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ABSTRACT

Functionally graded surfaces — surfaces with properties that
are engineered to have spatial variations — have numerous
applications such as micropumps, auto-mixers, and flow control
for lab-on-chip devices. Manufacturing of functionally graded
surfaces is an increasingly important topic of research. This
study investigates the feasibility of creating a functionally
graded surface during channeling of borosilicate glass by the
electrochemical discharge machining (ECDM) process. The
ability to create surface roughness gradients in microchannels
during the machining process was demonstrated by modifying
the input voltage, tool feed rate, and tool rotation speed.
Microchannels with graded surface roughness having Ra values
ranging from 0.35 to 4.07 um were successfully machined on
borosilicate glass by ECDM. Surface profiles were obtained via
a stylus profilometer, and roughness values were calculated after
detrending and applying a Gaussian filter. To demonstrate the
process versatility, micro channels with increasing and
decreasing Ra values were machined, one increasing from 1.43
um to 4.07 um, another decreasing from 3.29 um to 1.10 um. To
demonstrate the process repeatability, a micro channel with
similar surface roughness on both ends and a lower Ra value in
the center was created. In this channel, the Ra value at the start
is 0.35 um, reducing to 0.24 um, then rising again to 0.38 um in
the final section.

Keywords: Electrochemical discharge machining, ECDM,
microchannels, functionally graded surface

1. INTRODUCTION

Functionally graded materials (FGM) are materials whose
composition or properties are designed to vary from one area to
another. Examples of FGM can be found in thermal barrier
coatings on turbine blades [1], some density-graded solar cells
[2], bio-active coatings for medical purposes [3,4], and many
others. However, there are cases where it is desirable to grade
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only the surface properties of a feature, such as for mixing in
microchannels [5]. Lab-on-chip technologies increasingly have
a need for simple ways to control fluid flow through increasingly
smaller channels.

The effect of surface geometry on fluid flow, particularly in
microchannels, has been well documented in literature [6-12]. It
was reported that the effect of surface roughness on the pressure
drop increases significantly at the micro scale [7]. One study
reported the use of a surface roughness gradient as part of a
micropump design [10] and another demonstrated the effective
use of structured rough surfaces to guide droplet movement [11].
These studies primarily utilized deterministic features such as
regularly spaced pillars to create a defined surface roughness.
However, one study investigated the effects of random surface
roughness resulting from mircomilling on blood flow through
microchannels, and found that there was a significant drop in the
apparent viscosity of blood and water in the milled surfaces [12].
As concluded in these works and others, surface geometry plays
a large role in the behavior of fluids in microchannels.

The microchannels in this study are created in borosilicate
glass. Glass is a highly desirable material, especially in the
biomedical field, for its optical properties, chemical inertness,
and heat resistance [13-15]. However, it is relatively difficult to
machine, particularly at the microscale [15,16]. Electrochemical
discharge machining (ECDM) provides a nontraditional way to
machine nonconducting materials such as glass at the micro
scale. ECDM is a process in which a DC voltage is applied across
two electrodes submerged in an electrolyte. The machining tool
acts as the cathode, and the anode is a larger electrode. Due to
electrolysis, gas bubbles begin to form around the tool,
eventually coalescing to create a gas film. Once a critical voltage
is reached, sparks occur at the tool, leading to material removal
of the nearby workpiece via melting, vaporization, and chemical
action due to the localized rapid heating of electrolyte [17-19]. A
schematic of this process is shown in Figure 1.
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FIGURE 1: Schematic of ECDM mechanism. (A) Electrolysis forms
gas bubbles around the tool. (B) Bubbles coalesce to form an isolating
gas film. (C) Spark discharge occurs. (D) Workpiece material is
removed.

Some studies have looked at the surface morphologies
resulting from different process parameters such as tool feed rate,
electrolyte concentration, applied voltage, etc. [20,21]. The
objective of this study is to demonstrate that the surface
roughness resulting from machining microchannels via ECDM
can be explicitly controlled to create functionally graded
channels during the machining process. It is known that channel
wall roughness is linked with hydrophobicity and greatly affects
flow rate at the microscale [8,22], thus the flow properties can be
controlled to an extent without the use of external forces. This
has potential applications for a number of microfluidic purposes
such as lab-on-chip devices and auto-mixers.

2. MATERIALS AND METHODS

The 3-axis micro-ECDM setup is detailed in Figures 2 and
3. The tool—a 0.5 mm tungsten carbide rod—was mounted in a
spindle attached to a micro-stepper motor acting as the Z-axis.
The borosilicate glass workpiece was fixtured in an acrylic tank
whose X-Y position was controlled by two more micro-stepper
motors. To provide a pulsed voltage, the DC power supply was
connected to a pulse width modulator (PWM). The frequency
and duty cycle were set to 300 Hz and 50%, respectively [23].
The anode was a Ti-6Al-4V plate, and the tool-workpiece gap
was set to a nominal 45 pm. The tank was then filled with 0.5
molar sodium hydroxide such that the length of tool immersed in
the electrolyte was 2 mm [23,24].
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FIGURE 2: Schematic of micro ECDM setup.
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FIGURE 3: Experimental ECDM setup.

Experiments consisted of varying voltage, feed rate, and tool
rotation speed at set intervals to create distinct sections within a
machined channel, denoted as “Section A”, “Section B”, etc.
Each parameter set was used to machine for a distance of 3 mm
so the analysis of the final surface would not be affected by end
conditions of the channel or transition zones between sections.
For example, a channel that is graded using two tool rotation
speeds (measured in rotations per minute, or RPM) began
machining with the first RPM setting and after 3 mm of
machining had been completed, the system was switched to the
second RPM setting without stopping or interrupting the
machining process.

2.1 Data Analysis

The surfaces in this study are characterized by obtaining a
profile with a profilometer, then surface roughness was
quantified by the arithmetical mean deviation (Ra). The surface
profile of each machined channel was obtained using a Mitutoyo
SJ-410 stylus profilometer. Using MATLAB, the profile was first
detrended to compensate for tilt in the system before applying a
Gaussian filter [25]. In order to eliminate waviness caused by the
eccentricity of the stage, the cut-off value was set to 0.3048
mm—the known eccentricity of the stage’s lead screw. The
resulting profile was taken as the mean line, and the roughness
profile was calculated as the resultant high-pass component.
Some samples were also imaged using a scanning electron
microscope (SEM) after sputtering with gold.
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3. RESULTS AND DISCUSSION

Two-section channels were machined, demonstrating the
ability to significantly change the surface roughness during
machining. Figure 4 shows a channel in which the surface
roughness significantly decreases from the first section to the
second. This channel was machined with constant applied
voltage of 75 V and tool rotation of 1200 RPM while the tool
feed rate was varied. The first section was machined at a feed
rate of 2.0 pm/s, which was increased to 6.0 pm/s after a set time
to create the second section. The calculated Ra values are 1.93
and 1.05 um, respectively. The green highlighted portions of the
profile show the data used to calculate the roughness parameters.
The SEM images highlight the differences in the surfaces of the
two sections, with Section A showing more asperities, possibly
caused by the increased number of sparks per area due to the
slower feed rate [26].

Figure 5 shows another channel where the Ra value
drastically increases between sections. The applied voltage and
tool feed rate were held constant at 75 V and 6.0 pum/s,
respectively. Machining began with a tool rotation speed of 1200
RPM, which was then turned off for Section B. The resulting Ra
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FIGURE 4: Top: Surface and roughness profiles and SEM images of
two-section functionally graded channel with decreasing surface
roughness. Machining parameters were input voltage of 75 V and tool
rotation speed of 1200 RPM. The feed rate began at 2.0 um/s, then
changed to 6.0 pm/s after 3 mm were machined. Bottom: SEM images
of surfaces.
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FIGURE 5: Top: Surface and roughness profiles and SEM images of
two-section functionally graded channel with increasing surface
roughness. Machining parameters were input voltage of 75V, tool feed
rate of 6.0 um/s, and tool rotation speed of 1200 RPM. After 3mm, the
tool rotation was turned off to create the second section. Bottom: SEM
images of surfaces.

values were 0.75 and 2.61 pm, respectively. The SEM images
show glass re-melt in Section B not seen in Section A, likely the
result of the lack of tool rotation.

Tool rotation is known to improve the circulation of the
electrolyte and to help clear out debris from material removal,
and it avoids discharge energy being focused in one area [27].
This explains the high instance of glass remelt areas found in
Section B, but not Section A. It has been reported that increasing
the tool rotational speed effectively decreased surface roughness,
as the gas film thickness becomes thinner and more homogenous
with increasing tool rotation [28].

Expanding on the results of the two-section channels, Figure
6 shows a three-section channel with a more gradual decrease in
surface roughness. This gradient was created by increasing tool
rotation as machining progressed from 0 to 1200 to 3000 RPM
while applied voltage and feed rate were held constant at 80 V
and 10.0 pm/s, respectively, again demonstrating the effects of
tool rotation on surface roughness.

In contrast, by instead increasing the machining voltage in
increments of 5 V (70, 75, then 80 V) while feed rate was held at
10.0 pm/s and rotation was set to 3000 RPM, another channel
was made with gradually increasing roughness (Figure 7). The
higher voltage results in an increase in the rate of gas bubble
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FIGURE 6: Surface and roughness profiles of 3-section channel
machined at 80 V, feed rate of 10 um/s, with tool rotation speeds
varying from 0 RPM in Section A to 1200 RPM in Section B to
3000 RPM in Section C.

formation, leading to more spark generation [29]. This means
that at higher applied voltage, there is higher discharge energy,
leading to a higher material removal rate (MRR). At the same
feed rate as in Sections A and B, the higher MRR caused
increased surface roughness.

To demonstrate the process repeatability, a micro channel
was successfully machined with an “A-B-A” pattern—the
surface roughness on the ends of channel is roughly equal, while
the center section has a lower Ra value. This channel was made
by varying the feed rate, beginning at 4.0 um/s, increasing to 6.0
pum/s for Section B, then ending with 10.0 um/s in the final
section, shown in Figure 8. The applied voltage was a constant
75 V and tool rotation was set at 3000 RPM.

The reason different feed rates were required to achieve
similar roughness values for Sections A and C is likely due to the
extended machining time. The setup used is a closed system,
resulting in the temperature of the electrolyte increasing over
time, which is known to increase the conductivity of the
electrolyte and to affect the gas film [21,30,31]. It should be
noted that both increasing and decreasing surface roughness
gradients were achieved, implying that while temperature of the
electrolyte is an important factor, it does not dominate these
results.
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FIGURE 7: Surface and roughness profiles of 3-section channel

machined at a feed rate of 10 um/s, tool rotation speed of 3000 RPM

and three voltage settings: 70 V, 75 V, then 80 V in Sections A, B, and

C, respectively.
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FIGURE 8: Surface profiles of “A-B-A” three-section channel with
lower surface roughness in the center, and equal roughness on both ends.
The channel was machined at 75 V, 3000 RPM tool rotation, and with
4.0, 6.0, and 10.0 pm/s feed rates for Sections A, B, and C respectively.

4. CONCLUSION

This study has successfully demonstrated the ability to
create a functionally graded channel in glass with a single ECDM
operation. By adjusting standard machining variables such as
voltage, feed rate, and tool rotation speed, we were able to
control the resultant surface roughness. This provides a simple
way to not only tailor the surface geometry of glass
microchannels without necessitating a second process, it also
demonstrates that a specified surface roughness gradient can be
produced simultaneously to machining.
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