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Conventional methods for three-dimensional (3D) imaging frequently rely on voxel-by-voxel data acquisition,
which restricts the range of specimens in which they can be effectively employed. While advances in imaging
technology now permit the routine acquisition of 3D images approaching video rates, there are other limitations
to image formation in fluorescent microscopy that prohibit studies in large volume samples, highly scattering
media, and dynamic environments. Some approaches to 3D image collection circumvent this need by the use of
tomographic imaging, where sub-3D projections are collected at varying illumination angles and reconstructed
through an inversion algorithm to compute an estimate of the 3D fluorophore distribution. Many such methods
rely on spatially coherent light, and thus prohibit the use of fluorescent light. By employing unique spatio-
temporally varying illumination patterns in conjunction with computational imaging approaches to image
reconstruction, we show that some limitations of laser scanning and wide-field imaging can be overcome.
We outline several approaches that utilize tomographic projections with patterned illumination to collect 3D
image data. All three dimensional optical imaging exploits projection of the desired 3D information into a
lower-dimensional subspace, and then a full three dimensional object is estimated from these data. We discuss
a number of such single pixel strategies that project object information onto a zero-dimensional, usually a
power, measurement. Further, we outline computational image reconstruction approaches that enhance the
object estimates by employing a forward model for the image formation process.

1. Introduction common forms of single pixel imaging are based on laser scanning
microscopy (LSM), where a laser (or other spatially coherent beam)
is focused to a small point and raster scanned through a specimen.

These methods include confocal microscopy and multiphoton-excited

Optical microscopy is a powerful method for studying a wide range
of samples with minimal perturbation to the system under study. The

simplest imaging methodologies rely on a segmented detector, such
as a camera chip, to record the intensity of a widefield image that is
formed with a series of optical components [1,2]. Widefield imaging is
highly developed, relatively inexpensive, and widely available. Despite
the numerous advantages, this technology is still limited — preventing
its use in a broad set of applications. For example, widefield imaging
is difficult or impossible in spectral regions that lack high quality seg-
mented detectors, such as the mid-infrared and terahertz bands [3,4].
In some environments, the optical properties of the specimen, such
as absorption and scattering, may obscure regions of the specimen,
making imaging of desired object features challenging.

In scenarios where widefield imaging is challenging, it is often
advantageous to form images through single pixel imaging. The most

fluorescent microscopy [5-7]. In LSM, the relative position of the
focused excitation beam is translated throughout the specimen and a
fraction of the signal power is measured for each illumination position.
LSM opens capabilities for imaging within specimens that suffer from
optical scattering, but at the expense of slow image formation.

The speed of LSM imaging is limited due to the fact that signal is
serially acquired from each spatial point. Imaging speed is improved by
applying delocalized illumination light (see Fig. 1), rather than raster
scanning a tightly focused beam [8-13]. While delocalized illumination
allows signal to be gathered from across the specimen, thereby im-
proving imaging speed, the sequence of illumination patterns must be
suitably designed to enable full recovery of the object from knowledge
of the illumination patterns and the set of measurements [11,14-18].
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Fig. 1. Conceptual diagram of several single pixel imaging modalities. The green
pattern represents a spatial modulation of the illumination light intensity. Separate
modulation strategies are shown in columns. Moving left to right these are: laser
scanning (confocal or nonlinear) microscopy, single frequency projection, random
matrices, and Hadamard matrices. The rows show snapshots of illumination patterns
that evolve over time; the required set of patterns depend on the mathematical
properties of the illumination patterns, and for full imaging coverage, the average
illumination must cover the entire image field of view. In the case of fluorescent
emission, the total signal for each illumination pattern is proportional to the total
emitted fluorescent power, and each of those power measurements can be viewed as
an inner product between the spatial distribution of the molecular concentration, ¢(x, ),
which is the desired object, and the illumination light pattern, I;(x,), to produce
a signal that is proportional to the inner product of the two spatial distributions,
(e(xy), I/<xl)>xl'

Most delocalized single pixel techniques use a sequence of illumination
patterns that are uncorrelated spatially across the object — using either
random illumination patterns [15,19], Hadamard matrices [14], or
spatial frequency structured light [11,20-22], to name a few. Particular
excitement has accompanied the recognition that when the object is
sparse in some basis, accurate image estimates can be obtained through
application of compressive sensing principles [19,23,24].

In addition to improvements in imaging speed, modulated single
pixel imaging has been applied to increase the information extracted,
as well as to expand the range of accessible contrast mechanisms. Mod-
ulated single pixel illumination has been applied to many spatial and
spectral modalities to access numerous contrast mechanisms for imag-
ing, such as nonlinear excitation [8,25-27], to obtain super resolution
imaging [25], spectroscopy through wavelength labeling [28,29] or
compressive sensing [30,31], quantitative phase information [26,32],
simulation of coherent propagation of incoherent light emission [21,
33], and diffuse optical spectroscopic imaging [34,35]. The advantages
of imaging in the mid infrared [36] and terahertz [37] spectral regions
have also been demonstrated.

With single pixel imaging, it becomes necessary to combine the
knowledge of the illumination patterns, the physics of the signal con-
trast mechanism, and a forward model for the single pixel image
data formation, and then solve the inverse problem to estimate the
underlying object — the spatial distribution of the signal contrast
mechanism.

Generally, single pixel imaging is framed as a computational imag-
ing problem, where a forward model provides an expected signal,
D{c(x)}(t). Here, D{-} is the forward operator that maps object infor-
mation, ¢(x), interrogated by the illumination intensity, I;;;(¢), at time ¢
onto a scalar signal value that is related to the average power captured
by the detector, @(¢). In an experiment, data is acquired as a vector
of discrete samples of the signal. The discrete measurement vector
[yl; = @(t;) At + [€]; is based on the expected signal sampled at time
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t; with a sample averaging time Ar. The signal is corrupted by noise
introduced by the illumination source and detection electronics in the
measurement, denoted by €; for the ith sample. Noise from different
areas of the sample are assumed to be mutually independent.

Delocalized single pixel imaging may benefit from an improved
signal-to-noise ratio (SNR) depending on the dominant source of
noise [38,39]. The SNR will be improved by multiplexing the photon
counts together with the use of a single pixel detector if the signal is
detector noise limited (thermal, electronic, or 1/f noise). On the other
hand, if the signal is shot noise limited, multiplexing the photon counts
together will result in decreased SNR; however, these deficiencies can
be largely mitigated with suitable computational imaging algorithms.

To estimate the object spatial distribution, a model fitting problem
may be posed to find the best fit (e.g., in least-squares sense) between
the measured data and the signal, modeled using the forward operator
applied to the estimated object. This model fitting problem is typically
posed as a finite dimensional optimization problem for finding an N-
point discrete approximation ¢ € RY, on some pre-selected spatial
grid, to the object spatial distribution c(x). If the forward operator is
a linear integral operator, as is the case in many applications, then its
action on ¢(x) at any time instant ¢ can be approximated as the inner
product between the discretized object distribution ¢ and a vector a,
that depends on the kernel of the forward operator: D{c(x)}(r) ~ aIT c.

Let t; denote the ith sampling time, y; be the intensity measurement
at time ¢;, and A be a matrix whose ith row is af. Then, the problem is to
fit the linear model A ¢ to the measurement vector Y=Yyl
where M is the total number of temporal samples. An estimate ¢ of ¢ is
typically found thorough variations of least-squares fitting, sometimes
with regularization:
¢ :=argmin ||y — Ac||, + 4 R[c]. (D)

c>0

The regularization or penalty function R[-], weighted by the parameter
A, is included to force a solution that matches our prior knowledge
about ¢ (e.g., sparsity or smoothness) and to perform denoising. Many
problems that we wish to solve are highly sensitive to noise due to
their ill-possedness, requiring strong regularization to constrain the
degrees of freedom of the solution [40-42]. In some cases, it is possible
to express the estimate ¢ in closed-form by constructing appropriate
inverse operators analytically. In other cases, one has to resort to
numerical iterations. Over the past twenty years, many algorithms have
been developed for various choices of the regularization function R.
A review of such algorithms and optimization methods can be found
in [43]. The effect of noise on the estimation depends on the choice of
the regularization function and the specific algorithm used to solve (1).
Of course, we always prefer to have an analytical form for the inverse
operator (estimator map), associated with (1), for taking y to ¢, because
we can then derive analytical error bounds for our estimates and
quantify resolution limits. Also, when A is large or poorly conditioned,
numerical iterations may suffer from a lack of stability or may require
a large amount of memory and a large number of iterations to arrive
at a good estimate [44-47].

In this article, we discuss single pixel tomographic computational
imaging [33,48,49]. For two of our scenarios, we are able to find the
inverse operators analytically and present closed-form expressions for
the object estimate. For the others, we use numerical methods. The
analyses of forward and inverse operators allows us to identify the
imaging impulse response and spatial frequency support, which readily
facilities comparison to conventional optical imaging methods.

2. Single pixel spatial frequency projection (SFP) imaging
2.1. Modulation of the field
Single pixel spatial frequency projection (SFP) imaging refers to

a class of computational imaging methods that exploit illumination
light that is modulated with a time-varying spatial frequency structure
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Fig. 2. (a) A schematic of a single pixel SFP tomographic imaging system. The light
in the modulator plane, focused by a cylindrical lens, serves as the conjugate object
plane for the illumination optical system and is imaged into the object region to the
conjugate image plane, which is also called the focal plane. (b) An example of the
illumination intensity for a particular modulation spatial frequency. (c) Filtering in the
pupil plane plays a critical role in determining the 3D propagation of the spatially
coherent modulated illumination field.

[11,20,21,50]. A general schematic of a SFP imaging system is shown
in Fig. 2.

The incident light, E;,.(x,), is focused to a line by a cylindrical
lens on the modulator, M (x, ,,,.?). The modulated illumination light,
Eo(X| mo)» is produced by modifying spatially coherent light incident
on a modulator, E;,.(X; ), so that the modulator imprints a transverse
spatial modulation on the field amplitude. The coordinates of the plane
where the modulator lies are denoted x, ,, = (x,,,,)- The modulated
illumination field is the product of the incident field and the modulator
mask, giving the expression

Emo(XL,mO; t) = Einc(XL,mo)m(xL,mo; t)-

In SFP imaging, the modulation patterns, m(x, ,,;?), are composed of
sparse set of time varying spatial frequencies.

The modulated illumination radiant field, which is the spatial
Fourier transform of the modulated field, is a convolution of the Fourier
transform of the modulator mask,

M(ki; H= F{m(xi,mo; t)} = / m(XJ_,mo; 1) exp(_i kJ_ : XJ_,mo) d2 X1 mo>

with the Fourier transform of the incident illumination light. The
radiant field in the modulation plane then reads

Emo(ky) = Eipely) #, M (ko).

Here &,.(k;) = F{Ej (X mo)} is the incident radiant field and = is
the convolution operator with respect to k;, and k; = (k,, k,) denotes
the transverse spatial frequencies.

Since E;, (X, ;o) illuminates only a portion of the modulator spatial
extent, the spatial frequency representation of the modulator mask may
be expressed as a sum, M(k,;7) = Z,- a; expli @; D161k, — Ky mo (D],
over the discrete, time-varying modulation frequencies, Kk, ,,, ;(*), each
of which has an amplitude of «;. Some modulators are able to impart a
phase shift, ¢ (D), that varies as the transverse modulation spatial fre-
quency, k ,, ;(1), evolves. This total radiant field is the sum &,,(k,) =

Zj aj ginc[kL - kl,mo,j(t)]'
2.2. The three dimensional illumination field

The three-dimensional (3D) illumination pattern of a spatially co-
herent modulated field is dictated by the propagation and interference
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of that field. Assuming that the modulated field lies in the object
conjugate plane of a 4-f illumination imaging system with a coherent
transfer function (CTF) H(k, ), we may compute the three dimensional
illumination field in the object space by using the angular spectral
propagator [1,51]. By adopting a Cartesian coordinate system in the
object space x = (x,y,z), where z = 0 identifies the focal plane, we
define z as the optical axis of the imaging system, and the nominal
propagation direction of the light. Then, the wavevector component in
the transverse plane relative to the optical axis is k; = (k,,k,), with
the full wavevector given as k = (k. k p ko)

The modulated field is image relayed from the modulation plane
to a conjugate image plane that resides in the object space (Fig. 2);
we will refer to this as the focal plane (z = 0). The CTF of the
illumination system imparts a low pass spatial frequency filter onto
the illumination field, producing a radiant field in the focal plane
of &uk,;0) = HKk,)E(k,;0). Since M(k,;r) is represented by a
discrete sum over transverse modulation frequencies, it follows that the
illumination field in the focal plane is also represented by a discrete
sum, Ey(x,,0;7) = Z,' E;ﬂ)(xL,O; 1). Here x;, = (x,y), in the object
coordinates x = (x, y, z), where z is the optic axis of the imaging system.

At the focal plane, the jth radiant field Sﬁi)(k ;1) is the product of
the modulated field in the pupil plane of the objective, a; &, [k, —
k, ;0] with the illumination optical system CTF, H(k,). In the spa-
tial domain, this jth field term is obtained from the inverse Fourier
transform, leading to

ED(x1,0;0) = a; F~HHKL) Epelky — Ky (01}

The filtering of the modulated radiant field, illustrated in Fig. 2(c),
is the source of the variation in the peak field amplitude of each
transmitted field at the origin, x = (0,0,0), of the object coordinate
system. This amplitude is calculated by

a;(n) = Ef{l')(xl,o;n(xfo =a / Hky) Eelky — Ky ;(D]d% k.

As we show later, a;(7) is related to the modulation transfer function of
the single pixel SFP imaging system.

The filtering by the 4f illuminating imaging system can modify the
propagation direction, i.e., the k-vector, of each of the modulation
illumination terms. The direction of the jth illumination field is denoted
by the vector k;(t) = (k, ;(t), k,, ;(1), k ;(t)). The transverse beam center
frequency components are determined by the centroid of the radiant
field,

. 2
S ke | € 10| a?ky

Kixy),;® = 0 3
JleR | e,

The axial spatial frequency of each wave is set by the dispersion
relationship of the Helmholtz equation,

k(0 = \JK? = K2 (1) = K2, (0).

The amplitude, a; (1), and wavevector, k;(1), are used to define
a slowly varying three dimensional complex field envelope, u;(x;1),
where the rapidly varying phase, exp [i(¢;(1) +k;(1) - X)], is removed.
The complex envelope is normalized to unity at the origin of the object
coordinates,

uj(x:1) = exp [—i(@; () + K; (1) - )] S (x:1)/ ES(0:1).

The three dimensional field, Eﬂ({)(x;t), is computed using the angular
spectral propagator to propagate the in-focus field at z = 0 to an
arbitrary defocus plane z.

With this formalism, we find that the transverse spatial frequency
spectrum of the normalized field envelope, U;(k;;z,1) = Fy w0},
at the defocus distance, z, is given by

e—[[(pj(t)+k,(r)-x] i CRTT
Ujk;z,0) = 0 H(k)) Epclk) — Ky (0] o Z VRIS
J
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Here the wavenumber is the norm of the wavevector k = k||, = 2z/4
and |k |3 = k2 + ki is the square of the norm of the transverse
wavevector.

Putting together all of the factors defined above, we have a total
illumination field of E;(x,,0;7) = Zj Ei(l{)(x 1,0;1), where each field
term is written as, Eil(? = a;(Nu;(x;1) exp [i((pj(t) +k;(@®) - x)]. The time-
variation of the field arises from a temporal variation in the modulator,
which also imparts a continuously varying phase shift, ¢;(#), that
enables the separation of interfering terms in the illumination intensity
Iy (x,1) = | Ey(x, t)|2. Here, the dimensionality of the problem is set by
the dimension of the spatial vector, x = (x, y, z).

2.3. SPIFI and CHIRPT

To illustrate the implementation of SFP imaging, we consider two
limiting cases for the illumination field: plane wave and line focus (light
sheet) illumination; the line focus case is illustrated in Fig. 2(b). We
begin by analyzing the plane wave model. The number of terms in
the summation are constrained by the modulator and the illumination
system, with the most common being three beam, j € {-1,0, 1}, inter-
ference for SPatlal Frequency modulation for Imaging (SPIFI) imaging
[11,52], and two beam, j € {0, 1}, imaging for Coherent Holographic
Image Reconstruction by Phase Transfer (CHIRPT) imaging [21,53-55].

Assuming a circular aperture in the pupil plane with a radial coher-
ent cutoff spatial frequency of k, = kNAy;, and NA; is the numerical
aperture of the imaging illumination system, the CTF may be written
in the form H(k,) = rect[||k o ;()ll2/2 k.]. The rect function evaluates
to rect(x) = 1 for |x| < 0.5 and O otherwise. With a circular CTF,
in the plane wave case [53], the modulated radiant incident field
of the jth term is approximated as Si(‘fz(k 1D & kg — Ky 0L
Thus, the modulated radiant field transmitted through the pupil of the
illumination imaging system is approximated by

i i 2_ 2
ED K1 2,0) = 62K — Ky o s (D] rectll[K o ;D1 /2 k] ' VIR,

In the plane wave model, the normalized field envelope is invariant
with spatial coordinate, i.e., u;(x;1) = 1, and thus
a;() = a;rect{||Ky pno;(Dll2/2k.1, and k;(1) = (Ko (1) * %K o () -

P, :/k2 - ||kL,m0,j(t)||§). Here % and j are the unit vectors along the x
and y coordinates, respectively.

By contrast, for a beam focused to a line [54,55] along the y direc-
tion with a spatial frequency modulation along the length of the line,
which is denoted as the x direction, then we use K 1, ; = (ky o, (1), 0).
Assuming that the spatial frequency support along k,, is uniform, then
the filtered radiant field of the jth field term for a circular CTF with
coherent cutoff spatial frequency k, is

. . 2 2
ED K 1 2.0) = 6lk, — ky o (O] rectlk [k )] € VTR
Here, the height of the spatial frequency support along the k,, direction

is the chord length, k,(f) = 2Re { VK2 K2 (t)}.

X,mo,j

The amplitude of the jth field at the origin is a (N =a;k,(0)/27 and

because k, ; = 0, the wavevector is k(1) = (k. ; (1), 0, | :kz - kimo’j(t)).
The diffracting light sheet beam envelope follows the dependence

dictated by the integral

O e . s
el i iz [k ()—k2
uj(X; H= L S, /rec[ < L4 ) eikyy o' ® o j D=y d kyA

2z ot

While there is no general solution for this diffracting envelope, the
solution in the focal plane (z = 0) is u;(x;1) = k,(t)sinc(k, () y)/2 7,
where sinc(x) = sin(x x)/z x. This shows that the normalized field
amplitude is uniform along x and that only the diffraction of the line
focus into a light sheet, u;(y,z), is relevant to the changing of the
illumination pattern.
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2.4. Forward and inverse operators for SFP imaging

The forward model for SFP imaging with single pixel detection fol-
lows from the combination of the contrast mechanism, optical system,
and the illumination patterns. The forward and inverse operators for
SFP imaging for a number of single pixel tomographic imaging config-
urations are presented in the subsequent subsections. However, before
we look at the specific operators, we develop a general framework for
analyzing single pixel techniques. Our general framework will assume
that full tomographic imaging can be performed where we scan along
an additional coordinate ¢ to obtain information that spans the full
dimension of the tomographic problem (i.e., the dimension of the x
used). The scanning coordinate will be denoted by a subscript ¢, which
we set to zero to indicate when standard single pixel imaging is being
performed.

In the previous section, we computed the three dimensional prop-
agation of an illumination field modulated by a planar spatial light
modulator. This propagating field presents a 3D illumination pattern
to the object. In single pixel imaging, power from light that inter-
acts with the object is recorded by a single pixel detector; this data
is combined with the model of the signal collection of the contrast
mechanism (e.g., absorption [11], linear scattering [49], fluorescent
or luminescent emission [11,21,33], Raman scattering [27,30,31], or
nonlinear interactions [21,25,27]) and the 3D light distribution to then
solve the inverse problem using an inverse operator to estimate the
object spatial distribution.

Earlier we defined a forward operator as the mathematical opera-
tion that mapped from the object spatial distribution, c¢(x), to the signal
collected by a single pixel photodetector @,(t). Often, a particular
demodulated sideband will be extracted, and this serves as the expected
signal that is predicted by the forward model, d3¢(t) = D{c(x)}(t, ¢).
The index ¢ will be used to indicate a sequence of measurements for
tomographic imaging.

In SFP single pixel imaging, the forward model operator is defined
by

Dfc(®)}(1, ) = (PO y(x, 1) c(x)),- 2

Here we have neglected unimportant constants of proportionality that
do not impact the image formation model. In addition, we are using
Dirac integral notation of (-), = / -d"x, where n is the dimension of
the problem, defined by the dimension of x. The forward operator is
defined as a weighted inner product, (4(r) f(1)),, with the weight, (),
denoting the fringe visibility at each time 7, and thus each illumination
transverse spatial frequency.

The function ¥, (x,?) is the Fourier kernel of the forward operator
that arises in SFP imaging from the interference of field terms that
are isolated by the phase shifting terms, ¢;(#). The weighting function
B(t) accounts for the spatial frequency support of the imaging, that is
determined by the fringe visibility of the projected spatial frequencies
and the tomographic scan parameter, ¢, in SFP.

Acquired data, y, are obtained from the sampled signal power and
includes noise introduced by the measurement process. The acquired
data can be inverted to obtain an object estimate by matching the data
to the expected signal using Eq. (1). A common strategy is to solve
this problem with iterative optimization, however, this approach often
requires large computational resources.

When possible, using a closed form analytic model of the inverse
operator to solve for the least squares estimate of the object from
the set of data may provide an advantage in terms of computational
complexity and computation time. The inverse operator is defined by

600 = D™ By (0} (3) = (5. ) By (1) - ©)

Here ¥i(x,f) is the dual kernel for the inversion. Ideally, this dual
kernel is biorthogonal to the forward operator kernel, which we express
mathematically as (¥,(x,?) i’;(x, t))t = §"(x).
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In imaging systems, strict orthogonality may be only possible
asymptotically, but the finite numerical aperture (NA) may lead to
a compact function that is not a Dirac delta function. The forward
and dual kernels are defined so as to be strictly orthogonal whenever
possible. The function §(¢) is a term that physically describes the fringe
visibility that is dictated by the finite transverse spatial frequency
support enabled by the illumination objective lens, and thus accounts
for the non-orthogonality due to the fact that a diffraction-limited
spatial resolution exists. In SFP tomographic imaging, it is possible to
find analytic expressions or approximate expansions for the dual kernel,
and thus the inverse operator. In cases where this is not possible, we
must resort to an iterative solution using Eq. (1).

With the definition of the inverse operator, we may describe the
properties of the computational imaging system. The impulse response
of the SFP computational imaging system, which we will call a point
spread function (PSF) follows directly from substitution of Eq. (2) into
Eq. (3), from which we may define the PSF as

(BO ¥ DGR +x0),

PSF(x) = — ,
(BOF,& P, +x.1)

4

The PSF is normalized with [ PSF(x)dx = 1 to allow for a quantitative
estimate of the object. The optical transfer function (OTF) follows from
the Fourier transform of the PSF, OTF = F{PSF(x)}. In the remainder of
the article, we will develop the forward and inverse kernel functions,
as well as calculate the PSF and OTF for a number of SFP single pixel
computational tomographic imaging experiments.

The model in Eq. (2) is not completely general as it requires that the
signal be recorded by the incoherent superposition of a signal power
that is generated by the product of the illumination intensity, I;;(x),
and the local object contrast, ¢(x). The model is valid for many common
imaging modes, such as those that rely on fluorescent emission, spon-
taneous Raman scattering, and absorption contrast mechanisms. In the
case of fluorescence [33,49] or spontaneous Raman scattering [30,31],
c(x) is the spatial distribution of the concentration of the molecules
(fluorescent or Raman active). In the case of absorption, analysis of
the signal with the generalized optical theorem [56] shows that the
contrast is proportional to c¢(x) = Im{5(x)}, where we have assumed a
uniform background refractive index and #n(x) which is the variation
in optical susceptibility perturbation, of which the positive imaginary
component contributes to optical absorption.

Another caveat is that our treatment in this article analyzes modu-
lation of spatially coherent light. However, SFP computational imaging
is not restricted to spatially coherent illumination light. Modulated
spatially incoherent or partially coherent light can also be used, but
there are additional considerations, such as localization of structured
modulations near the focal plane. We stress that while we focus on
illumination with spatially coherent spatio-temporally structured light,
the detected light need not be spatially coherent, and we discuss cases
for both spatially and temporally incoherent light collected on the
single pixel detector.

Below, we consider a set of SFP imaging problems, and compute
the least-squares estimate of the concentration, where we minimize
the £2 norm error, of the object contrast distribution. The estimate
of the object obtained by this strategy is denoted by é(x) that is
computed by applying the inverse operator, D~!. The specific forward
and inverse operators will be provided for several imaging scenarios
explored below from which we obtain PSF and OTF functions for the
imaging modalities.

3. CHIRPT imaging

Coherent Holographic Image Reconstruction by Phase Transfer
(CHIRPT) imaging [21,53-55] uses two-beam interference. One beam
is a non-scanned, time stationary reference beam, j = 0, propagating
on the optic axis, k;, = (0,0). The second beam, j = 1, with
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k; ; = (k,(1),0), linearly scans through all of the x-spatial frequencies
supported by the NA of the illumination optics with the functional form
of k| (f) = y t at the modulation chirp rate y = k, T~!. Here k, = kNAy,
is the coherent cutoff spatial frequency of the illumination imaging
system with numerical aperture NA;; and 2T is the total modulation
time. The two beams are brought to a tight line focus and interfere
with each other to produce interference fringes which constitutes the
projected spatial frequency, as shown in Fig. 2(b).
The Fourier kernel of the forward operator in CHIRPT is

YU, 1) = py, (7, 2) exp [—i AK(®) - x], (5)

where the spatial frequency used for imaging arises from the refer-
ence and scanning field wavevector difference, Ak(r) = k() — kg
and the weighting function in the forward operator is p(t) = u(?).
The amplitudes have been normalized so that a,(r) = a, u(r), where
u(®) = kp()/kp(0) = /1 —(@/T)? is the fringe visibility of the two
interfering beams. The fringe visibility is a real quantity, which reflects
the fact that || < T. The spatial weighting distribution is p; ;(y.2) =
u;(y,z) uj(y, z), and with the light sheet illumination considered here,

Ak(t):k<%NAHI,O,\/1—<%NAHI>2—1>. 6)

3.1. One-dimensional CHIRPT imaging

The simplest CHIRPT imaging arises from estimating a line image
from the set of measurements where the illumination spatial frequency
is varied along that same dimension. In such a case, we consider an
object that is infinitesimally thin and located at a depth of z,, so that
c(x) = 8(z — zg) ¢(x, ). For this thin object

Depip (8, (0}0) = (B0 PP (x, &, () ™

where we have defined a 1D object averaged along the y direction for
an illumination line centered on y = y, as

¢y, () = /po,l(y, zg) c(x,y + yo) dy. ®
The 1D CHIRPT Fourier kernel is
@CHID (1) — wCH(y o Z001) = .10, 20) o A (Dx =i k(1) 20 ©

The difference frequencies used here are given in the vector elements in
Eq. (6). Since the forward operator is simply a Fourier kernel, the dual
kernel of the inverse operator, ¥ H!P(x, 1) = ¥CHID(x 1), is the adjoint
of the forward kernel.

The 1D CHIRPT line image is estimated by the expression

84, () = Dy p { DD} (x) = (PP (x, 1) D)), (10

The { denotes adjoint (complex-conjugate for Fourier kernel). The
biorthogonality = condition is  verified by noting that
(PCHIDT (! W CHID (x4 x 1)), = 2T sin(k NAy; x)/kNA;; x. In the lim-
iting case of infinite NA, this biorthogonal function becomes a Dirac
delta function. It follows then that the PSF defined in Eq. (4) is given
by
2J,(kNAy, x)

kNAy x
where J;(-) is the Bessel function of the first kind. The OTF is computed
from the Fourier transform of the PSF, leading to

OTF(k,) = Re { V1= (kx/kc)2} A

The estimated 1D object obtained in Eq. (10) can be extended into a
2D object estimate to resolve an approximate representation of c¢(x, ) by
taking a sequence of data traces for a set of y; values. The individual
1D images are then stacked into a 2D image. This approach readily
assembles a 2D image, yet along the y-direction, the spatial resolution
is determined by the one dimensional autocorrelation of the coherent

PSF(x) =
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Fig. 3. SPIFI and CHIRPT line outs of the point spread functions (PSFs) and optical transfer functions (OTFs) for several SFP imaging orders: ¢ € {1,2,3,4} along x. The abscissa is
normalized to be unitless and independent of NA and wavelength using the spatial frequency cutoff f, = %,kc =2xf,. The left panel shows SPIFI/CHIRPT PSFs for the first four
SFP orders. The blue, green, orange, purple lines show the 1st, 2nd, 3rd, and 4th order PSFs relative to the spatial frequency cutoff f,. The right panel shows the corresponding
frequency support, OTFs relative to the coherent cutoff spatial frequency k.. The 2D plot of the first and second order OTF is shown in Fig. 13 where the asymmetry along y can

be observed.

transfer function along the y direction for each projected x spatial
frequency. As a result, spatial frequency support is not isotropic, and
the y-direction fails to benefit from super-resolution imaging enhance-
ments, demonstrated with nonlinear excitation [25], that benefit spatial
resolution for imaging along the modulated direction.

Under these conditions, the phase shifting term that acts as a carrier
frequency for isolation of interfering terms accumulates phase at a
multiple ¢ given by the harmonic order: ¢(t) — ¢ ¢(¢). Similarly, the
Fourier kernel accumulates an amplified spatial frequency modulation
rate: Ak(r) — g Ak(?), so that the g"-order Fourier kernel scales as
PSFP@(x, 1)  exp [—i g AK(f) - x]. Along 1D, the gth order CHIRPT OTF
is

q

k 2
OTF,(k,) = | R 1- X
alk) =|Re <ch>

An analytic expression for the gth order PSF can be directly computed,
but it is represented in terms of cumbersome hypergeometric functions.
Plots of the PSF and OTF are shown in Fig. 3 for orders g =1 —4.

3.2. SPIFI imaging

Spatial frequency modulation for imaging (SPIFI) imaging uses three
interfering beams [11,25,27,30] and carries the advantage of being
easy to implement with a simple transmission mask. More interference
terms arise from the presence of the additional beam giving first and
second order modulation bands that appear near the first order and
second order harmonic modulation frequencies. The first order, ¢ = 1,
SPIFI kernel is

PSP, 1) = wy, (v, 231) cos |4k, () z — @, (v, 23 1)] exp(—i Ak, (1)x), (11)
and the kernel for second order SPIFI is
PSPOX, 1) = p_y 1 (1, z3 1) e 240X, 12)

We have defined variables to track the magnitude, w; zn =
|p; ;(», z;1)|, and phase, @, (», z;1) = 2£p; ;(y, z; 1), of the complex bound-
ing envelope p; (v, z;1). SPIFI can be applied to 1D and 2D imaging in
scenarios similar to CHIRPT, but with slightly modified kernels in the
forward and inverse operators. In fact, at the focal plane (z = 0), the
SPIFI and CHIRPT operators are identical, with the exception that SPIFI
also contains a forward operator with double the spatial frequency
support of the first order SPIFI and CHIRPT bands. At the focal plane,
the PSF and OTF for SPIFI are the same as the result for 1D CHIRPT
for g =1.
In the case of the second order, g = 2, SPIFI term, then the PSF is

sin(2 k NA;;; x) — 2k NAy; x cos(2kNAy; x)

PSF,(x) = (13)
: 2k2NA2 7 x3
The OTF for the second order SPIFI term reads
2
\2
OTF,(k,) =|Req1/1 - [ = , as
2k,

where we have used the fringe visibility term f(r) = 4*(t). Note that we
provided the OTF and PSF for the general gth order in-focus CHIRPT
and SPIFI in the previous section.

3.2.1. Two-dimensional (2D) transverse CHIRPT and SPIFI imaging

CHIRPT and SPIFI imaging along one direction can be extended
to 2D transverse imaging in several ways. We analyze the imaging
properties of 1D CHIRPT extended to 2D CHIRPT with a simple line
scan [11]. In the case of 2D transverse CHIRPT [32], we will consider
a thin object located at the plane z,, given by c¢(x) = §(z—zj) ¢(x, ). Our
analysis is restricted to the in-focus imaging case, where z, = 0. At the
focal plane, the 2D CHIRPT kernel is given by

WD e, 1) = pg 1 (9, 0:1) 7 AOX, (15)

The envelope, p, (y,0;1), varies in time because the spatial frequency
support of the +1 term along k, varies with time, leading to the
expression

£\2
p0.1(3,0;1) = sinc (ke y) sinc| k. y\/1— (T) . (16)

An analytic inverse operator for the single pixel imaging with the
kernel given in Eq. (16) is not known. As a result, the conventional
strategy for accumulating line images estimated with 1D CHIRPT re-
construction as given by Eq. (10) for each scan position y, into a 2D
image is to stack them in a matrix. Mathematically, we may model the
2D image estimate as

E(x, ) = (6, () 6o = ), -

The PSF of the estimated image is determined by the integral

1
PSF(xL):\/gkfsinc(kCy)/ \/l—rzsinc(kcyvl—rz) kXt qr
-1

where we have defined r = ¢/T. This PSF has no analytic solution, but it
can be evaluated numerically. The OTF does have an analytic solution
that may be written in the form

/ [N
OTF(k,) = }‘Re 1- (k—"> Z ACH) 17)
c =1

Here we have defined

ky : ky . ky 2 ky
fHikp)=|1+ 1—<k—> -7 | sten 1+ 1—(k— -2
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and

2 2
fukp) =1+ 1—(%) +Z—j sign| 1+ 1+(%> +Z—i .

The imaging resolution is asymmetric along the x and y directions.
In addition, as resolution enhancements for CHIRPT and SPIFI only
occur along the modulation direction, higher order terms (¢ > 1)
that arise in super resolution SFP imaging [25] further exacerbate this
resolution anisotropy. In the tomography section, we discuss methods
to eliminate this anisotropy in the imaging resolution and to expand
super resolution along all imaging directions.

For second order SPIFI line scan imaging, we again find that this
PSF has no analytic solution and is given by the integral

1
PSF(x,) = % / (1= %) sine? (ko y VI= 22) e2kex g,
-1

This integral is readily evaluated numerically.
The OTF does have an analytic solution that may be written in the
form

5
OTF(k,) = ‘1‘ Z gp(K)). (18)
p=1

Here we have defined

. ke \?
g1(ky) =k, sign|k, -2k, 1—<2]:C> ,

: ke \?
g(ky) = kysign|k, +2k, 1—(2;{:) ,

g3(k;) = —2k,sign (k).

ke \ ke \
X o X
gk =2k, 1_<2k ) sign| ky, + 2k, 1_<2k > ,

c c

and

ke \’ ke \’
gs(k) = -2k, 1_<2_/:c> sign| k, — 2k, 1—<2;c> .

The asymmetry of 2D OTF is shown in Fig. 13. Panel (a) shows
the first order OTF support, with the coherent cutoff of the x spatial
frequency shown left-to-right, and the autocorrelation of the y coherent
spatial frequency support evident along the y spatial frequency direc-
tion; spatial images simulated with this anisotropic spatial frequency
support are shown in (b). Panel (c) shows the OTF for second order
SPIFIL. Along the x spatial frequency direction, the convex spatial fre-
quency support shown in the 1D cross section of Fig. 3 is evident,
whereas along the y direction, we still have the concave spatial fre-
quency support from the focused beam; spatial images simulated with
this anisotropic spatial frequency support are shown in (d).

3.2.2. Two-dimensional axial CHIRPT imaging: single pixel fluorescent
holography

In this section, we describe the remarkable ability of the sparse
spatial frequency projection (SFP) imaging to mimic coherent optical
scattering when detecting fluorescent light. This capability is surprising
given that fluorescent light is emitted by molecules or atoms in an
excited state with an excited state lifetime orders of magnitude shorter
than temporal response time of any optical detector. Moreover, the
random relative phase of each fluorophore makes such emission spa-
tially incoherent. Under normal circumstances in incoherent imaging,
such as fluorescent microscopy, the spatial incoherence of the emission
means that all spatial phase information is lost from the recorded signal
because each fluorescent molecule emits light with phase fluctuations
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uncorrelated with any other fluorescent molecule. The physical impli-
cation of the spatially incoherent light emission is that the emitted light
direction is isotopic because the random phase fluctuations average
over all propagation directions.

The net result of the incoherence of the emitted fluorescent light is
that the fluorescent light propagation direction bears no relationship
to the direction of input light, i.e., the illumination beam. The loss of
the relationship between the fluorescent light and the illumination light
is rather unfortunate because the incoherent light emission cannot be
used for inverse scattering or holography under normal circumstances.
While the self-interference of individual fluorescent emitters can be
used in an imaging system to encode depth information by imparting an
intensity pattern that changes with the fluorescent emitter location [57,
58]; these strategies come at the cost of a loss of photon power by the
need to pass through a diffractive optical element.

We have developed a method that is able to mimic coherent optical
scattering by performing fluorescent holographic imaging by trans-
ferring the phase difference of two illumination beams onto a time-
dependent modulation of fluorescent emission intensity [21,53]. Such
single pixel fluorescent holographic imaging is possible because the
kernel for the forward operator in CHIRPT is produced by interference
between two incident waves. This enables the stable phase evolution
accumulated by the coherent illumination beam to be transferred from
the spatially coherent illumination to a time-varying emission of the
fluorescent emission intensity in an imaging mode called Coherent
Holographic Image Reconstruction by Phase Transfer (CHIRPT) [21].
This unique capability allows CHIRPT imaging to perform coherent
imaging with incoherent (e.g., fluorescent) light, such as fluorescent
holography [21].

In single pixel fluorescent CHIRPT holography, we consider illumi-
nation of an object (with a thin, uniform illumination in height along y),
so that we reduce our system to a 2D axial CHIRPT imaging problem.
Here, we may consider our general CHIRPT kernel function evaluated
at y = 0. The kernel for the forward operator is then

TCHZDA(X”’ 1) = et Akx(OX itk (02 (19)

where x| = (x,z). Much like in holographic imaging with coherently
scattered light, we can extract axial information from a single time-
trace measurement by inverting the forward operator, which is given
by

D{e(x}(: ) = (A ¥y, 1 ex)), (20)

No closed form dual kernel has been found for CHIRPT. However, we
can analyze the use of the adjoint of the kernel of the forward operator
to estimate the object. Unfortunately, the adjoint and the forward ker-
nels fail to establish a biorthogonal relationship, and consequentially
CHIRPT fluorescent holography fails to achieve axial sectioning, just as
is the case with coherent linear scattering.

Using the adjoint for reconstruction allows for the collected fluo-
rescent light power to be reconstructed in a manner that is exactly
analogous to coherent holographic imaging, but using incoherent light
emission. The PSF for 2D axial CHIRPT is

1
PSF(XH) = % / V1 = g2 gmikexT gmikz(\/1-(NAy )2-1) dr. 21)
-1

The OTF for this imaging modality is obtained by direct Fourier trans-
form and reads

ko \2 ko \2
OTE(K) = Re 1—<k—) 5|k, —k 1—<7> —1{]. (22)

c

Note that the OTF is identical to the Fourier Diffraction Theorem shown
by Wolf when analyzing coherent holographic imaging [59].
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4. Spatial frequency projection tomographic imaging

As noted above and shown in Fig. 13, the spatial resolution in the
plane transverse to the optic axis is anisotropic as a result of differences
in image formation along and perpendicular to the modulation direc-
tion (x in our model). Single-pixel tomographic imaging strategies were
developed for homogenizing the spatial resolution along the transverse
spatial coordinates that are based on a relative rotation through an
angle ¢, as shown in Fig. 2, about the optical axis of the illumina-
tion beam and a thin planar object [33,48,49]. Consequentially, these
tomographic imaging methods require a relative rotation between the
illumination light and the object.

The forward operator for a rotated illumination can be expressed as

D (1, ¢) = D{c(x )} (1, ) = (B(1) Py (Ry X1, 20, 1) cxp)y > (23)

where R, that produces a transformation of the transverse plane that
leads to x; = (x,y) = Ryx; = (xcos ¢ — ysin ¢, xsin ¢ + ycos ¢) and
B(t) = u(t). The Fourier kernel of the forward operator for transverse
SFP tomography is

W;T(XJ_, 29,1) = po,1 Ry ¥, 29) o ARLORy Xy i dkz (0 z0 24)

The inverse operator depends on assumptions made in the intensity
envelope along the y direction, Fig. 7 column (a). When we have a
limiting case of a uniform beam, where p,;(y) — 1, then we have the
case of Lateral Tomography (LT) [48]. LT mathematically conforms to
standard parallel ray computed tomography [60]. In the alternate lim-
iting case of a very tight line focus, where p, ;(y) — 6(y), then we obtain
a conjugate domain version of computed tomography called Fourier
Computed Tomography (FCT) [49]. However, any realistic experiment
has a finite spatial support in p,,(y) that conforms to neither of the
limiting cases, which we also investigate in this review.

4.1. Lateral SFP tomography

Lateral tomography [48] assumes a uniform illumination across the
transverse spatial extent of the object, schematic drawing Fig. 4 panel
(1), so that

E(’(';T(xl,zo,t) = ol AKLORy X, i dk:()zg (25)

The inverse operator is readily obtained by constructing the object
estimate from in inverse Fourier transform, with the inverse operator

éo(xy) = Dip (Dot P (x) = (P e By (1), - (26)

The dual kernel, #'T(x,), of the inverse operator is weighted by
the magnitude of the determinate of Jacobian for the coordinate
transformation through a rotation angle ¢. This leads to ¥'T(x,,?) =
[#] ¥ T (x,,1). The dual kernel satisfies the biorthogonality condition in
the limit of large NA. The imaging resolution and frequency support
are azimuthally uniform, and are expressed as

3 sin(k |Ixy llo) — ke Xy [l cos(ke x4 1)

PSF([Ix, [l,) = (27)
ke lIx. 113
and
Kk 2
OTF(|[k, [I,) = Re /1 - (”kﬂ> . (28)

LT produces images in a 2D plane orthogonal to the direction of
propagation. The tomographic imaging homogenizes the transverse
spatial frequency support, making the OTF azimuthally symmetric in
transverse x-y spatial frequency plane. The radial PSF and OTF cross
sections are shown in Fig. 5, with the first order indicated by the blue
line.
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Fig. 4. Schematic diagram of Lateral Tomography (LT) and Fourier Computed To-
mography (FCT). Panel (1) shows the schematic drawing of an LT microscope. Due
to the asymmetry of the illumination both the xy and yz views are shown top and
bottom, respectively. Panel (2) shows the schematic drawing of a FCT microscope,
note the difference in illumination at the sample plane. L, — Cylindrical Lens, L, 4
— Spherical Lens, Mod — Modulator, Obj — Objective Lens, c¢(x) — Sample, LP —
Long Pass Filter, Det — Detector.

In the case of second order SPIFI lateral tomography, the PSF then
reads

Jy (2k, N1x 1)

PSFE(|Ix_[I,) = (29)
K2 |1x 112
and the OTF is
2
k2 )
OTE(|lk_ll,) = | Re 1- ET . (30)
(4

Fig. 5 shows the first (blue), second (green), third (orange), and fourth
(purple) order PSF of lateral tomography (left) and the corresponding
OTF (right). We see that the resolution increases as the image order
increases. Note the convex shape of the OTF of the 3rd and 4th orders
which have high amplitude support at the highest spatial frequencies
providing very good imaging performance.

Second order LT imaging also produces an azimuthally symmetric
PSF and OTF with double the transverse spatial frequency support of
the first order SPIFI case. Higher orders are also shown in Fig. 5,
illustrating that the improved spatial frequency support from higher
order SFP orders can be extended to isotropic super-resolution imaging.
However, even the second order imaging is improved compared to
simple wide-field imaging that displays the same cutoff spatial fre-
quency, at 2k,. In the case of second order SFP tomography, the
convex spatial frequency support produces images that are superior
to those obtained with widefield incoherent imaging even though the
cutoff spatial frequency is identical. This point is shown in Fig. 14 and
the ability of SFP tomography improve image quality based on the
more favorable spatial frequency support is elaborated in the discussion
section.

4.2. Fourier SFP tomography

Fourier computed tomography (FCT) [49] uses a tightly focused
line illumination that is approximated as a delta function along the y
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Fig. 5. Plots of the SPIFI LT PSF (left) and OTF (right) up to fourth order. The spatial frequency support is isotropic in the lateral spatial frequency plane, and thus the plot if
over the transverse axial spatial frequency support. The axes are normalized in terms coherent cutoff spatial frequency, k., =27 f,.
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Fig. 6. (left) A plot of the first and second order FCT PSF. (right) A plot of the first and second order FCT OTF. The axes are normalized in terms of coherent cutoff spatial

frequency, k, =27z f..

direction, as shown schematically drawing Fig. 4 panel 2). In the focal
plane, where z, = 0, the Fourier kernel of the forward operator reads
WrCT(x 1, 29,1) = SRy y ) €l AR Roxs, (31

Here we have defined the perpendicular y-vector as y, = (0, ). The

forward operator produces the time-domain signal
D(1,¢) = D{c(x)} 1. 9) = (AP (X1, 20,0 e(x)), - 32)

The temporal signal collects information from the object as a se-
quence of spatial frequency projections, but we wish to estimate the
images using the spatial slice theorem, we transform the acquired data
to the temporal frequency domain,

i)(v,¢)=P,{<1"(t,¢)}(\/)=/¢(t,¢) exp(—i 2z vi)dt.

By further expanding the object distribution in terms of transverse
spatial frequency vectors

c(x)) = FHCK))),

we obtain the FCT forward model given by

B(v,¢) = D{CK )}V, §) = BOV) # (P (x1, 0.1 Cky)), - (33)
Here the forward FCT operator, i’(I;CT(XJ_,O, v.,oo=  Qx/y)

exp(—i2z (v/y) Ry k), acts on the object spatial frequency distribution
C(k;) = F{c(x,)}, forming a complex Radon transform in the spatial
frequency domain. The spatial frequency projections are convolved
with the spectrum of the weighing function, B(v) = F{#(r)}, where x is
the convolution operator with respect to v.

The inverse operator is readily obtained by constructing the object
estimate from in inverse Fourier transform and applying the magnitude
of the determinant of the Jacobian coordinate transform, leading to

C(ky) = Dl (D, )} (k) = (P v) B(v, ), ) (34)

The dual kernel of the inverse operator is weighted by the mag-
nitude of the Jacobean from the coordinate transform, leading to
PFCT(k |, v) = |v| ’i’(‘;CT(x 1,0, v). Support extends to the coherent cutoff
spatial frequency.

In the case of first-order SPIFI FCT, the PSF evaluates to

Jy (ke lIxp 1)

2
PSE(|Ix_ [I,) = (35)
L [ATAR

and the OTF is

k
OTF(|[k ||,) = rect [LITERN (36)
2k,
For second-order SPIFI FCT, the PSF is
3 sin(2k, |[x) [l2) = 2k, [Ix) [, cos(2 k. |Ix I,)
PSF(Ix_Ily) = £ — L (37)

(ke lIxy 1)
and the OTF is

1 ® sin(2k, p) — 2k, p cosQk, p)
/ D2k <2 (I, 11, p) dp.
0

OTF(||k = —
(ko) = 57 .

(38)

Fig. 6 shows the PFS and OTF for FCT for the first and second order
images.

4.3. Generalized transverse SFP tomography

For the generalized transverse SFP tomography (GTT) problem, the
projected illumination pattern height along the y-direction appears with
a thickness between that of LT and FCT. Indeed, LT and FCT are limiting
cases of the generalized problem of a beam with an arbitrary width.
In the case of LT, a uniform illumination is assumed across the entire
object transverse width. Alternately, in the FCT limit, the illumination
is assumed to be an infinitesimally thin line.

Under many experimental conditions, where an illumination line
of a finite width is used, the reconstruction methods for the LT and
FCT modalities are not sufficient to produce accurate results as the
assumptions made in each do not apply for the generalized problem.
Fig. 7 summarizes this point. That is, row (1) panel (1a) illustrates the
illumination pattern for LT, panel (1b) shows the probed spatial fre-
quency at a snap shot in time, (1c) shows the sinogram generated from
a 180 degree rotation of the illumination beam. Since the illumination
beam (1a) is uniform along Voo the object will be illuminated at all
rotation angles, ¢, therefore creating continuous arcs in the sinogram.
Panel (1d) shows the image reconstruction of LT. Similarly, Fig. 7 row
(3) shows similar information except for the FCT imaging modality.
What is important to note is how the sinogram changes (3c). Instead
of creating long continuous lines as in LT (1c) they are instead short
narrow lines which start long near the center of rotation and get shorter
further away. This is a result of the illumination being very narrow
in yy. In the case of generalized transverse tomography (GTT), row
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Fig. 7. Conceptual diagram of Lateral Tomography (LT), Generalized Transverse Tomography (GTT), and Fourier Computed Tomography (FCT). Row (1) shows LT work flow, row
(2) shows GTT, and row (3) show FCT. Column (a) shows the illumination in the xy-plane for each modality. Column (b) shows the spatial frequencies probed by the illumination
at an illumination angle and instantaneous spatial frequency. Column (c) shows the sinogram for each modality where the vertical axis is rotation angle and the horizontal axis
is x,. Column (d) shows the object reconstruction for each modality. Panel (2d) was reconstructed using the algorithm for LT, we see that the reconstruction is severely distorted
due to the fact that the illumination does not conform to the illumination assumptions made for LT.

(2), the illumination is somewhere between the two limiting cases of
LT and FCT. This results in a sinogram, panel (2c), giving elongated
discontinuous arcs. As a result neither reconstruction algorithm is
well suited for provide a quality reconstruction. Panel (2D) shows the
reconstruction of GTT using the LT reconstruction algorithm.

The forward kernel for GTT is given by

Rd’ vyp

2
w, ) o AkLORy X i Ak (D Zg

‘I/gTT(xl, Zg,1) = e_( (39)
The case we consider here is described in Eq. (39) where the y spatial
support has a finite width given by a Gaussian envelope p, ;(Ryy, w,) —

_( R¢pr)2

wy

e . Where w), defines the 1/e field width of the beam along the
y direction.

To date, no analytic inverse operator has been found for this general
problem. Instead, we can solve the problem as an open form optimiza-
tion problem of the form given in Eq. (1). While this strategy avoids
the need for finding an inverse operator, and we are able to relax the
assumptions on the y spatial support in LT and FCT to allow a general il-
lumination beam in the forward kernel function, Tq?TT(x 1» 29, 1), the lack
of an analytic inverse operator significantly increases computational
complexity and cost for estimating the object.

To solve the general SFP transverse tomography problem, we frame
it as an open form computational imaging problem. We employ an
accurate physical model of the illumination pattern and its interac-
tion with the sample. By sampling the continuous forward model, we
convert the forward operator to a measurement matrix that acts on
a discrete, vectorized object, ¢. With the measurement matrix and
appropriately formatted data, an accurate image can be formed by
solving Eq. (1). There exists a wealth of knowledge in solving these
types of optimization problems [43]. Many of these techniques produce
very nice results with the added ability to define constraints on the
solution using prior information. In some cases, this can drastically
improve the SNR of the image in the presence of noise [44].

Using the model of the illumination intensity developed in the
preceding sections, we can build a discrete measurement matrix for

10

the generalized transverse SFP tomography problem. The construction
of the measurement matrix is illustrated in Fig. 8. As the 2D object
is converted into a 1D column vector represented by c that is labeled
as the object in the figure, then each row of the measurement matrix
is a 1D row vector samples of 2D forward kernel, ‘I’q?TT(x 120, 1), for
a sample particular angle and time. Here x, is a 1D column vector
assembled from the discrete 2D array of spatial point in the transverse
plane. The full measurement matrix is a concatenation of measurement
matrices for a single rotation angle, ¢,. The elements of the measure-
ment matrix are then given by [A]Z’;’ = lI’q[?TT([x 11;-2.1,). Each row
of the measurement matrix is a flattened 2D discrete model of the
illumination pattern, at a particular angle and time sample, as shown
in the top row of Fig. 8. The entire set of time samples is assembled
as groups of rows for each discrete angle ¢,, where p is an index that
runs over the set of N, discrete measurement angles over the range
¢ = [0, 7, ], as illustrated in the figure.

In each angular block, the signal model for a time ¢; is the inner
product, between the ith row of A% and the object column vector
c. Physically, this inner product represents a two-dimensional overlap
integral between the SPIFI intensity distribution at the time #; and the
object. The signal model for this angle is y?» = A% c. The measured
signal from each angle, y?», is concatenated to assemble the full signal
column y = (y%1 | y#2 | - |y¢N<1> )T as is illustrated in the right hand side
of Fig. 8. This form of the matrix ensures that the result of the operation
of this matrix onto an object gives a set of photodiode signals stacked
on top of one another in a vector. Fig. 8 illustrates the structure of the
measurement matrix, object, and data (SPIFI sinogram).

Having formulated the measurement matrix, the computational
imaging problem becomes the optimization problem expressed in
Eq. (1). The general description of this optimization problem as applied
to generalized transverse SFP tomography is shown schematically in
Fig. 9. Simulations of the generalized transverse SFP tomography prob-
lem were carried out by solving the inverse problem as posed above
using an algorithm called FISTA (Fast Iterative Shrinkage Thresholding
Algorithm). The estimated image vector returned by the optimization
algorithm can be reformatted into a 2D image.
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Fig. 8. Illustration of how the measurement matrix construction and the signal model. The object is a discrete 2D object sampled over N, x N, points that has been flattened to
a l x N, N, column vector. The top row shows examples of the 2D illumination pattern for the pth rotational angle at time ;. Each 2D illumination pattern is flattened into a
row and stacked into a series of time samples running from i € {1,..., N,} for the pth angle. Each angle increment then has a new stack of flattened 2D illumination patterns that
run over the sample times. Thus the measurement matrix contains N, x N, rows and N, x N, columns. The signal model is a stack of each measured time vector for each rotation

angle.
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Fig. 9. Generalized transverse SFP tomography inverse problem with regularization.

Numerical simulation data was generated by computing SPIFI time
traces at a set of discrete rotation angles and time steps that correspond
to a particular illumination pattern for a 30 pm Gaussian line focus.
The data are calculated on a spatial and temporal grid much finer than
used in the model for reconstruction and then down-sampled to avoid
inverse crimes [61,62]. The chosen beam size of 30 pm lies comfortably
between the regimes of FCT and LT. Results of the simulation are shown
in Fig. 10, along with comparisons of reconstructing the generalized
problem using the FCT and LT analytic reconstruction algorithms.

Although the direct solution of the optimization problem produces
image estimates of good quality, this strategy is hard to scale to large
image sizes due to the computational burden for image estimation. The
number of elements in the measurement matrix is size(4) = [N, N, X
N, N,] where Ny, N,, N, and N, are the number of discrete angular,
time, x-axis bin, and y-bin samples, respectively, with each dimension
having to be sampled appropriately. The size of this matrix becomes
unmanageable very quickly. Especially when driving nonlinearities in
the sample, the time dimension must have a large number of time
points, on the order of 2!2. For a realistic problem size, the amount
of memory required to instantiate the measurement matrix would be
approximately 1.2 TB. This memory requirement is in excess of what
most computers can handle.

A method to circumvent the need for instantiating large matrices
into memory is to formulate the measurement matrix and its adjoint in
terms of operators in functional form that require much lower memory
requirements. The adjoint operation is required by many optimization
algorithms, including the FISTA algorithm [63] in order to calculate
the gradient of Eq. (1). Although recasting the large measurement
matrix in the form of functional operators mitigates the memory storage
bottleneck, the computational burden now lies in computational time,
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leading to much longer computer run times for image estimation. Using
a computer with a 3.0 GHz processor, 4 cores, and 32 GB of RAM it
would take about 6 days to run 150 iterations of FISTA to solve for a
256 x 256 image. For the simulation shown above, approximately 1500
iterations are required to reach a minimum in Eq. (1). The simulation
results were obtained using a single node on the Asha computer cluster
at Colorado State University. One node has 2 x Intel Xeon Gold 6148
CPU (3.7 GHz, 40 total cores) and 192 GB of RAM. Parallel computing
was utilized due to the large number of cores available in the proces-
sors. Utilizing this computing power, 2000 iterations of FISTA with a
256 x 256 image completed in 41.4 h.

These difficulties encountered in scaling the computational imaging
to higher dimensions and higher spatial resolution can be used to solve
the generalized transverse SFP tomography problem, but this strategy
is burdened by significant computational difficulties. This complication
further motivates the formulation of an analytic solution to generalized
transverse SFP tomography.

4.4. Fluorescent diffraction tomography

As we have seen, CHIRPT is able to mimic coherent optical holog-
raphy with a single pixel fluorescent holographic microscope. Holo-
graphic imaging can be understood in the context of Born scatter-
ing [59] and holography allows for 3D numerical refocusing of light,
which is possible with imaged fluorescent light in CHIRPT. However,
holography is not able to fully resolve a 3D structure along the axial
direction. In coherent imaging, this deficiency is rectified by diffraction
tomography, where a set of holograms are recorded as the direction of
illumination of incident coherent illumination plane wave is varied. By
scanning over a sufficiently large set of incident illumination angles, it
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Fig. 10. (a) True object, (b) Generalized transverse tomography with FISTA, (c) Lateral tomography (d) Fourier computed tomography. Results of solving the generalized problem
as a computational imaging problem using FISTA compared to attempting to reconstruct using FCT and LT methods with false assumptions.

is possible to solve the inverse scattering problem and provide detailed
internal structure of a 3D object. Here, we demonstrate that single pixel
fluorescent holographic imaging can be extended to enable diffraction
tomographic imaging with incoherent light emission.

Single pixel fluorescent holography [21] using CHIRPT mimics co-
herent imaging, allowing for refocusing of the collected fluorescent
signal to form a 2D image from a single measurement trace. A 3D
image is created from a set of signals collected as the height of the line
focused is scanned. Yet, detailed axial structure is elusive due to a lack
of extended axial spatial frequency support that plagues holographic
imaging [59]. Fluorescent diffraction tomography (FDT) [33] fills out
the axial spatial frequency information through a relative rotation of
the object about the y axis, with an polar angle, 6, with respect to
the optical axis, z. We still assume that we illuminate a thin slice of
an object along the y direction. In this case, the rotated single pixel
fluorescent holography kernel that is given by

wiPT(x. 1) = PEPAR, x ., 1), (40)

where R, X = (x,2). The FDT data is now composed of a set of time
traces taken at the relative polar angles, #. The dual kernel of the
inverse operator for FDT is given by i’gp PT(x).0) = T'(r) lP; PT(x,.1), where

I'(t) = |t|/T1/1 - (NAt/T)>. The inverse operator follows the familiar
form given in Eq. (3). Unlike with single pixel fluorescent holography,
the dual kernel now produces a biorthogonal pair in the limit as NA
— oo. With the fringe visibility weighting functions, the PSF no longer
has an analytic result, but the PSF is still well approximated by the
biorthogonal function.

Due a lack of an analytic solution, the PSF in FDT remains in integral
form as

Ak, 2
¢ 1
PSF(X”) = /0 Jo (k Ax ”X“ ”2) \/(1 - 5 AK'2> + NAlzll —1 dAk,
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where Ax? = 2 -24/1 —NAiZH. Conversely the OTF has an analytic

expression given by
2
||k|| ||2 1 ||k||||2 2
R 1-= NAZ —1
2 kﬂ,C > ¢ 2 [ k ] + i

The axial spatial frequency cutoff for FDT is defined as k, . = k Ax, and
k, = (k,, k) is the spatial frequency vector that lies in the x-z plane.

OTF(|Ik [l,) = rect (

Note that the spatial frequency support is increased (by a factor of \/5)
as compared to the coherent cutoff spatial frequency. Line outs of the
PSF and OTF along the x and z direction for FDT are shown in Fig. 11.
Note that they are symmetric.

5. Aberrations in single pixel SFP tomography

Aberrations arise in optical systems when the optical path length
through the imaging becomes dependent on the transverse spatial
frequency as a result of a non-ideal optical imaging system. Under
most circumstances, the aberrations are modeled as phase distortions
applied to the coherent transfer function, H(k, ), which then produces
a distortion in the radiant field of the beam envelope, U (k).

As noted in a previous section, CHIRPT encodes the accumulated
difference in spatial phase between the undiffracted and diffracted
beams. This phase difference produces temporal modulations of light
intensity emitted by each fluorophore. Consequently, individual fluo-
rophores act as guide stars, reporting the total phase difference ac-
cumulated between the two beams from the modulation disk to the
location of the fluorescent molecule. One of the great advantages of
CHIRPT is the ability to remove aberrations in post-processing since
the aberration phase is encoded directly into the measured signal [53].
Indeed, holographic projections are one form of aberration removal —
specifically, removing propagation phase and/or adding more to form
a full 2D image in the (x,z) plane. Deviations from the propagation
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Fig. 11. The left panel shows the 2nd order x and z PSF for FDT. The right panel shows the corresponding frequency support, OTF, for the x and z directions. The axes are
normalized in terms of coherent cutoff spatial frequency, k. =27 f,. Note the resolution is isotropic.

Fig. 12. Impact of index mismatch on FDT-CHIRPT. Reconstructions with a single illumination angle under (a) ideal imaging conditions, i.e., aberration free; (b) index mismatch
between the immersion medium (n = 1) and the object medium (n = 1.33, water) where the medium of the object is not accounted for; and (c) index mismatch with the correct
wavenumber included in the reconstruction. Tomographic reconstructions with 72 projection angles are shown for (d) ideal imaging, (e) mismatched index, and (f) mismatched

index accounted for in the reconstruction.

phase dictated by the dispersion relation arising from solutions to
the Helmholtz equation are also encoded and can be recovered and
removed in the image estimation process in a variety of ways.

To explore the impact of aberrations in tomographic reconstructions
in CHIRPT imaging, we consider the specific case of FDT-CHIRPT with
a refractive index mismatch between the immersion medium and the
object medium. More precisely, we consider an air-immersion 100x/0.9
NA objective lens and assume the specimen consists of a standard glass
cover slip followed by water. We numerically simulated tomographic
images for three cases: (1) ideal imaging, in which there is no index
mismatch, (2) reconstruction of the images without accounting for
the index mismatch, and (3) reconstruction of the images using the
correct index for the object medium (water). The object is modeled as
a distribution of Dirac-§ functions to represent individual fluorophores,
which are arranged in the (x,z) plane at y = 0. For recognizably, we
chose to arrange the emitters in the shape of the constellation Orion.

Fig. 12 shows the images simulated under all three conditions.
In Fig. 12(a)-12(c), we show the holographic propagation using the
forward model described above for CHIRPT with a projection angle of
30-deg. In Fig. 12(d)-12(f), we simulated images for 72 equally spaced
viewing angles. The leftmost column shows the ideal case for CHIRPT,
i.e., when no aberrations are present.

The figures in the middle column of Fig. 12 were computed by
performing the reconstruction and assuming the local index of refrac-
tion matched that of the immersion medium. Note that while the set
of spatial frequencies sampled in each of these two cases is identical,
the resulting images are drastically different. To correct for this issue,
one needs only to take into account the local index of refraction in the
object when performing the reconstruction. The results of doing so are
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shown in the rightmost column where it is clear that the impact of the
index change is to improve the quality of the resulting images.

Notably, the local index of refraction in the object is not always
known a priori as it was in the simulation. In such cases, any guide-
star within the object can be exploited to determine the average index
of refraction in the sample using a computational inversion where the
forward model incorporates an additional pupil phase term.

We note also that the introduction of aberrations can be beneficial,
as we have shown in the case of accelerating light sheets that can
be used to produce a uniform thickness imaging thickness along y for
an extended distance in the axial direction, effectively mitigating the
resolution degradation from diffraction of the light sheet [55].

6. Discussion

Single pixel imaging with structured illumination light is a powerful
approach for optical imaging. Here we have reviewed several such
strategies based on object illumination by a spatially coherent optical
field that contains a sparse set of transverse spatial frequencies. The
use of a small number of modulation spatial frequencies provides the
ability to integrate many imaging modalities and multiplex informa-
tion into an imaging platform. The use of sparse spatial frequencies
confers a number of unconventional properties on SFP imaging. These
unique properties include the ability to access a large field of view
that is produced by a spatial frequency illumination with a compact
spatial frequency support, while scanning through the full span of
the transverse spatial frequency support of the objective. This is the
origin of the improved image quality for SFP single pixel imaging
discussed below. Image quality is improved due to the direct recording
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Fig. 13. The anisotropic imaging properties of line scan first and second order SPIFI are compared. (a) The OTF for line scanning 2D first-order SPIFI. (b) The simulated image for
first order line scanning SPIFIL. (c) The OTF for line scanning 2D second-order SPIFI. (d) The simulated image for second-order line scanning SPIFI. Note that along the modulation
direction, i.e., the x-direction, the image is better resolved than along the scan direction (y-direction) even though the frequency cutoff is the same in both directions. The scale

bar is 10 pm.

of aberrations, and that information can be exploited during image
reconstruction for improved reconstructed image quality. This imaging
modality can retain image fidelity when imaging through scattering
media well beyond the transport mean free path length [52].

6.1. SFP imaging with a single pixel provides improved image quality

While it is conventional to characterize the quality of images pro-
duced in a microscope system by a single parameter, either the spatial
resolution, éx, or the cutoff spatial frequency support, k., the use of
a simple metric to quantify image quality fails to capture the full
image quality and the ability to resolve structures in an object. In
SFP imaging, the compact region of the illumination CTF used by any
time-instance of the modulated illumination field means that single
pixel SFP imaging transfer function (OTF) can deviate significantly
from either the illumination or collection transfer functions. These
differences also lead to improved shapes in the SFP imaging impulse
response (PSF). Generally, the modulation transfer function (MTF =
|OTF]|, or the magnitude of the OTF) for SFP has a convex shape with
respect to transverse spatial frequency distribution (see Fig. 14). By
contrast, conventional imaging systems generally exhibit a concave
MTF. The difference in the spatial frequency support has a stark impact
on image quality. Note that even slight improvements in the MTF
profile have generated significant excitement for pixel reassignment
confocal microscopy techniques [64-67], where a slight improvement
in mid-band transverse spatial frequencies lead to much better images.
SFP imaging produces even more striking improvements.

Another way in which image quality is degraded is from aberrations
that are introduced by imperfect imaging. In conventional imaging
systems, a broad band of transverse spatial frequencies are either
focused or collected to form images. As the imaging system sums over
this broad range of transverse spatial frequencies, it is exceedingly
challenging to back out the contributions to image degradation from
the mix of aberration types that appear in normal imaging systems.
In SFP imaging, the fact that a small subset of the transverse spatial
frequency support (i.e., the CTF) of the illumination system is used for
any instantaneous illumination field, aberration information is directly
encoded as a phase modulation of the time-dependent signal. This
phase modulation can be directly extracted and corrected in these
systems.
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Images and 2D transverse OTFs for non-tomographic line scanning
are shown in Fig. 13. Both first and second order SPIFI are displayed
in this figure. In both cases, the OTF support is anisotropic in lateral
spatial frequencies. In first order SPIFI, we only span spatial frequen-
cies up to the coherent spatial frequency cutoff along the modulation
direction, but along the k, direction the spatial frequency support is
derived from the intensity of the illumination line height. In second
order SPIFI, the cutoff spatial frequency is the same along both the k,
and k, directions, yet image quality is quite different along those two
directions due to the fact that along the modulation direction, x « k&,
the MTF is convex. Whereas along the line focus direction, y < kys the
support is concave.

SFP tomographic imaging solves the issue of anisotropic imaging
resolution — producing isotropic resolution in the x—y plane for lateral
tomographies and in the x-z plane for FDT. LT images compared
against the related conventional imaging methods produce superior
imaging properties with single pixel SFP tomographic imaging. In
Fig. (14 (a—c)), we compare first order SPIFI imaging with coherent
widefield microscopy, which both exhibit cutoff spatial frequencies of
k.. Here, conventional widefield coherent imaging is superior to first-
order SPIFI imaging Fig. (14 (a, ¢, d)). This situation changes for all
higher order SPIFI imaging modes. Fig. (14 (b, d, f)), compares second
order SPIFI imaging with incoherent widefield microscopy, both of
which have a cutoff spatial frequency of 2 k.. Despite having the same
cutoff spatial frequency, the image formed for second order SPIFI is able
to resolve much finer detail than is observed in the widefield incoherent
image.

A similar trend is observed for nonlinear imaging. Fig. (15 (a—c)),
compares the images for the case of two photon excitation fluorescence
(TPEF) microscopy to the relevant SPIFI order, 4th order. Again, the
same cutoff spatial frequencies are obtained in each case, yet the higher
amplitude of the OTF for the SPIFI spatial frequency support provides a
vastly superior image. This behavior is further amplified when we move
to a three photon excitation fluorescence (3PEF) microscopy that is
compared with 6th order SPIFI as shown in Fig. (15 (d-f)). Here again,
the SPIFI image is vastly superior to the 3PEF image, with a higher
amplitude of the OTF throughout the range of spatial frequencies.

6.2. Analytic inverse operators enable imaging of large fields of view

Single pixel imaging always requires an accurate forward model of
both the illumination light patterns projected into the object and of the
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Fig. 14. A comparison of conventional linear microscopy to the related linear SPIFI. (a) Shows the OTF of coherent widefield microscopy (red line) and the first order SPIFI OTF
(blue line). (b) Shows the incoherent widefield OTF (red line) and the second order SPIFI OTF (blue line). (c) Simulated images of coherent widefield. (d) Simulated images of
incoherent widefield. (e) Simulated image of first order SPIFI. (f) Simulated image of second order SPIFI. The impact of the convex SPIFI spatial frequency support is evident in

the higher image quality for the SPIFI images. The scale bar is 10 pm.
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Fig. 15. A comparison of nonlinear laser scanning (LSM) to the related SPIFI order. (a) The OTF and (c) image for 2PEF LSM imaging (solid line with red shading), (a) the OTF
and (d) image for fourth order SPIFI (dashed line with blue shading). (b) The OTF and (d) image for 3PEF LSM imaging (solid line with red shading), (b) the OTF and (f) image
for sixth order SPIFI (dashed line with blue shading). The impact of the convex SPIFI spatial frequency support is evident in the higher image quality for the SPIFI images. The

scale bar is 10 pm.

signal generation mechanism and collection. Such physical models can
be instantiated in a discrete form as a measurement matrix to enable
an estimate of the object from a discrete set of data measurements by
minimizing the error provided by some norm, as shown in Eq. (1).
While it is common to apply optimization algorithms for the estimation
of an object, one runs into computational difficulties rather quickly for
practical computational imaging scenarios. When possible, one should
seek analytic inverse operators for image estimation.

Inverse operators must be found by seeking a kernel for an inverse
operator that forms a biorthogonal relationship with the kernel in the
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forward operator integral. Mathematically a true inverse operator re-
quires strict biorthogonality. However, in any far-field optical imaging
system, where the light propagates to a detector at a distance more than
several wavelengths away from the object, the transverse spatial fre-
quency support only supports those spatial frequencies that propagate
homogeneously, and evanescent waves with a spatial frequency higher
than 2 7z 2~! do not propagate to the far-field. Moreover, optical imaging
almost always use optical lenses that further restricts the transverse
spatial frequencies that participate in the image formation process.
In most systems, the optical components act as a low pass spatial
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frequency filter with a cutoff proportional to the numerical aperture.
The restricted transverse spatial frequency support limits the range of
integration in the forward and inverse models, making it so that the
dual kernel in the inverse operator only forms a biorthogonal relation-
ship in a limiting case of infinite spatial frequency support. To handle
this subtlety, we have defined the full image estimate in terms of a
function, f(r), that expresses the PSF of the SFP computational imaging
process as a weighted inner product of the forward operator kernel
and the inverse operator dual kernel. Once the PSF is defined, the OTF
readily follows. This ability to provide analytic models of the imaging
proprieties of the computational imaging system is another benefit of
finding an inverse operator. Unfortunately there is no guarantee that
an analytic operator can be found, but in nearly all cases, such a
strategy will have multiple benefits, such as reduced computation time,
no storage of measurement matrices, and no hyper parameter tuning.
To appreciate the power of analytic inverse operators, we consider the
computational imaging problems of LT, FCT, and GTT.

6.3. Coherent imaging with incoherent light emission

One remarkable capability of single pixel SFP imaging is the ability
to perform coherent imaging techniques with incoherent light emis-
sion (or incoherent scattering) [21,33]. We will take fluorescent light
emission as an exemplar for incoherent light for SFP imaging, however,
incoherent scattering or absorption can also be imaged with an equiva-
lent strategy. In a single pixel fluorescent imaging experiment, a three
dimensional light intensity distribution can illuminate a large volume
in an object containing some distribution of fluorescent molecules. The
influence of the propagation of the modulated illumination light in
three dimensions depends on the coherence of the detected light. In
experiments to date, SFP imaging has used spatially coherent light, but
coherent light is not strictly necessary in all cases.

The differences between imaging with coherent and incoherent light
are significant. Incoherent light is spatially incoherent, which means
that the random phase fluctuations of the emitted light causes a loss of
any link between the input illumination light direction and the emitted
light. In contrast, when coherent light interacts with a scattering object,
the scattered light carries specific direction, amplitude, and phase
information that allows for the spatial distribution of the scatter to be
computed by accounting for the differences between the illumination
and scattered complex light fields.

The powerful properties of coherent imaging can be recovered when
imaging incoherent light emission by employing a strategy in which
we impart a spatially and temporally varying modulation of coherent
light that is used to illuminate the three dimensional region containing
the object (here the spatial distribution of the fluorescent molecule
concentration). When modulated coherent light drives an incoherent
imaging contrast mechanism, such as fluorescent light emission or
spontaneous Raman scattering, the signal power is proportional to the
modulated intensity at the location of that part of the object. Thus,
the object information is recovered by mapping the detected temporal
emission pattern to the spatial location in which that same temporal
intensity modulation has been imparted.

Here, we reviewed techniques that are based on the modulation
of spatialy coherent illumination light composed of a sparse set of
transverse illumination spatial frequencies that propagate through the
object region. Because we rely on a model of the propagation of the
illumination fields, we are able to recover a mathematically identical
model for the image formation process as is relevant for imaging with
coherent scattering. At each time instance only a few transverse spatial
frequencies are present in the illumination pattern, but a sequence of
illumination patterns are applied that then leads to a sampling of the
full set of transverse spatial frequencies supported by the illumination
objective. The intensity of the illumination beams depends on the
interference of the set of sparse spatial frequencies of the modulated
fields propagating through the object. The phase difference between the
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modulated fields thus drives a time-varying local intensity modulation
in the signal power, the temporal signatures recorded on a single
pixel detector label each spatial point in the illumination volume. By
determining the amplitude of each temporal signature used to label a
particular point in the volume, a 3D image can be estimated. Note that
depending on the experimental design, we may measure a 1D, 2D, or
a 3D image from the sequence of measurements. However, the lower
dimensional images can be assembled into a 3D image by scanning
along the unmodulated directions.

In the case of fully coherent light, in the limit of the plane wave
model, see 2, where the transverse spatial frequency support for all
field terms are vanishingly narrow so that it is described by a Dirac
delta function, the propagating waves in the object spatial region will
be described by plane waves, and the fringe visibility of the interfering
plane wave fields of equal amplitude over all space. The optical path be-
tween the plane waves will be slightly different from one another as one
beam scans across the other. The optical path difference between the il-
lumination plane waves will create a relative phase shift, ¢(7), between
the plane waves causing an intensity modulation in the illumination
volume, where each x—z location will have an identifiable modulation
frequency and phase. The image formation process described here
is able to mimic a coherent scattering process [21,33] because the
single pixel SFP imaging records the spatial frequency values of the
object spatial frequency that is obtained from the difference spatial
frequency of the illumination waves. SFP is also able to uniquely isolate
interference terms due to a relative phase shift between the modulation
plane waves, ¢(1), that allows for separation of all of the interference
terms the produce the intensity. Such phase shifting to isolate particular
terms in the interference of fields is critical for all coherent phase
imaging methods, including widefield versions based on holography or
other interferometric configurations. The fluorescent emitters respond
to the modulated intensity, allowing the phase difference between the
propagating modulated illumination beams to be encoded onto the
collected signal, thereby allowing the incoherent light to mimic the
coherent illumination. This encoded phase information allows coherent
imaging tools to be applied to incoherent emission such as numerical
refocusing, holography, and optical diffraction tomography [21,33,53].

In an experiment, the fringe visibility and spatial extent of the
modulated illumination light depends on the shape of the spatial fre-
quency support for each radiant field term and the defocus plane, z.
The detailed shape of this region of interference can be controlled
with wavefront shaping [55]. The imaging axial field of view can
be extended to be much larger than is possible with conventional
imaging [21,55].

There are several other camera based strategies for mimicking
coherent imaging with incoherent light which rely on a very different
strategies than that used in CHIRPT and FDT. In these strategies,
the self coherence of interference from a single fluorescent emitter is
exploited by placing a diffraction optical component, such as a Fresnel
zone plate or a two dimensional grating in the imaging path, so that
differences in propagation distance from the emitter location in the
object to a camera are encoded as an intensity modulation [57,58].
Alternately, a common path imaging Sagnac interferometer can be
used for super-resolution imaging by exploiting the interferometric
shifts based on axial position of the emitter [68]. In each of these
methods, self interference and light diffraction is exploited to convert
diffraction into an intensity pattern recorded on a camera. SFP methods
exploit deterministic propagation differences in modulated illumination
light to encode position information. Importantly, with SFP methods,
since the detection is based on recording power with a single pixel
detector, imaging in harsh environments with optical scattering can
still be performed, where the self interference methods with a camera
will be degraded because scattering will distort the self-interference
diffraction.

Partially and fully spatially incoherent light can still be used for SFP
imaging, but the three dimensional imaging behavior will significantly
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differ from the fully coherent case. Partially coherent beam propagation
can be described with an incoherent sum, i.e., a sum over intensities,
of a coherent mode decomposition of the illumination field. The spatial
location of points of constructive and destructive interference from
the propagation of each modulated coherent mode will be different
— leading to a filling smoothing out of the modulation depth. The
exception is in the focal plane (z = 0) where the modulation pattern
will be faithfully imaged, regardless of the spatial coherence of the
source. The axial extent of the modulation of the fringes is reduced
as the spatial coherence decreases.

6.4. Computational three dimensional imaging

In this review, we have discussed two methods of 2D single pixel
SFP imaging, either in the plane transverse to the direction of propaga-
tion, or in a plane with one transverse coordinate and the axial prop-
agation direction. Three dimensional imaging is obtained by scanning
along an additional dimension. There is strong interest in extending
these methods directly to three dimensional imaging.

The direct extension of computational imaging to three dimensions
can present a significant challenge. Deconvolution of stacks of axially
displaced images for 3D computational imaging is possible for spatially
incoherent (e.g., widefield fluorescent microscopy [69]), temporally
incoherent [70], partially spatially coherent [71-73], and nonlinear
widefield holography [74]. However, these methods all rely on camera
acquisition, restricting their use to specimens with low levels of optical
scattering. In addition, direct widefield imaging reduces the imaging
problem because the problem may be modeled as a linear and shift
invariant system, so that the impulse response function and the forward
model may be represented sparsely in the spatial frequency domain by
a transfer function.

In imaging systems where the forward operator is not represented
by a sparse operator, the computation problem rapidly becomes unten-
able. A simple strategy is to layer 2D images to build a 3D image [33]
or with a line detector that reads out SFP image in parallel, but this
strategy provides limited resolution along the direction that the images
are stacked. Alternatively, a one can apply sparsity constraints to the
reconstruction of images recorded with a random diffuser lens [47].

6.5. SFP imaging speed

An important property of any imaging modality is the speed at
which images may be acquired. Imaging with a single pixel detector
is limited by the electronic detector bandwidth and required scanning.
Part of the motivation of SFP imaging is to improve imaging speed by
reducing scanning requirements of the illumination beam. The extent
to which imaging speed improvements can be realized then depends
on the rate at which line images, in the case of SPIFI and CHIRPT,
or higher dimensional modulation patterns, can be acquired with a
signal level higher than the noise levels. As single pixel imaging is a
multiplexed imaging method, the type of noise present in the detection
strongly influences the impact of noise in the estimated image [27,
75]. In fact, in a case where we are limited by a noise model well
represented by an additive Gaussian noise model, multiplexing, such
as with SFP tomography, carries a significant advantage. However,
when shot noise is dominant, dim object points are subject to noise
contamination from bright points, and imaging is degraded without
adequate mitigation of noise in the image reconstruction algorithm.

To determine an upper bound on the imaging speed for a fluorescent
object, we compute the SNR of a CHIRPT line focus image of a single
bright point. The point object is envisioned to be of the form of a dyed
microsphere, where we have a concentration of ¢ fluorescent molecules
within a volume V, so that we have a total of A" = ¢ V total fluorescent
molecules within the volume. We further suppose that the volume is
smaller than the volume resolution element (voxel), and localized to
a point r,. To estimate the signal and noise levels, we first compute
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the detected photon flux. Assuming that the combination of collection
optics and detector efficiency provides an overall detection efficiencty
of the emitted photons of #, we may write the detected photon flux for
this CHIRPT imaging scenario as

bq(0) =n Nk, ey (7). (41)

Here v = t/T is the normalized CHIRPT modulation scan time and
k. = 1/z, is the radiative emission rate of the molecule with 7, denoting
the excited state lifetime.

The fluorescent emission is proportional to the excited state occu-
pation population e, (7). For the case of a three-level molecular system
illuminated by cw laser, average excited state population is

Iy(rg, 7) I}

1+ Iy (g, ) 120

sat

e, (1) = (42)
where the saturation intensity is given by I, = hv,/c,7,. Here h is
Planck’s constant, v, is the optical absorption frequency, and o, is the
absorption cross section at the illumination optical wavelength 4, =
¢/v,. To simplify notation, we define the peak saturation parameter at
the spatial position r;, as ay = I,/ I, . Here, the peak illumination inten-
sity, I, at the object position r(, in the CHIRPT illumination intensity is
Iy (rg, ) = I 5, (r, 7), with the normalized intensity modulation signal
expressed as

5n(Fp.7) = i <2+12 +V1-22 cos@, ﬂ).

Here Q, = (w,,+7x() T is the normalized CHIRPT modulation frequency
at ry, and assuming one-dimensional modulation along the x direction.
The time detected fluorescent photon flux may now be expressed as

(43)

5,(Xg, 7)
"1+ as,@y, 1)

b)) =nag Nk (44)

The imaging speed is estimated by computing the signal-to-noise
ratio (SNR) and determining a suitable SNR level where the signal rises
above the noise. A minimum suitable value occurs for SNR = 1, and we
set this as our imaging speed criterion. The SNR is given by SNR =
N,/o,. The number of detected signal photons for the point object
is defined by the amplitude of the cosine projection of the detected
photon flux,

1
N, =T / cos(Ry 1) dy(r) dr. (45)
-1

Assuming that the noise is dominated by shot noise, the standard
deviation in the noise is given by o, = 1/(N). Here the mean detected
photon count is

1
<N>=/ pg(r)dz. (46)
-1

Analytic solutions to the signal photon integrals in Eqgs. (45), (46)
have not been found, however the following approximations produce
only a small error when compared to a full numerical integration.
An approximate signal value is obtained by taking a Taylor series
expansion of the detected photon flux to second order in «,, then
integrating over the signal trace. The approximate signal found in this
manner is given by

b k 9 141 ,
N~ ZpagN - (1 AP w4 ) 47
TR, § %0 128 % (47)
This approximation only produces suitable results for a; < 0.5. Here
we have defined the imaging rate as v,, = 1/27. An excellent

approximation for the background signal level is found by computing
the total photon count without the oscillatory portion of the normalized
illumination intensity, leading to the expression

24/2cot™! [,/2+ i]
o

(Ny~ N 2 |1 .

img \/m
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The two analytic expressions for the signal and total photon counts
lead to an SNR expression of

SNR = (49
where
Z(1- 2+ 2L az)
16 ( 8 0T 128 Yo
Joy = . (50)
24/2cot~! 2-*—0[i
1— — LV %]
Vo (2+agp)
For small values of «,, we have the approximation
z |3 58
faozg S (l—ga()). (51

With this expression, we may estimate the maximum imaging rate to
second order in a; as

vimg<% (%)2 agn Nk, (1—%@. (52)

Taking some typical values for a set of N = 1000 fluorescent molecules
with a lifetime of 7, = 4 ns and an excitation strength of a, = 0.01 and
with a total detection efficiency of # = 0.1, then the upper bound on the
line imaging rate is 16 MHz. Which means a 250 x 250 pixel 2D image
could be acquired as fast as 660 kHz. Experimental implementation
details will impose other constraints, but the photon detection rate
does not preclude exceptionally fast imaging. Moreover, if bright-field
imaging is used, where photon counts are much higher, then even faster
imaging rates are theoretically accessible.

7. Conclusions

Single pixel imaging with spatial frequency projections provides a
framework that enables new capabilities for optical imaging. By passing
a sparse set of spatial frequencies through the CTF of the illumination
optics, the delicate superposition of the plane waves from a broad
range of spatial frequencies need not be maintained. As a result, the
imaging field of view is readily expanded by more than an order of
magnitude, and aberrations present in the imaging system are encoded
in the measurement. These encoded aberrations can then be extracted
and used to correct for system aberrations.

The sparse set of illumination spatial frequencies suffers less at-
tenuation of the spatial frequencies that are passed to the object for
incoherent imaging and a doubling of the range of spatial frequency
support for coherent imaging. Moreover, the amplitude of the spa-
tial frequency support, described by the modulation transfer function
(MTF), is higher for high spatial frequencies than what is possible in
conventional widefield imaging. Thus, even when the maximum spatial
frequency value (the cutoff spatial frequency) between SFP imaging and
widefield is the same, the image quality in SFP can be much better. The
improvement in image quality is evident in Figs. 14, 15.

When driving a nonlinear response, the periodic sparse illumina-
tion intensity drives harmonics of the input spatial frequencies. These
harmonics produce higher harmonic orders that expand the spatial
frequency support beyond the capabilities of conventional laser scan-
ning nonlinear optical microscopy [25] (see Fig. 15). Moreover, the
amplitude of the MTF for nonlinear SFP imaging is improved compared
to conventional nonlinear interactions. The result is vastly improved
image quality, with the ability to resolve much finer details.

As SFP implemented as SPIFI or CHIRPT normally only improves
image quality along the direction of spatial frequency modulation. To
extend imaging improvements along two dimensions, one can either
apply dual modulations [20], multiple line cursors [26], or through
the use of tomography [33,48,49]. This review focuses on the imaging
properties of tomographic imaging. Forward and inverse operators are
derived for many experimental scenarios — enabling the calculation of
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the imaging impulse response, the PSF, and frequency transfer function,
the OTF, for many cases. Image quality is shown to be significantly
better than with conventional widefield or laser scanning imaging
methodologies.

Computational imaging is a powerful strategy for expanding the
capabilities of optical microscopy. By relaxing the requirement to form
an optical image that is directly sampled by an array detector, the
imaging system is freed from conventional microscope constraints,
enabling a much broader range of imaging system design strategies.
We discuss a few examples of benefits of single pixel SFP imaging,
where much larger fields of view can be imaged with superior imaging
quality. In addition, spectroscopic information can be multiplexed into
the modulation by exploiting unused region of the bandwidth of the
single pixel detector.

The challenge in computational imaging is that image estimation is
computationally burdensome as the problem scales in size, particularly
with the introduction of higher order dimensions. We have sought
analytic inverse operators to avoid the need for entering large matrices
into computer memory. While not all SFP imaging scenarios have a full
inverse operator, this is an area of significant interest to move forward
in order to further scale this imaging technology.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We acknowledge funding support from the National Institute of
Health (NIH), USA (R21EB025389, R21MH117786). J. Squier is sup-
ported by the National Science Foundation (NSF), USA (1707287).

References

[1] J. Mertz, Introduction to Optical Microscopy, second ed., Cambridge University
Press, 2019, http://dx.doi.org/10.1017,/9781108552660.

[2] J. Girkin, A Practical Guide to Optical Microscopy, first ed., CRC Press, 2019,
http://dx.doi.org/10.1017/9781138064706.

[3] A. Karim, J.Y. Andersson, Infrared detectors: Advances, challenges and new
technologies, IOP Conf. Ser.: Mater. Sci. Eng. 51 (2013) 012001, http://dx.doi.
org/10.1088/1757-899x/51/1/012001.

[4] R.A. Lewis, A review of terahertz detectors, J. Phys. D: Appl. Phys. 52 (43)
(2019) 433001, http://dx.doi.org/10.1088/1361-6463/ab31d5.

[5] J. Pawley (Ed.), Handbook of Biological Confocal Microscopy, third ed.,
Springer-Verlag US, 2006, http://dx.doi.org/10.1007/978-0-387-45524-2.

[6] E.E. Hoover, J.A. Squier, Advances in multiphoton microscopy technology, Nat.
Photonics 7 (2) (2013) 93-101, http://dx.doi.org/10.1038/nphoton.2012.361.

[7] M.D. Young, J.J. Field, K.E. Sheetz, R.A. Bartels, J. Squier, A pragmatic guide
to multiphoton microscope design, Adv. Opt. Photon. 7 (2) (2015) 276-378,
http://dx.doi.org/10.1364/A0P.7.000276, URL http://aop.osa.org/abstract.cfm?
URI=aop-7-2-276.

[8] E.E. Hoover, J.J. Field, D.G. Winters, M.D. Young, E.V. Chandler, J.C. Speirs,
J.T. Lapenna, S.M. Kim, S.-Y. Ding, R.A. Bartels, JW. Wang, J.A. Squier,
Eliminating the scattering ambiguity in multifocal, multimodal, multiphoton
imaging systems, J. Biophotonics 5 (5-6) (2012) 425-436, http://dx.doi.org/
10.1002/jbi0.201100139, URL https://pubmed.ncbi.nlm.nih.gov/22461190.

[9] A. Buist, M. Miiller, J. Squier, G. Brakenhoff, et al., Real-time two-photon
absorption microscopy using multi point excitation, J. Microsc. 192 (1998).

[10] J. Bewersdorf, R. Pick, S.W. Hell, Multifocal multiphoton microscopy, Opt. Lett.
23 (9) (1998) 655-657, http://dx.doi.org/10.1364/0L.23.000655, URL http:
//0l.osa.org/abstract.cfm?URI=o0l-23-9-655.

[11] G. Futia, P. Schlup, D.G. Winters, R.A. Bartels, Spatially-chirped modulation
imaging of absorbtion and fluorescent objects on single-element optical detec-
tor, Opt. Express 19 (2) (2011) 1626-1640, http://dx.doi.org/10.1364/0E.19.
001626, URL http://www.opticsexpress.org/abstract.cfm?URI=o0e-19-2-1626.

[12] E.E. Hoover, M.D. Young, E.V. Chandler, A. Luo, J.J. Field, K.E. Sheetz,
AW. Sylvester, J.A. Squier, Remote focusing for programmable multi-layer
differential multiphoton microscopy, Biomed. Opt. Express 2 (1) (2011) 113-
122, http://dx.doi.org/10.1364/BOE.2.000113, URL http://www.osapublishing.
org/boe/abstract.cfm?URI=boe-2-1-113.


http://dx.doi.org/10.1017/9781108552660
http://dx.doi.org/10.1017/9781138064706
http://dx.doi.org/10.1088/1757-899x/51/1/012001
http://dx.doi.org/10.1088/1757-899x/51/1/012001
http://dx.doi.org/10.1088/1757-899x/51/1/012001
http://dx.doi.org/10.1088/1361-6463/ab31d5
http://dx.doi.org/10.1007/978-0-387-45524-2
http://dx.doi.org/10.1038/nphoton.2012.361
http://dx.doi.org/10.1364/AOP.7.000276
http://aop.osa.org/abstract.cfm?URI=aop-7-2-276
http://aop.osa.org/abstract.cfm?URI=aop-7-2-276
http://aop.osa.org/abstract.cfm?URI=aop-7-2-276
http://dx.doi.org/10.1002/jbio.201100139
http://dx.doi.org/10.1002/jbio.201100139
http://dx.doi.org/10.1002/jbio.201100139
https://pubmed.ncbi.nlm.nih.gov/22461190
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb9
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb9
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb9
http://dx.doi.org/10.1364/OL.23.000655
http://ol.osa.org/abstract.cfm?URI=ol-23-9-655
http://ol.osa.org/abstract.cfm?URI=ol-23-9-655
http://ol.osa.org/abstract.cfm?URI=ol-23-9-655
http://dx.doi.org/10.1364/OE.19.001626
http://dx.doi.org/10.1364/OE.19.001626
http://dx.doi.org/10.1364/OE.19.001626
http://www.opticsexpress.org/abstract.cfm?URI=oe-19-2-1626
http://dx.doi.org/10.1364/BOE.2.000113
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-2-1-113
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-2-1-113
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-2-1-113

P. Stockton, G. Murray, J.J. Field et al.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

M. Ingaramo, A.G. York, P. Wawrzusin, O. Milberg, A. Hong, R. Weigert, H.
Shroff, G.H. Patterson, Two-photon excitation improves multifocal structured
illumination microscopy in thick scattering tissue, Proc. Natl. Acad. Sci. 111 (14)
(2014) 5254-5259, http://dx.doi.org/10.1073/pnas.1314447111, arXiv:https://
www.pnas.org/content/111/14/5254.full.pdf.

M. Harwit, N.J. Sloane, Chapter 3 - The basic theory of Hadamard transform
spectrometers and imagers, in: M. Harwit, N.J. Sloane (Eds.), Hadamard Trans-
form Optics, Academic Press, 1979, pp. 44-95, http://dx.doi.org/10.1016/B978-
0-12-330050-8.50007-X, URL https://www.sciencedirect.com/science/article/
pii/B978012330050850007X.

A. Gatti, E. Brambilla, M. Bache, L.A. Lugiato, Ghost imaging with thermal
light: Comparing entanglement and ClassicalCorrelation, Phys. Rev. Lett. 93
(2004) 093602, http://dx.doi.org/10.1103/PhysRevLett.93.093602, URL https:
//link.aps.org/doi/10.1103/PhysRevLett.93.093602.

J.H. Shapiro, Computational ghost imaging, Phys. Rev. A 78 (2008) 061802,
http://dx.doi.org/10.1103/PhysRevA.78.061802, URL https://link.aps.org/doi/
10.1103/PhysRevA.78.061802.

O. Katz, Y. Bromberg, Y. Silberberg, Compressive ghost imaging, Appl. Phys.
Lett. 95 (13) (2009) 131110, http://dx.doi.org/10.1063/1.3238296.

M.J. Padgett, R.W. Boyd, An introduction to ghost imaging: quantum and clas-
sical, Phil. Trans. R. Soc. A 375 (2099) (2017) 20160233, http://dx.doi.org/10.
1098/rsta.2016.0233, arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/
rsta.2016.0233.

M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, T. Sun, K.F. Kelly, R.G.
Baraniuk, Single-pixel imaging via compressive sampling, IEEE Signal Process.
Mag. 25 (2) (2008) 83-91, http://dx.doi.org/10.1109/MSP.2007.914730.

D.G. Winters, R.A. Bartels, Two-dimensional single-pixel imaging by cascaded
orthogonal line spatial modulation, Opt. Lett. 40 (12) (2015) 2774-2777, http://
dx.doi.org/10.1364/0L.40.002774, URL http://ol.osa.org/abstract.cfm?URI=ol-
40-12-2774.

J.J. Field, D.G. Winters, R.A. Bartels, Single-pixel fluorescent imaging with
temporally labeled illumination patterns, Optica 3 (9) (2016) 971-974, http://dx.
doi.org/10.1364/0PTICA.3.000971, URL http://www.osapublishing.org/optica/
abstract.cfm?URI=optica-3-9-971.

E. Block, M.D. Young, D.G. Winters, J.J. Field, R.A. Bartels, J.A. Squier,
Simultaneous spatial frequency modulation imaging and micromachining with
a femtosecond laser, Opt. Lett. 41 (2) (2016) 265-268, http://dx.doi.org/10.
1364/01.41.000265, URL http://ol.osa.org/abstract.cfm?URI=o0l-41-2-265.

R.G. Baraniuk, Compressive sensing [lecture notes], IEEE Signal Process. Mag.
24 (4) (2007) 118-121, http://dx.doi.org/10.1109/MSP.2007.4286571.

J. Romberg, Imaging via compressive sampling, IEEE Signal Process. Mag. 25
(2) (2008) 14-20, http://dx.doi.org/10.1109/MSP.2007.914729.

J.J. Field, K.A. Wernsing, S.R. Domingue, A.M. Allende Motz, K.F. DeLuca, D.H.
Levi, J.G. DeLuca, M.D. Young, J.A. Squier, R.A. Bartels, Superresolved multi-
photon microscopy with spatial frequency-modulated imaging, Proc. Natl. Acad.
Sci. 113 (24) (2016) 6605-6610, http://dx.doi.org/10.1073/pnas.1602811113,
arXiv:https://www.pnas.org/content/113/24/6605.full.pdf.

N. Worts, J. Field, R. Bartels, J. Jones, J. Broderick, J. Squier, Interferometric spa-
tial frequency modulation imaging, Opt. Lett. 43 (21) (2018) 5351-5354, http://
dx.doi.org/10.1364/0L.43.005351, URL http://ol.osa.org/abstract.cfm?URI=ol-
43-21-5351.

S. Heuke, S. Sivankutty, C. Scotte, P. Stockton, R.A. Bartels, A. Sentenac, H.
Rigneault, Spatial frequency modulated imaging in coherent anti-Stokes Raman
microscopy, Optica 7 (5) (2020) 417-424, http://dx.doi.org/10.1364/0OPTICA.
386526, URL http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-
5-417.

S.R. Domingue, D.G. Winters, R.A. Bartels, Hyperspectral imaging via la-
beled excitation light and background-free absorption spectroscopy, Optica 2
(11) (2015) 929-932, http://dx.doi.org/10.1364/0PTICA.2.000929, URL http:
//www.osapublishing.org/optica/abstract.cfm?URI=optica-2-11-929.

S.R. Domingue, R.A. Bartels, General theoretical treatment of spectral modulation
light-labeling spectroscopy, J. Opt. Soc. Amer. B 33 (6) (2016) 1216-1224,
http://dx.doi.org/10.1364/JOSAB.33.001216, URL http://josab.osa.org/abstract.
cfm?URI=josab-33-6-1216.

C. Scotté, S. Sivankutty, P. Stockton, R.A. Bartels, H. Rigneault, Compressive
Raman imaging with spatial frequency modulated illumination, Opt. Lett. 44 (8)
(2019) 1936-1939, http://dx.doi.org/10.1364/0L.44.001936, URL http://ol.osa.
org/abstract.cfm?URI=o0l-44-8-1936.

C. Scotté, S. Sivankutty, R.A. Bartels, H. Rigneault, Line-scan compressive Raman
imaging with spatiospectral encoding, Opt. Lett. 45 (19) (2020) 5567-5570,
http://dx.doi.org/10.1364/0L.400151, URL http://ol.osa.org/abstract.cfm?URI=
0l-45-19-5567.

P.A. Stockton, J.J. Field, R.A. Bartels, Single pixel quantitative phase imag-
ing with spatial frequency projections, Methods 136 (2018) 24-34, http://
dx.doi.org/10.1016/j.ymeth.2017.10.007, Methods in Quantitative Phase Imag-
ing in Life Science, URL https://www.sciencedirect.com/science/article/pii/
$1046202317301755.

P.A. Stockton, J.J. Field, J. Squier, A. Pezeshki, R.A. Bartels, Single-pixel
fluorescent diffraction tomography, Optica 7 (11) (2020) 1617-1620, http://
dx.doi.org/10.1364/0OPTICA.400547, URL http://www.osapublishing.org/optica/
abstract.cfm?URI=optica-7-11-1617.

19

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Optics Communications 520 (2022) 128401

M. Torabzadeh, I.-Y. Park, R.A. Bartels, A.J. Durkin, B.J. Tromberg, Compressed
single pixel imaging in the spatial frequency domain, J. Biomed. Opt. 22 (3)
(2017) 1-4, http://dx.doi.org/10.1117/1.JB0.22.3.030501.

M. Torabzadeh, P.A. Stockton, G.T. Kennedy, R.B. Saager, A.J. Durkin, R.A.
Bartels, B.J. Tromberg, Hyperspectral imaging in the spatial frequency domain
with a supercontinuum source, J. Biomed. Opt. 24 (7) (2019) 1-9, http://dx.
doi.org/10.1117/1.JB0O.24.7.071614.

J.S. Sanders, R.G. Driggers, C.E. Halford, S.T. Griffin, Imaging with frequency-
modulated reticles, Opt. Eng. 30 (11) (1991) 1720-1724, http://dx.doi.org/10.
1117/12.55994.

W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R.G. Baraniuk, D.M. Mittleman, A
single-pixel terahertz imaging system based on compressed sensing, Appl. Phys.
Lett. 93 (12) (2008) 121105, http://dx.doi.org/10.1063/1.2989126.

M. Harwit, N.J. Sloane, Chapter 4 - noise or when to multiplex and when
to avoid it, in: M. Harwit, N.J. Sloane (Eds.), Hadamard Transform Op-
tics, Academic Press, 1979, pp. 96-108, http://dx.doi.org/10.1016/B978-0-
12-330050-8.50008-1, URL https://www.sciencedirect.com/science/article/pii/
B9780123300508500081.

E. Voigtman, J.D. Winefordner, The multiplex disadvantage and excess low-
frequency noise, Appl. Spectrosc. 41 (7) (1987) 1182-1184, http://dx.doi.org/
10.1366/0003702874447509.

E. Thiébaut, Introduction toimage reconstruction and inverse problems, in: R.
Foy, F.C. Foy (Eds.), Optics in Astrophysics, Springer Netherlands, Dordrecht,
2005, pp. 397-422.

P. Sarder, A. Nehorai, Deconvolution methods for 3-D fluorescence microscopy
images, IEEE Signal Process. Mag. 23 (3) (2006) 32-45, http://dx.doi.org/10.
1109/MSP.2006.1628876.

A. Ribes, F. Schmitt, Linear inverse problems in imaging, IEEE Signal Process.
Mag. 25 (4) (2008) 84-99, http://dx.doi.org/10.1109/MSP.2008.923099.

S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press,
2004, http://dx.doi.org/10.1017/CB0O9780511804441.

M. Bertero, M. Piana, Inverse Problems in Biomedical Imaging: Modeling and
Methods of Solution, Springer Milan, Milano, 2006, pp. 1-33, http://dx.doi.org/
10.1007/88-470-0396-2_1.

U.S. Kamilov, LN. Papadopoulos, M.H. Shoreh, A. Goy, C. Vonesch, M. Unser, D.
Psaltis, Learning approach to optical tomography, Optica 2 (6) (2015) 517-522,
http://dx.doi.org/10.1364/0OPTICA.2.000517, URL http://www.osapublishing.
org/optica/abstract.cfm?URI=optica-2-6-517.

A. Sinha, J. Lee, S. Li, G. Barbastathis, Lensless computational imaging through
deep learning, Optica 4 (9) (2017) 1117-1125, http://dx.doi.org/10.1364/
OPTICA.4.001117, URL http://www.osapublishing.org/optica/abstract.cfm?URI=
optica-4-9-1117.

N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, L. Waller,
Diffusercam: Lensless single-exposure 3D imaging, Optica 5 (1) (2018) 1-
9, http://dx.doi.org/10.1364/0PTICA.5.000001, URL http://www.osapublishing.
org/optica/abstract.cfm?URI=optica-5-1-1.

P. Schlup, G. Futia, R.A. Bartels, Lateral tomographic spatial frequency modu-
lated imaging, Appl. Phys. Lett. 98 (21) (2011) 211115, http://dx.doi.org/10.
1063/1.3595305.

P.A. Stockton, K.A. Wernsing, J.J. Field, J. Squier, R.A. Bartels, Fourier computed
tomographic imaging of two dimensional fluorescent objects, APL Photonics 4
(10) (2019) 106102, http://dx.doi.org/10.1063/1.5100525.

S.S. Howard, A. Straub, N. Horton, D. Kobat, C. Xu, Frequency multiplexed
in vivo multiphoton phosphorescence lifetime microscopy, Nat. Photonics 7
(1) (2013) 33-37, http://dx.doi.org/10.1038/nphoton.2012.307, URL https://
pubmed.ncbi.nlm.nih.gov/23472061.

L. Novotny, B. Hecht, Principles of Nano-Optics, Cambridge University Press,
2006, http://dx.doi.org/10.1017/CB0O9780511813535.

D.J. Higley, D.G. Winters, G.L. Futia, R.A. Bartels, Theory of diffraction effects
in spatial frequency-modulated imaging, J. Opt. Soc. Amer. A 29 (12) (2012)
2579-2590, http://dx.doi.org/10.1364/JOSAA.29.002579, URL http://josaa.osa.
org/abstract.cfm?URI=josaa-29-12-2579.

J.J. Field, D.G. Winters, R.A. Bartels, Plane wave analysis of coherent holographic
image reconstruction by phase transfer (CHIRPT), J. Opt. Soc. Amer. A 32
(11) (2015) 21562168, http://dx.doi.org/10.1364/JOSAA.32.002156, URL http:
//josaa.osa.org/abstract.cfm?URI=josaa-32-11-2156.

J.J. Field, K.A. Wernsing, J.A. Squier, R.A. Bartels, Three-dimensional single-pixel
imaging of incoherent light with spatiotemporally modulated illumination, J.
Opt. Soc. Amer. A 35 (8) (2018) 1438-1449, http://dx.doi.org/10.1364/JOSAA.
35.001438, URL http://josaa.osa.org/abstract.cfm?URI=josaa- 35-8-1438.

J.J. Field, J.A. Squier, R.A. Bartels, Fluorescent coherent diffractive imaging
with accelerating light sheets, Opt. Express 27 (9) (2019) 13015-13030, http://
dx.doi.org/10.1364/0E.27.013015, URL http://www.opticsexpress.org/abstract.
cfm?URI=0e-27-9-13015.

P.S. Carney, J.C. Schotland, E. Wolf, Generalized optical theorem for reflection,
transmission, and extinction of power for scalar fields, Phys. Rev. E 70 (2004)
036611, http://dx.doi.org/10.1103/PhysRevE.70.036611, URL https://link.aps.
org/doi/10.1103/PhysRevE.70.036611.


http://dx.doi.org/10.1073/pnas.1314447111
http://arxiv.org/abs/https://www.pnas.org/content/111/14/5254.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/111/14/5254.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/111/14/5254.full.pdf
http://dx.doi.org/10.1016/B978-0-12-330050-8.50007-X
http://dx.doi.org/10.1016/B978-0-12-330050-8.50007-X
http://dx.doi.org/10.1016/B978-0-12-330050-8.50007-X
https://www.sciencedirect.com/science/article/pii/B978012330050850007X
https://www.sciencedirect.com/science/article/pii/B978012330050850007X
https://www.sciencedirect.com/science/article/pii/B978012330050850007X
http://dx.doi.org/10.1103/PhysRevLett.93.093602
https://link.aps.org/doi/10.1103/PhysRevLett.93.093602
https://link.aps.org/doi/10.1103/PhysRevLett.93.093602
https://link.aps.org/doi/10.1103/PhysRevLett.93.093602
http://dx.doi.org/10.1103/PhysRevA.78.061802
https://link.aps.org/doi/10.1103/PhysRevA.78.061802
https://link.aps.org/doi/10.1103/PhysRevA.78.061802
https://link.aps.org/doi/10.1103/PhysRevA.78.061802
http://dx.doi.org/10.1063/1.3238296
http://dx.doi.org/10.1098/rsta.2016.0233
http://dx.doi.org/10.1098/rsta.2016.0233
http://dx.doi.org/10.1098/rsta.2016.0233
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2016.0233
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2016.0233
http://arxiv.org/abs/https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2016.0233
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1364/OL.40.002774
http://dx.doi.org/10.1364/OL.40.002774
http://dx.doi.org/10.1364/OL.40.002774
http://ol.osa.org/abstract.cfm?URI=ol-40-12-2774
http://ol.osa.org/abstract.cfm?URI=ol-40-12-2774
http://ol.osa.org/abstract.cfm?URI=ol-40-12-2774
http://dx.doi.org/10.1364/OPTICA.3.000971
http://dx.doi.org/10.1364/OPTICA.3.000971
http://dx.doi.org/10.1364/OPTICA.3.000971
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-9-971
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-9-971
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-3-9-971
http://dx.doi.org/10.1364/OL.41.000265
http://dx.doi.org/10.1364/OL.41.000265
http://dx.doi.org/10.1364/OL.41.000265
http://ol.osa.org/abstract.cfm?URI=ol-41-2-265
http://dx.doi.org/10.1109/MSP.2007.4286571
http://dx.doi.org/10.1109/MSP.2007.914729
http://dx.doi.org/10.1073/pnas.1602811113
http://arxiv.org/abs/https://www.pnas.org/content/113/24/6605.full.pdf
http://dx.doi.org/10.1364/OL.43.005351
http://dx.doi.org/10.1364/OL.43.005351
http://dx.doi.org/10.1364/OL.43.005351
http://ol.osa.org/abstract.cfm?URI=ol-43-21-5351
http://ol.osa.org/abstract.cfm?URI=ol-43-21-5351
http://ol.osa.org/abstract.cfm?URI=ol-43-21-5351
http://dx.doi.org/10.1364/OPTICA.386526
http://dx.doi.org/10.1364/OPTICA.386526
http://dx.doi.org/10.1364/OPTICA.386526
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-5-417
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-5-417
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-5-417
http://dx.doi.org/10.1364/OPTICA.2.000929
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-11-929
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-11-929
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-11-929
http://dx.doi.org/10.1364/JOSAB.33.001216
http://josab.osa.org/abstract.cfm?URI=josab-33-6-1216
http://josab.osa.org/abstract.cfm?URI=josab-33-6-1216
http://josab.osa.org/abstract.cfm?URI=josab-33-6-1216
http://dx.doi.org/10.1364/OL.44.001936
http://ol.osa.org/abstract.cfm?URI=ol-44-8-1936
http://ol.osa.org/abstract.cfm?URI=ol-44-8-1936
http://ol.osa.org/abstract.cfm?URI=ol-44-8-1936
http://dx.doi.org/10.1364/OL.400151
http://ol.osa.org/abstract.cfm?URI=ol-45-19-5567
http://ol.osa.org/abstract.cfm?URI=ol-45-19-5567
http://ol.osa.org/abstract.cfm?URI=ol-45-19-5567
http://dx.doi.org/10.1016/j.ymeth.2017.10.007
http://dx.doi.org/10.1016/j.ymeth.2017.10.007
http://dx.doi.org/10.1016/j.ymeth.2017.10.007
https://www.sciencedirect.com/science/article/pii/S1046202317301755
https://www.sciencedirect.com/science/article/pii/S1046202317301755
https://www.sciencedirect.com/science/article/pii/S1046202317301755
http://dx.doi.org/10.1364/OPTICA.400547
http://dx.doi.org/10.1364/OPTICA.400547
http://dx.doi.org/10.1364/OPTICA.400547
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-11-1617
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-11-1617
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-11-1617
http://dx.doi.org/10.1117/1.JBO.22.3.030501
http://dx.doi.org/10.1117/1.JBO.24.7.071614
http://dx.doi.org/10.1117/1.JBO.24.7.071614
http://dx.doi.org/10.1117/1.JBO.24.7.071614
http://dx.doi.org/10.1117/12.55994
http://dx.doi.org/10.1117/12.55994
http://dx.doi.org/10.1117/12.55994
http://dx.doi.org/10.1063/1.2989126
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
https://www.sciencedirect.com/science/article/pii/B9780123300508500081
https://www.sciencedirect.com/science/article/pii/B9780123300508500081
https://www.sciencedirect.com/science/article/pii/B9780123300508500081
http://dx.doi.org/10.1366/0003702874447509
http://dx.doi.org/10.1366/0003702874447509
http://dx.doi.org/10.1366/0003702874447509
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb40
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb40
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb40
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb40
http://refhub.elsevier.com/S0030-4018(22)00286-3/sb40
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1109/MSP.2008.923099
http://dx.doi.org/10.1017/CBO9780511804441
http://dx.doi.org/10.1007/88-470-0396-2_1
http://dx.doi.org/10.1007/88-470-0396-2_1
http://dx.doi.org/10.1007/88-470-0396-2_1
http://dx.doi.org/10.1364/OPTICA.2.000517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-517
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-2-6-517
http://dx.doi.org/10.1364/OPTICA.4.001117
http://dx.doi.org/10.1364/OPTICA.4.001117
http://dx.doi.org/10.1364/OPTICA.4.001117
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-9-1117
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-9-1117
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-9-1117
http://dx.doi.org/10.1364/OPTICA.5.000001
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1
http://www.osapublishing.org/optica/abstract.cfm?URI=optica-5-1-1
http://dx.doi.org/10.1063/1.3595305
http://dx.doi.org/10.1063/1.3595305
http://dx.doi.org/10.1063/1.3595305
http://dx.doi.org/10.1063/1.5100525
http://dx.doi.org/10.1038/nphoton.2012.307
https://pubmed.ncbi.nlm.nih.gov/23472061
https://pubmed.ncbi.nlm.nih.gov/23472061
https://pubmed.ncbi.nlm.nih.gov/23472061
http://dx.doi.org/10.1017/CBO9780511813535
http://dx.doi.org/10.1364/JOSAA.29.002579
http://josaa.osa.org/abstract.cfm?URI=josaa-29-12-2579
http://josaa.osa.org/abstract.cfm?URI=josaa-29-12-2579
http://josaa.osa.org/abstract.cfm?URI=josaa-29-12-2579
http://dx.doi.org/10.1364/JOSAA.32.002156
http://josaa.osa.org/abstract.cfm?URI=josaa-32-11-2156
http://josaa.osa.org/abstract.cfm?URI=josaa-32-11-2156
http://josaa.osa.org/abstract.cfm?URI=josaa-32-11-2156
http://dx.doi.org/10.1364/JOSAA.35.001438
http://dx.doi.org/10.1364/JOSAA.35.001438
http://dx.doi.org/10.1364/JOSAA.35.001438
http://josaa.osa.org/abstract.cfm?URI=josaa-35-8-1438
http://dx.doi.org/10.1364/OE.27.013015
http://dx.doi.org/10.1364/OE.27.013015
http://dx.doi.org/10.1364/OE.27.013015
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-9-13015
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-9-13015
http://www.opticsexpress.org/abstract.cfm?URI=oe-27-9-13015
http://dx.doi.org/10.1103/PhysRevE.70.036611
https://link.aps.org/doi/10.1103/PhysRevE.70.036611
https://link.aps.org/doi/10.1103/PhysRevE.70.036611
https://link.aps.org/doi/10.1103/PhysRevE.70.036611

P. Stockton, G. Murray, J.J. Field et al.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

P. Bon, J. Linarés-Loyez, M. Feyeux, K. Alessandri, B. Lounis, P. Nassoy,
L. Cognet, Self-interference 3D super-resolution microscopy for deep tissue
investigations, Nature Methods 15 (6) (2018) 449-454, http://dx.doi.org/10.
1038/541592-018-0005-3.

N. Yoneda, Y. Saita, T. Nomura, Motionless optical scanning holography, Opt.
Lett. 45 (12) (2020) 3184-3187, http://dx.doi.org/10.1364/0L.393534, URL
http://www.osapublishing.org/ol/abstract.cfm?URI=o0l-45-12-3184.

E. Wolf, Three-dimensional structure determination of semi-transparent objects
from holographic data, Opt. Commun. 1 (4) (1969) 153-156, http://dx.doi.org/
10.1016/0030-4018(69)90052-2, URL https://www.sciencedirect.com/science/
article/pii/0030401869900522.

3. Algorithms For reconstruction with nondiffracting sources, in: Princi-
ples of Computerized Tomographic Imaging, pp. 49-112, http://dx.doi.org/
10.1137/1.9780898719277.ch3, arXiv:https://epubs.siam.org/doi/pdf/10.1137/
1.9780898719277.ch3.

M. Bertero, P. Boccacci, Introduction to Inverse Problems in Imaging, CRC Press,
1998, http://dx.doi.org/10.1201/9780367806941.

Chapter 2: Naive reconstructions and inverse crimes, in: Linear and Nonlin-
ear Inverse Problems with Practical Applications, pp. 7-34, http://dx.doi.org/
10.1137/1.9781611972344.ch2, arXiv:https://epubs.siam.org/doi/pdf/10.1137/
1.9781611972344.ch2.

A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear
inverse problems, SIAM J. Img. Sci. 2 (1) (2009) 183-202, http://dx.doi.org/10.
1137/080716542.

C.J.R. Sheppard, S.B. Mehta, R. Heintzmann, Superresolution by image scanning
microscopy using pixel reassignment, Opt. Lett. 38 (15) (2013) 2889-2892, http:
//dx.doi.org/10.1364/0L.38.002889, URL http://ol.osa.org/abstract.cfm?URI=
ol-38-15-2889.

S. Roth, C.J. Sheppard, K. Wicker, R. Heintzmann, Optical photon reassignment
microscopy (OPRA), Opt. Nanoscopy 2 (1) (2013) 5, http://dx.doi.org/10.1186/
2192-2853-2-5.

G.M.D. Luca, R.M. Breedijk, R.A. Brandt, C.H. Zeelenberg, B.E. de Jong, W.
Timmermans, L.N. Azar, R.A. Hoebe, S. Stallinga, E.M. Manders, Re-scan confocal
microscopy: scanning twice for better resolution, Biomed. Opt. Express 4 (11)
(2013) 2644-2656, http://dx.doi.org/10.1364/BOE.4.002644, URL http://www.
osapublishing.org/boe/abstract.cfm?URI=boe-4-11-2644.

20

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Optics Communications 520 (2022) 128401

C.J.R. Sheppard, M. Castello, G. Tortarolo, T. Deguchi, S.V. Koho, G. Vicidomini,
A. Diaspro, Pixel reassignment in image scanning microscopy: a re-evaluation,
J. Opt. Soc. Amer. A 37 (1) (2020) 154-162, http://dx.doi.org/10.1364/JOSAA.
37.000154, URL http://josaa.osa.org/abstract.cfm?URI=josaa-37-1-154.

J. Wang, E.S. Allgeyer, G. Sirinakis, Y. Zhang, K. Hu, M.D. Lessard, Y. Li,
R. Diekmann, M.A. Phillips, .M. Dobbie, J. Ries, M.J. Booth, J. Bewersdorf,
Implementation of a 4pi-SMS super-resolution microscope, Nat. Protoc. 16 (2)
(2021) 677-727, http://dx.doi.org/10.1038/s41596-020-00428-7.

P. Sarder, A. Nehorai, Deconvolution methods for 3-D fluorescence microscopy
images, IEEE Signal Process. Mag. 23 (3) (2006) 32-45, http://dx.doi.org/10.
1109/MSP.2006.1628876.

T. Kim, R. Zhou, M. Mir, S.D. Babacan, P.S. Carney, L.L. Goddard, G. Popescu,
White-light diffraction tomography of unlabelled live cells, Nat. Photonics 8 (3)
(2014) 256-263, http://dx.doi.org/10.1038/nphoton.2013.350.

N. Streibl, Three-dimensional imaging by a microscope, J. Opt. Soc. Amer. A
2 (2) (1985) 121-127, http://dx.doi.org/10.1364/JOSAA.2.000121, URL http:
//josaa.osa.org/abstract.cfm?URI=josaa-2-2-121.

M.H. Jenkins, T.K. Gaylord, Three-dimensional quantitative phase imaging via
tomographic deconvolution phase microscopy, Appl. Opt. 54 (31) (2015) 9213-
9227, http://dx.doi.org/10.1364/A0.54.009213, URL http://ao.osa.org/abstract.
cfm?URI=ao0-54-31-9213.

M. Chen, L. Tian, L. Waller, 3D differential phase contrast microscopy,
Biomed. Opt. Express 7 (10) (2016) 3940-3950, http://dx.doi.org/10.1364/BOE.
7.003940, URL http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-10-
3940.

C. Hu, J.J. Field, V. Kelkar, B. Chiang, K. Wernsing, K.C. Toussaint, R.A. Bartels,
G. Popescu, Harmonic optical tomography of nonlinear structures, Nat. Photonics
14 (9) (2020) 564-569, http://dx.doi.org/10.1038/541566-020-0638-5.

M. Harwit, N.J. Sloane, Chapter 4 - noise or when to multiplex and when
to avoid it, in: M. Harwit, N.J. Sloane (Eds.), Hadamard Transform Op-
tics, Academic Press, 1979, pp. 96-108, http://dx.doi.org/10.1016/B978-0-
12-330050-8.50008-1, URL https://www.sciencedirect.com/science/article/pii/
B9780123300508500081.


http://dx.doi.org/10.1038/s41592-018-0005-3
http://dx.doi.org/10.1038/s41592-018-0005-3
http://dx.doi.org/10.1038/s41592-018-0005-3
http://dx.doi.org/10.1364/OL.393534
http://www.osapublishing.org/ol/abstract.cfm?URI=ol-45-12-3184
http://dx.doi.org/10.1016/0030-4018(69)90052-2
http://dx.doi.org/10.1016/0030-4018(69)90052-2
http://dx.doi.org/10.1016/0030-4018(69)90052-2
https://www.sciencedirect.com/science/article/pii/0030401869900522
https://www.sciencedirect.com/science/article/pii/0030401869900522
https://www.sciencedirect.com/science/article/pii/0030401869900522
http://dx.doi.org/10.1137/1.9780898719277.ch3
http://dx.doi.org/10.1137/1.9780898719277.ch3
http://dx.doi.org/10.1137/1.9780898719277.ch3
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719277.ch3
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719277.ch3
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9780898719277.ch3
http://dx.doi.org/10.1201/9780367806941
http://dx.doi.org/10.1137/1.9781611972344.ch2
http://dx.doi.org/10.1137/1.9781611972344.ch2
http://dx.doi.org/10.1137/1.9781611972344.ch2
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611972344.ch2
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611972344.ch2
http://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611972344.ch2
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1364/OL.38.002889
http://dx.doi.org/10.1364/OL.38.002889
http://dx.doi.org/10.1364/OL.38.002889
http://ol.osa.org/abstract.cfm?URI=ol-38-15-2889
http://ol.osa.org/abstract.cfm?URI=ol-38-15-2889
http://ol.osa.org/abstract.cfm?URI=ol-38-15-2889
http://dx.doi.org/10.1186/2192-2853-2-5
http://dx.doi.org/10.1186/2192-2853-2-5
http://dx.doi.org/10.1186/2192-2853-2-5
http://dx.doi.org/10.1364/BOE.4.002644
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-4-11-2644
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-4-11-2644
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-4-11-2644
http://dx.doi.org/10.1364/JOSAA.37.000154
http://dx.doi.org/10.1364/JOSAA.37.000154
http://dx.doi.org/10.1364/JOSAA.37.000154
http://josaa.osa.org/abstract.cfm?URI=josaa-37-1-154
http://dx.doi.org/10.1038/s41596-020-00428-7
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1109/MSP.2006.1628876
http://dx.doi.org/10.1038/nphoton.2013.350
http://dx.doi.org/10.1364/JOSAA.2.000121
http://josaa.osa.org/abstract.cfm?URI=josaa-2-2-121
http://josaa.osa.org/abstract.cfm?URI=josaa-2-2-121
http://josaa.osa.org/abstract.cfm?URI=josaa-2-2-121
http://dx.doi.org/10.1364/AO.54.009213
http://ao.osa.org/abstract.cfm?URI=ao-54-31-9213
http://ao.osa.org/abstract.cfm?URI=ao-54-31-9213
http://ao.osa.org/abstract.cfm?URI=ao-54-31-9213
http://dx.doi.org/10.1364/BOE.7.003940
http://dx.doi.org/10.1364/BOE.7.003940
http://dx.doi.org/10.1364/BOE.7.003940
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-10-3940
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-10-3940
http://www.osapublishing.org/boe/abstract.cfm?URI=boe-7-10-3940
http://dx.doi.org/10.1038/s41566-020-0638-5
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
http://dx.doi.org/10.1016/B978-0-12-330050-8.50008-1
https://www.sciencedirect.com/science/article/pii/B9780123300508500081
https://www.sciencedirect.com/science/article/pii/B9780123300508500081
https://www.sciencedirect.com/science/article/pii/B9780123300508500081

	Tomographic single pixel spatial frequency projection imaging
	Introduction
	Single pixel spatial frequency projection (SFP) imaging
	Modulation of the field
	The three dimensional illumination field
	SPIFI and CHIRPT
	Forward and inverse operators for SFP imaging

	CHIRPT imaging
	One-dimensional CHIRPT imaging
	SPIFI imaging
	Two-dimensional (2D) transverse CHIRPT and SPIFI imaging
	Two-dimensional axial CHIRPT imaging: single pixel fluorescent holography


	Spatial frequency projection tomographic imaging
	Lateral SFP tomography
	Fourier SFP tomography
	Generalized transverse SFP tomography
	Fluorescent diffraction tomography

	Aberrations in single pixel SFP tomography
	Discussion
	SFP imaging with a single pixel provides improved image quality
	Analytic inverse operators enable imaging of large fields of view
	Coherent imaging with incoherent light emission
	Computational three dimensional imaging
	SFP imaging speed

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


