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Abstract

We investigate the use of confidence scores to evaluate the
accuracy of a given AlphaFold (AF2) protein model for drug
discovery. Prediction of accuracy is improved by not consid-
ering confidence scores below 80 due to the effects of disor-
der. On a set of recent crystal structures, 95% are likely to have
accurate folds. Conformational discordance in the training set
has a much more significant effect on accuracy than sequence
divergence. We propose criteria for models and residues that
are possibly useful for virtual screening. Based on these
criteria, AF2 provides models for half of understudied (dark)
human proteins and two-thirds of residues in those models.
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Introduction
About half of Americans answering a 2020 survey would
not get in an AI-driven taxi, and about three-quarters of
them believed AI (artificial intelligence) cars were “not
ready for primetime” [1]. Whether driving a vehicle or
discovering new medicines, trust in AI depends on
accumulated community experience and the conse-
quences of errors in specific cases. There are over 20,000
protein-coding genes in the human genome [2e4]. Of
these, 7074 have experimentally determined structures
deposited in the Protein Data Bank (PDB) as of July
2021 [5]. Only 670 human proteins are therapeutically
targeted by medicines, comprising the “drugged
genome” [6]. Significant areas of biology remain
potentially amenable to drug discovery [7]. Initiatives
like “Illuminating the Druggable Genome” [8], Open-
Targets [9], and Target 2035 [10] are exploring novel
therapeutic opportunities in the “druggable” genome.

DeepMind described [11,12] AF2 (AlphaFold version
2.0), an AI method that predicts overall 3D structures of
proteins. More than 350,000 AF2 structural models
(including models of nearly every human protein) are
now publicly accessible [12]. DeepMind garnered
worldwide attention with their decisive win of the
Critical Assessment of Techniques for Protein Structure
Prediction, CASP14 [13]. Currently, scientists are
assessing the impact of AF2 on research, including how
much AF2 models expand the druggable genome.

Winning CASP14 presents a set of challenges specific to
protein folding. However, protein 3D models do not
often play a crucial role in drug discovery. The notion of
trust in AF2 models is illustrated with a histogram of
atomic Root-Mean-Square Deviations (aRMSD) on C⍺

atoms for crystal structures deposited in the PDB since
AF2 was trained (Figure 2a in Ref. [11]). It shows that
AF2 produces high-quality folds in two-thirds of cases.
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However, the overall accuracy of a given AF2 model was
not discussed. Local confidence scores (predicted Local
Distance Difference Test, pLDDT) show a 95% per-
residue correlation with experimentally-derived LDDT
values [14] over the same proteins. AF2 model confi-
dence evaluation is needed in the drug discovery
context, given the non-local nature of aRMSD, the
inherent selection bias of recent PDB structures, and
the lack of any overall confidence-in-accuracy measure
that can be calculated for individual models. Here, we
discuss the issue of trust in AF2 models by addressing
disorder, divergence, discordance, and druggability.

Disorder dominates confidence scores below 80

More than 30% of eukaryotic proteins contain one or
more intrinsically disordered regions, IDRs [15e21].
Disorder is reflected in confidence scores as regions with
low pLDDT [12]. Figure 1 displays the distributions of
the pLDDT scores reported by AF2 for resolved/ordered
and unresolved/disordered regions of crystal structures
deposited in the PDB since AF2 was trained (the “post-
AF2 test set”, see Supplemental Information). On this
set of structures, ordered regions most frequently show
pLDDT scores greater than 80, while IDRs have a broad
distribution of pLDDT scores, with about 40% of unre-
solved regions falling below a pLDDT score of 50. From
this analysis, we conclude that confidence scores below
80 are more indicative of disorder than of confidence in
the accuracy of ordered structures. Therefore in calcu-
lations on ordered-model accuracy we employ a cutoff
of pLDDT>80.

Divergence has a minor effect on model accuracy

A problem with the 6-bin histogram used to estimate
the distribution of model accuracies (Figure 2a in
Ref. [11]) is that aRMSD is a non-local measure. If a
model is incorrect at the fold level, the expectation
value of aRMSD scales with the radius of gyration. Thus,
a model with 30 Å aRMSD against the experimental
structure could be consistent with an entirely misfolded
domain of around 1000 residues in length [22] or simply
with rotation of a smaller domain about a single residue.
To characterize different effects on model accuracy, we
down selected the post-AF2 test set to 1779 models that
can be aligned with a corresponding experimental
structure (see Supplemental Information) and used
them to evaluate all-atom and backbone measures.
pLDDT correlates poorly with log(aRMSD) on this set:
Spearman rank correlation coefficient is 0.43 on the
median (Supplemental Figure S1A). Truncating the
range of pLDDT over which the median is calculated
with a floor of 80 slightly improves the coefficient to
�0.48 (Supplemental Figure S1B). We refer to the per-
model median value of pLDDT scores greater than 80
as pLDDT80.

Next, we split this down-selected test set into two
pairs of subsets. The first pair explored high
(pLDDT80 >90) or low (pLDDT80 <88) confidence
scores. The second pair explored high (in clusters at
100% identity for over 80% of the length) or low (out of
clusters at 5% identity for over 80% of the length)
sequence identity to structures previously in the PDB.
Cutoff values in these pairings were chosen to give
maximal differences while maintaining roughly com-
parable fractions of the test set in the two arms of each
pairing. We calculated distributions on log(aRMSD)
and on the all-atom LDDT [14] for each of the sub-
sets (Figure 2).

The aRMSD metric is not well-suited for charac-
terizing structural models because its non-local
nature tends to exaggerate the effects in small
number backbone angle changes [23]. The lack of a
high-difference tail in the low-identity LDDT dis-
tribution, together with the suppression of the high-
difference tail in the low-confidence distribution,
suggest that most differences between model and
structure are in a few local coordinates, rather than
many. Using LDDT as the accuracy measure
improved Spearman’s correlation on pLDDT80 to 0.60
(Supplemental Figure S2).

Less than 1% of the high-confidence distribution ap-
pears in the range consistent with fold-level inaccura-
cies at LDDT<50. Distributions for the low-similarity,
high-confidence, and high-identity subsets are
approximately the same, with the caveat afforded by
the paucity of low-similarity models. But the 4% of
models in the low-confidence distribution are

Figure 1

Distribution of AlphaFold confidence scores across ordered (blue)

and disordered (red) regions. Ordered and disordered regions corre-
spond to resolved and unresolved parts, respectively, for the post-AF2 test
set. Terminal regions were not included. Ordered regions most frequently
show pLDDT scores >80%. Disordered regions show a broad distribution
of pLDDT scores with comparable frequencies from pLDDT scores be-
tween 20% and 90%.
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distinctly worse than the other subsets. These obser-
vations suggest that AF2 produces models that are
correct at the fold level more than 95% of the time,
better than the previous two-thirds estimate [11]. The
high-confidence and high-identity subsets similarity
suggest that sequence divergence with PDB entries is
not the primary driver of AF2 model inaccuracy for this
set of structures.

Discordance limits model accuracy

Another driver of model inaccuracy is how AF2 handles
differences among structures in the PDB with similar or
identical sequences, a phenomenon we call conformational
discordance. AF2’s training algorithm propagates confor-
mational discordance through down-selecting among

multiple PDB structures in a way that preserves
maximum differences [11]. A key question is how well
AF2 preserves correlations among conformational degrees
of freedom e not just mean values and uncertainties e
because those correlations are not needed to address the
problem for which its algorithms were designed.

An illustrative case of conformational discordance is
calmodulin (shown in Figure 3). Calmodulin is a
kinase that, upon binding Caþþ ions, changes from a
globular to a dumb-bell shape primarily through dif-
ferences in two adjacent hinge residues [24]. In the
calmodulin AF2 model, the effects of both conforma-
tions present in the training set are reflected in low
confidence scores at the two hinge residues. While

Figure 2

Kernel-density estimates of the distribution of differences between AF2 models and crystal structures using atomic Root-Mean-Square Dis-

placements on Ca atoms (top) and Global Local Distance Difference Test metrics (bottom). These distributions were calculated from crystallo-
graphic structures that were deposited in the Protein Data Bank after the AF2 training set cut-off date of April 30, 2018. Only residues that unambiguously
intersect between AF2 models deposited in EMBL [51] and crystal structures were considered, with a minimum per-chain length cutoff of 20 residues,
resulting in 1810 structural models to be compared. Distributions for mean confidence levels (pLDDT80) over the raw models at or above 90 (solid blue
line) and below 88 (dotted orange line) are plotted. We also clustered the PDB using mmseqs [52] to select for sequences nearly identical to an existing
structure (in clusters with 100% minimum sequence identity over 80% of the longest sequence and cluster mode 2, dot-dash green line) or decisively non-
matching regions (out of 5% minimum sequence identity, dotted red line). The high-confidence (pLDDT80>90) distribution on log(aRMSD) peaks at 1.7 Å
aRMSD, with a long tail extending beyond 10 Å at the 10% level. The low-confidence distribution on log(aRMSD) has a broad flat shape suggesting peaks
at 3 and 20 Å. The high-identity distribution looks similar to the high-confidence distribution, while the low-identity distribution has peaks near 2 and 20 Å,
respectively. Plotted against all-atom LDDT, the high-confidence, high-identity, and low-identity distributions look similar to each other; only the low-
confidence distribution is distinct, with a single peak at LDDT ~75. Notations on the x-axis indicate differences between structures of ligand-free vs. ligand
bound myoglobin (MB, PDB entries 1A6N and 1A6G); R-vs. T-state hemoglobin (HB, PDB entries 6BWP and 6BWU); unphosphorylated vs. doubly-
phosphorylated conformations of an extracellular signal-regulated kinase (ERK2, PDB entries 1ERK and 2ERK0); and calcium-free vs. calcium-bound
calmodulin (CALM, PDB entries 1CLL and 1QX5). The cyan line shows the proposed LDDT cutoff for a structure that is likely to be useful for virtual
screening.
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different AF2 runs yield slightly different results, none
of the resulting models that we have sampled accu-
rately reflect either the ion-free or ion-bound struc-
tures, but rather seem to be variations around the
average of the two states and correlated changes in the
two hinge residues have been lost. This example
suggests that conformational discordance in the PDB
results in composite AF2 models that rarely sample
underlying conformations in the PDB.

Druggability: are AF2 models ready for virtual

screening?

Important structural elements relevant for drug dis-
covery, such as prosthetic groups, ion binding, and
protons are not included in AF2 models. Known pro-
tein conformational changes (as shown in Figure 3)
can help us assess the effects of model accuracy on
AF2 model readiness for target-based virtual screening
(TBVS). If the model needs to be as close to the
crystal structure as deoxy-myoglobin is to carboxy-
myoglobin [25], only a tiny fraction of the AF2
models would be suitable for TBVS. If the model
needs to be as close as R-state is to T-state hemo-
globin, AF2 models may be suitable for characterizing
allosteric sites [26]. A more typical TBVS example,
where accuracy needs to be similar in capturing
conformational changes, is when ERK2 is doubly
phosphorylated. Given this example, a practical lower
bound of global pLDDT of 80 could serve as basis for a

model to likely be TBVS-ready. A value of pLDDT of
80 indicates a 68% likelihood of sidechain rotamers
falling into the correct hemisphere (Figure 2b in
Ref. [11]). Surfaces formed by two adjacent residues
with pLDDT � 80 are very close to the 50% accuracy
limit if rotamer errors are independent. Having pre-
viously introduced pLDDT80, we set pLDDT80 � 91.2
as criterion for assessing AF2 model quality, combined
with the fraction of protein length for which this holds
true (pLDDT80_frac) to evaluate TBVS potential; see
Supplemental Information. These criteria allow us to
calculate a confusion matrix (see Supplemental
Figure S2) that gives the sensitivity (true positive
rate of classification) of 90.1% and a precision (posi-
tive predictive value of classification) of 86.3%.

Given these criteria, we evaluated which AF2 models
of the human understudied proteins, Tdark [7], which
currently lack an experimental PDB structure might
be TBVS-ready (Figure 4a). Of the set of 5592 “dark”
proteins with AF2 models, 3051 (54.6%) meet our
criteria for possibly being accurate enough for TBVS
studies (Figure 4b). Taking into account the estimated
false-positive rate (w6% of total), this implies that
AF2 provides TBVS-ready models for about half of the
understudied human proteins. Additionally, among the
Tdark proteins associated with very high or confident
AF2 models, 664 match druggable protein families as
follows: 235 enzymes; 23 G-protein coupled receptors;

Figure 3

Comparison of discordant crystal structures of calmodulin with an AF model. The calcium-bound crystal structure (PDB entry 1CLL, thin green
cartoon with Ca++ ions as spheres), with alignments against the first half of the calcium-free crystal structure (PDB entry 1QX5, thin black cartoon) and the
AlphaFold2 model (P0DP23-F1-model_v1, thick yellow-red cartoon), aligned on their N-terminal halves. Yellow regions of the model represent very high
confidence (pLDDT>90) residues, while dark-red regions represent very low confidence (pLDDT<50) residues. The low confidence region at the center of
the AF model corresponds to a hinge where the calcium-bound and calcium-free models diverge. When aligned in this manner, aRMSD values of 7.2 Å
against the calcium-bound structure and 6.7 Å against the calcium-free structure were obtained. When aligned across all residues, the AF model yields
aRMSDs of 10 Å against the calcium-bound structure and 17 Å against the calcium-free structure, respectively. Global LDDT scores for the experimental
structures are 49% for all atoms and 56% for Ca only.
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220 immune response proteins; 5 ion channels; 16
kinases; 45 receptors; 25 signaling proteins; and 97
transporters, respectively. Tclin protein motif domains
(according to PFAM [27], InterPro [28], and Prosite
[29]) with Tdark proteins, 32 of the above 664 may
be more likely to have “druggable” binding domains
[30]. In total, 50 Tclin associated motifs are present in
“very high” or “confident” Tdark AF2 models; see
Supplemental Information.

Conclusions
In our opinion, future work would do well to move away
from the familiar aRMSD metric of overall model-
structure agreement in favor of LDDT or other local
measures. The aRMSD metric suggests that AF2
models are worse compared to pLDDT. Structural bio-
informatics would also benefit from developing mea-
sures that disambiguate the effects of disorder,
discordance, and divergence.

Proteins can take on different conformations, and
which protein conformation is more druggable depends
on the clinical need associated with a particular disease
state. Screening the right target in the wrong confor-
mation reduces the likelihood of finding valuable leads.
Few proteins are represented in the PDB by structures
determined in multiple conformations, while most
have only one. Many of the biophysical drivers that
determine protein conformation, such as the hydro-
phobic effect, remain poorly understood. More work
will be needed on the taxonomy of possible protein
conformations before AI approaches can be expected to
tackle the conformation problem robustly. Until then,
it might be helpful to eliminate discordant structures

from the training set to predict single conformations
with higher accuracy instead of predicting composite
conformation structures.

AF2 forces us to reconsider the implications of disorder
on druggability because it performs well at predicting
IDRs [31]. Having trust that a region is disordered
versus trusting the ordered region’s accuracy leads to
different conclusions. It is worth noting that the dataset
used in this work primarily includes proteins enriched
with relatively short IDRs, as 95% of proteins in the
dataset are at most 29% unresolved/disordered. In a
scenario where the dataset included proteins with
significantly longer stretches of IDRs, our results may
not apply. Proteins containing IDRs play critical roles in
many biological functions [32e39] and are associated
with various diseases [40e43]. Thus, IDRs are potential
targets in drug discovery [44e46]. “Disordered” does
not mean “undruggable” because unique strategies for
drug discovery in targets containing disordered regions
are available [47]. Regions of pLDDT <50 in an AF2
model indicate those strategies could be employed.
Moreover, the existence of a structural model is neither
necessary nor a sufficient condition for drug discovery.
Even the use of high-quality experimental structures of
the correct conformational state does not guarantee
successful TBVS hits.

About 5% of the human “dark” proteome has structures
in the PDB (Supplemental Information). Cost-to-
benefit analyses of whether to deploy TBVS on AF2
models remain project-dependent. However, AF2 model
quality may be “good enough” for rapid deployment for
over 3000 understudied human proteins. AF2 models

Figure 4

Fraction of the dark genome potentially illuminated by AF2 models. a) Of the set of 5592 unique “dark” proteins with AF2 models, 3051 (54%) pass
the proposed selection criteria of pLDDT80 greater to or equal to 91.2 while having at least 20 residues with pLDDT�80. b) Pie chart illustrating AF2
model quality according to pLDDT80-derived criteria (see Supplementary Information): 3051 (54%) proteins associated with “very high” or “confident” AF2
models are likely to be TBVS-ready, whereas 2541 proteins are not.
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may help de-risk protein targets through protein
expression and solubility and may provide protein en-
gineering suggestions. By identifying likely boundaries
of compact domains, disordered regions, or linkers, AF2
and other methods can enable synthesis-by-domain
strategies that can break large proteins into more trac-
table modules to be expressed or synthesized then
reconstituted in-vitro. Regardless of its impact on in silico
technologies, AF2 does not preclude structural biology
and structure-based drug design. However, AF2 is
poised to become a powerful tool in the evolving drug
discovery arsenal.

Computational models are very different from experi-
mental structures in that they can be updated on-
demand with the latest improvements. Public note-
books such as ColabFold [48] facilitate the removal of
disordered termini, improving sequence alignment,
adding a binding partner, and calculating new models
within minutes. Although not designed with protein
oligomers or assemblies in mind, multiple groups are
working on use of AF2 to illuminate proteineprotein
interactions. In 2014, it was estimated that 40% of pro-
tein structures were experimentally determined [49].
With AF2 and future improvements, structural biology,
and drug discovery are about to exponentially increase
with new computational tools that combine sequence
evolution, structures, and ligand binding knowledge [50].

Resources
We have implemented a pLDDT80 classifier along with
other useful features as a python package called rafm,
which is installable via the usual mechanism of “pip
install rafm” at the command line on systems with python
3.8 or greater installed. https://pypi.org/project/rafm.

Supplementary Information contains pLDDT and de-
rivative score information for the PDB subset, and for
the Tdark subset of the human proteome, as well as AF2
model evaluation criteria.
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