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Oceanic mesoscale currents (‘eddies’) can have significant effects on the distributions
of passive tracers. The associated inhomogeneous and anisotropic eddy fluxes are
traditionally parametrised using a transport tensor (K-tensor), which contains both
diffusive and advective components. In this study, we analyse the eddy transport tensor
in a quasigeostrophic double-gyre flow. First, the flow and passive tracer fields are
decomposed into large- and small-scale (eddy) components by spatial filtering, and the
resulting eddy forcing includes an eddy tracer flux representing advection by eddies and
non-advective terms. Second, we use the flux-gradient relation between the eddy fluxes
and the large-scale tracer gradient to estimate the associated K-tensors in their entire
structural, spatial and temporal complexity, without making any additional assumptions
or simplifications. The divergent components of the eddy tracer fluxes are extracted via
the Helmholtz decomposition, which yields a divergent tensor. The remaining rotational
flux does not affect the tracer evolution, but dominates the total tracer flux, affecting both
its magnitude and spatial structure. However, in terms of estimating the eddy forcing, the
transport tensor prevails over its divergent counterpart because of the significant numerical
errors induced by the Helmholtz decomposition. Our analyses demonstrate that, in general,
the K-tensor for the eddy forcing is not unique, that is, it is tracer-dependent. Our
study raises serious questions on how to interpret and use various estimates of K-tensors
obtained from either observations or eddy-resolving model solutions.
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1. Introduction

The focus of this study is on material transport by mesoscale eddies, which are defined
here as geostrophic currents with length scales shorter than approximately 200–500 km.
These currents have a significant influence on the distributions of various oceanic tracers.
Eddy tracer transport has been conventionally quantified by turbulent eddy diffusion –
this study describes the lateral eddy-induced tracer fluxes using an inhomogeneous and
time-dependent, two-dimensional K-tensor. We call it the ‘transport tensor’ because it
parametrises both diffusive and advective effects. From a practical point of view, the eddy
transport tensor can be used to represent eddy-induced fluxes in ocean models that either
completely miss the mesoscales or only partially resolve them. The approach is based
on the assumption of the flux-gradient relation: the eddy tracer flux is proportional to
(minus) the large-scale tracer gradient. It is implicitly assumed that the transport tensor
is uniquely determined by the turbulent flow and stratification, and is independent of the
tracer field itself. Relying on this assumption, one can then obtain meaningful transport
tensor estimates using a variety of Eulerian and Lagrangian methods. If, however, the
transport tensor is not unique for each physical flow field and is instead a function of the
tracer field, the utility of the model becomes questionable. This non-uniqueness is the
focus of the present study.
Previous studies have accumulated significant evidence of the inherent complexity

of the eddy transport tensor. Observation-based estimates exhibit strong dependence
on depth and geographical location (Lumpkin, Treguier & Speer 2002; Marshall et al.
2006; Zhai & Greatbatch 2006; Abernathey & Marshall 2013; Klocker & Abernathey
2014; Canuto et al. 2019). The transport tensor is also anisotropic, which means that
all components of the tensor are significantly different and the magnitude of the eddy
flux depends on the orientation of the tracer gradient. For example, Lagrangian statistics
for real-ocean and model-simulated floats and drifters predict a direction of maximal
dispersion (Freeland, Rhines & Rossby 1975; O’Dwyer et al. 2000; McClean et al.
2002; Sallée et al. 2008; Kamenkovich, Berloff & Pedlosky 2009; Rypina et al. 2012;
Kamenkovich, Rypina & Berloff 2015). Recent tracer-based Eulerian estimates also exhibit
significant inhomogeneity and anisotropy of the transport tensor (Berloff 2016; Bachman,
Fox-Kemper & Bryan 2020). Note, despite the similar findings, differences exist in
the transport tensors from Lagrangian and Eulerian methods and such differences are
poorly understood. Our study focuses only on the Eulerian eddy transport tensor, and any
connections to the Lagrangian counterpart are beyond the scope of our study.
The origins of transport anisotropy remain unclear, but several mechanisms can be at

play, including eddy propagation along mean currents (Killworth 1997; Abernathey et al.
2010; Ferrari & Nikurashin 2010; Klocker, Ferrari & LaCasce 2012a), shear dispersion
(Smith 2005) and partial transport barriers in strong currents (Samelson 1992; Dritschel
& McIntyre 2008; Berloff, Kamenkovich & Pedlosky 2009; Rypina, Pratt & Lozier
2011). In addition to the time-mean currents, the transport anisotropy can be explained
by propagating elongated transients (Kamenkovich et al. 2015; Rudko et al. 2018).
Eddy-induced transport along mean currents can be dwarfed by strong mean advection,
which can justify the focus on the cross-flow (‘effective’) diffusivities (Nakamura 1996;
Marshall et al. 2006; Shuckburgh et al. 2009; Abernathey et al. 2010; Klocker et al.
2012a; Abernathey & Marshall 2013). However, weaker mean flows, typical of most of
the ocean, will render the two-dimensionality (and anisotropy) of the transport important.
In particular, Kamenkovich et al. (2015) demonstrated that the eddy-induced transport in
the along-stream direction is as important as the mean advection in most of the North
Atlantic and, therefore, must be taken into account in eddy parametrisations.
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In recent studies, a broad agreement on the isopycnal diffusivity (a scalar transfer
coefficient quantifying down-gradient fluxes), its magnitude and its spatial structure, has
been demonstrated by the comparisons among the scalar estimates from the Lagrangian
and the Eulerian approaches (e.g. the effective diffusivity, Lagrangian dispersion
approaches and multiple tracer inversion) (Klocker et al. 2012b; Abernathey, Ferreira
& Klocker 2013; Wolfram & Ringler 2017). Moreover, a relative equivalence of the
Eulerian diffusivities was also approved among different tracers, such as potential vorticity
and passive tracers, even though Eulerian methods are sensitive to the tracer choices
(Abernathey et al. 2013). These studies strongly indicate that the eddy diffusivity is a
real object and thus unique.
However, the transport tensor estimates from a direct tracer-based method expose its

inherent non-uniqueness, that is, dependence on the tracer fields. This direct tracer-based
method was initially introduced by Plumb &Mahlman (1987) for the atmosphere and then
applied to oceanic models by Bachman & Fox-Kemper (2013), Bachman, Fox-Kemper
& Bryan (2015), Bachman et al. (2017) and Bachman et al. (2020). For a channel flow,
Bachman & Fox-Kemper (2013), Bachman et al. (2015) and Bachman et al. (2017)
computed a two-dimensional transport tensor which relates the zonal-mean eddy fluxes
and tracer gradients via the inversion method. This approach has been recently extended
to the lateral diffusivity in a realistic three-dimensional ocean flow (Bachman et al. 2020).
These studies reported a significant sensitivity of their tensor estimates to the tracer groups
of multiple sizes, and this non-uniqueness was attributed to the inaccuracy of the inversion
method. Constraints on the choice of the tracers were discussed by Bachman et al. (2015,
2020) with the aim to ensure the accuracy of the inversion method and obtain a more
universal fit. Considerations included the number of tracers used in the linear system
(2.18), the initialisation of the tracer profiles and the strength of relaxation of the tracers.
Our study adapts the inversion method for passive tracers in a two-dimensional framework
and analyses these options.
The importance of rotational fluxes in eddy transport requires further investigation.

Plumb (1979) suggested that the non-divergent part of an eddy potential vorticity (PV)
flux should be removed because it does not influence the dynamics. This flux, which
is associated with the spatial growth or decay of eddies, is also considered dynamically
unimportant because it balances the advection of the mean flow (Marshall & Shutts 1981).
Furthermore, Marshall & Shutts (1981) argued that negative diffusivities of heat – which
are often undesirable owing to model stability issues – arise from the rotational component
of the heat flux. However, more recent results from Haigh et al. (2020) andMak, Maddison
& Marshall (2016) using active and passive tracers showed that the negative diffusivities
persist after removing the rotational flux. In contrast, Bachman et al. (2015) posed that
any flux decomposition should not be combined with the tracer-independent inversion
method because the rotational flux is tracer-dependent. The separation of the flux into
the rotational and divergent components is also not unique and depends on the choice of
boundary conditions for each of these flux components. Furthermore, additional boundary
conditions applied to (2.21) and the large numerical errors caused by the decomposition
will reduce the reliability of the results. However, if the large rotational component is
not removed from the total tracer flux (as by Bachman et al. 2020), multi-tracer transport
tensor fits can lead to even larger biases in the estimates of the eddy-flux divergence. In
our study, the transport tensor and its divergent counterpart are compared to enable an
interpretation of the effects of the rotational flux.
A precursor to the present study is that of Haigh et al. (2020), hereafter HSSB20,

in which essential statistics pertaining to the eddy transport tensor were presented.
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HSSB20 used a quasigeostrophic (QG) double-gyre model with a spatial filter – as
opposed to a Reynolds average – to separate the flow and tracer field scales. The study
considered the eigenvalues of the symmetric (i.e. diffusive) part of the transport tensor
and found polar, i.e. opposite-signed, eigenvalues to be a dominant feature at all depths.
The amplitudes of the eigenvalues were typically two orders of magnitude smaller after
removal of the rotational part of the eddy tracer flux, owing to the dominance of such
fluxes (Marshall & Shutts 1981). In general, the transport tensor considered by HSSB20
was tracer-dependent. The aim of the present study is to discuss this dependence in depth.
In addition to the eddy tracer flux, non-advective eddy terms, which are filtered out in

a Reynolds decomposition, remain in the large-scale tracer equation owing to our spatial
filtering, and thus need to be parametrised. One way of doing this is to absorb the terms
into the flux-gradient relation so that the resulting K-tensor corresponds to the total eddy
term. We diagnose this new tensor and complete the discussion of the tracer dependence
initiated in HSSB20.
The paper is organised as follows. In § 2, we describe the tracer experiments, which

are set up in a double-gyre QG model. Section 3 discusses the numerical accuracy of
the methodology, the effects of the rotational flux and the tracer-dependence of K-tensors
under multiple circumstances. Finally, we conclude and discuss the direction of future
studies in § 4.

2. Problem formulation

In this section, we outline the ocean model and the K-tensors on which this study focuses.
We describe the three-layer QG model in which passive tracers are advected in § 2.1. In
§ 2.2, we introduce the scale-aware flow decomposition, theK-tensor inversion method and
K-tensor (K f ) for the eddy tracer flux. In § 2.3, we describe the Helmholtz decomposition
used to remove the rotational flux and introduce the K-tensor (Kdiv) for the divergent part
of the eddy tracer flux. In § 2.4, we apply the flux-gradient relation to non-advective eddy
terms and introduce the K-tensor (Kg) for these terms. Finally, we present the details of
the experiments in § 2.5.

2.1. Ocean model
A three-layer QG model for double-gyre, mid-latitude circulation, driven by wind forcing,
is configured in a square basin with rigid lateral boundaries and flat bottom topography.
The governing equations for the potential vorticity (PV) anomalies ql are

∂ql
∂t

+ ∂(ulql)
∂x

+ ∂(vlql)
∂y

= δ1l fwind − βvl − δ3lμbot∇2ψl + μeddy∇4ψl, (2.1)

where l = 1, 2, 3 denotes the index for the top, intermediate and bottom layers which
have depths H1 = 0.25 km, H2 = 0.75 km and H3 = 3 km, respectively, and δkl is the
Kronecker symbol. The PV anomalies are related to the velocity streamfunctions ψl
through the elliptic equations:

q1 = ∇2ψ1 − s1(ψ1 − ψ2),

q2 = ∇2ψ2 − s21(ψ1 − ψ2) − s22(ψ2 − ψ3),

q3 = ∇2ψ3 − s3(ψ3 − ψ2).

⎫⎪⎬
⎪⎭ (2.2)
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Parameter symbol Parameter name Dimensional values Units

L Basin length 3840 km
β Meridional Coriolis gradient 2 × 10−11 m−1 s−1

μbot Bottom friction 4 × 10−8 s
μeddy Eddy viscosity 20 m2 s−1

{s1, s21, s22, s3} Stratification parameters {22.3, 7.42, 9.83, 2.46} × 10−7 m−2

τ Wind stress amplitude 0.4 N m2

ρ1 Top-layer density 103 kg m3

Table 1. Parameters of the QG model.

The wind forcing is chosen to be asymmetric with respect to the middle latitude of the
basin to avoid artificial symmetry of the gyres:

fwind(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
A sin

(
πy
y0

)
, 0 ≤ y < y0,

−A sin
(

π( y − y0)
L − y0

)
, y0 ≤ y < L,

y0 = L
2

+ 0.2 ·
(
x − L

2

)
,

A = −2
πτ

(0.9Lρ1)
, 0 ≤ x, y ≤ L.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

The notation and the values of other parameters are listed in table 1, and readers can refer
to HSSB20 for the model details.
The velocity ul = (ul, vl)T is given by

ul = −∂ψl

∂y
, vl = ∂ψl

∂x
. (2.4a,b)

On the lateral boundaries, we use a partial-slip boundary condition given by

α
∂2ψl

∂n2
− ∂ψl

∂n
= 0, (2.5)

where α = 120 km.
Equations (2.1)–(2.4a,b) are solved using the CABARET scheme (Karabasov, Berloff &

Goloviznin 2009) on a uniform Cartesian grid of size G = 1025 × 1025 with grid spacing
Δx = Δy = 3.75 km. The potential vorticities are saved at each grid point every day for
183 days.

2.2. Tracer inversion and the Kf tensor
In this section, we introduce the scale-aware spatial filtering to decompose the tracer
equation and describe the inversion method by which we can obtain a K-tensor for
quantifying the eddy tracer flux. Consider the advection–diffusion equation on a fine grid:

∂C
∂t

+ ∇ · (uC) = ν∇2C + F, (2.6)

where C is the tracer advected by the non-divergent flow u, F represents tracer sources
or sinks and ν is the small-scale diffusivity. The tracer evolution equation has the same
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form in all three layers, so we have omitted the layer subscript for brevity. A common way
to obtain a governing equation for the large-scale tracer is to decompose the velocity and
tracer fields into large-scale/small-scale components by a localised filtering:

u = ū + u′, (2.7)

C = C̄ + C′. (2.8)

Substituting the decomposed quantities into (2.6) and filtering the equation on the large
scales in space yields:

∂C̄
∂t

+ ∇ · (ūC̄) + ∇ · (ūC̄ + ūC′ + u′C̄ + u′C′ − ūC̄) = ν∇2C̄ + F̄, (2.9)

where the eddy terms ∂C′/∂t, ν∇2C′ and F′ are filtered out. Here the filtering is
assumed to commute with the divergence operator. To model (2.9) on a coarse grid, the
small-scale variations under the second divergence operator need to be parametrised by
some large-scale quantities. We denote the divergent term as the eddy forcing of C,

E(1) := ∇ · (ūC̄ + ūC′ + u′C̄ + u′C′ − ūC̄), (2.10)

and label (2.10) as the first expression of the eddy forcing. Here, E(1) can not be directly
parametrised by the flux-gradient relation because it is not in the form of the divergence
of an eddy flux. Additionally, the physical meaning of this expression is unclear. The
issue can be solved by choosing a suitable filtering such as the Reynolds averaging.
However, the Reynolds averaging is not suitable for our study because we want to
consider the full spatio-temporal evolution of the eddy tracer flux, and the interactions
between the large-scale and eddy flows. Therefore, instead of the mean-fluctuation
decomposition in time, we determine the large/small scales of a variable by applying a
spatial decomposition. This method of eddy filtering is also motivated by the practicality
of eddy parametrisations in ocean models.
Consider a variable A(t, x) on a Cartesian grid G. A running-average spatial filter Gs

is applied to its instantaneous fields. The large-scale component Āij at a grid point Gij is
defined as the mean of A evaluated over the region covered by the filter Gs centred at this
point. That is,

Āij(t) := 1
d2

i+r∑
k=i−r

j+r∑
p=j−r

Akp(t), r = d − 1
2

, (2.11)

where d is the discrete side length of the filter, which is set to be odd to avoid any
interpolation. Dropping the grid point indices, the small-scale part of A(t, x) is A′(t, x) =
A(t, x) − Ā(t, x). For grid points near the boundaries, where the distance between the grid
point and the nearest boundary is db < d, we set d = db. In this case, the square shape
of the filter is maintained, and A′ is zero on the boundaries. Note, in general for a spatial
filter, ¯̄A /= Ā and A′ /= 0, which is not the case with Reynolds averaging.
Using the spatial filter, decomposing the terms in the tracer equation (2.6) yields

∂C̄
∂t

− ν∇2C̄ − F̄ = −E(2), (2.12)

where E(2) is the equivalent eddy forcing

E(2) := ∇ · (ūC′ + u′C̄ + u′C′) + ∂C′

∂t
− ν∇2C′ − F′. (2.13)
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Unlike in the Reynolds decomposition approach, we do not filter/average the tracer
equation. The physical meaning of each eddy term is clear in E(2). The advection operators
for ū and u′ are preserved in the divergence term, so we define the corresponding eddy
tracer flux as

f := ūC′ + u′C̄ + u′C′. (2.14)

The eddy tendency ∂C′/∂t, the explicit diffusion ν∇2C′ and the forcing F′ are each present
in E(2), but are filtered out when deriving E(1). These non-advective terms contribute to
the eddy forcing, and thus need to be parametrised. We will discuss this in more detail in
§ 2.4.
We now present the inversion method for obtaining a transport tensor for f . Because u′

and C′ are zero on the boundaries, there is no flux through and along the boundaries,

f ∂Ω = 0. (2.15)

The transport tensor K f can then be locally estimated from the flux-gradient relation

f = −K f · ∇C̄, (2.16)

where

K f (t, x) =
[
K11(t, x) K12(t, x)

K21(t, x) K22(t, x)

]
. (2.17)

Because the system (2.16), with four unknowns and two equations, is under-determined for
a single tracer, we use two tracers Cp and Cq. This gives{

f p = −K f · ∇C̄p,

f q = −K f · ∇C̄q

}
, (2.18)

where f p,q = ( f p,qu , f p,qv )T is the eddy flux for tracer Cp,q. Then, the tensor is obtained by
inverting (2.18):

K f (Cp,Cq) = 1
∂xC̄p∂yC̄q − ∂yC̄p∂xC̄q

[
f pu f qu

f pv f qv

] [−∂yC̄q ∂xC̄q

∂yC̄p −∂xC̄p

]
. (2.19)

To summarise, here we have derived the eddy forcing E(2) for a spatial filtering
decomposition, which we show is distinct from the eddy forcing obtained with the
Reynolds averaging. The eddy forcing E(2) is contributed to by an eddy tracer flux
divergence and non-advective terms. We have presented a method for computing the
transport tensor for eddy tracer fluxes for a pair of tracers.

2.3. Helmholtz flux decomposition and the Kdiv tensor
In the previous section, we presented the method for computing the K-tensor (K f ) for
a pair of eddy tracer fluxes. In this section, we describe the Helmholtz decomposition
which is necessary to compute the K-tensor (Kdiv) for the divergent part of two eddy
tracer fluxes. We are only interested in these purely divergent fluxes as the rotational part
does not contribute to the tracer dynamics, as shown in HSSB20.
For an eddy tracer flux f , its Helmholtz decomposition is

f = ∇Φf + ∇ × Ψ + H . (2.20)

Here, ∇Φf is the divergent flux, ∇ × Ψ is the rotational flux and H is the non-divergent
and irrotational gauge term (Maddison, Marshall & Shipton 2015). The decomposition can

920 A32-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.472


L. Sun, M. Haigh, I. Shevchenko, P. Berloff and I. Kamenkovich

be achieved by solving the Poisson equations of Φ and Ψ (Lau & Wallace 1979; Roberts
& Marshall 2000; Maddison et al. 2015; Mak et al. 2016), i.e.

∇ · f = ∇2Φf , (2.21)

∇ × f = ∇2Ψ. (2.22)

The decomposition is not, however, unique in a bounded or singly periodic domain
owing to a dependence on boundary conditions (Fox-Kemper, Ferrari & Pedlosky 2003;
Maddison et al. 2015). For example, although the total flux through all solid boundaries
must be zero, the rotational and divergent components separately need not be zero on
the boundaries. Maddison et al. (2015) provided a decomposition by using the example
of a three-dimensional eddy PV flux: the horizontal divergent component was minimised
by introducing an eddy force function Φe with a zero tangential boundary condition. We
adopt this boundary condition so that the rotational component can be removed as much
as possible. We let the boundary condition for Φf be

Φf ∂Ω
= 0, (2.23)

because there is no flux on the boundaries, as in (2.15). Then, the Poisson (2.21) can be
solved uniquely, and ∇Φ is minimised (Maddison et al. 2015). We define the divergent
component of the eddy flux as

f div = ∇Φf . (2.24)

Then, the total eddy flux is conveniently split into the divergent f div and the non-divergent
f rot parts:

f = f div + f rot. (2.25)

The non-divergent flux is obtained by subtracting f div from f , and it contains the
rotational flux ∇ × Ψ and the gauge term H. We denote it as f rot and do not extract
the gauge term because the gauge term does not affect the interpretation of the rotational
component. We will call it the rotational flux for simplicity.
The divergent tensor Kdiv is associated with the divergent flux via the flux-gradient

relation, i.e.
f div = −Kdiv · ∇C̄. (2.26)

We consider it as part of the transport tensor K f , denoting the part corresponding to f rot
as K rot.
The divergent tensor, and other K-tensors, can be separated into a symmetric

component,

S =
[
Kdiv,11 S12
S12 Kdiv,22

]
, S12 = (Kdiv,12 + Kdiv,21)/2, (2.27a,b)

and an antisymmetric component,

A =
[

0 A12

−A12 0

]
, A12 = (Kdiv,12 − Kdiv,21)/2. (2.28a,b)

We refer to S as the diffusion tensor because its eigenvalues λ1, λ2 are the diffusivities
in the directions of their eigenvectors (Plumb & Mahlman 1987). Here, λ1 is assigned to
the eigenvalue with the most positive value such that λ1 ≥ λ2. The method of computing
the eigenvalues is specifically described in HSSB20. We refer to A as the advection
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tensor, where the component A12 quantifies the advection of the large-scale tracer field
in the direction perpendicular to the tracer gradient. Our study only focuses on the
tracer-dependence of the eigenvalues and does not discuss the interpretation of S and A.

2.4. Non-advective eddy terms and the Kg tensor
In the Reynolds decomposition approach, non-advective eddy terms do not contribute to
the mean eddy transport. On the non-advective terms in the spatial filter approach (2.13),
the explicit eddy diffusion is negligible, but the eddy tendency and the external forcing
terms make leading-order contributions to the eddy forcing. This motivates incorporating
their effects into a K-tensor (K ) that parametrises all eddy effects. To do this, we use the
fact that the non-advective eddy terms can be quantified using a purely divergent eddy flux
g, where

∇ · g := ∂C′

∂t
− ν∇2C′ − F′. (2.29)

As with the divergent flux f div , we obtain g by inverting its corresponding Poisson
equation with zero normal and tangent flux boundary conditions. (This requires choosing
a suitable tracer forcing with F′

∂Ω = 0.)
We apply the flux-gradient relation to g and obtain a K-tensor Kg for the non-advective

eddy terms. Then the eddy forcing can be expressed in terms of the full tensor K ,

E(2) = ∇ · (−K · ∇C̄), (2.30)

where
K := K f + Kg. (2.31)

The tensors K f and Kg both vary on the small scales, because they are determined by
eddy terms. Their sum K , however, will not contain such small-scale variability because
in (2.30), we relate it to strictly large-scale terms. The E(2) only varies on the large scale
as it is equal to the left-hand side of (2.12), which includes only large-scale quantities.
As a result, any tracer dependence in the full tensor K cannot be caused by small-scale
variability.

2.5. Numerical experiment set-up
In the previous subsections, we outlined the method for computing four K-tensors, K f ,
Kdiv , Kg and K = K f + Kg. In this section, we outline the experiments in which we test
the non-uniqueness of these tensors and their ability to reproduce their corresponding
fluxes.
We prepare two sets of passive tracers with different forms of initialisation for the

experiments. For each set, six tracers are chosen to provide a sufficient variety to the initial
profiles, and are simulated for half a year. The first set is initialised with linear profiles:

Cp
B = Ac√

a2 + b2
(ax + by + γ ), p = 1, . . . , 6, (2.32)

where the gradient (a, b) ∈ (Z,Z) and the amplitude Ac ∈ Z
+. The constant γ is set to be

positive, so that Cp
B ≥ 0. The second set is initialised with sinusoidal wave profiles:

Cp
B = 1

np

np∑
n=1

Ac cos(knx + lny + ϕn), p = 7, . . . , 12, (2.33)
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where the number of waves np ∈ Z
+ and the phase angle ϕn ∈ [0, 2π]. The wavenumber

for each sinusoidal wave is set to be k = |(kn, ln)| = 6, where kn, ln are randomly
determined. Then the wavelength of the nonlinear Cp

B is approximately the basin size.
For every pair of tracers in a set (15 pairs per set of 6), we carry out a test that

computes the transport tensor K f , its divergent counterpart Kdiv , the corresponding Kg
and consequently the full tensor K . To avoid the singularity in (2.19) when diagnosing the
transport tensors, it is required that the large-scale gradients of each tracer pair remain
misaligned. We maintain this misalignment by setting F to be a restoring force,

F = C − CB

T
, (2.34)

with a relaxation time scale of T = 10 days. The velocity and the tracer fields are
decomposed into large scales and small scales by a spatial filter with d = 31, the distance
given by which is approximately 112.5 km.
For the set of tracers initialised linearly, we refer to this experiment as RL, and for the

set of those initialised with sinusoidal waves, we refer to it as RN. The two experiments
RL and RN, as described above, are repeated but with the tracer relaxation switched off,
and we denote these experiments as UL and UN. For reference, the letters R, U, L, N stand
for relaxed, unrelaxed, linear and nonlinear, respectively. In summary, we have presented
the methods to obtain four K-tensors in four different experiments.

3. Results

In this section, we present the results from the four experiments described in § 2.5 and
focus on the conditions for obtaining unique tensors. We begin by diagnosing the accuracy
of K-tensors in § 3.1. Then, in § 3.2, we present the K-tensors for linearly initialised tracers
and discuss the effects of the rotational flux. Finally, in § 3.3, we examine the tracer
dependence of K-tensors for different tracer sets.

3.1. Numerical experiment errors
In this section, we analyse the accuracy of K-tensors in terms of reproducing the eddy
fluxes and eddy forcing. First, we measure the accuracy of the transport tensor K f by
reconstructing the tracer flux f . The relative error Err( f ) of the inversion is given by

Err( f ) := ‖ f + K f · ∇C̄‖2
‖ f ‖2 × 100%. (3.1)

The ensemble-averaged Err( f ) for the experiments RL, RN, UL and UN are presented
in figure 1. Bachman et al. (2015) suggested to over-determine the tracer flux-gradient
relation to balance the removal of a large number of degrees of freedom owing to Reynolds
decomposition. However, our linear system (2.18) is successfully solved with two tracers,
with relative errors for all experiments almost always less than 10−4. Therefore, we deduce
that using more tracers is not necessary, because the scale-aware decomposition can
preserve sufficient spatial and temporal information of the flow. Panel (a) compares the
spatial averages of Err( f ). Overall, the errors do not increase in time after 25 days when
the total amount of fluxes have reached equilibrium, and the error amplitudes are likely
determined by the tracer initial conditions. Comparing the results from experiments RL
and RN, we find that K f for linearly initialised tracers gives an order of magnitude better
reconstruction, compared with the case of nonlinear tracers. The effect of relaxation on
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the accuracy of the method is investigated using the nonlinear tracers set – the error for
the unrelaxed tracers is larger than that for the relaxed tracers. The large peak in panel (a)
arises from an instantaneous near-alignment of the large-scale tracer gradients. Our results
confirm that such alignment can be restrained if tracers are weakly relaxed to their initial
profiles.
The spatial distributions of Err( f ) are shown in panels (b), (c), (d) and (e) of figure 1.

When the tracers are relaxed in experiments RL and RN, the relative errors are more
pronounced in the jet region because the energetic flow accelerates alignment of the tracer
gradients. Some additional curves of large errors are found for tracers with nonlinear initial
profiles. As their locations correlate with the distribution of the gradient fields ∇C̄, we
argue a steep change in the tracer gradient arising from the random combination of cosine
waves can cause a large numerical error. As shown in panels (d) and (e), for the case of
unrelaxed tracer profiles, the error increases globally (except in the south-east corner),
thus, in agreement with results shown in panel (a).
We now measure the accuracy of the divergent tensor Kdiv , noting that the Helmholtz

decomposition can introduce large numerical errors (Bachman et al. 2015). To estimate
these errors, we reconstruct the flux divergence by using K f and Kdiv , and then compare
the relative errors:

Err(∇ · f ) := |∇ · f + ∇ · (K∗ · ∇C̄)|
|∇ · f | × 100%, (3.2)

where K∗ ∈ {K f ,Kdiv}. Figure 2 shows the fields of∇ · f reconstructed by K f and Kdiv for
a single test in experiment RN. It also shows histograms of the range of the relative errors.
From the panels in the first two columns, we see that both tensors are able to reproduce the
flux divergence in all layers. The error distributions are roughly Gaussian, as illustrated in
panels (c), ( f ) and (i). Even though the divergence fields obtained via the two tensors are
visually indistinguishable, the errors associated with Kdiv are, on average, three orders of
magnitude larger than those for K f (10−1 versus 102). These increased numerical errors are
injected by the divergence operators during the calculation of ∇ · f in (2.21) and ∇Φ in
(2.25), similar to what was observed by Bachman et al. (2015). Specifically, we hypothesise
that the second-order finite-difference method used in the Helmholtz decomposition can
shift ‘correct’ values to neighbouring grid points, which leads to large point-wise errors.
This can explain why the two reconstructed flux divergences are visually indistinguishable,
but have average errors three orders of magnitude apart. Because any tensor needs to be
coarse-grained before being applied to a coarse-resolution model, it is unclear whether or
not use of K f over Kdiv would lead to a more accurate parametrisation, despite the large
errors associated with Kdiv .
Finally, we analyse the accuracy of K and Kg by measuring the reconstruction error of

the eddy forcing E. (Hereafter, we drop the superscript of E(2) and denote the eddy forcing
as just E.) figure 3 shows the temporally averaged E and the relative errors Err(E) for K f
and K . Even though ∇ · f dominates E in the top layer by accounting for 73% of the total,
in the intermediate and bottom layers, the non-advective eddy terms become comparably
large by accounting for 45% of the total. This implies that the non-advective eddy terms
are not negligible and the associated Kg should be included in the reconstruction of the
eddy forcing. We illustrate this by comparing Err(E) given by K f and K . The latter, being
of order 101, lies between Err(∇ · f ) for K f and Kdiv , so it is purely numerical. This is
because the divergence operator is used once during the computation of g, unlike zero
times or twice for the other two cases. However, the former is on average one order of
magnitude larger owing to the absence of the non-advective eddy terms. Hence, we deduce
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Figure 1. Ensemble averages of the relative error Err( f ) for experiments RL, RN, UL and UN in the top
layer. The spatially averaged errors are shown in panel (a), and the temporally averaged over half a year errors
are in panels (b,c,d,e). Logarithmic scales are used for all panels and the colour bar is shared among (b,c,d,e).
The figure shows that the fluxes are successfully reconstructed by the transport tensor K f , for tracers with both
linear and nonlinear initial profiles, with and without the relaxation.

that it is not sufficient to reproduce the eddy forcing by K f but is sufficient by the full
tensor K .
Overall, the results show that K-tensors computed by the inversion method can

successfully reproduce the eddy tracer flux, its divergence and then the eddy forcing.
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Figure 2. Temporal averages of the flux divergence associated with K f (a,d,g) and Kdiv (b,e,h) in the three
layers. (c, f ,i) The histograms of the relative errors Err(∇ · f ) together with the spatial averages marked by the
vertical lines. The solid vertical lines represent the domain-mean errors, while the dashed lines only include the
95% of grid points with the smallest errors. Transparent red and blue bars represent K f and Kdiv , respectively.
These results are from experiment RN. It is shown that both tensors reconstruct the flux divergence well, but
the latter introduces much larger numerical errors. The same observations are made for linear cases.

Although the transport and the divergent tensors lead to visually indistinguishable
flux convergences, the Helmholtz decomposition introduces non-negligible errors in the
latter that need to be addressed. As the non-advective eddy terms make considerable
contributions to the eddy forcing, the corresponding K-tensor needs to be included in
the reconstruction.
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Figure 3. (a,d,g) Time-mean fields of the eddy forcing E in the three layers. The relative errors of their
reconstructions by K f (b,e,h) and K (c, f ,i). They are in the range of 10–300% and 0.1–10% at 90% grid
points, respectively.

3.2. K-tensors
In this section, we diagnose the representative properties of K-tensors and discuss the
influence of the rotational eddy flux on tensor components. Because Kg is given by a
purely divergent flux g, it is sufficient to discuss the influence of the rotational flux by
using K instead of K f .
Figure 4 presents the time-mean entries of K , Kdiv and Kg in the top layer for a tracer

pair in experiment RL. The magnitudes of their components for the three layers are listed
in tables 2–4. The inclusion/exclusion of the rotational flux leads to notable distinctions
between K and Kdiv . A comparison of them between tables 2 and 3 shows that the former
is approximately two orders of magnitude larger than the latter in all layers, which means
that the eddy transport given by the dynamically active flux f div is only 1% of the total.
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Figure 4. Temporally averaged K (a–d), Kdiv (e–h) and Kg ( j–l), all evaluated over half a year in the top layer
for a test in experiment RL. The values of K (as well as the indistinguishable K f ) are found to be generally two
orders of magnitudes larger than those for Kdiv and Kg. The magnitudes of the tensor components in the three
layers are listed in tables 2–4.

Additionally, from Kdiv , we see that diffusion outside the energetic jet region is relatively
strong, that is, in comparison to the disparity inside and outside the jet region with K f .
It is worth comparing Kdiv and Kg, as both are computed for divergent fluxes. They

have the same orders of magnitudes, but Kdiv is approximately three times larger than
Kg. Additionally, the spatial patterns of their components are very different. We further
illustrate the differences by presenting the velocity potentials of f and g in the three layers
in figure 5. As expected, φg shows more pronounced small-scale patterns in the subtropical
regions. However, it also generates mesoscale components along the jet, similarly to Φf ,
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|K|Ω̄ (m2 s−1) K11 K12 K21 K22

Top layer 459799.8 233578.1 278369.1 262450.6
Middle layer 71764.2 29132.4 13097.3 21073.9
Bottom layer 4200.7 7831.1 2952.3 5470.1

Table 2. Magnitudes of K shown in figure 4 in three layers. The components K11,K12,K21,K22 have the same
order of magnitude in each layer, and their values are roughly reduced by one order of magnitude in the layer
below.

|K|Ω̄ (m2 s−1) K11 K12 K21 K22

Top layer 5169.1 3592.1 4863.8 3019.4
Middle layer 317.6 282.6 425.7 329.8
Bottom layer 72.7 64.2 106.4 87.7

Table 3. Magnitudes of Kdiv shown in figure 4 in three layers. The components K11,K12,K21,K22 have the
same order of magnitude in each layer, and their values are roughly reduced by one order of magnitude in the
layer below.

|K|Ω̄ (m2 s−1) K11 K12 K21 K22

Top layer 1954.1 1630.5 3040.8 2065.7
Middle layer 176.2 236.5 322.1 170.0
Bottom layer 35.4 52.5 94.3 36.1

Table 4. Magnitudes of Kg shown in figure 4 in three layers. The components K11,K12,K21,K22 have the
same order of magnitude in each layer, and their values are roughly reduced by one order of magnitude in the
layer below.

thus, contradicting the assumption that the non-advective terms do not contribute as much
to the mean flow and thus can be filtered out. The sign of Φg is distributed differently
from that of Φf . Their distributions are roughly perpendicular in the top layer and are the
opposite in the lower two layers. Overall, the results presented highlight the necessity of
interpreting the velocity potential by depth, but this is beyond the scope of this study.
Despite the distinctions in the magnitudes and spatial patterns, negative values appear

in the fields of K11,12,21,22 for all tensors. They are more pronounced in Kdiv , but also
exist in Kg, which naturally has no relation with the rotational flux. Therefore, the removal
of the rotational flux does not eliminate the negative values in the tensor components.
Furthermore, the second eigenvalues of the symmetric parts of K f and Kdiv are most often
negative (HSSB20).
To summarise, we have presented K , Kdiv and Kg, and the velocity potentials Φf and

Φg. Owing to the dominance of the rotational flux f rot, there are major differences in
the magnitudes and spatial structures of K when compared with the other two tensors. The
inclusion of f rot is not responsible for the negative values or negative diffusion eigenvalues
(HSSB20), as these persist for all K-tensors.
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Figure 5. Temporally averaged velocity potentials of divergent fluxes g (a–c) and f div (d– f ) in the three layers.
Units for all panels are ×102 m2 s−1. The black solid/dashed lines represent the time-mean streamlines of the
large-scale ψ̄ with positive/negative values.

3.3. Non-uniqueness of diffusivity
In this section, we investigate the tracer-dependence of K-tensors. We start by obtaining
tracer-independent tensors for the linearly initialised tracers by exploiting the linearity of
the flux-gradient relation. We then measure their relative distances to use as a reference
for purely numerical discretisation errors. Next, we analyse the tracer-dependence by
comparing this reference case with the relative distances of the K-tensors corresponding
to the nonlinearly initialised tracers.
The linearity of the tracer equation and the flux-gradient relation have important

consequences for the non-uniqueness of the K-tensor. That is, a tensor obtained for any
two tracers, Cp and Cq, is the same as would be obtained for any other tracer that is a linear
combination of Cp and Cq. Consider two solutions Cp, Cq of the tracer (2.6) with initial
conditions Cp(t0), Cq(t0). Then, any tracer C initialised as C(t0) = mCp(t0) + nCq(t0) is
a solution in the form

C(t) = mCp(t) + nCq(t), (3.3)

where m and n are arbitrary constants. Because the spatial filter is a linear operator, the
large- and small-scale components can also be written as the above linear combination.
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Then, the eddy tracer flux and the large-scale tracer gradient are given by

f = mf p + nf q, (3.4)

∇C̄ = m∇C̄p + n∇C̄q. (3.5)

Suppose K f is the transport tensor obtained with Cp and Cq, then the linearity of the
flux-gradient relation gives

mf p + nf q = −K f · (m∇C̄p + n∇C̄q), (3.6)

and implies that K f is also a transport tensor for C. Because the same linear combination
as in (3.4) can be applied to the non-advective eddy terms, the associated flux divergence
can be written as

∇ · g = m∇ · gp + n∇ · gq. (3.7)

Therefore, the same conclusion can be inferred for Kg. Overall, any tracer pairs that are
linear combinations of Cp and Cq share the same K f and Kg, and, thus, the same full
tensor K .
It is not necessary to linearly initialise tracers to obtain the same tensor. In fact,

the tracers with linear initial profiles do not always have the same tensor. Recall the
initialisation of the linear profiles CB in (2.32). Even though every linear profile has a
constant gradient (a, b), it can only be written as a linear combination of other pairs of
linear profiles with an additional constant owing to the scalar term γ . This γ is included
in the large-scale tracer component and causes the tensors for linearly initialised tracers to
be distinct. Even though it does not affect the large-scale gradient in (3.5), the eddy fluxes
cannot, in general, be written as the linear combinations of those given by the linearly
initialised tracers, as in (3.4), because of an additional flux component u′γ . Thus, K f can
not be unique in our linear tracer experiments, as part of the tensor component Kγ depends
on the scalar constant,

u′γ = −Kγ · ∇C̄. (3.8)

Note that Kγ is not, in general, equal to K rot, even though u′γ only contributes to f rot.
Nonetheless, the transport tensor for initially linear tracers cannot be tracer-independent
or unique, unless the rotational flux is removed. However, Kg is always unique, because it
only depends on C′.
To verify this, we measure the relative distance between respective tensor components.

That is, for a pair of components (denoted with superscripts p or q), the relative distance
between them is

dr(Kp,Kq) = 1
NΩ

∑
Ω

|Kp − Kq|
|〈K〉| , (3.9)

where Kp,q ∈ {K11,K12,K21,K22}, and the ensemble-average 〈K〉 is the global reference.
For each of K f , Kdiv and Kg, we have 15 ensembles from RL, so in total we can measure
the relative distances for 105 pairs. The standard deviation is not used as a measure owing
to the large differences in magnitudes among K-tensors.
Figure 6 presents the relative distances for K f and Kdiv . We see that dr for K f

typically varies between 0.7 and 3, while for Kdiv it is mainly between 0.8 and 1.25.
Furthermore, more than 70% of tensor pairs have larger distances for the former, despite
the additional numerical errors induced in the latter. According to the linearity of the
flux-gradient relation, Kdiv for the linearly initialised tracers should be unique, because
the tracer-dependent components Kγ are excluded by removing the rotational fluxes.
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Figure 6. The relative distance dr of components K11,K12,K21,K22 (a–d) in the top layer in experiment
RL. One dot represents one comparison between K f and Kdiv given by the same tracer pairs. A total of 105
comparisons are carried out amongst the 15 tracer pairs. The x-values are the temporal averages of dr for K f ,
while the y-values are for Kdiv .

The non-zero dr for Kdiv is attributed to numerical errors in the flux decomposition, as
well as to some unavoidable alignments of gradients during the simulation. Moreover, dr
can be uncommonly large for some pairs, because the ensemble-average 〈K〉 is used as a
global reference in (3.9), instead of considering only Kp and Kq. Overall, it is evident that
the greater relative distances in K f arise from the tracer-dependent K rot.
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Figure 7. The relative distance dr of components K11,K12,K21,K22 (a–d) in the top layer in experiment RL.
One dot represents one comparison between Kdiv and Kg given by the same tracer pairs. A total of 105
comparisons are carried out amongst the 15 tracer pairs. The x-values are the temporal averages of dr for
Kdiv , while the y-values are for Kg. The red solid lines are the linear regression lines, and the corresponding
coefficients are 1.01, 0.9, 0.79, 0.99.

Because Kg is not associated with the tracer-dependent γ , it is unique for linearly
initialised tracers. This is shown in figure 7, where the relative distances for Kg are in
the range similar to those for Kdiv . As both tensors are unique, we determine the relation
between them by fitting linear regression models to the comparisons for each component
(x for Kdiv and y for Kg). We find that the regression lines are closely aligned with x = y,
especially for the diagonal elements K11 and K22. Therefore, dr for the tensors Kg and Kdiv
are very similar, with slight differences caused by numerical errors. This rough similarity
shows that the non-uniqueness of the tensors is caused by the linearity of the flux-gradient
relation and linear tracers, and may not be a property inherent to all transport tensors.
To investigate if the uniqueness holds for all the passive tracers, we repeat the analyses

for Kdiv and Kg using the ensembles from RN. In figure 8, we scatter plot dr for the RN
ensemble against dr for the RL ensemble. Most dr values for Kdiv from RN are greater than
1.5, and all of them are larger than those from RL. The same is observed for the sum of Kdiv
and Kg. Because we have shown (analytically) that all linearly initialised tracers generate
the same Kdiv and Kg, we deduce that they are different and, thus, tracer-dependent, when
the tracers are initialised with sinusoidal – or more generally, nonlinear – profiles.
Until now, our conclusions are based on tracers that are relaxed towards their initial

profiles. To test these conclusions for freely evolving tracers, in figure 9, we present time
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Figure 8. The relative distance dr of components K11,K12,K21,K22 (a–d) in the top layer for comparisons
between experiments RL and RN. The tensors are for the divergent fluxes: blue dots represent Kdiv and orange
dots represent Kdiv + Kg. The x- and y-values are the relative distances for the nonlinear and linear tracer
profiles, respectively. The vertical dashed lines are located at the maximum dr for RL on x-axes. If a dot is to
the right of its corresponding line, then dr of this tensor in RN is larger than all ensembles of dr in RL. The
clouds of dots clearly show the non-uniqueness of both Kdiv and Kdiv + Kg for nonlinearly initialised tracers.

series of the ensemble-averaged dr from all four experiments. For initially linear tracers,
the relative differences dr increase, when the tracers are not relaxed, and this agrees with
our findings regarding the numerical errors, as shown in figure 1. For nonlinear tracers,
though, dr does not notably depend on the use of relaxation. Therefore, even though the
relaxation effect can affect the numerical accuracy, it is irrelevant for the non-uniqueness
of Kdiv . Similar observations are made for the other K-tensors, so we opt to not show them
for brevity.
Because the diffusion and advection tensors have different physical interpretations, they

are often separately parametrised. Therefore, it is necessary to investigate whether they
are also individually tracer-dependent. To examine this, we compare the eigenvalues λ1,
λ2 of the diffusion tensor S and the off-diagonal component A12 of the advection tensor A
between the experiments RL and RN. We measure the differences by the relative ensemble
standard deviation δr(〈·〉), which divides the ensemble standard deviation by the ensemble
mean 〈·〉. For example, δr(〈λ1〉) is given by

δr(〈λ1〉) = 1
〈λ1〉

√√√√√ 1
14

15∑
p=1

(λ
p
1 − 〈λ1〉)2, (3.10)

where λp1, p = 1, . . . , 15, are the eigenvalues for 15 cases in one experiment.
Figure 10 shows the instantaneous fields of the relative ensemble standard deviations of

the eigenvalues λ1, λ2 (λ1 ≥ λ2) and of the off-diagonal element A12. The first and second
columns of panels are for RL and RN, respectively. Because the denominator of δr is the
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Figure 9. Evolution of dr in the top layer for all experiments. See the legend in the upper panel for details.
The panels correspond to K11 (a), K12 (b), K21 (c) and K22 (d). The difference between RL and RN, and the
difference between UL and UN, are shaded in pink and purple, respectively. The relative distance increases
rapidly from zero for RL and UL owing to the initial linear dependence, until the total fluxes in the domain
reach equilibrium after 25 days. The black and purple lines fluctuate more, because of the higher frequency of
the gradients being nearly aligned.

ensemble-mean, rather than its absolute value, the signs of the components are preserved
in the figure. For both experiments, λ1 is mostly positive in the domain and λ2 is mostly
negative. This polarity of the eigenvalues is also observed for Kg (not shown). Therefore,
we deduce that two eigenvalues are often of opposite signs in the domain even without the
existence of the rotational flux, which is consistent with HSSB20. The first column shows

920 A32-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

47
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.472


On non-uniqueness of the mesoscale eddy diffusivity

(e)

(b)(a)

(c) (d )

( f )

δr (〈λ1〉) δr (〈λ1〉)

δr (〈λ2〉) δr (〈λ2〉)

δr (〈A12〉) δr (〈A12〉)

–0.2 0 0.2 –4 0 4

Figure 10. Snapshots of the relative ensemble standard deviation δr of the eigenvalues λ1 (a,b), λ2 (c,d) of
S and of the off-diagonal element A12 (e, f ) of A, all at day 183. Panels (a,c,e) are for RL, where tracers are
linearly initialised, while (b,d, f ) are for RN (nonlinearly initialised tracers). The non-uniqueness of λ1, λ2 and
A12 is observed, as the standard deviation for the latter is much larger than for the former. For both experiments,
δr(〈λ1〉) is mainly positive, as shown in (a) and (b), but δr(〈λ2〉) is mainly negative, as shown in (c) and (d).
This indicates that the eigenvalues tend to have opposite signs.

that the ensembles of three variables for initially linear tracers do not differ much from
the ensemble-means, as δr is predominantly less than 0.2 in the domain. This observation
shows that for both S and A, the ensembles are close to each other in distances, and agrees
with our argument that Kdiv is unique, up to numerical errors, if tracers are initially linear.
For the case when tracers are initialised with nonlinear profiles, the relative ensemble
standard deviations are much larger, by at least an order of magnitude. Therefore, the
diffusion and the advection tensors are also tracer-dependent, that is, they are non-unique
for nonlinearly initialised tracers.
Overall, Kdiv and Kg are unique for linearly initialised tracers, and any tracer dependence

can serve as a measure of the numerical errors in our approach. The comparison with
more general, nonlinearly initialised tracers demonstrates the inherent dependence of the
K-tensor on the tracer pairs, and, thus, its non-uniqueness. This conclusion is not affected
by a relaxation forcing. The same argument also applies to the eigenvalues of the diffusion
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tensor and to the off-diagonal element of the advection tensor. It is worth noting that the
non-uniqueness of K-tensors is not limited to the idealised QG model but is also found
in a more comprehensive general circulation model (GCM) of the entire Atlantic Ocean
(Kamenkovich et al. 2021).

4. Conclusions and discussion

This work aimed to investigate the uniqueness of the transport K-tensor in an
eddy-resolving model, with the long-term motivation of parametrising eddy tracer fluxes
in coarse-resolution ocean models. Our objective here was to calculate K-tensors from
high-resolution flow and tracer distributions, to investigate the resulting errors in the
eddy flux reconstructions and to examine the K-tensors’ dependencies on the passive
tracers. The main conclusion is that the K-tensors depend on the tracer and are, therefore,
non-unique. This non-uniqueness is strongly influenced by the rotational (non-divergent)
component of the eddy tracer flux.
A double-gyre, mid-latitude QG model was used in the study. Tracers were initialised

with either linear or nonlinear (sinusoidal wave) profiles, and were advected by the flow
for half a year. The flow and tracer fields were decomposed into large- and small-scale
components using a spatial filtering method. The resulting eddy forcing E consisted of
the divergence of the eddy tracer flux f and non-advective eddy terms. We assumed a
flux-gradient relation to link f to the large-scale tracer gradient ∇C̄ via a transport tensor
K f . By quantifying the non-advective eddy terms using a divergent flux g, we obtained
the corresponding K-tensor Kg. Then, the full tensor K corresponding to the eddy forcing
was given by the sum of K f and Kg. The divergent tensor Kdiv – that is, the portion of K f
corresponding to the divergent eddy flux f div – was obtained by applying the Helmholtz
decomposition to f . The non-advective eddy forcing terms were comparable in size to ∇ ·
f = ∇ · f div , and similarly the K-tensor Kg was as large as Kdiv . Therefore, we deduce
that the non-advective terms should be parametrised along with the advective eddy terms.
The accuracy of the inversion method for computing the K-tensors was measured by

reconstructing f , ∇ · f and E. Generally, K is two orders of magnitude larger than
Kdiv , owing to the dominant rotational fluxes (Marshall & Shutts 1981). Despite this
difference, both tensors were shown to be capable of reconstructing the eddy tracer flux
convergence, with their parametrised flux convergences being visually indistinguishable
from each other. The largest errors were typically found in the eastward jet region where
the eddies were most energetic, but for initially nonlinear tracers, they also occurred in
regions where the tracer profiles exhibited sharp spatial gradients (a consequence of the
randomly selected nonlinear profiles).
Large errors in the reconstructed flux divergence are introduced by the Helmholtz

decomposition, more precisely by the divergence operator, and hence errors associated
with Kdiv are much larger than those for K . This is despite the fact that the corresponding
flux convergences are visually indistinguishable from each other. As the transport tensor
component associated with the rotational flux is eliminated automatically under the
divergence operator in the tracer evolution equation, it seems more suitable to use
K f rather than Kdiv for a parametrisation, given the errors associated with the latter.
However, the additional model errors induced by simplifications in parametrisations may
be as large as the errors induced by the flux decomposition. Therefore, the question
of whether the difference in errors remains significant after smoothing the fields for
coarse-grid models needs to be answered.
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For each K-tensor, the tracer-dependence was quantified by measuring the relative
distances among its ensembles given by different tracer pairs. We analysed how the
tracer-dependence of the K-tensors was affected by various factors such as the initial
tracer profiles, the rotational flux and the relaxation forcing. We found that Kdiv and Kg
were unique, up to numerical errors, if the tracers were initialised with linear profiles,
owing to the linearity of the flux-gradient relation. However, K f and, thus, the full tensor
K were found to be tracer-dependent because the dominant rotational component (i.e.
that corresponding to the rotational flux) was tracer-dependent. For nonlinearly initialised
tracer profiles, the uniqueness of Kdiv and Kg was lost, and the non-uniqueness of K was
further amplified by the presence of the tracer-dependent rotational flux. Therefore, in
general, K-tensors are non-unique for passive tracers. The conclusion can be extended to
diffusion tensor S and advection tensor A, separately. Finally, switching off the relaxation
forcing did not affect the non-uniqueness for nonlinear tracers.
The effect of the non-uniqueness of the eddy transport tensor on parametrisations needs

to be investigated. Generally, the estimation of the eddy flux for a tracer is different when
using different tensors. A question then arises: does it make a fundamental difference
whether one uses the tensor given by a tracer pair including this tracer or any tensor from
any tracer pair? If not, can these tensors be implemented for the stochastic estimations
of the eddy flux patterns? Stochastic closures have been employed in the past (Berloff
& McWilliams 2003; Grooms 2016), and our study suggests that treating the eddy
transport tensor as a random process may be consistent with its inherent non-uniqueness.
In situations when the large-scale flow varies much slower than the eddies, a deterministic
solution can be obtained as the tensor given by the flux-gradient relation between u′C′ and
the steady large-scale gradient C̄, where ·̄ denotes the Reynolds averaging. Whether the
difference between such tensors and our non-unique transport tensor (which is supposed
to be given by the variations of the large-scale terms in the eddy flux) can be treated as
stochastic variations still needs to be investigated.
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