, EMTboost outperforms Grabit and TDboost in terms of
the ability to recover the expected true premium by giving smallest MADs and largest Gini” indi-
ces, especially when zeros inflate: g € {0.5,0.25,0.1}. The prediction performance of EMTboost
when p = 1.7 is not much worse than that when p = 1.5, showing that the choice of p has rela-
tively small effect on estimation accuracy.
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Table 2. Simulation results for case 1.1 with Gini? indices.

Competing models

EMTboost
q TDboost Grabit p=15 p=17 Tuned p
1.00 0.480 (.008) 0.449 (.011) 0.481 (.006) 0.481 (.006) 0.481 (.006)
0.85 0.393 (.008) 0.354 (.009) 0.397 (.007) 0.397 (.007) 0.397 (.007)
0.75 0.343 (.009) 0.300 (.020) 0.363 (.008) 0.365 (.007) 0.361 (.008)
0.50 0.242 (.012) 0.186 (.016) 0.289 (.011) 0.288 (.012) 0.292 (.011)
0.25 0.172 (.016) 0.116 (.020) 0.219 (.016) 0.215 (.017) 0.217 (.015)
0.10 0.085 (.028) 0.107 (.023) 0.137 (.027) 0.122 (.028) 0.136 (.025)
q=1 q=0.85 q=0.75 q=0.5 q=0.25 q=0.1
TR e los °EQT 1 )
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Figure 1. Simulation results for case 1.1: comparing MADs of Grabit, TDboost and EMTboost with decreasing g. Boxplots display
empirical distributions of MADs based on 20 independent replications.

4.2.2. Random function generator (case 1.2)

In this case, we compare the performance of the three competing models in various complicated
and randomly generated predictor functions. We use the RFG model whose true target function
F is randomly generated as a linear expansion of functions {gk}ii L

F(X) = Z bkgk(zk).
k=1

Here, each coefficient by is a uniform random variable from Unif[—1, 1]. Each gi(z) is a function
of zx, where z; is defined as a py-sized subset of the p-dimensional variable x in the form

Z= (X ()}

where each ; is an independent permutation of the integers {1,...,p}. The size p; is randomly
selected by min(|2.5 + r¢|,p), where ry is generated from an exponential distribution with mean
2. Hence, the expected order of interaction presented in each g(zx) is between four and five.
Each function g (z;) is a px-dimensional Gaussian function:

8k(Zx) = exp {—%(Zk - uk)TVk(zk - uk)},

where each mean vector uy is randomly generated from N(0,I,, ). The px X px covariance matrix
Vi is defined by

Vi = UiD, U},

where Uy is a random orthonormal matrix, D), = diag{dk[l], o die [pk]}, and the square root of each
diagonal element +/dj/j] is a uniform random variable from Unif[0.1,2.0]. We generate data {y; x;}" |
from zero-inflated Tweedie distribution where x; ~ N(0,1,), y; = exp {F(x;) },i = 1, ..., n.
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Figure 2. Simulation results for case 1.2: comparing MADs of Grabit, TDboost and EMTboost with decreasing g. Boxplots display
empirical distributions of the MADs based on 20 independent replications.
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Figure 3. Simulation results for case 2.1: comparing the MADs of Grabit, TDboost and EMTboost with decreasing g. Boxplots dis-
play empirical distributions of MADs based on 20 independent replications.

We randomly generate 20 sets of samples with ¢ =1 and p = 1.5, each sample having 2000
observations, 1000 for training and 1000 for testing. When fitting EMTboost for each g €
{1,0.85,0.75,0.5,0.25,0.1}, the estimates of Tweedie portion probability have mean
q* =0.96,0.79,0.71,0.53,0.28,0.13. Figure 2 shows simulation results comparing the MADs of
Grabit, TDboost and EMTboost. We can see, in all the cases, EMTboost outperforms Grabit and
becomes very competitive compared to TDboost when g decreases.

4.3. Case 2

In this simulation case, we generate data from the zero-inflated Tobit models with two target
functions similar to that of case 1. For all three gradient-tree boosting models, five-fold cross-val-
idation is adopted for developing trees. Profile likelihood method is used again.

4.3.1. Two interactions function (case 2.1)
In this simulation study, we compare the performance of three models in terms of MADs.
Consider the data generated from the zero-inflated Tobit model where the true target function is
given by
F(x1,%,) = 2cos (2.4n(|x; |* + |x,*)*?).
Conditional on covariates X = (X;,X;), the latent variable Y* follows a Gaussian distribution:
Y = F(X,X3) + 6 Xgiid. ~Unif(—1,1), k=1,2, ¢ ~N(0,1).

The Tobit response Yrobir can be expressed as Yropix = max(Y*,0), and we generate the zero-
inflated Tobit data using the Tobit response:
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Figure 4. Simulation results for case 2.2: comparing the MADs of Grabit, TDboost and EMTboost when decreasing g. Boxplots
display empirical distributions of MADs based on 20 independent replications.

Y~ Yrobit, with probability g, (18)
0, with probability 1 — g.

where g takes value from the sequence {1,0.85,0.75,0.5,0.25,0.1}.

We generate n=>500 observations for training and n’ = 4500 for testing. Figure 3 shows simu-
lation results when comparing MADs of Grabit, TDboost and EMTboost based on 20 independ-
ent replications. We can see from the first boxplot that when g=1, zero-inflated Tobit
distribution degenerates to a Tobit distribution, and not surprisingly, Grabit outperforms
EMTboost in MADs. As q decreases, meaning the proportion of zeros increases, the prediction
performance of EMTboost gets improved. When the exact zero mass probability is 1 — g = 0.9,
the averaged MADs of the three models are MADgGpir = 0.0697, MAD 1ppoost = 0.0681,
MAD-EMTboost = 0.0664, with EMTboost performing the best.

4.3.2. Random function generator (case 2.2)
We again use the RFG model in this simulation. The true target function F is randomly generated
as given in Section 4.2.2. The latent variable Y* follows

Y* =F(x;) + ¢ % ~N(0,I), e~N(0,1),i=1,...,n

We set Yrobir = max(Y*,0) and generate the data following the zero-inflated Tobit model (18)
with Tobit portion probability g € {1,0.85,0.75,0.5,0.25,0.1}. We randomly generate 20 sets of
sample from the zero-inflated Tobit model for each g, and each sample contains 2000 observa-
tions, 1000 for training and 1000 for testing. Figure 4 shows MADs of Grabit, TDboost and
EMTboost as Boxplots. Interestingly, for all the g’s, TDboost and EMTboost outperform Grabit
even though the true model is a Tobit model. The MAD of EMTboost becomes better when g
decreases, and is competitive with that of TDboost when g =0.1: the averaged MADs of the three
models are MADgpabic = 0.0825, MAD Tpboost = 0.0565, MAD EMThoost = 0.0564. As for the aver-
aged Gini” indices, EMTboost performs the best when ¢=0.1: Gini® grapic =
0.0463, Gini®rppoost = 0.0816, Gini®gmrboost = 0.1070.

5. Application: automobile claims
5.1. Data set

We consider the auto-insurance claim data set as analyzed in Yip and Yau (2005) and Zhang and
Yu (2005). The data set contains 10,296 driver vehicle records, each including an individual driv-
er’s total claim amount (z;) and 17 characteristics x; = (x; 1, ...,X;17) for the driver and insured
vehicle. We want to predict the expected pure premium based on x;. The description statistics of
the data are provided in Yang, Qian, and Zou (2018). Approximately 61.1% of policyholders had
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Table 3. Real — Zero percentage w.r.t. /.
A 1 0.75 0.50 0.25 0.15 0.10 0.05
Zero Percentage 61.1% 67.7% 75.9% 86.3% 91.3% 94.0% 96.9%

no claims, and 29.6% of the policyholders had a positive claim amount up to $10,000. Only 9.3%
of the policy-holders had a high claim amount above $10,000, but the sum of their claim amount
made up to 64% of the overall sum. We use this original data set to synthesize the often more
realistic scenarios with extremely unbalanced zero-inflated data sets.

Specifically, we randomly under-sample (without replacement) from the nonzero-claim data
with certain fraction A to increase the percentage of the zero-claim data. For example, if we set
the under-sampling fraction as A = 0.15, then the percentage of the non-claim policyholders will
become approximately 61.1/(61.1+ 38.91) = 91.28%. We choose a decreasing sequence of
under-sampling fractions 1 € {1,0.75,0.5,0.25,0.15,0.1}. For each 1, we randomly under-sample
the positive-loss data without replacement and combine these nonzero-loss data with the zero-
loss data to generate a new data set. Then we separate this new data set into two sets uniformly
for training and testing. The corresponding percentages of zero-loss data among the new data set
w.r.t. different 4 are presented in Table 3. The Grabit, TDboost and EMTboost models are fitted
on the training set and their estimators are obtained with five-fold cross-validation.

5.2. Performance comparison

To compare the performance of Grabit, TDboost and EMTboost models, we predict the pure pre-
mium P(x) by applying each model on the held-out testing set. Since the losses are highly right-
skewed, we use the ordered Lorentz curve and the associated Gini” index described in Sec. 4.1 to
capture the discrepancy between the expected premiums and true losses.

The entire procedure of under-sampling, data separating and Gini’ index computation are
repeated 20 times for each 1. A sequence of matrices of the averaged Gini’ indices and standard
errors w.r.t. each under-sampling fraction A are presented in Table 4. We then follow the
“minimax” strategy (Frees, Meyers, and Cummings 2014) to pick the “best” base premium model

that is least vulnerable to the competing premium models. For example, when 4 = 0.15, the max-

imal Gini® index is 40.381 when using B(x) = i®™"(x) as the base premium, 36.735 when

B(x) = 1™ (x), and —22.674 when B(x) = u®™MT™°°!(x). Therefore, EMTboost has the small-
est maximum Gini” index at —22.674, hence having the best performance. Figure 5 also shows
that when Grabit (or TDboost) is selected as the base premium, EMTboost represents the most
favorable choice.

After computing the Gini’ index matrix and using the “minimax” strategy to choose the best
candidate model, we count the frequency, out of 20 replications, of each model chosen as the
best model and record the ratio of their frequencies. The results w.r.t each A are demonstrated in
Figure 6. From Table 4 and Figure 6, we find that when A decreases, the performance of
EMTboost gradually outperforms that of TDboost in terms of averaged Gini” indices and the cor-
responding model-selection ratios. In particular, TDboost outperforms EMTboost when A=
1,0.75,0.5, and EMTboost outperforms TDboost when A= 0.25,0.15,0.1,0.05. When A=
0.25,0.15,0.1, EMTboost has the largest model-selection ratio among the three.

We also find that TDboost and EMTboost both outperform Grabit when 2=1, 0.75, 0.5, 0.25,
0.15, 0.1, but Grabit becomes the best when /= 0.05; interestingly, if we compare MAD results in
Table 5, the prediction error of EMTboost becomes the smallest for each A. This inconsistent
results between the criteria MAD and Gini” index when 2= 0.05 can be explained by the different
learning characteristics of the EMTboost methods and the Grabit methods. To see it more clearly,
we compute the MADs on the positive-loss dataset, denoted by MAD™, and zero-loss dataset,
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Table 4. Grabit, TDboost and EMTboost Gini® indices.

Competing premium

Base Premium Grabit TDboost EMTboost
A=1

Grabit 0 11.459 (0.417) 11.402 (0.386)

TDboost 6.638 (0.409) 0 0.377 (0.355)

EMTboost 7.103 (0.357) 2.773 (0.414) 0
A=0.75

Grabit 0 14.955 (0.413) 15.162 (0.435)

TDboost 5.466 (0.425) 0 1.848 (0.504)

EMTboost 6.152 (0.385) 2.622 (0.560) 0
A=0.50

Grabit 0 25.047 (1.539) 25.621 (1.492)

TDboost 3.516 (0.963) 0 4.056 (0.651)

EMTboost 5.702 (0.698) 2.525 (0.501) 0
A=0.25

Grabit 0 51.502 (1.062) 51.581 (1.005)

TDboost -18.248 (2.445) 0 20.035 (2.414)

EMTboost 1.283 (2.593) 3.929 (2.544) 0
2=0.15

Grabit 0 37.290 (2.505) 40.381 (1.822)

TDboost -23.569 (2.607) 0 36.735 (3.188)

EMTboost -22.674 (1.975) -22.926 (2.604) 0
A=0.10

Grabit 0 -1.189 (5.828) 16.721 (5.120)

TDboost 14.581 (6.587) 0 35.298 (3.026)

EMTboost -2.742 (4.884) -20.080 (3.572) 0
A=0.05

Grabit 0 -16.851 (2.662) -8.652 (3.059)

TDboost 42.493 (3.792) 0 27.754 (3.784)

EMTboost 32.169 (3.767) —-13.448 (3.551) 0

The “best” base premium models are emphasized.

Grabit

TDboost

100

75

Model

— EMTboost
-+ Grabit

--- TDboost

0 25 50 75 100 0 25 50 75 100
Premium

Figure 5. The ordered Lorentz curves for the synthetic data on a single replication when 2 = 0.15. Grabit (or TDboost) is set as
the base premium and the EMTboost is the competing premium. The ordered Lorentz curve of EMTboost is below the line of
equality when choosing Grabit or TDboost as the base premium.

denoted by MAD? separately, and compute the Gini® indices on the nonzero dataset, denoted by
Gini*". When 2=0.05, EMTboost obtains the smallest averaged MAD on zero-loss dataset

(MAD® ppi1poost = 0146 < MAD  1ppoost = 0.269 < MAD Gapie = 0.422), while Grabit obtains the
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Figure 6. Bar chart of model-selection ratio among Grabit, TDboost and EMTboost w.r.t. Gini® indices under 20 independent rep-
lications when 4 increases.

Table 5. Comparing Grabit, TDboost and EMTboost with MADs.
Competing models

A Grabit TDboost EMTboost
1.00 4.248 (.014) 4.129 (.012) 4,067 (.012)
0.75 3.879 (.017) 3.679 (.011) 3.622 (.012)
0.50 3.345 (.026) 2.994 (.017) 2.928 (.016)
0.25 2.439 (.014) 1.945 (.021) 1.766 (.014)
0.15 1.720 (.015) 1.489 (.023) 1.309 (.019)
0.10 1.265 (.011) 1.100 (.015) 0.986 (.014)
0.05 0.714 (.012) 0.578 (.015) 0.402 (.009)

smallest averaged MAD on positive-loss dataset (MAD™ gprpoost = 10.406 > MAD™ 1ppoost =

10.297 > MAD™ Grapic = 9.927). The MAD® performance shows that EMTboost captures the zero
information much better than TDboost and Grabit. The somewhat worse MAD" performance of
EMTboost when 2=0.05 can be explained by the deficiency of the nonzero data points (only
about 100 nonzeros comparing with over 3000 zeros); if we fix the nonzero sample size with
under-sampling fraction 4 = 0.2, and at the same time, over-sample the zero-loss part with over-
sampling fraction # =3 to obtain about 96% zero proportion, then the averaged Gini® results
summarized in Table C3 in Appendix C.2 indeed show that EMTboost remains to perform com-
petitively compared with the other methods under this large zero proportion setting.

6. Concluding remarks

We have proposed and studied the EMTboost model to handle very unbalanced claim data with
excessive proportion of zeros. Our proposal overcomes the difficulties that traditional Tweedie
model have when handling these common data scenarios, and at the same time, preserves the
flexibility of nonparametric models to accommodate complicated nonlinear and high-order inter-
action relations. We also expect that our zero-inflated Tweedie approach can be naturally
extended to high-dimensional linear settings (Qian, Yang, and Zou 2016). It remains interesting
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to develop extended approaches to subject-specific zero-inflation settings, and provide formal pro-
cedures that can conveniently test if zero-inflated Tweedie model is necessary in data analysis
compared to its simplified alternatives under both parametric and nonparametric frameworks.
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Appendices for “Tweedie gradient boosting for extremely unbalanced zero-
inflated data”

Appendix A: Tobit model (truncated normal distribution)

Suppose the latent variable Y* follows, conditional on covariate x, a Gaussian distribution:
Y*|x ~ N(u(x), %)

This latent variable Y* is observed only when it lies in an interval [y, y,]. Otherwise, one observes y; or y, depend-
ing on whether the latent variable is below the lower threshold y; or above the upper threshold y,, respectively.
Denoting Y as the observed variable, we can express it as:

y  if Y <y,
Y=Y, ify<Y <y,
Y if y < YR

The density of Y is given by:

on r.0) = 0 (21 4 (1 - 0Bt Yy )

+é<ﬂ<ﬁ#)l{w <y <yu}

Then the expectation of Y|x is given by:

E,[ylx] = J h Yfrovit (; (%), 7)dy

= y®(ar) + Jyu yé ¢ (y—_:(x)> dy + yu(1 — ®(B))
b4
y

— () +J (50 + 1(x)@(s)ds + yu(1 — B())
— 3 ®(x) + o(0(2) — 9(B)) + H(X)(D(B) — D) + yull — B(B)),
where o :y’%ﬁ(x),ﬁ :@. And
. 1 1,
o(&) = ECXP (—Eq )

is the probability density function of the standard normal distribution and ®@(-) is its cumulative distribution function:

Y
o) = ol

In simulation 2, the latent variable is truncated by 0 from below, i.e., y; = 0, y,, = 00. So we have ¢(f) = 0,®(f) = 1.
We also set the variance of the Gaussian distribution as ¢ = 1. Then the expectation of Y|x is given by:

Eo-1 [YIx] = o(—u(x)) + p(x)(1 — O(—u(x))).
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Appendix B: case 3

In this simulation study, we demonstrate that our EMTboost model can fit the non-zero-inflated dataset well. We
consider the data generated from the Tweedie model, with the true target function (17). We generate response Y
from the Tweedie distribution Tw(g, ¢, p), with u = exp (F(x1,x2)),x1,%; ~ Unif(0,1) and the index parameter
p = 1.5. We find that when the dispersion parameter ¢ takes large value in R", Tweedie’s zero mass probability
P(Yry, =0) = exp (7#‘2‘%) gets closer to 1. So we choose three large dispersion values ¢ € {20, 30,50}.

We generate n=500 observations {x; y;}_, for training and n’ = 1000 for testing, and fit the training data
using Grabit, TDboost and EMTboost models. For all three models, five-fold cross-validation is adopted and the
shrinkage factor v is set as 0.001. The profile likelihood method is used.

The discrepancy between the predicted loss and the expected true loss in criteria MAD and Gini® index are
shown in Tables Bl and B2, which are averaged over 20 independent replications for each ¢. Table B1 shows that
EMTboost obtains the smallest MAD. In terms of Gini® indices, EMTboost is also chosen as the “best” model for
each ¢.

In this setting, P(Y7, = 0) ~ 0.83,0.88,0.91, which means that all the customers are generally very likely to
have no claim. The assumption of our EMTboost model with a general exact zero mass probability coincides with
this data structure. Its zero mass probability estimation 1 — g is 0.863, 0.909 and 0.943 respectively, showing that
EMTboost learns this zero part of information quite well. As a result, EMTboost performs no worse than

TDboost, which is based on the true model assumption.

Table B1. Simulation results for case 3 with MADs.

Competing models

¢ Grabit TDboost EMTboost
20 2499 (.072) 2465 (.057) 2.449 (.054)
30 2.442 (.068) 2.492 (.060) 2.442 (.060)
50 2.553 (.091) 2.560 (.082) 2.544 (.080)

Table B2. Simulation results for case 3 with Gini® indices.

Competing premium

Base premium Grabit TDboost EMTboost
=20
Grabit 0 8.205 (3.492) 8.052 (3.471)
TDboost 4.487 (2.462) 0 4.104 (2.283)
EMTboost 3.153 (1.982) 2.347 (1.656) 0
¢ =30
Grabit 0 4.273 (3.447) 3.244 (3.411)
TDboost 4.017 (3.257) 0 3.454 (3.191)
EMTboost 1.404 (2.730) 0.846 (2.403) 0
¢ =50
Grabit 0 5.452 (4.806) 10.362 (4.801)
TDboost 3.479 (3.654) 0 2.476 (3.899)
EMTboost -0.836 (2.785) 1.031 (3.354) 0

The “best” base premium models are emphasized based on the matrices of aver-
aged Gini® indices.

Appendix C: real data

Appendix C.1: implemented EMTboost: penalization on q

When fitting the EMTboost model, we want to avoid the situation that the Tweedie portion probability estimation
q degenerates to 0. So we add a regularization term rlog (1 —¢q) to the Q-function, as Equation (16) in Sec. 3.2.
We choose an increasing sequence of penalty parameter logio(r) € {—2.....1},,, and use the strategy of “warm
start” to improve the computation efficiency, i.e., setting the current solution (fi(r;), ¢ (r1),4(r1)) as the initializa-
tion for the next solution (ft(7141), ¢ (ri1), 4(r41))-

We use this implemented EMTboost model to run the penalized solution paths with respect to the sequence of
penalty parameter r on the extremely zero-inflated training data (4 = 0.05) in sec. (5.1) under 20 independent rep-
lications, and then apply the estimators to the testing data to compute the discrepancy under MAD. We also com-
pute the MADs on zero-loss dataset (MAD?) and positive-loss dataset (MAD™) separately, and the Gini® indices
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Table C1. Implemented EMTboost (4 =0.05) results with MAD s, MAD®s and MADs.
log(r) -2.00 -1.10 -0.65 0.25 0.70
MAD 0.432 (0.047) 0.377 (0.036) 0.351 (0.033) 0.330 (0.032) 0.328 (0.031)
MAD® 0.114 (0.026) 0.054 (0.011) 0.026 (0.005) 0.004 (0.001) 0.002 (0.000)
MAD™ 10.452 (1.017) 10.527 (1.017) 10.560 (1.017) 10.587 (1.017) 10.590 (1.017)
Implemented EMTboost MAD path w.r.t. log(r)
© |
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0 |
o
a
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o
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o
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Figure 7. Implemented EMTboost (1 =0.05) results: MAD error path with its one standard deviation when increasing regulariza-
tion parameter r. The blue lines are the training error lines, and the red ones are the testing error lines. Top figure: averaged
MAD drops when penalty parameter increases. Bottom left: averaged MAD® and its standard deviation drop remarkably and
approximate 0 when r increases. Bottom right: averaged MAD™ is flat and increases a little when r increases. All the averaged
testing MADs are within one standard deviation of the averaged training MADs.

Table C2. Comparing Grabit, TDboost, EMTboost and implemented EMTboost (r= 1/6) with Gini? indices and MADs.

4=0.05 Grabit TDboost EMTboost Implemented EMTboost
q - - 0.697 (.018) 0.132 (.003)
Gini? 0.415 (.023) 0.134 (.040) 0.238 (.033) 0.261 (.033)
Gini’" 0.104 (.030) -0.116 (.039) -0.164 (.031) -0.103 (.040)
MAD 0.714 (.012) 0.578 (.015) 0.482 (.013) 0.356 (.008)
MAD® 0.422 (.009) 0.269 (.012) 0.146 (.008) 0.032 (.002)
MAD™ 9.927 (.223) 10.287 (.226) 10.406 (.228) 10.551 (.227)
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Table C3. Grabit, TDboost, EMTboost Gini® indices with A = 0.2 and n=3.
Competing premium

2=02,1=3

Base premium Grabit TDboost EMTboost
Grabit 0 23.872 (3.928) 35.616 (2.655)
TDboost -4.822 (2.822) 0 27.234 (2.152)
EMTboost -5.583 (1.599) -14.806 (1.681) 0

on positive-loss dataset (Gini®"). Table C1 and Figure 7 shows the implemented EMTboost MAD path w.r.t. the
logarithm of a sequence of penalty parameter r.

Table C2 shows the results of Grabit, TDboost, EMTboost, and implemented EMTboost (r=1/6).
Implemented EMTboost performs the best in MAD and MADY, and better than EMTboost and TDboost in Gini®,
and Gini*".

Appendix C.2: Re-sampling: under-sampling fraction A = 0.2 and over-sampling fraction 1= 3
We control the nonzero sample size in real application by under-sampling the nonzero-loss data set with fraction
A =0.2 and over-sampling the zero-loss data with fraction # =3, generating a data set containing 95.9% zeros.
Following the training and testing procedure in Sec. 5, Table C3 shows that EMTboost has the smallest of the
maximal (averaged) Gini® indices, thus is chosen as the “best” model.
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