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ON THE GENERALIZED SO(2n,C)-OPERS

INDRANIL BISWAS", LAURA P. SCHAPOSNIK, AND MENGXUE YANG

ABSTRACT. Since their introduction by Beilinson-Drinfeld [BD1, BD2], opers have seen
several generalizations. In [BSY] a higher rank analog was studied, named generalized B-
opers, where the successive quotients of the oper filtration are allowed to have higher rank
and the underlying holomorphic vector bundle is endowed with a bilinear form which is
compatible with both the filtration and the oper connection. Since the definition didn’t
encompass the even orthogonal groups, we dedicate this paper to study generalized
B-opers whose structure group is SO(2n,C), and show their close relationship with
geometric structures on a Riemann surface.

1. INTRODUCTION

Motivated by the works of Drinfeld and Sokolov [DS1, DS2], Beilinson and Drinfeld
introduced opers, in [BD1, BD2], for a semisimple complex Lie group G. A G-oper on a
compact Riemann surface X is

e a holomorphic principal G-bundle P on X equipped with a holomorphic connec-
tion V, and
e a holomorphic reduction of structure group of P to a Borel subgroup of G,

such that the reduction satisfies the Griffiths transversality condition with respect to the
connection V and the second fundamental form of V for the reduction satisfies certain
nondegeneracy conditions.

In recent years, different extensions of the above objects have been introduced and
studied — examples are g-opers (a g-oper is a Aut(g)-oper [BD2]) and Miura opers [Fr|, as
well as (G, P)-opers [CS]. Very recently, the authors introduced the notion of a generalized
B-oper in [BSY]. The definition was inspired by [Bi2], where a particular class of opers
was studied for which rank(E) = nr and the rank of each successive quotient E;/E; ;
is 7 (the above two conditions remain unchanged). In [BSY], the authors incorporated a
non-degenerate bilinear form B and required the (not necessarily full) filtration and the
connection appearing in a G—oper to be compatible with it. However, the work done in
[BSY] did not apply to opers with structure group SO(2n,C). The case of SO(2n,C) is
subtler than SO(2n + 1,C) and Sp(2n,C). We dedicate the present paper to the study
the SO(2n, C) case.

We begin our work by considering filtered SO(2n, C)-bundles with connections in Sec-
tion 2, leading to the introduction and study of a generalized SO(2n,C)—quasioper: a
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quadruple (E, By, F., D), where (E, By, F,) is a filtered SO(2n, C)-bundle over a com-
pact Riemann surface X, and D is a holomorphic connection on (F, By, F.) (see Def-
inition 2.5). Let 2m + 1 be the length of the filtration. Then r = n/(m + 1) is an
integer.

The quasiopers have naturally induced isomorphic dual quasiopers, as shown in Propo-
sition 2.6. The properties of generalized SO(2n,C)—quasiopers are studied in Section 3,
in the spirit of [BSY] and in relation to the jet bundles.

The main goal of the paper is to introduce SO(2n,C)—opers, and to show that gener-
alized SO(2n, C)-opers are closely related to projective structures on the base Riemann
surface X, and this is done in Section 4. After constructing and studying SO(2n, C)—opers
through SO(2n, C)—quasiopers, we consider their relation to geometric structures on X.

Let X be a compact connected Riemann surfaces of genus at least two. Fix positive
integers n and m such that r := n/(m + 1) is an integer. Let

Ox(n,m)

denote the space of all isomorphism classes of generalized SO(2n,C)-opers on X of fil-
tration length 2m + 1 (see Definition 2.2 and Definition 4.1). Let Cx be the space of
all isomorphism classes of holomorphic principal SO(r, C)-bundles on X equipped with
a holomorphic connection, and let (X) be the space of all projective structures on the
Riemann surface X.

We prove the following (see Theorem 4.3):

Theorem 1.1. If the integer r is odd, then there is a canonical bijection between Qx (n, m)
and the Cartesian product

Cx x P(X) x (HO(X, K&y g (é HO(X, K;?;Zi)» x J(X)s

=2
for J(X)o the group of holomorphic line bundles on X of order two, and Kx the holo-
morphic cotangent bundle of X .

If r is even, then there is a canonical bijection between Qx(n,m) and the Cartesian
product

Cx x P(X) x (HO(X, Ky o (é H(X, K;‘g%))) .

=2
We note that in the cases of SO(2n + 1,C) and Sp(2n, C), the decomposition is same
for even and odd r, unlike in Theorem 1.1.
2. FILTERED SO(2n,C)-BUNDLES WITH CONNECTIONS

Let X be a compact connected Riemann surface of genus g, with ¢ > 2. The holo-
morphic cotangent bundle and the holomorphic tangent bundle of X will be denoted by
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Kx and T X respectively. Let E be a holomorphic vector bundle on X of rank 2n, where
n > 2, such that

2n
det E = \" E = Ox
An SO(2n, C) structure on F is a holomorphic symmetric bilinear form
By € H°(X, Sym*(E*)) (2.1)

on F which is fiberwise nondegenerate. In other words, By(x) is a nondegenerate sym-
metric bilinear form on E, for every x € X. A pair of the form (E, By), where By
is an SO(2n,C) structure on a holomorphic vector bundle on X E, would be called an
SO(2n, C)-bundle on X.

We note that for an SO(2n, C)-bundle (E, By), the determinant line bundle A*" E is
holomorphically identified with Oy uniquely up to a sign. More precisely, for any z € X,
consider all isomorphisms of (E,, By(x)) with C*" equipped with the standard symmetric
bilinear form. Then the space of corresponding isomorphisms of /\2" E, with /\2n C?" has
exactly two elements, and these two elements just differ by a sign.

2.1. Filtered SO(2n,C)-bundles. An SO(2n,C) structure By on E produces a holo-
morphic isomorphism

B:E — E° (2.2)
that sends any v € E,, z € X, to the element of EX defined by w — By(z)(w, v). The
annihilator of a holomorphic subbundle F' C FE, for the bilinear form By, will be denoted

by FL1. So, for any x € X, the subspace F;- C E, consists of all v € E, such that
By(x)(w, v) = 0 for all w € F,. The bilinear form By produces C* homomorphisms

E®(E®Q0,1y) — 90,1y and (E®Q0,14)®E — Q0,1

simply by tensoring with the identity map of €20, 1. Since the bilinear form By is holo-
morphic, we have

0By(s, t) = By(0gs, t) + Bo(s, Ogt), (2.3)

where s and t are locally defined C* sections of E and 9y : C*°(X, E) — C®(X, E®
Q0, 1) is the Dolbeault operator defining the holomorphic structure on E. If ¢ is a locally
defined holomorphic section of F' and s is a locally defined C™ section of F*, then from
(2.3) we have

Bo(gES, t) = 0,

because dpt = 0 By(s, t). This implies that F'* is actually a holomorphic subbundle of
E; its rank is 2n — rank(F').

Definition 2.1. A filtration of an SO(2n, C)-bundle (E, By) is a filtration of holomorphic
subbundles of E

OIF(]CFlCF2C"'CFiC"'CFQmCFQm+1:E (24)

satisfying the following two conditions:
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(1) rank(Fy,41/Fy) = 2-rank(F}), and rank(F;/F;_1) = rank(F}),
foralli € {1,---,2m+1}\ {m+ 1}, and
(2) Ft = By forall 0 < i < m.

(2

Note that the first condition implies that
(m+1)-rank(F)) = n.

The second condition implies that the restriction By of the form By to the subbundle

F,i1 C E has has the following two properties:

|Fm+1

e the subbundle F,, C F,,; is annihilated by By|g,,,,, meaning F,,, C Ft and

e the restriction B, descends to the quotient bundle F,.1/F,, as a fiberwise

}Fm+1
nondegenerate symmetric bilinear form.

For notational convenience, the filtration {£};}2"5 in (2.4) will henceforth be denoted
by F,.

Definition 2.2. An SO(2n,C)-bundle equipped with a filtration will be called a filtered
SO(2n,C)-bundle. The odd integer 2m + 1 in (2.4) will be called the length of the
filtration.

We shall always assume that m > 2. This is because

SO(4,C) = (SL(2,C) x SL(2,C))/(Z/2Z) .

2.2. SO(2n,C)-quasiopers: Filtered SO(2n,C)-bundles with connections. Recall
that a holomorphic connection on a holomorphic vector bundle £ on X is a first order
holomorphic differential operator

D:F — E®Kx
satisfying the Leibniz identity, this is,
D(fs) = fD(s) +s®df
for any locally defined holomorphic function f on X and any locally defined holomorphic

section s of E [At]. In particular, a holomorphic connection is automatically flat because
Q?&O = 0. The bilinear form By in (2.1) produces holomorphic homomorphisms

E@(E@Kx) — KX and (E@Kx)®E — KX

simply by tensoring with the identity map of Kx. A holomorphic connection on an
SO(2n,C)-bundle (E, By) is a holomorphic connection D on the holomorphic vector
bundle E satisfying the identity

OBy(s, t) = Bo(D(s), t) + Bo(s, D(t))
for all locally defined holomorphic sections s and ¢ of F.

We note that for a holomorphic connection D on an SO(2n,C)-bundle (E, By), the
connection on the determinant line bundle A** E = Oy induced by D coincides with the
trivial connection on the trivial holomorphic line bundle given by the de Rham differential
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d (it is the unique rank one holomorphic connection on X with trivial monodromy).
Indeed, this follows immediately from the fact that the isomorphism B in (2.2) takes the
connection D on F to the dual connection on E* induced by D.

Let D a holomorphic connection on E, and let
FircFk CFE and F5 C Fy, C FE
be holomorphic subbundles such that
D(Fl) C F5 Kx and D(Fg) C F,oKx.

Definition 2.3. The second fundamental form of (Fy, Fy, F3, Fy) for the connection D is
the map

S(D;Fl,FQ,Fg,F4) : Fg/Fl — (F4/F3)®KX (25)

s — D(5)

that sends any locally defined holomorphic section s of F»/F; to the image of D(5s) in
(Fy/F3) ® Kx, where s is any locally defined holomorphic section of the subbundle F;
that projects to s under the quotient map Fy — Fy/F}.

It is straightforward to check that the image of D(S) in (Fy/F3) ® Kx does not depend
on the choice of the above lift s of s (see [BSY, Lemma 2.10]).

Definition 2.4. Let (E, By, F.) be a filtered SO(2n, C)-bundle. A holomorphic connec-
tion on (E, By, F.) is a holomorphic connection D on (F, By) satisfying the following
three conditions:

(1) D(F;) C F;1 @ Kx forall 1 < i < 2m (see (2.4)),
(2) the second fundamental form
S(D,i) : F;/Fi.1 — (Fin/F) ® Kx

is an isomorphism for all i € {1, ---, 2m + 1} \ {m, m + 1}, and

(3) the composition of homomorphisms
(S(D>m+ 1) ®IdKX) © S(D>m) : Fm/Fm—l — (Fm+2/Fm+l) ®K§2
is an isomorphism.
Definition 2.5. A generalized SO(2n, C)—quasioper on X is a quadruple (F, By, F., D),

where (E, By, F,) is a filtered SO(2n, C)-bundle, and D is a holomorphic connection on
the filtered SO(2n, C)-bundle (E, By, F.).

Two generalized SO(2n, C)—quasiopers (F, By, F., D) and (E', B}, F,, D) are called
isomorphic if there is a holomorphic isomorphism of vector bundles

. F — F
such that

e & takes the bilinear form By on E to the bilinear form B} on E’,
e O takes the filtration F, of E to the filtration F. of E’, and
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o & takes the connection V on E to the connection V’ on E'.

Proposition 2.6. Given a generalized SO(2n, C)—quasioper (E, By, Fo, D), there is a
naturally associated isomorphic dual quasioper.

Proof. Let (E, By, Fe, D) be a generalized SO(2n, C)—quasioper on X, where F,, as in
(2.4), is a filtration of E. Consider the dual vector bundle E*. It is equipped with a
holomorphic connection D* induced by the connection D on FE.

Since the symmetric bilinear form By on E is nondegenerate, it produces a holomorphic
symmetric nondegenerate bilinear form Bj on E*. For any F; in (2.4), define

G2m+1_i C E* (26)
to be the kernel of the natural projection E* — (F;)*. Then
(E*v Bgv {Gj}irzng-lv D*) (27)
is also a generalized SO(2n, C)—quasioper.

It is straightforward to check that the holomorphic isomorphism B in (2.2) takes the
generalized SO(2n, C)—quasioper (E, By, Fo, D) to the generalized SO(2n, C)—-quasioper
(E*, By, {G;}375, D*) constructed in (2.7). O

3. PROPERTIES OF A GENERALIZED SO(2n,C)-QUASIOPER

Let W be holomorphic vector bundle over X equipped with a holomorphic connection
Dy, and let V' C W be any holomorphic subbundle.

Lemma 3.1. There is a unique minimal holomorphic subbundle lA)W(V) of W containing
V' such that the connection Dy takes V into Dy (V) ®@ Kx.

Proof. From Definition 2.3, consider the second fundamental form of V' for the connection
Dw
S(Dw;V) :V — (W/V)® Kx
by letting F} = 0,F, = F3 = V and Fy = W in Eq. (2.5). Let
T C (W/V)® Kx)/(S(Dw; V)(V))

be the torsion part of the coherent analytic sheaf ((W/V) ® Kx)/(S(Dw;V)(V)). The
inverse image of 7 under the quotient map

(W/V)© Kx — (W/V) @ Kx)/(5(D;V)(V))
will be denoted by F. So F ® T'X is a holomorphic subbundle of
WV Kx®@TX = W/V.

The inverse image of the subbundle F @ TX C W/V under the quotient map W —
W/V will be denoted by Dy (V).
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Note that lA?W(V) is a holomorphic subbundle of W, because F ® T'X is a holomorphic
subbundle of W/V'. Also, V is a holomorphic subbundle of Dy, (V). From the construction
of Dy (V) it is evident that we have

Also it is clear that lA?W(V) is the smallest among all subbundles U of W such that

Note that V is preserved by the connection Dy, if and only if Dy (V) = V, where
Dy (V) is constructed in Lemma 3.1.

The holomorphic subbundle Dy (Dy (V) € W will be denoted by ﬁ%V(V) Moreover,
for ease of notation, inductively define the subbundle

D (V) = Dw(Dfy (V) ¢ W, (3.1)
for k > 2. So {lA){;V(V)}jzl is an increasing sequence of holomorphic subbundles of W.

Through Lemma 3.1, we can construct a holomorphic subbundle of a generalized
SO(2n, C)—quasioper. Indeed, let

(E, By, Fs, D)
be a generalized SO(2n, C)—quasioper on X, where F,, as in (2.4), is a filtration
OZFOCFlCF2C"'CF;’C"'CFQmCFQmJ’_l:E (32)

of length 2m+1. For the holomorphic subbundle F; C F in (3.2), define the holomorphic
subbundle

F := D¥(F,) C E (3.3)
(see (3.1)). We note that the subbundle F in general is not preserved by the connection
Don E.

Now consider the generalized SO(2n, C)—quasioper (E*, B, {Gj}gzar ' D*)in (2.7) as-
sociated to (F, By, Fe, D) via Proposition 2.6. As in (3.3), define the holomorphic sub-
bundle

G := (D")¥(Gy) C E*, (3.4)
where (G is constructed in (2.6). The dual of the natural quotient map E* — E*/G is
a fiberwise injective holomorphic homomorphism (E*/G)* — E**. Therefore, we have
the holomorphic subbundle

§:=(E/G)CE”=E (3.5)
given by the image of the above fiberwise injective homomorphism.

Lemma 3.2. For the holomorphic subbundles F and S of E, in (3.3) and (3.5) respec-
tively, the natural homomorphism

FesS — FE
15 an isomorphism. Moreover, the resulting holomorphic decomposition

E=FaS
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of E is orthogonal with respect to the bilinear form By on E.

Proof. From the properties of the filtration F, and the connection D it follows that the
natural homomorphism

FesS — FE
is surjective. Note that from the properties of the filtration F, and D we also have

rank(F) = 2n — 2= = rank(E) — rank(F}) and rank(S) = -2 = rank(Fy). Further-

m—+1 m—+1

more, we have By(F, §) = 0. These together imply that F(\S = 0 and F+ = S. O

In what follows we shall describe an alternative construction of the subbundle § in (3.5)
by considering the jet bundle approach given in [BSY]. Let

Q = E/Fy, (3.6)
be the quotient in (3.2), and let
q:E — E/Fy = Q (3.7)
be the quotient map.

For any nonnegative integer 7, let J¢(Q) be the i-th order jet bundle of Q in (3.6) (see
[BSY, Section 3.1], [Bi2], [Bil] for jet bundles). As shown in [BSY, Eq. (3.3)], [BSY, Eq.
(3.5)], the connection D on E produces an Ox-linear homomorphism

fi i B — J(Q). (3.8)
We briefly recall the construction of f; as this homomorphism plays a crucial role.

Take any point x € X, and let x € U, C X be a simply connected analytic open
neighborhood of the point . For any v € E,, let v be the unique flat section of F ‘Uz,
for the flat connection D on E, such that v(x) = v. Consider the holomorphic section
q(v) of the vector bundle Q|y, in (3.6), where ¢ is the projection in (3.7). Restricting
this section ¢(v) to the i—th order infinitesimal neighborhood of x, we get an element of
JH(Q),; this element of J(Q), given by ¢(v) will be denoted by ¢(v);. The map f; in
(3.8) sends any v € E,, z € X, to q(v); € J(Q), constructed above using v and the
connection D.

From the three conditions in Definition 2.4 it follows that the homomorphism
fgm E— J2m(Q)

in (3.8) is surjective. Moreover, the subbundle S in (3.5) coincides with the kernel of the
above homomorphism fs,,. Consequently, we have a short exact sequence of holomorphic
vector bundles

0 — S = kernel(fon) — E 25 J2m(Q) — 0 (3.9)

on X. Therefore, Lemma 3.2 has the following corollary.

Corollary 3.3. The composition of homomorphisms

F e E 2% 72m(Q)),
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where fon, is the homomorphism in (3.8), and F is the subbundle of E in Lemma 8.2, is
an isomorphism.

Let
fom + F 5 JP™(Q) (3.10)

be the composition of homomorphisms in Corollary 3.3; recall from Corollary 3.3 that f5
is an isomorphism.

Using the decomposition FS = FE in Lemma 3.2, consider the composition of homo-

morphisms

F— E -2 EoKy “5 Fo Ky, (3.11)

where g : £ = F® S — F is the natural projection to factor IF. This composition of
homomorphisms is a holomorphic connection on F, because it satisfies the Leibniz identity.
The holomorphic connection on F constructed in (3.11) will be denoted by DF.

Similarly, the composition of homomorphisms
S E-L Eeoky & S Ky, (3.12)

where qs : £ = F® S — § is the natural projection to factor S in Lemma 3.2, is a
holomorphic connection on the holomorphic vector bundle §. The holomorphic connection
on 8 constructed in (3.12) will be denoted by D%,

The holomorphic connections D¥ and D®, on F and S respectively, together define a
holomorphic connection D¥® DS on F®S. It should be emphasized that the isomorphism
F®S = F in Lemma 3.2 does not, in general, take the holomorphic connection D¥ @ D¢
on F & S to the connection D on E. Indeed, for the connection D on E the subbundles
F and S of F may have nontrivial second fundamental form. On the other hand, for the
direct sum of connections D¥ @ D¢ the second fundamental form of both IF and S vanish
identically.

From Lemma 3.2 it follows immediately that the restrictions of the bilinear form By
on E to both F and & are nondegenerate. The holomorphic symmetric nondegenerate
bilinear form on I (respectively, S) obtained by restricting By to F (respectively, S) will
be denoted by Br (respectively, Bs); in particular, we have

Br € H°(X, Sym*(F*)) and Bs € H°(X, Sym*(S*)).
As the decomposition F &S = FE in Lemma 3.2 is orthogonal, we have
By = Br & Bs. (3.13)
Since the connection D preserves the bilinear form By on E, and (3.13) holds, from the

constructions of the connections D¥ in (3.11) and the connection D¢ in (3.12) we have
the following:

Corollary 3.4. The connection D¥ on F in (3.11) preserves the bilinear form By on F.

The connection DS on S in (3.12) preserves the bilinear form Bs on S.
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Proposition 3.5. The connection D on F produces a holomorphic connection Dg on

JM(Q).

Proof. This can be deduced from the fact that the homomorphism f;, in (3.10) is an
isomorphism. So Dg is the holomorphic connection on J*(Q) that corresponds to the
connection DY on F by this isomorphism fj, .

We shall give a direct construction of this connection Dg on J*™(Q). Let
0 — Q@ Ky L pPrilQ) L Q) — 0

be the natural short exact sequence of jet bundles. It fits in the following commutative
diagram of homomorphisms:

0 0

0 — QKL L ey L ormQ) — 0
A I

0 — JmQeky -5 J(PQ) Lo — o (319

>

J2m_1(Q) ® KX ; J2m_1(Q) ® KX

0 0
(see [Bi2, p. 4, (2.4)] and [Bi2, p. 10, (3.4)]).
Consider the homomorphism
(fomsrlz) 0 (fou) ™"+ J™(Q) — JHQ),

where fo,,+1]r is the restriction of the homomorphism in (3.8), and f}  is the isomorphism
in (3.10). It is straightforward to check that

g0 ((fams1lr) © (fo)™") = Idpem(g)
where ¢ is the projection in (3.14). Therefore, from the commutativity of the diagram in
(3.14) we conclude that

¢ o Ao ((famsalr) © (fom) ™) = Iden(q)
where ¢’ and A are the homomorphisms in (3.14). Consequently, the homomorphism
Ao ((famerlr) 0 (f2,) ™) + J™(Q) — JHI™(Q))

produces a holomorphic splitting of the short exact sequence
0 — J(Q)® Kx -5 JHJ™Q)) -5 J2™(Q) — 0 (3.15)

in (3.14). But (3.15) is the twisted dual of the Atiyah exact sequence for J?™(Q). More
precisely, let

0 — J™(Q) & J*™Q) — JH(J™Q))" @ J*™(Q)
L (JP(Q) © Kx)* © J*(Q) = End(J*™(Q) @ TX — 0
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be the dual of (3.15) tensored with Id j2m(g). Then 5~ (Id j2m) @ TX) C J'(J*™(Q))* ®
J?™(Q) is the Atiyah bundle At(J?™(Q)) of J*™(Q); furthermore, the short exact sequence

0 — End(J*™(Q)) = J*™(Q)* ® J*™(Q) — At(J*™(Q)) - TX — 0

obtained from the above short exact sequence is in fact the Atiyah exact sequence for
J*™(Q). Consequently, a holomorphic splitting of (3.15) is a holomorphic connection
on the holomorphic vector bundle J?™(Q) [At]. Therefore, the above homomorphism
Ao ((famatlr) © (f4m) ") is a holomorphic connection on J*™(Q).

The holomorphic connection on J*™(Q) defined by A o ((fams1|r) © (f4,,) ") coincides
with the holomorphic connection Dg on J*"(Q) produced by the connection D on F
(see (3.11)) using the isomorphism f3,, in (3.10). O

Let £ be holomorphic line bundle on X of order two. So the holomorphic line bundle
L ® L is holomorphically isomorphic to Ox. Fix a holomorphic isomorphism

p: LRL — Ox. (3.16)
There is a unique holomorphic connection
D* (3.17)

on L such that the isomorphism p in (3.16) takes the holomorphic connection D* @ Id +
Id ® D* on £ ® L to the trivial connection on Ox given by the de Rham differential
d. Tt should be clarified that this connection D* does not depend on the choice of the
isomorphism p.

Let (E, By, Fe, D) be a generalized SO(2n, C)—quasioper on X . Consider the holomor-
phic vector bundle E! := E ® L. Note that

2n 2n 2n 2n
N E'=(N\ B\ =N\ E=o0x.
Since E' @ E' = (E® F) ® (L ® L), we conclude that
By = By®p

is a fiberwise nondegenerate symmetric holomorphic bilinear form on E', where p is the
isomorphism in (3.16). The filtration F, of holomorphic subbundles of E produces a
filtration F) of holomorphic subbundles of E'. The i-th term F}! of F} is simply F; ® £
(see (3.2)). Let

D' .= D®Id; + Idg ® D* (3.18)

be the holomorphic connection on £ ® £ = E', where D* is the holomorphic connection
in (3.17).

The following lemma is straightforward to prove.

Lemma 3.6. The quadruple
(E17 Bé’ f}’ ‘Dl)

constructed above is a generalized SO(2n, C)—quasioper on X.
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The holomorphic vector bundle F = D2Z"(F}) in (3.3) has the following filtration of
holomorphic subbundles
0 C F, € Dg(F) c Dy(F) c --- ¢ D¥ Y (F) c D¥(F,) = F. (3.19)

From Definition 2.4 it follows that the filtration of F in (3.19) coincides with the filtration
of F obtained by intersecting the filtration of E in (3.2) with the subbundle F of E.
Moreover, the isomorphism f} in (3.10) takes the filtration of F in (3.19) to the filtration
of J*™(Q) given by the short exact sequence of jet bundles

0 — QK — J(Q) — J7HQ) — 0 (3.20)

for i > 1. More precisely, for any 1 < j < 2m — 1, the subbundle ﬁ%(Fl) in (3.19)
corresponds to the kernel of the projection J?™(Q) — J?*™971(Q) by the isomorphism
£ in (3.10).
Let
0 — QKPP — F = J"(Q) — J*" Q) — 0 (3.21)
be the short exact sequence of jet bundles where, F is identified with J*™(Q) using the
isomorphism f3  in (3.10).

As explained before, the connection D on E need not preserve the subbundle S in (3.5).
Consider the decomposition £ = F & S in Lemma 3.2. Assume that

Dp(S) = S® Qe KP™) c SOF = E, (3.22)

where Q ® K™ is the subbundle of F in (3.21), and Dp(S) C E is the holomorphic
subbundle given by Lemma 3.1. Then the second fundamental form S(D;S) of S for the
connection D is a holomorphic section

S(D;8) € H(X, Hom(S, Q ® Kg®™y) (3.23)
c H°(X, Hom(S, F)) = H°(X, Hom(S, E/S));
note that Lemma 3.2 identifies £/S with F.

4. GENERALIZED SO(2n,C)-OPERS AND PROJECTIVE STRUCTURES

Through the construction of generalized SO(2n, C)-quasiopers in Definition 2.5 and that
of generalized B-opers in [BSY, Definition 2.11] we define a generalized SO(2n, C)-oper.

Definition 4.1. A generalized SO(2n, C)—oper on X is a generalized SO(2n, C)—quasioper
(E, By, Fs, D) on X (see Definition 2.5) satisfying the following three conditions:

(1) S = Q® KY™, where S and @ are defined in (3.5) and (3.6) respectively,
(2) D(S) = S®(Q ® K{*™) (see (3.22) for this condition), and
(3) there is a holomorphic section

¢ € HOX, K™
such that the second fundamental form S(D;S) in (3.23) is:
S(D;S) =ldo® ¢.
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Note that using the isomorphism & = Q ® K™ in (1), the second fundamental
form S(D;S) in (3.23) is a holomorphic section of

Hom(Q ® K™, Q ® K{*"™V) = End(Q) ® K"
the condition says that this section S(D;S) coincides with Idg ® ¢.

Two generalized SO(2n,C)—opers are called isomorphic if the underlying generalized
SO(2n, C)—quasiopers are isomorphic (see Definition 2.5).

The following lemma is straightforward to prove.

Lemma 4.2. Take a holomorphic line bundle L on X of order two, and fix a holomor-
phic isomorphism p as in (3.16). Let (E, By, F., D) be a generalized SO(2n, C)—oper on
X. Then the generalized SO(2n, C)—quasioper (E', B}, Ft, DY) in Lemma 3.6 is also a
generalized SO(2n, C)-oper.

Fix integers n and m as in Definition 2.2; note that r := n/(m + 1) is an integer, in
fact it is the rank of Fj in (2.4). Let

@X (nv m)

denote the space of all isomorphism classes of generalized SO(2n, C)—opers on X of filtra-
tion length 2m + 1 (see Definition 2.2 and Definition 4.1).

Let

J(X)g C PICO(X)

be the group of holomorphic line bundles on X of order two; it is isomorphic to (Z/27)%9,
where g = genus(X).

Let

Cx (4.1)

be the space of all isomorphism classes of holomorphic SO(r, C)~bundles on X equipped
with a holomorphic connection. So Cy in (4.1) parametrizes isomorphism classes of pairs
(V, By), where V is a holomorphic vector bundle on X of rank r with A"V = Ox, and
By € H°(X, Sym*(V*)) is a fiberwise nondegenerate symmetric bilinear form on V. We

recall that a holomorphic connection on (V, By) is a holomorphic connection Dy on V
such that

83\/(8, t) = Bv(Dv(S), t) + Bv(S, Dv(t))
for all locally defined holomorphic sections s and t of V. Let

PX)

be the space of all projective structures on X; see [Gu], [Bil] for projective structures on
X. Then, one has the following correspondence between generalized SO(2n, C)-opers and
geometric structures.
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Theorem 4.3. First assume that the integer r = n/(m+1) is odd. There is a canonical
bijection between Qx (n,m) and the Cartesian product

Cx x P(X) x (HO(X, K&y g (é HO(X, Kg?;%))) x J(X)s .

If r is even, then there is a canonical bijection between Qx(n,m) and the Cartesian
product

Cx x P(X) x <H°(X, K2y o (é H(X, K;8;2i))> .

=2

Proof. Assume that r = n/(m+ 1) is an odd integer. Take an element

(a, 8,7, 6, L) (4.2)
in
Cx x P(X) x (HO(X, K2y g (@ H(X, K§2i)>> x J(X),,
=2
such that

e a = (V, By, Dy) € Cx, where (V, By) is a holomorphic SO(r, C)-bundle on X
equipped with a holomorphic connection Dy,

e [ is a projective structure on X,

e 7 is a holomorphic section

y e HOX, kg™, (4.3)
e § € @, H' (X, K¢, and
e L is a holomorphic line bundle on X of order two.

Using [BSY, Theorem 4.6], the triple («, 3, ) produces the following:

e a nondegenerate holomorphic symmetric bilinear form By on J*™(V @ K ™), and
e a holomorphic connection D; on J?™(V ® K ®™) that preserves the bilinear form
B;.

Furthermore, the triple (J*™(V @ Ky®™), By, Dy), together with the filtration of
J*(V @ K¢®™) given by
0= A(] C Al C A2 c - C Agm C A2m+1 = J2m(V®K)_(®m), (44)

where A; is the kernel of the natural projection J?™(V @ Ky*™) — J*™{(V @ K ®™),
define a generalized B—oper (see [BSY, Definition 2.11] and [BSY, Theorem 4.6]).

Now consider the holomorphic vector bundle
E = J"VaK& eV

on X. Note that it is equipped with nondegenerate holomorphic symmetric bilinear form
By @ By. The holomorphic connection Dy on J*™(V ® Ky®™) and the holomorphic
connection Dy on V together produce the holomorphic connection D; & Dy on J*™(V ®
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K®™)@®V = E. This connection D; @ Dy on E evidently preserves the bilinear form
B, ® By on E.

Using the holomorphic connection Dy & Dy on E and the section «y in (4.3), we shall
construct another holomorphic connection on E. Since E = J*™(V @ Ky®™) @V, using
the filtration in (4.4), we have

Hom(V, V ® K¢™) = Hom(V, A;) C Hom(V, J*"(V @ Kx*™)); (4.5)
in (4.4), note that A; = V ® K™, Similarly, we have
Hom(V ® Ky®™, V) = Hom(Agi1/Asm, V) C Hom(J*"(V @ Kyx®™), V);  (4.6)
in (4.4), note that
Aot [As, = V @ K™,
so the quotient map Asy,i1 — Agpi1/Asy produces the inclusion map
Hom(Agy1/Asm, V) — Hom(J*™(V @ K®™), V).
On the other hand,
Hom(V, J*™(V ® Kx®™)) & Hom(J*"(V @ Kx®™), V)
C End(J*™(V @ Ky*™") @ V) = End(E).
Hence from (4.5), (4.6) we conclude that
(End(V)®@ K§™) @ (End(V)®@ K§™) = Hom(V, V@ K¢™)@Hom(V @ K™, V) (4.7)
C Hom(V, J*™(V @ Kx®™)) ® Hom(J*"(V @ Kyx®™), V) C End(E).
From (4.7) it follows immediately that
(Idy ® v, —Idy ® v) € H°(X, End(F) ® Kx), (4.8)
where v is the section in (4.3).

Any two holomorphic connections on the holomorphic vector bundle E differ by a
holomorphic section of End(E) ® Kx. Since Dy @ Dy is a holomorphic connection on E,
from (4.8) we conclude that

Dg == (D1 ® Dv) + (Idv ® v, —1dy ® ) (4.9)

is a holomorphic connections on the holomorphic vector bundle E. Since the connection
D; & Dy on E preserves the bilinear form By @& By on E, from the construction of
(Idy ® v, —Idy ®7) € H°(X,End(E) ® Kx) in (4.8) it follows that the connection Dg
on F in (4.9) also preserves the bilinear form B, & By on E.

Using the filtration of J>™(V @ Ky®™) in (4.4) we shall construct a filtration of holo-
morphic subbundles on E. Let

0=AyCc Al cAyc--CAy, CcAy,=FE=T" VK)oV (4.10)

be the filtration where, A, = A; @0 for all 0 < ¢ < m and A, = A; &V for all
m+1<i < 2m—+1.
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From the above, we have that the holomorphic vector bundle E, the bilinear form
B; @ By, the filtration {A}}2"! in (4.10), and the holomorphic connection Dy in (4.9)
together define a generalized SO(2n, C)—oper.

In view of Lemma 4.2, the above generalized SO(2n, C)—oper
(E7 Bl > BV7 {Ai}?;no—i—l? DE)
and the line bundle £ in (4.2) together produce a generalized SO(2n, C)-oper. It is evident
that this generalized SO(2n, C)—oper is an element of Qx(n,m).

Now assume that the integer r is even. Let V' be a holomorphic vector bundle on X of
rank 7, and let By € H°(X, Sym?(V*)) is a fiberwise nondegenerate symmetric bilinear
form on V. Then we have \"V = Oy, because r is even. Therefore, if (V, By) is an
holomorphic SO(r, C)-bundle, then for any £ € J(X)s, that pair (V& L, By ® p), where
p : L% — Ox is an isomorphism (as in (3.16)), is again a holomorphic SO(r, C)-
bundle. Hence in the case of even r, when we consider Cyx, tensoring with line bundles
of order two are already taken into account, so we no longer need to take line bundles of
order two separately (which was needed in the previous case of r being odd).

Therefore, the above constructions identify Qx (n, m) with

Cx x P(X) x (HO(X, K2y o (é H(X, K;%%))) .

i=2

We shall now describe the reverse construction. Again first assume that the integer r
is odd.

Let

(E, By, Fe, D) € Ox(n,m)
be a generalized SO(2n, C)-oper on X. Consider the decomposition
FeS =F
in Lemma 3.2. As noted in (3.13), we have that
By = Br&® Bs .

Moreover, from Corollary 3.4, the connection DY (respectively, DS) on F (respectively,
S) preserves the bilinear form By (respectively, Bs). The vector bundle F has a filtration
of holomorphic subbundles (see (3.19)), which we shall denote by F,. Recall that the
isomorphism f3, in (3.10) takes the filtration F, to the filtration of J2™(Q) given by the
exact sequences in (3.20).

Note that (F, By, .71:., DY) satisfies all the conditions needed to define a generalized
B-oper (see [BSY, Definition 2.11]) except possibly the only condition
detF = OX .
In any case,
L= detF € J(X),. (4.11)
For the vector bundle F' := F ® L, we have det ' = Ox.
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Let p : L% — Ox be an isomorphism (as in (3.16)). Define the nondegenerate
symmetric bilinear form
Bp == Br®p
on ' = F ® L. Tensoring the above filtration Fo of F by L we get a filtration of
holomorphic subbundles of F'; this filtration of F” will be denoted by F.. The holomorphic

connection D¥ on F and the canonical connection D* on £ in (3.17) together define a
holomorphic connection

Dy = D¥ ®1d, + Idp ® D*
on " (as done in (3.18)).

Now (F, By, ]?ﬁ, Dy) is a generalized B-oper [BSY]. Therefore, from [BSY, Theorem
4.6] we obtain a triple

(, B, 8) € Cx x P(X) x (é HO(X, K;‘?”)) (4.12)

i=2
associated to (F', Bh, F., D).

Next consider the second fundamental form for the subbundle S € EF = F® S for the
connection D on FE. Let

S(D;S) € H*(X, Hom(S, F) ® Kx)

be the second fundamental form for the subbundle S for the connection D on E. From
Definition 4.1 and (3.23) we know that

S(D:S) € H(X, Hom(S, Fi)® Kx) = H(X, Hom(S, Q@ K{*"*"))

C H(X, Hom(S, F) ® Kx);

we note that Fy, = Q ® K¢*™; this follows from the fact that isomorphism f;  in (3.10)
takes the filtration F, to the filtration of J*™(Q) given by the exact sequences in (3.20).
Since S = Q ® KY™ (see Definition 4.1), we have

S(D;S) € H(X, End(S) ® Kg™ ™).

We recall from Definition 4.1 that S(D;S) = Ids ® ¢, where ¢ € HO(X, KLYy,
Then, we have

(a, B, ¢, 6, L) € Cx x P(X) x (HO(X, Ky g (é HO(X, Kg?;%))) X J(X)y

=2
where (a, 3, §) is constructed in (4.12) and £ is the line bundle in (4.11). It is straight-
forward to check that the two constructions are inverses of each other.

When the integer r is even, the above reverse construction is simpler because in that case
(F, Br, F., D) is already a generalized B—oper, so the construction of (F', Bg, F., Dj)
from it is not needed. O
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