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Active learning algorithms have not been seriously studied

for subgraph isomorphisms however their need is justified

by the complexity of the solution space common for such

problems. First we review the multiplex network defined in

[36].

Definition 1 (Multiplex Network). A multiplex network G =
(V, E ,L, C) is a set of nodes (frequently called vertices),

directed edges between the nodes, labels on the nodes, and

channels on the edges. The number of nodes is denoted n. Each

node v ∈ V has a label L(v) belonging to some arbitrary set

of labels. There can be any number of edges between each pair

of nodes (u,v) in either direction. Each edge belongs to one of

the channels C. Edges between the same pair of nodes in the

same channel with the same direction are indistinguishable.

The function E : V ×V → N
|C| describes the number of edges

in each channel between each pair of nodes. In particular,

E(u,v) can be represented as a |C|-dimensional vector the kth

element of which is the number of edges from node u to node v

in the kth channel. |E|
0

denotes the number of distinguishable

edges in G.

The subgraph matching problem can be succinctly stated:

Given two multiplex networks, a template Gt = (Vt, Et,Lt, C)
and a world Gw = (Vw, Ew,Lw, C), we explore the space of

all subgraphs of the world that match the template. There are

several closely related problems with different computational

costs. Each of these problems relies on the same concept of a

multiplex subgraph isomorphism (SI) as described in [36].

Definition 2 (SI: Subgraph Isomorphism)). An injective func-

tion f : Vt → Vw is called a subgraph isomorphism (SI) from

Gt = (Vt, Et,Lt, C) to Gw = (Vw, Ew,Lw, C) if

Lt(v) = Lw(f(v)) ∀v ∈ Vt

Et(u,v) ≤ Ew (f(u), f(v)) ∀u,v ∈ Vt × Vt.

The set of all SIs from Gt to Gw is denoted F(Gt,Gw).

This definition allows for isomorphisms in which the world

graph has more edges than the template. An induced subgraph

is a special case in which the edge count in the template

and world are the same for those nodes in the template and

its image. Despite this very simple definition, real world,

synthetic, and benchmark examples illustrate the complexity

of the solution space. For example, for single channel (single

edge-type) networks, there are several benchmark datasets

[44], [12], [45], [17], [32] for which the total SI count ranges

from zero to 10384, approximately [53]. The need for a

SME/analyst team for multiplex subgraph matching is illus-

trated quite well by the benchmark datasets developed under

the DARPA MAA program (Modeling Adversarial Activity)

[40]. The theme of this program involves template graphs that

describe a series of actions and the world graph is constructed

from relevant data. We review several examples from the

MAA program along with a transportation example from the

public domain. We describe how an active learning scenario

could be implemented in the context of constraint propagation

algorithms for subgraph matching. A flowchart describing how

this approach might be used in a real world setting in shown

in Fig. 2. In this paper the subgraph matching algorithm in

the flowchart is one of constraint propagation. It determines

potential candidate world nodes to match to each template

node. In the next section we review algorithms for subgraph

matching and discuss how the active learning framework is

combined with subgraph search strategies.

II. ALGORITHMS FOR SUBGRAPH MATCHING

Most algorithms for subgraph isomorphisms use one of

three approaches [6], [7]: tree search, constraint propagation,

and graph indexing. Tree search is one way to find subgraph

isomorphisms. The bookkeeping keeps track of a search state

while navigating the tree of possible search states, backtrack-

ing when reaching the end of a branch. This approach has

considerable computational complexity and thus refinement of

the search space is needed to avoid unnecessary branches. Tree

search methods include Ullmann’s algorithm [50], VF2 [11]

and its variants (VF2Plus [8], VF3 [6], [7], VF2++ [23]), and

for specific graphs, RI/RI-DS [4].

Constraint propagation approaches cast the problem as a

constraint satisfaction problem. One keeps a record of world

nodes that are possible matches for each template node.

By repeatedly applying local constraints, the candidate list

is reduced until only a few possible matches remain. This

approach can be combined with a tree search to solve the

subgraph matching problem. Examples of constraint propaga-

tion approaches include McGregor [34], nRF+ [27], ILF [54],

LAD [43] (and its variants, IncompleteLAD and PathLAD

[26]), McCreesh and Prosser (Glasgow) [31], and FocusSearch

[51]. A multiplex subgraph matching code was introduced in

[35], [36] for multichannel/multi-edge templates and world

graphs including some of the DARPA MAA datasets. These

are the class of methods that we explore for the active

learning problem. The primary code we used for filtering is a

multichannel adaptation of the Glasgow solver [33], detailed

in [53].

The subgraph matching problem includes several different

levels of solutions for subgraph isomorphisms, enumerated in

Table I - the subgraph isomorphism problem (SIP), the signal

node set problem (SNSP), the minimum candidate set problem

(MCSP), the subgraph isomorphism counting problem (SICP),

and the subgraph matching problem (SMP).

Problem Description

SIP Check if there are any SIs.
SNSP Find all the world nodes involved in SIs.
MCSP Find all pairs (u,v) where u = f(v) for some SI f .
SICP Count the number of SIs.
SMP Find all the SIs.

TABLE I: A summary of the various problems for subgraph

isomorphisms, in increasing order of computation cost [36].

The subgraph matching problem is combinatorially com-

plex. This is largely due to two features of the problem (a)

that the world graph has additional nodes and edges that

Authorized licensed use limited to: UCLA Library. Downloaded on June 02,2022 at 16:09:41 UTC from IEEE Xplore.  Restrictions apply. 













2648

template nodes to query depends heavily on the graph topology

and structure and is an interesting problem for future research.

The calculations done here were performed with sequential

queries although these could also be done in batch processing.

The distinction between those cases is also an interesting topic

for further study.

An important future direction involves approaches for

querying the world graph nodes instead of the template nodes.

Two possible strategies include:

• querying the world node with highest degree.

• querying the world nodes that are the candidates of the

most template nodes.

Different querying options will have different costs in terms

of availability of data and time required to obtain additional

data. One might expect that querying a template node could

have higher cost than querying on the world node, however

this may depend on the application.

There are a number of algorithms and problems not con-

sidered here that are interesting choices for active learning

methods. For example, for the inexact subgraph match problem

[49], [25], [46], one can develop a similar strategy with

additional metrics for the closeness of the graph match. An-

other variant on the subgraph matching problem are pathway

identification in graphs [48]. In addition, structural equivalence

[53], [37] uses symmetries in the template and world graph

to reduce the complexity of the solution space and these

equivalences will also aid in the active learning problem. The

Ivysys example in this paper exhibits significant structural

equivalence. The use of such information can sometimes lead

to the difference between solving the SICP vs not solving it.

Finally we remark that the active learning strategies pro-

posed are very simple - they are based on easily computable

metrics. In the stastical machine learning setting, an active area

of research involves “look ahead” models that leverage the

classifier’s state to “look ahead” at what changes would occur

in the as a result of labeling an unlabeled point - references

include the seminal work of Zhu et al [56] as well as the

EMCM [5] and Maxi-Min “data-based norm” [24] methods.

For the subgraph matching problem, tree search methods and

additional constraint propagation methods could be part of

a look-ahead approach to further optimize active learning

queries, looking beyond graph neighborhood statistics. Graph

indexing approaches to the subgraph matching problem in-

cluding GraphQL [19], SPath [55], TurboISO [18], and CFL-

Match [3], use various pattern matching approaches, including

nonlocal ones, to solve the SMP. Their query-based format

may provide a useful structure for active learning.
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