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Abstract—The subgraph matching problem arises in a number
of modern machine learning applications including segmented
images and meshes of 3D objects for pattern recognition, bio-
chemical reactions and security applications. This graph-based
problem can have a very large and complex solution space
especially when the world graph has many more nodes and
edges than the template. In a real use-case scenario, analysts
may need to query additional information about template nodes
or world nodes to reduce the problem size and the solution
space. Currently, this query process is done by hand, based
on the personal experience of analysts. By analogy to the well-
known active learning problem in machine learning classification
problems, we present a machine-based active learning problem
for the subgraph match problem in which the machine suggests
optimal template target nodes that would be most likely to reduce
the solution space when it is otherwise overly large and complex.
The humans in the loop can then include additional information
about those target nodes. We present some case studies for both
synthetic and real world datasets for multichannel subgraph
matching.

I. ACTIVE LEARNING

Active learning is an area of research in statistical machine
learning that brings a subject matter expert (SME) into the
actual algorithm for classification of points in a dataset.
Supervised machine learning algorithms involve an abundance
of labels. In the real-world however, unlabeled data is common
and accurate labeling may require human involvement that can
not be crowd-source due to privacy or security reasons. Semi-
supervised methods use significantly fewer training points.
At the same time, the choice of labelled data often affects
classifier performance. Active learning involves the use of
an algorithm or formula to choose individual data points for
labeling by a SME, the results of which are then included
in a semi-supervised learning problem. This procedure can
be iterated sequentially or in batch. These methods iterate
between: (1) training a model given the current labeled data
(2) choosing a set of active learning query points in the
unlabeled set according to an acquisition function (also called
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an active learning criterion). Most active learning acquisition
functions for statistical belong to one of a few categories:
uncertainty [42], [21], [14], margin [47], [2], [22], cluster-
ing [13], [28], and look-ahead [56], [5]. Fig 1 shows a diagram
of active learning in machine classification. Perhaps a more
relevant delineation is between sequential active learning and
batch active learning. In the sequential case, one unlabelled
node at a time is given to the human in the loop to label,
whereas in batch learning, a batch of nodes are processed
together. This distinction is also relevant for active learning
for subgraph matching.

machine learning

learn a model

labeled
training set

unlabeled pool

u

select queries
oracle (e.g., human annotator)

Fig. 1: Active learning flowchart for statistical machine learn-
ing classifier from [42]. The selected queries are often deter-
mined by an acquisition function.

Researchers are interested in introducing active learning into
the network alignment problem, which tries to find an optimal
mapping of graph nodes with maximum similarity between
the nodes and edges. In the network alignment problem,
usually a cost function is defined to measure the difference
between the nodes and edges. The optimal solution with
least cost is given by updating the probability distribution
for each node. Previous research shows that better alignment
can be achieved by introducing interaction with a human to
obtain extra information on certain nodes. For example, in
[41], researchers compare three probability matrix based query
strategies. In [10], active learning is introduced after a machine
learning on the cost function. In [30], instead of asking for
exact information on certain nodes, the research examines
more ambiguous query questions.
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Active learning algorithms have not been seriously studied
for subgraph isomorphisms however their need is justified
by the complexity of the solution space common for such
problems. First we review the multiplex network defined in
[36].

Definition 1 (Multiplex Network). A multiplex network G =
(W, E,L,C) is a set of nodes (frequently called vertices),
directed edges between the nodes, labels on the nodes, and
channels on the edges. The number of nodes is denoted n. Each
node v € V has a label L(v) belonging to some arbitrary set
of labels. There can be any number of edges between each pair
of nodes (u, v) in either direction. Each edge belongs to one of
the channels C. Edges between the same pair of nodes in the
same channel with the same direction are indistinguishable.
The function € : V x V — NIl describes the number of edges
in each channel between each pair of nodes. In particular,
E(u, V) can be represented as a |C|-dimensional vector the k™
element of which is the number of edges from node u to node v
in the k™ channel. |E|, denotes the number of distinguishable
edges in G.

The subgraph matching problem can be succinctly stated:
Given two multiplex networks, a template G, = (Vy, &, Ly, C)
and a world G,, = (W, Eu, L4, C), we explore the space of
all subgraphs of the world that match the template. There are
several closely related problems with different computational
costs. Each of these problems relies on the same concept of a
multiplex subgraph isomorphism (SI) as described in [36].

Definition 2 (SI: Subgraph Isomorphism)). An injective func-
tion f : Vi — Vy, is called a subgraph isomorphism (SI) from
gt = (Vtagtaﬁtvc) to gw = (Vwangﬁwvc) lf
Li(v) = Lu(f(v))
E(u,v) < &y (f(u), f(v))

The set of all Sls from G to G, is denoted F(Gt, Guw).

VVEVt
VU,V € Vt X Vt.

This definition allows for isomorphisms in which the world
graph has more edges than the template. An induced subgraph
is a special case in which the edge count in the template
and world are the same for those nodes in the template and
its image. Despite this very simple definition, real world,
synthetic, and benchmark examples illustrate the complexity
of the solution space. For example, for single channel (single
edge-type) networks, there are several benchmark datasets
[44], [12], [45], [17], [32] for which the total SI count ranges
from zero to 10%%%, approximately [53]. The need for a
SME/analyst team for multiplex subgraph matching is illus-
trated quite well by the benchmark datasets developed under
the DARPA MAA program (Modeling Adversarial Activity)
[40]. The theme of this program involves template graphs that
describe a series of actions and the world graph is constructed
from relevant data. We review several examples from the
MAA program along with a transportation example from the
public domain. We describe how an active learning scenario
could be implemented in the context of constraint propagation
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algorithms for subgraph matching. A flowchart describing how
this approach might be used in a real world setting in shown
in Fig. 2. In this paper the subgraph matching algorithm in
the flowchart is one of constraint propagation. It determines
potential candidate world nodes to match to each template
node. In the next section we review algorithms for subgraph
matching and discuss how the active learning framework is
combined with subgraph search strategies.

II. ALGORITHMS FOR SUBGRAPH MATCHING

Most algorithms for subgraph isomorphisms use one of
three approaches [6], [7]: tree search, constraint propagation,
and graph indexing. Tree search is one way to find subgraph
isomorphisms. The bookkeeping keeps track of a search state
while navigating the tree of possible search states, backtrack-
ing when reaching the end of a branch. This approach has
considerable computational complexity and thus refinement of
the search space is needed to avoid unnecessary branches. Tree
search methods include Ullmann’s algorithm [50], VF2 [11]
and its variants (VF2Plus [8], VF3 [6], [7], VF2++ [23]), and
for specific graphs, RI/RI-DS [4].

Constraint propagation approaches cast the problem as a
constraint satisfaction problem. One keeps a record of world
nodes that are possible matches for each template node.
By repeatedly applying local constraints, the candidate list
is reduced until only a few possible matches remain. This
approach can be combined with a tree search to solve the
subgraph matching problem. Examples of constraint propaga-
tion approaches include McGregor [34], nRF+ [27], ILF [54],
LAD [43] (and its variants, IncompleteLAD and PathLAD
[26]), McCreesh and Prosser (Glasgow) [31], and FocusSearch
[51]. A multiplex subgraph matching code was introduced in
[35], [36] for multichannel/multi-edge templates and world
graphs including some of the DARPA MAA datasets. These
are the class of methods that we explore for the active
learning problem. The primary code we used for filtering is a
multichannel adaptation of the Glasgow solver [33], detailed
in [53].

The subgraph matching problem includes several different
levels of solutions for subgraph isomorphisms, enumerated in
Table I - the subgraph isomorphism problem (SIP), the signal
node set problem (SNSP), the minimum candidate set problem
(MCSP), the subgraph isomorphism counting problem (SICP),
and the subgraph matching problem (SMP).

Problem
SIP

Description
Check if there are any Sls.

SNSP Find all the world nodes involved in SIs.

MCSP Find all pairs (u,v) where u = f(v) for some SI f.
SICP Count the number of SIs.

SMP Find all the SIs.

TABLE I: A summary of the various problems for subgraph
isomorphisms, in increasing order of computation cost [36].

The subgraph matching problem is combinatorially com-
plex. This is largely due to two features of the problem (a)
that the world graph has additional nodes and edges that
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Fig. 2: Active learning flowchart for subgraph matching. A subgraph matching algorithm determines all potential candidates
for template nodes (using constraint propagation). An active learning algorithm determines the optimal nodes for SMEs to
obtain additional constraints/information. This is fed back into the subgraph matching algorithm.

are equally good candidates for components of the template
graph and (b) the template has nodes and edges that are
interchangeable. These are forms of equivalence that have
been explored recently in the literature [49], [53] to reduce the
complexity of the solution space by providing a categorization
of groups of nodes that can be interchanged.

The problem we are interested in is to solve the SMP
while simultaneously ruling out SIs that can be eliminated by
additional information that is available or potentially available
to SMEs and analysts. The end goal is to have a final solution
to the SMP, after elimination of extraneous SIs, that has a
modest solution count and provides a final list of SIs that are
clearly of interest to the the application problem. The SMEs
are part of the active learning procedure, providing information
based on active learning queries. We propose some strategies
for these queries in the next section.

ITII. ACTIVE LEARNING FOR SUBGRAPH MATCHING

One might have the objective to identify one specific sub-
graph isormorphism by restricting the candidate nodes/edges
in the world graph. There are a number of reasons why this
would be - for example if the knowledge graph represents
data related to an investigation involving an unknown actor,
such as in a homicide investigation or a serial offender, it
would be important to identify the actual person involved.
The consequences of misidentifying someone could be grave -
both for the person wrongly identified and for potential future
victims of the actual person involved. In some cases there
could be more than one subgraph isomorphism of relevance,
for example in the case of identifying different but equally
important pathways in a biochemical reaction network or the
case of identifying groups involved in human trafficking or
smuggling. Likewise, organizations or people interested in
identifying those wrongly accused of crimes could look at a
knowledge graph of information that might present alternate
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scenarios. In a real life setting, this could entail addition
additional constraints added to the problem space such as
attributes for the nodes (e.g. names, dates, times etc). It
could also involve addition of more data. Such information
might come at a cost and therefore it would be of interest to
understand strategies to reduce the complexity of the solution
space with the minimal cost.

Here we look at some examples of multichannel networks in
which the solution space is combinatorially large. We look at
the probablity of fixing the candidate nodes for a small number
template nodes and we ask the question - which template nodes
should be chosen so as to reduce the complexity of the solution
space the most?

Below we propose a few simple querying strategies for
active learning to reduce the solution space. The querying
strategies are carried out after first running the constraint
propagation algorithm to determine a potential list of candidate
nodes. In numerical examples in this paper we choose simple
filtering strategies without extensive tree searches. Thus we
are not solving the SNSP or MCSP in full, rather providing
a pared down list of candidates under consideration for the
subgraph matching problem. The reason for this is that an
active learning method requires code that can run in real time
for analysts and this will be essentially guaranteed for the
constraint filters but not for extensive tree searches to validate
all the candidates.

IV. QUERYING STRATEGIES FOR TEMPLATE NODES

This paper focuses on querying strategies for template
nodes. These are the easiest to analyze and visualize by
displaying the candidate counts for each template node, with
the templates being small enough that they can be displayed
simply in a two dimensional diagram. Such a strategy is also
important for SME/analysts to interact with the active learning
algorithms. Below we present several strategies for choosing
template nodes to query.
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A. Local template-based strategies
First we consider two simple strategies:
« choose the template nodes with the largest degree cen-
trality measure (number of edges connecting that node)
e choose the nodes with largest sum of the number of
candidates for neighboring template nodes

B. Edge entropy

We introduce a notion of “edge entropy”. One purpose of
the query is to simplify the complex part of the graph to enable
less costly tree searches. Shannon’s entropy is one tool to
measure complexity. In the subgraph matching problem, the
mapping of an edge is usually more complex than the mapping
of a node. We define the following edge entropy:

— > pilog(pi), (D
i

where p; is the probability that the mapping of an edge to its

candidate set passes the local filter in the affected region. Here

1 is summed over all edges connected to the node in question

and the entropy measure is assigned to that node.

3 candidates for orange node
Edge A

All the possible edges that edge A can be mapped to in the world graph

Fig. 3: Edge entropy toy example

Fig. 3 shows a toy example, in which we want to query
information for the orange node, connected to edge A. In
the world graph, this edge can be mapped to nine possi-
ble candidate edges. There are three cases that the orange
node can map to. In the first case, there are three edges
connected to the selected world node. So the probability in
this case is 1/3. Similarly the probability for the remaining
edges are 2/9 and 4/9 So the edge entropy of this edge is
—(3log(3) + 2log(2) + 5log(3)). For each template node,
we calculate the sum of edge entropies of all the edges that
are incident to the template node.

While pruning the candidate list, we may run into cases
where the size of the candidate set is too large. In this case,
we are unlikely to find all the subgraph isomorphisms using
tree search because of limited computation time and resources.
By introducing active learning in the pruning of candidate list,
we can query information about a certain nodes or edges in
the template or world graph to reduce the candidate list to an
acceptable size. The problem of determining the nodes and
edges to query is the active learning problem in subgraph
isomorphism problem. Below we show some examples using
datasets for multichannel networks.
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V. IvYSYS V7 - SUM OF CANDIDATES

We show an example from IvySys Version 7 [1], developed
by Ivysys technologies for the DARPA MAA program, with
three channels corresponding to financial, communication and
logistics transactions. This dataset has a template with 92
nodes and 195 edges. The world graph has 2,488 nodes and
5,470,970 edges. To date the entire solution space has not
been solved for, although a representative solution with over
109 isomorphisms is identified in [53]. The template has
a tree-like sparse structure, resulting in no unique candidates
after applying different levels of filtering methods, as seen in
Fig. 4 (left).

We can significantly reduce the solution space by query-
ing key nodes, selected according to the maximum sum of
neighboring candidates (see Fig. 4 (right - the nodes are dark
green)). We note that the degree centrality metric identifies
five out of six of the same query nodes in this example.
The edge entropy criterion identifies the same six nodes but
with a different ordering. The sixth one is the query node
that does not have many leaves. Based on the query from
the active learning criteria, we specific world nodes to the
queried template nodes. We chose world nodes from the first
isomorphism found by the code from [53], as a proxy for
additional information supplied by SMEs. After fixing the
queried nodes, the remaining candidates in the center of the
template are reduced significantly, mostly to a single world
node or a few world nodes. This example has a network struc-
ture reminiscent of core-periphery structure [39]. However,
the leaf nodes connecting to the core nodes still have many
candidates. Due to large equivalence classes in the template
and world graph [53], [37], the number of solutions for the
SMP problem is still huge. That said, one can still obtain
useful information for SMEs and analysts with a Venn diagram
representation of candidates for several equivalence classes as
shown in Fig. 4 in the bottom row. It shows the intersection
of candidate sets of the largest three equivalent classes in the
template. The difficulty of the subgraph isomorphism comes
from the alldifferent problem [38] in assigning the template
nodes to its candidate set. But analysts can get an idea of what
the solution space looks like before solving the all-different
problem. The Venn Diagram itself could be incorporated into
a computational tool in which an analysts could click on a
portion of the Venn diagram to obtain an itemized list of those
candidates.

VI. EXAMPLE FROM PNNL REAL WORLD

This dataset was made by Pacific Northwest Nationabl Lab
from a social media dataset collected by Matteo Magnani and
Luca Rossi [9], [29]. It involves friend/follower relationships
on three social media platforms, each of which corresponds to
a channel. The template graph has 35 nodes and 158 edges and
is an induced subgraph in the world graph.The world graph
has 6,407 nodes and 74,862 edges in six channels. Additional
SI solutions can be found with additional edges. We use the
induced subgraph as “ground truth” for our query analysis.
We refer to this dataset and its induced subgraph template as
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Fig. 4: (Top left) Number of candidates for querying the nodes of ivyvys v7 template after implementing the main filters
in [53]. The template nodes with the highest degree centrality are marked in purple. (Top right) Number of candidates after
querying the template nodes with maximum sum of neighboring candidates, using the first isomorphism in the first found
representative solution using the code in [53]. (bottom) The overlapping structure of candidate sets after the query. The circles
in the Venn diagram represent the candidate sets of the nodes in the template with corresponding color - Set A (red nodes),

Set B (green nodes), Set C blue nodes).

the “PNNL Real World dataset”. An analysis in [36] found a
total of 2.12 x 10'2 isomorphisms using all filters including
the elimination filter which performs a final tree search. Fig.
5 shows the template for this subgraph matching problem in
which each node has listed the number of candidates from the
world graph after applying the node level statistics, topology,
repeated-set, and neighborhood filters (but not elimination
filter) [36]. For this reason the candidate counts are slightly
higher than what are shown in [36] and are more realistic for
an active learning scenario when there may not be sufficient
time to run extensive tree searches, especially when additional
information can be added to greatly reduce the solution space.
The entropy values of each of the template nodes are shown in
the top right. The full candidate count is shown in the bottom
figures for two choices of queries - on the left the top two
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entropy node are chosen. On the right the third and fourth
highest entropy nodes are chosen. The choice of the highest
entropy nodes clearly has a much smaller solution space than
the resulting solution space for the alternate choices. We also
tried the sum of neighboring candidate counts as a metric and
found that we needed to query the top three nodes with that
metric to get the same reduction of the solution space as what
was found by querying the top two nodes according to the
entropy metric.

In summary, For PNNL real world, the two nodes selected
by the sum of candidates for neighboring nodes also have high-
est entropy. However the nodes with highest degree centrality
are different and only have one candidate each after applying
the basic filters. Selecting nodes with higher entropy performs
much better than selecting nodes with lower entropy.
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Fig. 5: (Top left) Number of candidates of PNNL real world template, after running basic filters. The template nodes with the
highest degree centrality are marked in purple. Notice that they each only have one candidate node and are thus not useful
to query in an active learning scenario. (Top right) Entropy values for each each template node. (bottom left) Number of

candidates after querying the two nodes with highest entropy.

(Bottom right) Number of candidates after querying the the

nodes with third and fourth highest entropy rather than the top two highest entropy.

VII. EXAMPLE FROM GREAT BRITAIN TRANSPORTATION
NETWORK

The Great Britain Transportation Network [15] is comprised
of the public transportation dataset available through the
United Kingdom open-data program [52] with timetables of
domestic flights in the UK. It is a multiplex time-dependent
network. There are six channels involving different trans-
portation methods, including bus, air, ferry, railway, metro,
coach. This dataset has 262,377 nodes and 475,502 edges.
The original dataset can be found at [16]. The authors of [36]
have an online interactive map [20] for users to visualize the
template. We use the template graph constructed in [36]. The
authors identified a small set of locations that interact with
each other through all channels (excluding airlines, since this
channel is very sparse). If a location involves all five non-air
channels in the network, we assume that it is important. There
are only three nodes that interact in the 5 non-air channels,
and they randomly chose one of them as the template center,
specifically the Blackfriars Station in London. Starting from
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this node,they used a random walk to create a template with 53
nodes and 56 edges. As in the previous example the template
comes from an induced subgraph in the world network which
serves as the “ground truth” for the active learning problem.

After iteratively applying filters, the candidate number for
each node is large for every template node, which would result
in a long time for a tree search to solve the MCSP or the
SMP. Considering the cities each node represent in real life,
the subgraph isomorphism problem only has one “correct”
solution. So acquiring additional information is necessary. The
template can be divided into two parts. On the left and bottom
part there are two tree-like tails. The rest of the graph is
the core part which is relatively dense. In the tail part, we
determine that a node in the middle of the tail is the optimal
choice however it does not have maximal entropy nor maximal
sum of neighboring candidates. This is shown in Fig 6 top
right. The same figure on the bottom shows results for max
sum of candidate nodes vs. max entropy queries. The max
sum of candidate nodes outperforms the max entropy metric
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for this example. The optimal choice would actually take the
entropy nodes and replace the node towards the end of the long
tail with the middle node in the top right panel. We found this
node by trial and error and this suggests that there are going
to be some examples for which other metrics are needed to
optimize the choice of query nodes. This is also still an open
and active problem for statistical machine learning as well.

VIII. CONCLUSIONS AND FUTURE WORK

The subgraph matching problem is usually related to con-
crete real life problems. Graphs created from such problems
typically have a combinatorially complex solution space. Even
with edge and node attributes, the solution space can be large
[49]. We have defined a methodology for introducing active
learning to the subgraph matching problem. It involved a feed-
back mechanism between a computer supplying information
and suggesting nodes to query for maximal benefit, and SMEs
and analysts introducing additional information to reduce the
problem space. In this work we introduced several strategies
for querying template nodes and discussed their performance
on two datasets from the DARPA MAA program and from
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one public dataset involving the transportation network of
Great Britian. The examples showed some promise for us-
ing measures such as the sum of candidates of neighboring
template nodes and an edge entropy measure to optimize the
use of information to reduce the solution space. Our examples
also show that the degree centrality may not be as useful
for identifying query nodes in the template. For the Ivysys
V7 example, the sum of neighboring candidate metric was
explored with six query nodes. The edge entropy criteria
found the same six nodes but with a different ordering. The
centrality measure found five of the six nodes. For the PNNL
real world example the edge entropy metric outperformed the
sum of neighboring candidates metric. We also show that
for the Great Britain Transportation Network, which involves
long chains that are commonplace in ground transportation
networks (subway and bus lines for example), that the methods
that work well in the previous examples are less helpful for the
long tail part of this structure. We find that the max candidate
metric outperforms the max entropy metric for this example.
The examples shown here suggest that the optimal choice of
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template nodes to query depends heavily on the graph topology
and structure and is an interesting problem for future research.
The calculations done here were performed with sequential
queries although these could also be done in batch processing.
The distinction between those cases is also an interesting topic
for further study.

An important future direction involves approaches for
querying the world graph nodes instead of the template nodes.
Two possible strategies include:

¢ querying the world node with highest degree.
o querying the world nodes that are the candidates of the
most template nodes.

Different querying options will have different costs in terms
of availability of data and time required to obtain additional
data. One might expect that querying a template node could
have higher cost than querying on the world node, however
this may depend on the application.

There are a number of algorithms and problems not con-
sidered here that are interesting choices for active learning
methods. For example, for the inexact subgraph match problem
[49], [25], [46], one can develop a similar strategy with
additional metrics for the closeness of the graph match. An-
other variant on the subgraph matching problem are pathway
identification in graphs [48]. In addition, structural equivalence
[53], [37] uses symmetries in the template and world graph
to reduce the complexity of the solution space and these
equivalences will also aid in the active learning problem. The
Ivysys example in this paper exhibits significant structural
equivalence. The use of such information can sometimes lead
to the difference between solving the SICP vs not solving it.

Finally we remark that the active learning strategies pro-
posed are very simple - they are based on easily computable
metrics. In the stastical machine learning setting, an active area
of research involves “look ahead” models that leverage the
classifier’s state to “look ahead” at what changes would occur
in the as a result of labeling an unlabeled point - references
include the seminal work of Zhu et al [56] as well as the
EMCM [5] and Maxi-Min “data-based norm” [24] methods.
For the subgraph matching problem, tree search methods and
additional constraint propagation methods could be part of
a look-ahead approach to further optimize active learning
queries, looking beyond graph neighborhood statistics. Graph
indexing approaches to the subgraph matching problem in-
cluding GraphQL [19], SPath [55], TurboISO [18], and CFL-
Match [3], use various pattern matching approaches, including
nonlocal ones, to solve the SMP. Their query-based format
may provide a useful structure for active learning.
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