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Abstract

There are two potential directions of forecast combination: combining for adap-

tation and combining for improvement. The former direction targets the per-

formance of the best forecaster, while the latter attempts to combine forecasts

to improve on the best forecaster. It is often useful to infer which goal is more

appropriate so that a suitable combination method may be used. This paper pro-

poses an AI-AFTER approach that can not only determine the appropriate goal

of forecast combination but also intelligently combine the forecasts to automat-

ically achieve the proper goal. As a result of this approach, the combined fore-

casts from AI-AFTER perform well universally in both adaptation and improve-

ment scenarios. The proposed forecasting approach is implemented in our R

package AIafter, which is available at https://github.com/weiqian1/AIafter.

Keywords: AFTER, combining forecasts, model averaging, regression,

statistical tests

1. Introduction

In many forecasting problems, the analyst has access to several different

forecasts of the same response series. These forecasts might arise from models

of known structure to the analyst or they may be generated by mechanisms that
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are unknown. To utilize these candidate forecasts to accurately predict future

response values, the analyst can either select one of the forecasting procedures

that seems to perform well or combine the candidate forecasters in some way.

Much work has been devoted to the merits of forecast combination that

may take both frequentist and Bayesian-type approaches for various predic-

tion and forecasting scenarios. Many frequentist methods design and employ

performance-based criteria to estimate theoretically optimal weights for linear

combination to seek forecasting performance potentially superior to any of the

individual candidate forecasts. The early classical work of Bates and Granger

(1969) proposed the minimization of mean square error criteria to pursue the

optimal weights estimated through forecast error variance matrix, and Granger

and Ramanathan (1984) formulated different linear regression frameworks for

the optimal weights. Adopting minimization of other performance measures like

forecast cross validation and information criteria, weighted averaging strategies

have been specifically developed for certain classes of known statistical forecast-

ing and prediction models such as factor models (Cheng and Hansen, 2015), gen-

eralized linear models (Zhang et al., 2016), spatial autoregressive models (Zhang

and Yu, 2018), among many useful others. With the popularity of performance-

based combination methods, it is also well-known that estimated weights from

sophisticated methods can often deviate much away from the targeted theo-

retical optimal weights due to weight estimation error and uncertainty (e.g.,

Smith and Wallis, 2009; Claeskens et al., 2016); this important and well-studied

factor, among other possible factors such as structural break and new informa-

tion (Lahiri et al., 2017; Qian et al., 2019b), contributes to the phenomenon of

forecast combination puzzle (Stock and Watson, 2004a; Hendry and Clements,

2004) that in practice, simple equally-weighted averaging or its variants may

outperform sophisticated alternatives.
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Different from the combining strategies that directly aim to obtain the op-

timal weights to potentially improve on all the candidate forecasts, a class of

aggregation methods recursively updates the combining weights through on-

line re-weighting schemes (see, e.g., Yang, 2004; Lahiri et al., 2017), and these

methods typically take a less ambitious objective and only aim to match the

performance of the best candidate forecast, with the promise of having smaller

cost for weight estimation. Indeed, Yang (2004) studied a representative of

these methods called AFTER and showed non-asymptotic forecast risk bounds

that illustrate theoretically the heavier cost in forecast risk from attempting

to achieve improved forecasts than only aiming to match the best-performing

original candidate forecast; Lahiri et al. (2017) showed asymptotically that AF-

TER tends to impose all unit weights to the best-performing candidate under

some mild conditions. Lahiri et al. (2015) also suggested that the less aggres-

sive combining objective is reasonable in consideration of forecast uncertainty

under some appropriate measures. Besides the aforementioned frequentist ap-

proaches, Bayesian model averaging methods (Hoeting et al., 1999a; Steel, 2011;

Forte et al., 2018) are also in alignment with the objective of adapting to the

best original candidate forecast since the data generating process is often as-

sumed to be one of the candidate forecasting models (De Luca et al., 2018),

while these models are required to be known. Although different combination

methods have been designed with different objectives, as neither information on

data generating processes nor candidate forecasts’ underlying statistical mod-

els are necessarily available in practice, it is usually unknown a priori to an

analyst whether it is feasible to achieve improved forecast combination perfor-

mance over all the original candidates, which could lead to improperly choosing

combination methods and undesirable forecasting performance; for example,

blindly applying the AFTER method is expected to be under-performing if lin-
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ear combination of forecasts via optimal weighting schemes much outperforms

each original candidate.

Despite ongoing issues on which combining methods to use and how to de-

velop new combining methods for better performance, there has been a general

consensus from existing empirical and theoretical research that a combination

of available candidate forecasts carries important benefits and often produces

better results than the selection of a single forecast candidate (e.g., Stock and

Watson, 2003; Yang, 2003; Kourentzes et al., 2019). In a recent open forecast

competition named the M4 competition (Makridakis et al., 2020), 100,000 time

series were provided as a large-scale testing ground to assess the performance

of forecasting methods, and over sixty research teams submitted their own fore-

casting results based on various methods for principled evaluation; notably, the

benefits of forecast combination over selection have been re-confirmed as one of

the main conclusions in the highlight results of the M4 competition (Makridakis

et al., 2018). The following two reasons can partially contribute to the benefits.

First, identifying which forecasting procedure is the best among the candidates

often involves substantial uncertainty. Depending on the noise that is realized

in the forecast evaluation period, several different candidates may have a good

chance of being selected as the best one by a selection procedure, and the winner-

takes-all approach of forecast selection often results in post-selection forecasts

having high variance. Second, different pieces of predictive information may be

available to different forecasters; in this situation, a combination of the candi-

date forecasts has the potential to outperform even the best original candidate

procedure due to the sharing of information from combining the forecasts.

These two benefits of combining forecasts are closely related to the two dif-

ferent objectives of combining methods we briefly discussed earlier. Yang (2004)

formally distinguishes these two objectives as combining for adaptation (CFA)
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and combining for improvement (CFI), where CFA targets the first benefit and

CFI targets the second. Specifically, the objective of combining for adaptation is

to achieve the best performance among the original candidate procedures while

reducing the variance introduced by selection uncertainty. Combining for im-

provement, on the other hand, aims to improve on even the best procedure in the

original candidate set by searching for an optimal combination of the candidates

and directly estimating the optimal weights using performance-based criteria.

Either of the two goals of forecast combination may be favored, depending on

the nature of the data-generating process and the candidate forecasts. Taking

an approach for adaptation when improvement is more appropriate can lead to

missed opportunities to share information and improve on the original candi-

date forecasts; on the other hand, taking an approach for improvement when

adaptation is more appropriate may result in elevated forecast risk (defined in

Section 2.1) from the heavier cost of the more ambitious CFI objective. More

detailed explanation with heuristic illustration on this issue will be given in

Section 2.

In this paper, we intend to highlight the connection and relationship between

CFA and CFI with a testing procedure to assess whether we can improve on

the best individual forecaster and then design a new method to capture the

benefits of combining under either goal given the data and candidate forecasts at

hand. Specifically, our proposal is based on the AFTER method (Yang, 2004),

which is particularly designed for the combining goal of adaptation, since it

is guaranteed to perform nearly as well as (rather than significantly improving

on) the best candidate forecasting procedure, without knowing in advance which

procedure is best. However, what if all the original candidate forecasters perform

poorly? In many situations, it is still possible to combine these candidates

(sometimes referred to as “weak learners”) into a forecast to improve over even
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the best original candidate and attain the goal of combining for improvement.

Correspondingly, we propose an important extension of the AFTER method

to combine for both adaptation (A) and improvement (I) so that it can also

adapt to the goal for improvement when such a strategy has evident potential;

for brevity, we will call the proposed method AI-AFTER. We also implement

the proposed method in a user-friendly R package named AIafter, which is

available at https://github.com/weiqian1/AIafter.

Although this paper is focused on point forecast, it is worth noting that

significant progress has been made in literature for the important topics on

probability/density forecast combination and interval/quantile forecast combi-

nation (Granger et al., 1989; Wallis, 2005). In particular, the density/probability

forecast combination methods generally need assumptions on statistical mod-

eling forms for candidate forecasts or data generating processes. For example,

Clements and Harvey (2011) established the optimal combination forms under

several plausible data generating processes and studied the associated estima-

tion of optimal weights under certain performance-based criteria. Following

earlier work of Hall and Mitchell (2007), Geweke and Amisano (2011) consid-

ered optimal weighting schemes for linear combination of candidate predictive

model densities and showed that in contrast to Bayesian model averaging, their

method with optimal weights based on predictive scoring rules intends to achieve

performance substantially better than any candidate predictive model. On the

other hand, interval/quantile forecast combination methods (Granger et al.,

1989) consider time-varying heteroscedastic forecast errors whose non-i.i.d. dis-

tributions can be estimated flexibly with different parametric or nonparametric

density estimation approaches, and they do not require an analyst to have prior

knowledge of either statistical models or their parameters that lead to any of

the candidate forecasts. For example, Trapero et al. (2019) proposed to obtain
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optimal combination through minimization of quantile loss function criterion,

while Shan and Yang (2009) proposed an AFTER-type method for quantile

forecast combination that can perform nearly as well as the best original candi-

date. In this sense, the discussion and proposal of this paper on addressing the

two different objectives of CFA and CFI for point forecast combination may be

also relevant to the interval/quantile forecast combination, which should deserve

separate careful study on its own right. We leave the interesting yet challenging

extension beyond point forecast for the interval/quantile forecast combination

to future investigation.

The remainder of the paper is structured as follows. In Section 2 we formally

define the combining goals of adaptation and improvement, and we present illus-

trative simulations and examples that favor either of the combining objectives.

Section 3 describes a statistical test for the potential to combine for improve-

ment. The AI-AFTER method of combining forecasts for either adaptation or

improvement is described in Section 4. Simulation and real data evaluation are

given in Section 5 and Section 6, respectively. Section 7 gives brief concluding

remarks.

2. Two Objectives of Forecast Combination

The objectives of combining for adaptation/improvement (CFA vs. CFI) are

understood in terms of the forecast risks they aim to achieve. We will see that

the target risk of combining for improvement (that is, the risk using the optimal

weights for combining) is always upper bounded by the target risk of combining

for adaptation (that is, the risk of the best original candidate forecast). On

the other hand, because of the extra higher cost in forecast risk that can be

introduced by combining for improvement, CFA may be more favorable if there

is little or nothing to be gained by pursuing improvement over the best original
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forecast.

2.1. Definitions

Our goal is forecasting a continuous random variable Y with values Y1, Y2, . . .

at times i = 1, 2, . . . , respectively. A general forecasting procedure δ is some

mechanism that produces forecasts ŷδ,i for i ≥ 1. The procedure δ may be built

on a statistical model or on outside information, but here we do not assume

the model or any other information about the procedure is known. For the

combining problem, we start with a collection of M forecasting procedures ∆ =

{δ1, δ2, . . . , δM}, which are the original candidate forecasts.

A forecasting procedure ψ is said to be a combined forecast based on ∆ if

each ŷψ,i is a measurable function of Y1, . . . , Yi−1 and ŷδj ,l for 1 ≤ l ≤ i and 1 ≤

j ≤M . Let Ψ be a class of combined forecasting procedures based on ∆. Given

any ψ ∈ Ψ, let R(ψ;n) be the forecast risk, where R(ψ;n) =
∑n
i=1 E(Yi− ŷψ,i)2

under quadratic loss. Denote by ψ∗ = ψ∗(Ψ, n) = argminψ∈ΨR(ψ;n) the choice

that minimizes the forecasting risk R(ψ;n) over all ψ ∈ Ψ, and let R(Ψ;n) =

R(ψ∗;n) denote the minimum risk in the class Ψ.

Definition 1. Let Ψ0 = ∆ be the collection of original candidate forecasts. A

forecast combination method that combines for adaptation (CFA) is one that

targets the forecast risk R(Ψ0;n) and thus aims to perform (nearly) as well as

the best original candidate in Ψ0 in terms of forecast risk.

Definition 2. Let ΨL be the collection of all linear combinations of the original

candidate forecasts. In other words, any member ψ of ΨL produces forecasts of

the form

ŷψ,i =
M∑
j=1

wi,j ŷδj ,i, i ≥ 1, (1)

where wi,j ’s are weights (or combining coefficients). A forecast combination

method that combines for improvement (CFI) is one that targets the forecast
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risk R(ΨL;n) and estimates optimal combining weights for forecast risk through

minimization of forecast performance-based criteria; thus a method for improve-

ment aims to perform nearly as well as the optimal linear combination of the

original candidates in terms of forecast risk. It is also possible to construct

further enlarged classes extending from Ψ0 or ΨL; for example, one could con-

sider other linear combining (Wang et al., 2014) or combining the forecasts in

a nonlinear fashion.

Most forecast combination methods to date have aimed to combine for im-

provement, starting with the seminal work of Bates and Granger (1969), which

aims to derive optimal weights for the special situation of two forecasts in (1),

and the work of Granger and Ramanathan (1984), which aims for more general

situations with optimal weights estimation by linear regression. Many subse-

quent papers have attempted to derive optimal combination weights in (1) (e.g.,

Hansen, 2008; Hsiao and Wan, 2014; Claeskens et al., 2016, among many others),

and these methods can be characterized as targeting R(ΨL;n), the minimum

risk in ΨL under certain conditions.

Methods that combine for adaptation typically do not explicitly use the

covariances between forecasters but construct combining weights based on each

candidate’s merit as a predictor. Bayesian model averaging (BMA; e.g., Hoeting

et al., 1999b) is an example of CFA methods in the parametric setting. The

method of AFTER (Yang, 2004) is flexible to combine different types of forecasts

for adaptation by using each candidate’s forecasting performance. In the rest of

the paper, we will use AFTER as the representative method designed for CFA;

to keep the paper self-contained, we briefly describe the AFTER algorithm here.

Specifically, following notations above, suppose there are candidate forecasting

procedures {δ1, · · · , δM}. Then at time point i, the AFTER weight assigned to
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δj is generated based on its previous relative forecast performance as

wi,j =

(∏i−1
t=1 σ̂j,t

)
exp
(
−λ
∑i−1
t=1 φ

(Yi−ŷδj,t
σ̂j,t

))
∑M
j′=1

(∏i−1
t=1 σ̂j′,t

)
exp
(
−λ
∑i−1
t=1 φ

(Yi−ŷδ
j′ ,t

σ̂j′,t

)) , (2)

where σ̂j,t is set to be the sample standard deviation of previous forecast errors

of δj prior to the observation of Yi, and φ(·) is set to be the squared error loss

φ(x) = x2.

Note that in Definition 1, a forecast combination method is not required to

have all weights but one being exactly zero; rather, the performance of a forecast

combination for adaptation in terms of forecast risk should be almost as good

as that of the best candidate in Ψ0 = ∆. In this sense, the AFTER method

described above is indeed designed for CFA: the risk of AFTER forecasts can be

explicitly compared to R(Ψ0;n), which shows that under mild conditions, the

risk of AFTER is guaranteed to be upper bounded by R(Ψ0;n), plus a small

additive penalty. Within the CFA family, the strategy is to assign the best

candidate(s) the highest weight and therefore approach the performance of the

strongest candidate as the information regarding which candidate is the best

becomes more reliable (Lahiri et al., 2017).

Clearly, since R(ΨL;n) ≤ R(Ψ0;n), combining for improvement intends to

achieve a lower risk and is therefore the more ambitious goal than combining

for adaptation; nevertheless, R(ΨL;n) is also harder to achieve and combining

for improvement tends to incur higher extra cost than that of combining for

adaptation. Although much earlier work has derived the optimal combination

weights in (1) under certain conditions, the difficulty and instability in estimat-

ing the weights can lead to sub-optimal empirical performance for methods that

pursue the goal of improvement. These issues are well understood as discussed

in, e.g., Smith and Wallis (2009) and Claeskens et al. (2016). In addition, when

one or more of the original candidate forecasts capture the true underlying data-
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generating process well or are otherwise able to provide very accurate forecasts,

R(ΨL;n) and R(Ψ0;n) may be very close. In these situations, the cost one pays

by searching over the larger class ΨL will be greater than the gain from pursuing

R(ΨL;n) over R(Ψ0;n). Two simulations are given in Section 2.2 for empirical

illustration, followed by two examples in Section 2.3 with more explanation.

2.2. Illustrative simulations

We consider two illustrative simulations to help appreciate the different fore-

casting performance of the CFA and CFI methods.

Simulation 1. Consider a data generating process with two variables where

Yi = β0 + β1Xi1 + β2Xi2 + εi, (3)

εi, Xi1 andXi2 are i.i.d.N(0, 1) with the true parameters (β0, β1, β2) = (0, b0, b0).

Also consider the following two models to generate the candidate forecasts with

their parameters estimated by ordinary least squares, where the forecast (4)

adds no additional information about the data generating process for (5):

Yi = β0 + β1Xi1 + εi (4)

Yi = β0 + β1Xi1 + β2Xi2 + εi. (5)

To see that this data scenario should favor combining for adaptation, we

perform simulation experiment to evaluate the performance of AFTER, which

is designed for CFA; for comparison, we also consider Bates-Granger (BG or

BG1) and linear regression (LR) methods, which are designed for CFI to esti-

mate the optimal weights (Bates and Granger, 1969; Granger and Ramanathan,

1984). The true parameter b0 for the data generating process (3) takes different

values that are evenly spaced between 2.0 and 0.2 for a decreasing sequence

of signal strengths. The details on the candidate forecast generation and eval-

uation are described in Section 5; briefly, with ntrain = 30 data observations
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only for training initial parameters of the candidate forecast models, we use

n = 30 subsequent observations to generate the candidate forecasts and ad-

ditional neval = 20 observations for forecast risk evaluation. Each combining

method is evaluated using the mean squared forecast error (MSFE) relative to

the MSFE of simple equally weighted averaging (SA) so that the relative MSFE

of SA is always at the baseline reference value of 1.0 (to be shown as dashed lines

in Figures 1 and 2). The averaged relative MSFEs from repeated experiment

are summarized in Figure 1, which shows that AFTER performs favorably and

it is appropriate to target the CFA objective. AFTER enjoys the significantly

lower forecast risk than the CFI alternatives when the signal b0 is relatively

large and has performance comparable to BG and SA when the signal becomes

weak and forecast risk is dominated by the random error variance; on the other

hand, LR consistently underperforms, which can be attributed to the large cost

from estimation errors and uncertainty in estimating the optimal weights.

Figure 1: Relative forecast performance of CFA vs. CFI methods in Simula-

tion 1.
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Simulation 2. Next consider a possible scenario that different candidate fore-

casts may have different information sets. The data generating process remains
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the same as (3) of Simulation 1, but the candidate forecasts are generated by

models with different variables:

Yi = β0 + β1Xi1 + εi

Yi = β0 + β2Xi2 + εi.

To see that this data scenario should favor combining for improvement, we

apply the same experiment and summarize the averaged relative MSFEs in Fig-

ure 2. In stark contrast to Simulation 1, AFTER performs poorly compared to

other CFI alternatives when the signal b0 is relatively large; this is not surprising

since AFTER is only designed to perform almost as well as the best candidate

forecast, and the optimal linear combination of the two candidate forecasts can

much reduce the forecast risk of any single candidate. While LR underper-

forms again from unstable weight estimation when the signal b0 becomes weak,

AFTER does not seem to perform better than either BG ro SA.

Figure 2: Relative forecast performance of CFA vs. CFI methods in Simula-

tion 2.
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2.3. Examples

Extending from the previous empirical illustration, we next give two exam-

ples (including nested model scenario and weak learner model scenario) with

explanation and discussion on their favored combining objectives.

Example 1 (Nested Models). Competing forecasts are those from models of

the same family with different variable subsets and consider a data-generating

process where

Yi = β0 +

p0∑
j=1

βjXij + εi, (6)

εi are i.i.d. with mean 0, and p ≥ p0 predictors are available. A common variable

selection practice when p is large is to generate a sequence of nested models by

doing forward selection. Suppose a forward selection procedure generates the

following sequence of models:

Yi = β0 + β1Xi1 + εi

Yi = β0 + β1Xi1 + β2Xi2 + εi
...

Yi = β0 +

p0∑
j=1

βjXij + εi (7)

...

Yi = β0 +

p∑
j=1

βjXij + εi

When n is large enough to offset the error involved in estimating the forecast

model parameters, the forecast generated by (5) above will have risk R(Ψ0;n).

Furthermore, since none of the other models in the sequence add any informa-

tion about the data generating process to (7), we see that R(Ψ0;n) ' R(ΨL;n).

In this case, methods that combine for adaptation and those that combine for

improvement target the same risk, but it is more difficult for improvement meth-

ods to achieve the target risk because of the extra cost from the need to search
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over a larger class of combined procedures and the associated estimation er-

rors/uncertainty from optimal weights (Yang, 2004). This example gives the

scenario that should favor combining for adaptation.

Example 2 (Weak Learners). Consider a data-generating process where

Yi = β0 +
∑
j∈Ω

βjXij + εi, (8)

εi are i.i.d. with mean 0, p predictors are available, and the true active set Ω

is some subset of {1, . . . , p}. Now suppose the candidate forecasting procedures

have the form:

Yi = β0 + β1Xi1 + εi,

Yi = β0 + β2Xi2 + εi,
...

Yi = β0 + βpXip + εi.

This situation could happen if, for example, the p forecasting procedures rep-

resent expert forecasts with different information sets. The Xip could be thought

of as the information available to expert p at time i. In this scenario, an ap-

propriate combination of the procedures could potentially perform much better

than the best individual procedure; that is, R(ΨL;n) may be much less than

R(Ψ0;n). The classical methods, which attempt to combine for improvement

and aim to improve on the best individual candidate, could become favorable

combining choices in this scenario.

In the preceding examples, it seems clear whether CFA or CFI should be

the favorable goal given the knowledge on both the data generating process and

the candidate forecasting models. However, without such knowledge in practice,

it becomes difficult to determine the right goal of combination. The informa-

tion or model underlying each of the candidate forecasting procedures may be
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proprietary or otherwise unknown to the analyst. Additionally, the analyst’s

set of candidate forecasts may be a mix of statistical models, machine learning

algorithms, and expert opinions. In such situations, it is not clear whether one

should combine for adaptation or improvement. For example, blindly applying

AFTER in Example 2 (and Simulation 2) without knowing that the underlying

scenario favors the objective of improvement could result in under-performing

forecast outcomes. To address the resulting dilemma of not knowing underlying

data scenario’s favorable combining objective and how to choose a proper fore-

cast combination method, in the next section, we propose a statistical test that

measures evidence of the potential to combine for improvement. The informa-

tion provided by this test will allow further understanding of the combination

problem and lead to the forecast combination procedure called AI-AFTER that

will perform well given the data and candidate forecasts at hand. Detailed simu-

lation studies using variants of the data scenarios shown in Examples 1 and 2 as

well as time series examples with our AI-AFTER proposal will be given in Sec-

tion 5; we will also visit the two simulations of Section 2.2 again in Section 5.4 to

verify that the proposed AI-AFTER may perform well simultaneously whether

the underlying data scenario favors the objective of adaptation or improvement.

3. Testing the Potential of Combining for Improvement

3.1. Our approach

We approach the potential of improvement from a hypothesis testing frame-

work. As discussed before, the choice to combine for adaptation is a relatively

conservative strategy. Therefore, we place CFA in the role of the null hypothesis

and CFI as the alternative. The test recommends combining for improvement

if the data provide evidence that CFI is a potentially useful strategy.
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The choice to combine for improvement makes sense if, for the available n,

R(ΨL;n) is significantly less than R(Ψ0;n) so that some linear combination of

the original forecasters could outperform all of the original forecasters. The test

we propose in this section estimates these two risks and measures the evidence

for improvement potential. For a given class Ψ, R(Ψ;n) = R(ψ∗;n); therefore,

estimation of R(Ψ;n) involves identifying the best procedure ψ∗ and estimating

its risk. Our estimated comparison of R(Ψ0;n) and R(ΨL;n) then involves

comparing the best-performing original forecaster to the best-performing CFI

combination procedure.

For the class Ψ0, it is possible to estimate the risk of each original forecaster

under squared error loss by calculating its mean squared forecast error (MSFE)

on the sample data at hand. The minimum of these estimated risks then serves

as an estimate of R(Ψ0;n). Practical estimation of R(ΨL;n) requires a consid-

eration of what forms of linear combinations one wants to consider. Although

previous authors have derived asymptotically optimal weights in ΨL under cer-

tain conditions, for finite samples the optimal weights are typically unknown

and many combinations in ΨL might be reasonable to try. Typical examples

include least squares or penalized linear regression of the response on the origi-

nal procedures, bagging (Breiman, 1996), boosting (Freund and Schapire, 1995;

Yang et al., 2018), and/or even taking a simple average of the forecasts.

Clearly, it is impossible to analyze all of the linear combinations in ΨL. To

estimate the risk R(ΨL;n), we can only evaluate a finite subset Ψ ⊂ ΨL. We

want Ψ to be large enough to allow exploration of different ways to combine

the forecasts for improvement. We specifically suggest two ways of approaching

the size of Ψ in the AI-AFTER testing procedure. First, one can make |Ψ|

approximately equal to M , the original number of candidate forecasts. By

making the two sets of forecasters (original and combined) similar in size, we
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mitigate the chance of the multiple comparison phenomenon giving an unfair

advantage to either set when we compare the empirically best performer in each.

One way to generate about M combined forecasts from the M original forecasts

(when n > M) is to consider linear regressions of the response on an intercept

and a sequence of {1, . . . ,M} of the original forecasts chosen via a forward or

backward selection algorithm (e.g., Zhang, 2011; Ing and Lai, 2011; Qian et al.,

2019a). Second, one may wish to include many more than M combined forecasts

in Ψ in order to search for one combination procedure that works well. In this

case, we describe a randomization test in Step 6′ of Section 3.2 to correct for

the increased chance of a Type I error due to multiple comparisons, as well as

a safeguard feature to be described in Section 4.3.

3.2. A testing procedure

We next describe a procedure to determine the potential of improvement

given the available data and the candidate forecasts. We assume the availability

of observed responses Y1, . . . , Yn and a corresponding n×M matrix X containing

the forecasts of the n responses from the M candidates.

1. Select a fraction ρ of observations, and the initial n0 = bρnc observations

will only be used to estimate combining weights and build the combined

forecasts for later observations (to be defined in Step 2).

2. Decide on a set Ψ of combined forecasting procedures from one or more

families of forecast combination procedures that combine for improvement.

Examples of combination procedures to consider putting in Ψ will be given

later in this section. Let M̃ = |Ψ| denote the number of combination

methods in Ψ, and denote the particular combination procedures in Ψ as

ψ1, . . . , ψM̃ .

3. For every observation i = n0 + 1, . . . , n, calculate M̃ forecasts of Yi by
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applying the combination methods in Ψ to the first i − 1 observations

(responses and original candidate forecasts).

4. The previous step produces M̃ combined forecasts for each of the most

recent n1 = (n− n0) observations. For each j ∈ {1, . . . , M̃}, compute the

empirical (pseudo-out-of-sample) MSFE for ψj over the most recent n1

observations. Identify the procedure ψ∗ ∈ Ψ with the minimum empirical

MSFE.

5. Similar to the previous step, identify the original candidate procedure

δ∗ ∈ ∆ with the minimum empirical MSFE over the most recent n1 ob-

servations.

6. Compare the forecast errors of ψ∗ to the forecast errors of δ∗ using the

D-M test (Diebold and Mariano, 1995) under squared error loss. The null

hypothesis of the test is that the procedures ψ∗ and δ∗ are equally accurate

in forecasting. Testing the potential of improvement suggests a one-sided

alternative hypothesis that ψ∗ is more accurate than δ∗.

6′. A detailed study of the null distribution of the D-M test statistic in this

framework is beyond the scope of this paper. However, when the num-

ber of combined forecasting procedures is much larger than the number

of original candidate forecasts (that is, when M̃ � M), the null distri-

bution of the p-value from Step 6 may be shifted toward zero due to the

multiple comparison phenomenon. We recommend correcting for this by

performing a randomization test that uses simulation to approximate the

null distribution of the p-value from Step 6. The randomization test works

as follows:

(a) Create an n1 × (M + M̃) matrix F of the original and combined

forecasts for the most recent n1 observations.

(b) Do each of the following steps N times, where N is a large number
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of repetitions for randomization:

i. Randomly permute the M + M̃ columns of F . Label the first M

columns of the permuted matrix as the “original” forecasts and

the remaining M̃ columns as “combined” forecasts.

ii. Perform Steps 4-6 on the sets of “original” and “combined” fore-

casts.

This step produces a set of N randomization p-values. These are

D-M p-values under random labeling of the forecasting procedures as

“original” and “combined”.

(c) The p-value of the randomization test is the proportion of random-

ization p-values from Step 6′(c) that are less than or equal to the

p-value observed in Step 6.

7. Compare the p-value from the D-M test to a pre-specified significance

level α. A small p-value indicates evidence that at least one of the com-

bined forecasting procedures in Ψ is more accurate than the best original

forecaster in ∆, giving empirical evidence that R(ΨL;n) < R(Ψ0;n) and

indicating the potential of improvement using the available data.

Step 2 of the AI-AFTER testing procedure is agnostic regarding the nature

and the number of the combination procedures that can be included in Ψ. In

practice, we construct Ψ from the following combinations of the M original

forecasts.

• LASSO with AIC, BIC. The LASSO solutions with the minimum val-

ues of AIC and BIC on the solution path are found using the R package

ncvreg.

• Stepwise selection with AIC, BIC. A stepwise selection algorithm is

applied to the first i observations, and the least squares models with the

minimum AIC and BIC on the solution path are chosen.
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• Best subset of each size. The initial n0 observations are used to select

the best model of each size from 1 to min(M,n0 − 1). If min(M,n0 −

1) ≤ 20, an exhaustive search is done to find the best model of each

size; otherwise, this is done via forward selection. The coefficients of these

models are updated after every observation i, but the set of active variables

in each model stays the same.

• Constrained linear regression (CLR). We consider a constrained

linear regression (CLR) of the original forecasters without an intercept.

Specifically,

ŷCLR
i =

M∑
j=1

β̂i,j ŷδj ,i, where

{
β̂i,1, . . . , β̂i,M

}
= argmin
β1,...,βM

i−1∑
t=1

Yt − M∑
j=1

βj ŷδj ,t

2

,

with the constraints that β̂i,j ≥ 0 for 1 ≤ j ≤M and
∑M
j=1 β̂i,j = 1.

• Bates-Granger (BG0.9, BG1). Under the weighting scheme described

in Bates and Granger (1969), we have

ŷBG
i =

M∑
j=1

wi,j ŷδj ,i.

The combining weights are

wi,j =

(
σ̂2
i,j

)−1

∑M
k=1

(
σ̂2
i,k

)−1 , where

σ̂2
i,k =

1

i− 1

i−1∑
t=1

ρi−(t+1) (Yt − ŷδi,t)
2

with ρ = 0.9 or 1.

• Näıve combinations (SA, MD, TM). We consider three näıve fore-

cast combinations that do not take individual forecaster performance into

account:
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– SA, the simple average of the candidate forecasts ŷδj ,i, 1 ≤ j ≤M .

– MD, the median of the candidate forecasts.

– TM, the trimmed mean. At each step i, the highest and lowest

bM/20c values of ŷδj ,i are removed before taking the mean.

In the above construction of Ψ, we have up to M̃ = min(M,n0 − 1) + 10

distinct combinations of the original forecasts at each step i (It is possible for

some of the combination methods to choose the same forecasting procedures;

for example, the subsets chosen by AIC and BIC could match). The AI-AFTER

testing procedure described in this section provides helpful information about

the nature of the forecasting problem for the data at hand, and indicates the

potential of improvement to enable the choice of a proper forecast combination

method to be discussed next.

4. Combining for Adaptation or Improvement

4.1. Using AFTER algorithm

The hypothesis test described in Section 3 indicates whether given the data

and candidate forecasts at hand, one should perform combining for improve-

ment. If there is little evidence that any combined forecast can outperform the

best individual forecast, then one may simply target the forecast risk of the

best individual forecaster. As AFTER can provides protection against model

selection uncertainty (Zou and Yang, 2004) and automatically adapt to changes

over time in the data generating process and relative forecaster performance,

we adopt AFTER in scenarios favorable to the objective of adaptation; see also

Section 2.1 for a brief description of the AFTER method.

If the hypothesis test indicates a combining for improvement scenario, this

means we were able to generate one or more forecast combinations that outper-
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form all of the original forecasters. In this case, our goal should be to match the

performance of the best combined forecast. In other words, this can be thought

of as an adaptation scenario in which the combined forecasters are considered as

the candidates. Framing the problem in this way suggests that we need to pro-

pose a new version of AFTER to achieve the potential for improvement by using

the combined forecasters instead of the original ones as the forecast candidates

for AFTER.

4.2. AI-AFTER algorithm

The preceding discussion suggests that AFTER, applied to the proper fore-

casting procedures, can be used to effectively combine forecasts for adaptation

(A) or improvement (I), and we call this new version AI-AFTER. In the follow-

ing, we summarize AI-AFTER, where the hypothesis test described in Section

3 will be informative on the direction. Recall that we assume the analyst starts

with observed responses Y1, . . . , Yn and a corresponding n×M matrix of fore-

casts X.

1.-7. Apply the AI-AFTER testing procedures described in Section 3. The p-

value from the hypothesis test is used to determine which set of forecasts

is combined by AFTER in the final step.

8. If the p-value is greater than the level α, we conclude that CFA is an

appropriate strategy and therefore apply the AFTER algorithm to the

original responses Y and forecasts X. Otherwise, we apply AFTER to

the n1 × M̃ matrix X̃ of combined forecasts (and the corresponding most

recent n1 observed responses) produced in Step 3 of the testing procedures.

The forecasts ŷ1,i’s (i = n0 + 1, · · · , n) can then be obtained according

to the determined combining direction, and the corresponding combining

weight vector (in RM or RM̃ ) is generated for next forecasting outcome.
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For practical use of AI-AFTER, the performance of AFTER often benefits

from using the first few ninit records as “burn-in” observations. This means the

first ninit forecasts produced by AFTER assign equal weights to all candidates,

since relative forecaster performance cannot be reliably estimated using only the

first few observations. The ninit initial observations are used only to estimate

the combining weights for future observations, and we set ninit = 5 by default.

4.3. A safeguard feature

In the previous subsection, the hypothesis test is integrated as an informa-

tive step to decide on the direction of combining (CFA or CFI) to potentially

lead to improved forecasting performance. On the other hand, since hypothesis

test is subject to type I and/or type II errors (particularly when sample size is

small with relatively low power), in the following, we further introduce a safe-

guard feature into AI-AFTER to protect against these possible errors, without

necessarily making compromise on forecasting performance (to be discussed in

Section 4.4). Specifically, we devise a composite AFTER step: AFTER is first

applied to an expanded set of original and combined forecasters to generate new

“safeguard” forecasts ŷ2,i’s; subsequently, an extra layer of AFTER is applied

by treating (ŷ1,i, ŷ2,i) as two candidate forecasters and generate the correspond-

ing combining weights for forecasts ŷC,i’s. This safeguard step is summarized

as follows.

9. Create an n1×(M+M̃) matrix
˜̃
X of candidate forecasts by concatenating

X̃ to the most recent n1 rows of X. Apply the AFTER algorithm to the

most recent n1 responses and the matrix
˜̃
X consisting of the M original

forecasters and the M̃ combined forecasters; this generates the “safeguard”

forecasts ŷ2,i’s (i = n0 + 1, · · · , n) and combining weight vector in RM+M̃

for next forecasting outcome.
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10. Apply the AFTER algorithm again with (ŷ1,i, ŷ2,i) as candidate forecasts.

This creates forecasts ŷC,i’s and a combining weight vector in R2 to use

for forecasting the next outcome.

4.4. Risk bound of AI-AFTER

Recall that we have δ1, · · · , δM as the original candidate forecasting proce-

dures, producing ŷδj ,i, where i = 1, 2, · · · , and 1 ≤ j ≤ M . In the construction

of Ψ, we have M̃ = |Ψ| distinct combined forecasts, and let κl (1 ≤ l ≤ M̃) de-

note these forecast combination procedures. To show forecast risk bound of the

proposed AI-AFTER approach, we assign prior probabilities: fix some constant

p0 (0 < p0 < 1) so that each δi (i = 1, · · · ,M) has prior π = (1 − p0) 1
M and

each κl (l = 1, · · · , M̃) has prior π = p0
M̃

. Note that the above prior probabili-

ties add up to 1. Let N be a total forecasting horizon. Suppose Conditions 6

and 8 in Yang (2004) are satisfied. Then we immediately have the final com-

bined forecasts of AI-AFTER as shown in Theorem 1 that satisfy near optimal

performance.

Theorem 1. Let δC be the AI-AFTER combining procedure. Then there is

some constant λ from (2) such that
∑N
i=n+1E(Yi− ŷδC ,i)2 is no larger than the

smallest of the following:
log(M) + log 2

1−p0 + inf1≤j≤M
∑N
i=n+1E(Yi − ŷδj ,i)2,

log(M̃) + log 2
p0

+ inf
1≤l≤M̃

∑N
i=n+1E(Yi − ŷκl,i)2.

From Theorem 1, without any prior knowledge and in a universal fashion,

AI-AFTER is no worse than the (unknown) best original individual forecasts in

Ψ0 and the best of the combined forecasts in Ψ, plus relatively small additive

penalty (when n is large). Consequently, if the average squared forecast error

does not converge to 0, we have that limN→∞

∑N
i=n+1 E(Yi−ŷδC,i)

2

R ≤ 1, where R
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is the minimum of inf1≤j≤M
∑N
i=n+1E(Yi−ŷδj ,i)2 and inf

1≤l≤M̃
∑N
i=n+1E(Yi−

ŷκl,i)
2. Therefore, AI-AFTER is asymptotically no worse than the best of orig-

inal forecasts and the combined forecasts, and is adaptively intelligent: it is

conservative (achieving combining for adaptation) when there is no advantage

in pursuing improvement, and it is aggressive otherwise, achieving the good per-

formance of alternative combined forecasts (such as sparse regression combining)

for improvement.

5. Simulation studies

In this section we present simulation results for a linear regression setting

and for a time series setting, followed by re-visiting the two simulations of Sec-

tions 2.2. In the linear regression setting, a large number of covariates help to

determine the data generating process and are considered by M different can-

didate models. In the time series setting, past values of the response variable

are used in the candidate models in addition to one or two covariates. In both

settings, we present forecast combination scenarios of adaptation or improve-

ment. Throughout the simulation, ρ is set to 1/3, and a level of α = 0.1 is used.

We compare the predictive performance of AI-AFTER to five competitors: the

basic AFTER method; the methods of CLR, BG1 and SA described in Section

3.2; and combination via linear regression (LR).

In each simulation setting described below, 200 independent realizations of

data are generated. Each realization includes ntrain rows of training data (that

are used only to build the candidate forecasts and are not available to the ana-

lyst), the n observations and candidate forecasts (available to the analyst tasked

with combining the forecasts), and a subsequent number neval of outcomes used

to evaluate the combining methods. In all of our simulations, we set ntrain = n

and neval = 20. For each realization, the combining methods are evaluated by
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their mean squared forecast error (MSFE) over these neval observations. Specif-

ically, the MSFE for a combining method ∆ in a given realization j is

MSFE∆
j =

1

20

n+20∑
i=n+1

(
yi,j − ŷ∆

i,j

)2
, (9)

where yi,j denotes the value of the ith observation in the jth realization, and

ŷ∆
i,j is the forecast of yi,j produced by the application of method ∆. In each

setting, we show summaries of MSFE∆
j /MSFESA

j for the different methods ∆

to compare the performance of each combination method relative to a simple

average of the candidate forecasts.

5.1. Linear regression examples

In this section, the true model is

yi =

p∑
j=1

βjxij + εi, (10)

where the xi· = (xi1, · · · , xip) are i.i.d. multivariate normal with mean 0 and

covariance matrix elements σjk = 0.5|j−k|, p = 30, β = (3, 2, 1, 1, 1, 1, 0, . . . , 0),

and the εi are i.i.d. N(0, 4) and independent of xi·. We consider both an adap-

tation scenario and an improvement scenario (denoted by OLS-Adaptation and

OLS-Improvement, respectively); the data generating process is the same (10)

in both settings, but the candidate forecasts available to the analyst differ.

5.1.1. OLS-Adaptation scenario

The candidate forecasts in the adaptation scenario, for 1 ≤ i ≤ n, are

constructed as follows:

Forecast 1 : ŷi,1 = β̂1,0 +
6∑
j=1

β̂1,jxij , (11)

Forecast k, 2 ≤ k ≤ 30 : ŷi,k = β̂k,0 +

p∑
j=1

I(k, j)β̂k,jxij .
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The β̂k,j are the least squares estimates, trained using the first i − 1 observa-

tions available to the analyst as well as a previous set of ntrain = n historical

observations of (y,x) that are used to train the candidate forecasts only and are

not available to the analyst. The I(k, j) are independent Bernoulli(0.5) random

variables; therefore, each covariate has a 50/50 chance of being included as a

predictor variable in each candidate forecast k, 2 ≤ k ≤ 30. Since none of the

forecasters k for k > 1 add any information about the data generating process to

(11), in this case R(Ψ0;n) = R(ΨL;n) for large enough n. Thus, the above set

of candidate forecasters represents a scenario where combining for adaptation

is the appropriate goal.

5.1.2. OLS-Improvement scenario

Now for the same data generating process (10), consider candidate forecasts

k, 1 ≤ k ≤ 30, of the form

Forecast k : ŷi,k = β̂k,0 + β̂kxik. (12)

Again the β̂k are trained using the previous n + i − 1 observations. In

this scenario, each forecaster on its own has incomplete information about the

data-generating process, but if the forecasts are combined in a smart way, the

combination can capture all of the information in (10) and thus produce a more

accurate forecast.

5.2. Time series examples

We consider an autoregressive (AR) process with up to two covariates. In

contrast to the linear regression examples considered previously, both the adap-

tation and improvement cases consider the same set of candidate forecasts. The

nature of the data generating process determines whether combining for adap-

tation or improvement is more appropriate. The candidate forecasters are as-

sumed to have access to the previous response values and at most one of the two
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covariates. Specifically, each candidate forecast is based on an AR(X) model

according to the following:

Forecast 1: ŷi,1 = β̂0,1 + γ̂1,1yi−1

Forecast 2: ŷi,2 = β̂0,2 + γ̂1,2yi−1 + γ̂2,2yi−2

Forecast 3: ŷi,3 = β̂0,3 + β̂1,3xi1 + γ̂1,3yi−1

Forecast 4: ŷi,4 = β̂0,4 + β̂2,4xi2 + γ̂1,4yi−1

Forecast 5: ŷi,5 = β̂0,5 + β̂1,5xi1 + γ̂1,5yi−1 + γ̂2,5yi−2

Forecast 6: ŷi,6 = β̂0,6 + β̂2,6xi2 + γ̂1,6yi−1 + γ̂2,6yi−2

As in Section 5.1, the β̂ and γ̂ coefficients are trained on the first n + i − 1

observations of (y,x), with the first n observations of the series unavailable

to the analyst. The values of xi· are i.i.d. with two independent standard

normal covariates. We next present both an adaptation scenario and an im-

provement scenario (denoted by AR(X)-Adaptation and AR(X)-Improvement,

respectively).

5.2.1. AR(X)-Adaptation

We apply the six candidate forecasts described above to predict a yi gener-

ated by the following process:

yi = 0.5yi−1 + 0.4yi−2 + εi, (13)

where the εi are i.i.d. N(0, 4) as in Section 5.1. In this scenario, Forecast 2 rep-

resents the true model and has the lowest forecasting risk (for large enough n).

Forecasts 5 and 6 include both AR lags, but each also uses one non-informative

covariate. Forecasts 1, 3 and 4 fail to include the second lag of y in their

model. For large enough n, the performance of Forecast 2 cannot be improved

by combining it with the other forecasters; therefore, combining for adaptation

is considered more appropriate.
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5.2.2. AR(X)-Improvement

The data-generating process uses both covariates:

yi = 0.5yi−1 + 0.4yi−2 + xi1 + xi2 + εi. (14)

The εi are again i.i.d. N(0, 4). While none of the six candidate forecasts use both

covariates, some use x1 and some use x2. Therefore, forecast combination can

result in improved performance over any individual forecaster due to sharing of

information. Thus, combining for improvement is considered more appropriate.

5.3. Results

5.3.1. AI-AFTER test

We first evaluate the performance of the AI-AFTER testing procedure de-

scribed in Section 3 for determining the combining goal.

Table 1: Percentage of 200 realizations that AI-AFTER selected Combining for

Improvement as the proper goal of forecast combination.

Data-Generating Process (DGP) Sample Size % Rejected H0

OLS-Adaptation n = 100 1.0%

n = 300 2.5%

AR(X)-Adaptation n = 100 0.5%

n = 300 1.0%

OLS-Improvement n = 100 100.0%

n = 300 100.0%

AR(X)-Improvement n = 100 39.5%

n = 300 99.0%

Table 1 shows, for each of the four simulation settings at sample size levels

n = 100 and n = 300, the proportion of the 200 realizations that the test

rejected H0 and recommended combining for improvement.
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Figure 3: Linear Regression examples: p-value distribution for AI-AFTER test.
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Figure 4: AR(X) examples: p-value distribution for AI-AFTER test.
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The top half of the table shows that in all cases, the frequency of Type

I errors was lower than the nominal α = 0.1. This could be understood by

the observation that H0 : R(Ψ0;n) = R(ΨL;n) is not true; instead, in each
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case R(Ψ0;n) < R(ΨL;n) because the expected performance of the true model,

which is among the candidates, is better than the expected performance of any

combination method in ΨL. In each of the four scenarios where combining for

adaptation is appropriate (and combining for improvement carries additional

risk with no reward), the test rejected H0 and recommended combining for

improvement less than 3% of the time.

The bottom half of Table 1 shows that the AI-AFTER test does well in

discovering the potential of improvement when n = 300, with H0 rejection rates

of 100% and 99.0% in the OLS- and AR(X)-Improvement scenarios, respectively.

As with most hypothesis tests, the test is less powerful when n is smaller. For

example, when n = 100 in the combining for improvement cases, the results

were mixed, with H0 rejected 100.0% of the time in the OLS setting but 39.5%

of the time in the AR(X) setting. These results can also be observed from the

p-value distributions as shown in Figures 3 and 4.

The results in these examples suggest that the test is effective at controlling

Type I error when the true data generating process is represented in the can-

didates and thus combining for adaptation is appropriate. When combining for

improvement is the proper goal, the test was most effective and informative at

larger sample sizes such as n = 300, but may exhibit lower power (as expected

for any tests) if we use smaller sample size. We next examine the robustness of

AI-AFTER forecasting performance with the integrated test.

5.3.2. Forecasting Performance

Table 2 compares the forecasting performance of AI-AFTER against AF-

TER, BG1, LR, CLR, and SA. For each method ∆, the table shows averages

and standard errors of the ratio of MSFE∆
j to MSFESA

j . Figures 5 and 6 show

the empirical distributions of the MSFE (relative to SA) for each method over
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T a bl e 2: P erf or m a n c e c o m p ari s o n: M e a n ( S. E.) of M S F E ∆
j / M S F E S A

j f or e a c h

c o m bi n ati o n m et h o d ∆ o v er 2 0 0 r e ali z ati o n s.
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n = 3 0 0 0. 7 7 9 ( 0. 0 0 7) 0. 7 7 7 ( 0. 0 0 7) 0. 8 7 5 ( 0. 0 0 3) 0. 8 0 6 ( 0. 0 0 8) 0. 7 7 8 ( 0. 0 0 7)
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Fi g ur e 6: A R( X) e x a m pl e s: E a c h b o x pl ot s h o w s M S F E ∆
j / M S F E S A

j f or 2 0 0
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5.4. Simulations 1 and 2 re-visited

We next re-visit the two simulations of Section 2.2 to verify that the dilemma

observed from the simulation experiment in Figures 1 and 2 can now be solved.

The AI-AFTER algorithm is applied to the same simulation experiment of Sec-

tion 2.2, and the averaged relative MSFEs of Simulation 1 and Simulation 2

are summarized in Figure 7 and Figure 8, respectively. Satisfactorily, Figure 7

shows that in Simulation 1, AI-AFTER performs very similarly to AFTER that

pursues the CFA objective; in contrast, Figure 8 shows that in Simulation 2, AI-

AFTER performs almost as well as LR when the signal is relatively large, and

maintains performance similar to BG and SA without incurring the excessive

cost of LR when the signal becomes weak. AI-AFTER indeed performs well

simultaneously under both data scenarios with different favorable combining

objectives.

Figure 7: Relative forecast performance of AI-AFTER in Example 1.
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Figure 8: Relative forecast performance of AI-AFTER in Example 2.
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6. Output Forecasting

6.1. Data, Forecasts, and Combining Methods

We next apply the method of AI-AFTER to forecast two measures of output

growth for seven developed countries using data first analyzed in Stock and

Watson (2003). Specifically, we forecast

Yt+4h =
100

h
ln(Qt+4h/Qt),

where, depending on the analysis, Q is either a country’s real GDP (RGDP)

or Index of Industrial Production (IP), t represents the current quarter at the

time of forecasting, and h represents the forecasting horizon in terms of number

of years ahead. We consider forecasts for h = 1 and 2-year horizons. For each

horizon, there are 13 forecasting problem cases considered: RGDP and IP for

each of the seven countries, except IP for France (data not available for enough

periods).

Following Stock and Watson (2003), the data was used to study the effective-

ness of individual asset prices as leading indicators of output growth. Consider
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forecasting models of the form

Yt+4h = β0 + β1(L)Xt + β2(L)Yt + ut+4h, (15)

where ut+4h is an error term and β1(L) and β2(L) are lag polynomials allowing

multiple lagged values of X and Y to be included in the regression; the X

variables include interest rates, exchange rates, stock and commodity prices,

and other measures; a full list of X variables considered for each country can

be found in Stock and Watson (2003). For each country, up to 73 different

candidate predictors Xt are used, one at a time, in the model form (15) to

predict Yt+4h. The data series are recorded quarterly for each country from

1959 to 1999. For each forecasting problem, the first 50 available observations

are used to train the candidate forecasts in (15) and are considered unavailable

to the combining analyst. After these restrictions, the number of valid h-step-

ahead responses ranges from 82 to 100, while the number of individual candidate

forecasts of the form (15) ranged from 26 to 64, depending on the availability

of data series for each country. Forecast combination methods are employed to

generate combined forecasts.

As in Section 5, we compare the forecasting performances of AI-AFTER,

AFTER, BG1, LR, CLR, and SA. The accuracy of each combination method

∆, in terms of MSFE∆/MSFESA, over the final neval = 20 values of response

outcomes is recorded. We set α = 0.1 and treat the final 20 outcomes as being

unavailable to the analyst, so they are not used in the calculation of the AI-

AFTER testing procedure’s p-value to determine the direction of combining.

6.2. Results

The relative performance of each forecast combination method for predicting

growth in RGDP and IP can be found in Table 3 and Table 4, respectively.

There are 13 sets of forecasts (six countries for RGDP, seven countries for IP)
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Table 3: MSFEs of combination forecasts, relative to SA: Forecasts of h-year

growth of RGDP.

Canada Germany Italy Japan UK USA

h = 1

AI-AFTER p-value 0.007 0.761 0.005 10−5 0.201 0.079

AI-AFTER 1.067 0.535 0.663 0.776 0.904 1.443

AFTER 1.439 2.705 0.756 1.663 1.530 6.077

BG1 1.006 1.024 0.952 0.941 0.925 1.001

LR 1.119 0.714 0.645 0.757 1.422 2.424

CLR 1.095 0.781 0.651 1.206 1.082 1.433

h = 2

AI-AFTER p-value 0.095 0.005 10−6 10−5 10−5 0.064

AI-AFTER 0.628 0.407 0.177 0.456 1.081 0.790

AFTER 1.826 1.595 0.438 0.955 1.412 7.078

BG1 1.077 0.784 0.781 0.815 0.721 1.048

LR 1.601 0.404 0.265 0.465 1.006 1.379

CLR 1.097 0.199 0.185 0.866 0.772 1.911

at two horizons, for a total of 26 cases. For each forecast horizon, the tables

show the p-values of the AI-AFTER tests, as well as the MSFEs of each forecast

combination method, relative to the combination by SA.

First, except for only five cases, the forecasting performance of original AF-

TER method is not satisfactory even compared to LR, which seems to suggest

that our considered forecasting scenarios from these data sets should overall be-

long to the forecast improvement category. In particular, setting level α = 0.1,

the AI-AFTER tests identify 21 cases to be combining for improvement. For

the remaining 5 cases, their insignificance results could be attributed to the type

II error (as observed from our simulation studies) under the scenarios with rela-
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Table 4: MSFEs of combination forecasts, relative to SA: Forecasts of h-year

growth of IP.

Canada France Germany Italy Japan UK USA

h = 1

AI-AFTER p-value 0.013 0.035 0.097 0.006 0.005 0.048 0.100

AI-AFTER 0.630 0.736 0.875 0.906 0.729 0.738 0.644

AFTER 2.227 0.967 2.055 1.198 1.069 0.931 1.459

BG1 0.958 0.990 1.053 0.976 0.943 0.992 0.941

LR 2.463 1.081 0.259 0.873 0.659 0.808 0.882

CLR 0.646 0.749 1.513 0.856 0.799 0.542 0.627

h = 2

AI-AFTER p-value 0.452 0.473 0.093 0.007 0.004 0.001 0.326

AI-AFTER 0.932 0.508 0.953 0.542 0.409 0.815 0.579

AFTER 4.086 0.514 1.278 0.966 1.517 0.337 2.314

BG1 0.862 0.720 0.738 0.780 0.745 0.947 0.794

LR 3.204 0.567 1.822 0.965 0.323 0.649 0.671

CLR 0.997 0.283 0.825 0.540 0.697 0.968 0.272

tively small sample size; nevertheless, AI-AFTER remains to give better (or at

least as good as) MSFE results than that of AFTER, confirming that the safe-

guard feature of AI-AFTER indeed takes effect to ensure desirable forecasting

performance.

These observations above for forecast improvement may not be surprising:

Stock and Watson (2003) found that none of the individual forecasts of the

form (15) performed reliably well over the entire analysis period; after com-

paring these individual forecasts to those from a benchmark AR model in two

separate time periods, they found that “forecasting models that outperform

the AR in the first period may or may not outperform the AR in the second,
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but whether they do appears to be random”. Due to the lack of any reliably

outstanding individual predictor(s), their results imply that for these data and

forecast candidates, the best individual forecaster can be improved by forecast

combination; our results above are largely consistent with their findings, which

find no consistently accurate individual forecasts of the form (15) but do find suc-

cess by combining these forecasts (for improvement). On the other hand, Stock

and Watson (2004b) also found that simple average of the individual forecasts

was often reliably accurate for these forecasting problems, and supported the

strategy of simple forecast combination with little or no time variation in the

combining weights. However, our analysis finds that by applying the forecast

combination methods such as AI-AFTER, the SA can be (often substantially)

improved in most of the considered cases (23 out of 26 cases); this appears to

be in alignment with many recent findings that some complicated combination

methods on average can significantly outperform simple ones (e.g., Makridakis

et al., 2020).

Table 5: Combination forecasts ranked by weighted average losses on last 20

evaluation points.

Forecast Average Loss (S.E.)

AI-AFTER 0.0337 (0.0034)

CLR 0.0381 (0.0047)

LR 0.0426 (0.0046)

BG1 0.0448 (0.0043)

SA 0.0503 (0.0049)

AFTER 0.0722 (0.0073)

We then rank the six competing methods by their average losses (across

the 26 cases) over the final 20 evaluation points in Table 5, where the different
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cases are weighted by the inverse of their full-sample variance (similar to Table

VIII of Stock and Watson, 2004b). We see that AI-AFTER and CLR perform

the best in this comparison, and AI-AFTER takes the first place that reduces

the overall forecast loss of SA by about 33%. The under-performance of AF-

TER again shows that combining for adaptation is overall not the right goal

here; notably, our proposed AI-AFTER significantly improves upon AFTER

by intelligently adapting to the proper combining objective to give desirable

forecasting performance.

7. Discussion

This work introduces a forecast combining approach, AI-AFTER, that per-

forms well universally in both adaptation and improvement scenarios. By treat-

ing methods that attempt to combine for improvement, such as regression-based

forecasts, as candidates to be considered and using a hypothesis test to detect

underlying forecast scenario, AI-AFTER adapts to the situation at hand to be

aggressive or conservative as appropriate based on data and forecast candidates.

So far, our work has focused on the situation where the forecast errors are

stationary and the risk is computed under squared error loss. Theoretical and

numerical studies of the relative performances of combining for adaptation or

improvement under other loss functions, non-stationarity, or in the presence of

structural breaks can be of independent interests for future study. In addition,

analyzing the theoretical properties of the hypothesis test described in Section

3 to determine the appropriate direction of combining would lead to further

understanding and possible refinement of the test.
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Supplementary Materials

AIafter The R package implementing our proposed AI-AFTER forecasting

algorithm, together with the AFTER, BG, LR, and CLR methods, are available

at the GitHub address: https://github.com/weiqian1/AIafter.
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