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1 Introduction

The set of scattering poles, otherwise known as scattering resonances, is intrinsic to
scattering theory [9]. Atascattering pole, there is a nonzero scattered field in the absence of
the incident field. On the flip side of this characterization of the scattering poles, one could
ask if there are frequencies for which there exists an incident field that doesn’t scatterer
by the scattering object. The answer to this question for inhomogeneous media leads to
the concept of transmission eigenvalues [12] (see [4] for a dual characterization between
scattering poles and transmission eigenvalues). The transmission eigenvalue problem has a
deceptively simple formulation, namely the existence of nontrivial solutions to two elliptic
PDEs in a bounded domain (one governs the wave propagation in the scattering medium
and the other in the background that occupies the support of the medium) that share the
same Cauchy data on the boundary, but presents a perplexing mathematical structure. In
particular, it is a non-self-adjoint eigenvalue problem for a non-strongly elliptic operator,
hence the investigation of its spectral properties becomes challenging. Roughly, its spectral
properties are understood under a one-sign assumption on the contrasts in the media (i.e.,
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the difference of the respective coefficients in each of the equations) near the boundary
[19,20]. Owing to the non-self-adjoint nature, complex transmission eigenvalues can exist
[13], [14], [23]. However, the set of real transmission eigenvalues play an essential role
in inverse scattering theory [2]. Real transmission eigenvalues are related to injectivity
of the scattering operator and they can be determined from scattering data [3], hence
they provide information on the refractive index of the media. The existence of real
transmission eigenvalues in general is hard to prove, unless restrictive assumptions in
the refractive index are imposed see [5] for general media and Colton and Kress [12] for
spherically stratified media. The goal of this paper is to provide examples of existence of
real transmission eigenvalues for media with refractive index that does not satisfy these

assumptions.

In order to be more specific, let us formulate the scattering problem under consideration.
Consider the scattering of an incident wave v of monochromatic radiation with frequency
w, which satisfies the Helmholtz equation

Av+Kk>v=0 in R,d=23 (1)

by an inhomogeneity supported in the bounded region D with the refractive index # being
a bounded real-valued function such that sup(z — 1) = D. Here k is referred to as the
wave number and it is proportional to the frequency w. The total field u is decomposed
as u = u® + v where the scattered field u* € Hfm (R%) satisfies

AU + K2nu® = —k*(n— 1)y, in R, 2)

together with the outgoing Sommerfeld radiation condition

_ ou’
lim T ( . ikus) =0, 3)
ar

which holds uniformly with respect to & := x/|x|, r = |x| [12]. Now, k is a non-scattering
wave number if the scattered field #° corresponding to the incident field v defined as above
is in Hg(D), i.e., is zero outside D. Non-scattering wave numbers are a subset of the real
transmission eigenvalues, i.e., values of k > 0 such that there exists nonzero v € L*(D)
and u® € Hg(D) such that

Av+k*>v=0 and A’ +Kk*nu® =—k*(n—1)v, bothin D
ou
where Hg(D) = {u eH*D): u= P 0}.
v
A real transmission eigenvalue k > 0 is a non-scattering wave number if the part v of the
corresponding eigenfunction can be extended to be a solution of the Helmholtz equation
on all of R%. Most recent results on necessary conditions for a real transmission eigenvalue
to be non-scattering wave number, or equivalently, by negation, sufficient conditions for
it not to be non-scattering wave number can be found in [8,21]. For general media (D, n)
with D Lipschitz and # a bounded function, the existence of (an infinite discrete set of) real
transmission eigenvalues is proven only under the assumption that the contrast n—1 is one
sign uniformlyin D, i.e., eithern—1 > «a > Oor1—#n > o > Oa.e.in D [2,5]. For spherical
symmetric media, i.e., when D := B,(0) is a ball of radius a centered at the origin and the
refractive index n(r) is a radial function, the existence of real transmission eigenvalues is
known for # € C2[0, a] with only the additional assumption that % foa vhrp)dp # 1.
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The goal of this paper is to provide examples of existence of real transmission eigenvalues
for classes of refractive index that do not satisfy the above conditions. We use a pertur-
bation method based on the implicit function theorem, hence the “irregular” refractive
index is a perturbation of a refractive index for which a real transmission eigenvalue is
known to exist. More specifically, for spherically symmetric media, we show that if a C2
spherical refractive index # is perturbed to a nearby refractive index n. in the weak*-L>
sense, then for sufficiently small € there exists a real transmission eigenvalue for #. in
the vicinity of a real transmission eigenvalue for n. We provide significant representative
examples of three types of perturbations: (1) refractive index with sign-changing contrast
up to the boundary obtained as an L perturbation, (2) discontinuous refractive index
obtained as an L! perturbation of small volume (radially thin shells) and (3) highly oscillat-
ing radially periodic discontinuous refractive index obtained as a weak*-L> perturbation
(such materials are used to build super-resolution spherical lenses). Note that for such
examples, the contrast may be everywhere large and change sign. In all these examples
we prove the existence of non-scattering wave numbers since by construction the part
v of the transmission eigenfunction is an entire solution of the Helmholtz equation (we
refer the reader to Cakoni and Vogelius [8], Salo and Shahgholian [21] and Vogelius and
Xiao [24] for existence of non-scattering wave numbers for analytic domain and analytic
refractive index).

For general media, our perturbation method provides only partial results. In order
to restore some structure for the transmission eigenvalue problem when the contrast
assumption is not satisfied, now we are faced with perturbing the zero eigenvalue of a
compact self-adjoint operator, which brings up a number of new difficulties. More specif-
ically, in the general case, we give a condition on the unperturbed problem which, if sat-
isfied, guarantees existence of approximate transmission eigenvalues under perturbation,
where by the approximate transmission eigenvalues we mean transmission eigenvalues
for the same problem projected onto finite-dimensional subspaces of any sufficiently large
dimension.

The paper is organized as follows. In the next section, we introduce a different equiv-
alent formulation of the transmission eigenvalue problem and define a function of two
variables, namely of the wave number k and the perturbation parameter €, whose zero
for a fixed € yields a transmission eigenvalue for the perturbed inhomogeneity. Section 3
includes the analysis for spherically symmetric perturbations of spherically symmetric
media, and contains interesting examples of the existence of transmission eigenvalue not
covered by the existing literature. Section 4 provides future directions on generalizing our
perturbation approach to arbitrary inhomogeneous media.

2 The transmission eigenvalue problem

Let us formulate precisely the above transmission eigenvalue problem in terms of v and
u:=u*+v.Let D C R d = 2,3 be an open and simply connected region with Lipschitz
boundary 3D. We assume that # € L°°(D) such that n(x) > n > 0 for almost all x € D.
The transmission eigenvalue problem reads: Find k € C such that there exists nontrivial
u and v satisfying

Au+k*au =0 in D,
Av+k*v=0 in D,
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u=v on 0D,

du v

— = — on 9D

v dv
Such values of k are called transmission eigenvalues [2]. We are concerned with real trans-
mission eigenvalues since, as discussed in the introduction, they contain non-scattering
wave numbers and are the only transmission eigenvalues that can be measured from scat-
tering data. We introduce a different equivalent formulation of the transmission eigen-
value problem which we use in our analysis. To this end, let us call T; : L%(3D) — L%*(3D)

the Neumann-to-Dirichlet operator mapping

o= Ulap
where U solves
9 . ou
AU+ kgqU =0 inD, 3—:(,0 on 4D, (4)
v

where we of course assume that k? is not a corresponding Neumann eigenvalue. The
operator th is obviously self-adjoint and compact since the solution w of (4) is at least in
HY(D) and hence w|3p € HY?(3D) which is compactly embedded in L%(D). Then, ifk > 0
is such that there is a nonzero ¢ € L?(dD) in the kernel of the operator T’é = T,f - T{( ,
ie,
']Tégo = Tr]f<p — T1k<p =0,
then this k is a transmission eigenvalue. Conversely, if k > 0 is a transmission eigenvalues
and the corresponding eigenfunction v is sufficiently regular then dv/dv is in the kernel
of TX.
The following proposition is used in Sect. 4.
Proposition 2.1 Assume q > 0 uniformly in D and consider an interval (a, b) C R
such that for all k € (a, b), k* is not a Neumann eigenvalue for (4) with ¢ = 0. Let
C:={zeC: Nz) e (a b)}. Then, T; :C — L(L*(dD)) is analytic in k.
Note that £(L?(dD)) denotes the Banach space of bounded linear operators on L>(dD).
Proof 1f U, is a solution of (4) then equivalently U, solves
B—-zK)U, =1
where z := (k? — 1), Band K are defined via Riesz representation theorem by

(BU, V)1 (p) = / (VU -VV +qUV) dx, VU,V € HY(D),
D

(KU, V)i (py = / qUvdx, VUV e H\(D),
D
and ¢ € H'(D) is the Riesz representative given by
€& V)pp) == —/ oVds, Yu,ve HY(D),
aD

where we have used the trace theorem to prove the continuity of the sesquilinear form
on the right-hand side. From Lax—Milgram we have that B! exists, and from the com-
pact embedding of H!(D) into L?(D) we have that K is a compact operator. From the
assumptions on k we have that 1/z is not an eigenvalue of the compact operator B~'K in
the respective region, which means that (B — zK) depends analytically on z and so does
its inverse (B — zK)~1. This implies that the solution U, is analytic in k. Finally, since
Ty : ¢ — Uylap the statement of the proposition follows. O
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From the above, for given (D, n) the operator T’é : L*(dD) — L*(dD) is compact, self-
adjoint and depends analytically on k. Hence T’é has an infinite sequence of real (positive
and negative) eigenvalues { A;(0, k) }jeN with 0 the only accumulation point. Thus, we have

T8 — Aj(0, k)g; =0 (5)

snf if A;(0, k) = 0 is an eigenvalue then k is a transmission eigenvalue, and conversely
if k is a transmission eigenvalue with dv/dv in L2(dD) then A(0, k) = 0. We would like
to use perturbation techniques to prove the existence of real transmission eigenvalues
provided that for the base problem with D and #, real transmission eigenvalues with a

regular eigenfunction v exist.

Assume that for the base problem corresponding to the inhomogeneity (, D) there exists a
real transmission eigenvalue ko for which A(0, ko) = 0. We consider #c, a one-parametric
family of perturbations of # with parameter ¢ > 0, such that n, converges to n in some
sense (to become precise later). Let us call

T¢ = T) —Tf

the difference of two Neumann-to-Dirichlet operators corresponding to (r¢, D). The
eigenvalues of the compact and self-adjoint operator ’JI"E‘ are Aj(e, k), and again k is a
transmission eigenvalue corresponding to the inhomogeneity (D, n¢) if A(e, k) = 0 is an
eigenvalue of TX. We consider perturbations such that the family of operators TX for
€ € (—4,8) and k € (ko — a, ko + «) is continuous in € and analytic k, i.e., the mapping

6 k € (=88) x (ko — a, ko + ) — TX € L(L*(8D))

is continuous in € and analytic in k. Here, ko > 0 is a transmission eigenvalue of the
unperturbed problem and « > 0 is chosen sufficiently small such that there are no other
transmission eigenvalues of unperturbed problem in (ko —«, ko +«). In addition of course,
we exclude Neumann eigenvalues for the homogeneous version of (4) with g := » and
q := 1. Note that the base problem with the refractive index n corresponds to € = 0.
Therefore, the main assumption on the base unperturbed problem is that (n, D) is such
that the transmission eigenvalues are discrete with 400 the only accumulation point. This
is the case if dD is Lipschitz, n € L°°(D), and n — 1 is one sign in a neighborhood of 4D
[2,17,22].

We want to use a version of the implicit function theorem (which is stated in Appendix A)
applied to A(e, k) in order to show that the perturbed problem for sufficiently small € > 0
has a transmission eigenvalue. In other words, there is a k := k(¢) such that A(e, k(¢)) = 0.
The goal is to prove the existence of real transmission eigenvalues for inhomogeneities
(D, n) with refractive index that violates assumptions for which the transmission eigen-
value problem is not understood, such as the contrast # — 1 is not one sign in D [5], or is
not sufficiently smooth in a neighborhood of dD [20,23]. We believe that Theorem 4.1 in
Appendix A requires minimal assumptions on our perturbation problem to yield a proof
of existence of real transmission eigenvalues for the case when the transmission eigen-
value problem lacks a good structure to apply standard perturbation theory for eigenvalue
problems. However, the challenge one has to deal with in this perturbation problem is that
we must work with the function A(e, k) in a neighborhood of € = 0 and k = ko, where
A(0, ko) = 0, which is an accumulation point for the eigenvalues of the self-adjoint com-
pact operator ']I‘go. This complicates the choice of a particular eigenvalue of ’JI"; in order to
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define a continuous function A(€, k) in the neighborhood (—3$, §) x (ko — o, ko + ). As a
proof of concept, next we consider spherically symmetric inhomogeneities which allows
for an explicit definition of A (€, k) where we apply the implicit function theorem.

3 Spherically symmetric media

We are interested here in spherically symmetric media in R® (to fix our presentation we
consider the 3-dimensional case, but the 2-dimensional case can be handled exactly in
the same way), i.e., when the inhomogeneity D is the unit ball B := {x eR3: x| < 1}
and n(r) > n > 0is n € L*°(0, 1). The existence of transmission eigenvalues in this case
has previously been proved under the assumption that #(r) is in C? since the approach
makes use of Liouville’s transformation which involves second derivatives on n [12]. The
goal here is to show examples of existence of real transmission eigenvalues for spherically
symmetric L>°(B) refractive index such that n(r) — 1 is not one sign uniformly in D (the
case of one sign contrast uniformly in D is covered by the general case discussed in [5]).

The transmission problem for spherically stratified media reads

Aw+ K*n(r)w =0 in B (6)
Av+k>»=0 in B, 7)
w=v in 3B, 8)
E;—‘:j = % on 0B. &)

Introducing spherical coordinates (r, 6, ¢) we look for solutions of (6)—(9) in the form
vl %) = agjekr) Y} (5),
w(r, &) = beye(r)Yy" (%),
where & € S? is the angular variable (S? denotes the unit sphere), Y, %), £=012..,
m = —4, ..., ¢ are spherical harmonics which form a complete orthogonal system in

L%(S2), je are the spherical Bessel functions, a, and b, are constants, and yy := y(r; k n)
is a solution of

Y+ oy + (kzn(r) Nt 1)) y=0 (10)
r r

for r > 0 such that y,(r) behaves like j,(kr) as r — 0, i.e.,
Jkt
2017 (0 4 3/2)°
From Colton [10, pp. 45-50], we can represent y,(r) in the form

lim r_gyg(r) =
r—0

r
) = etk + [ 605 s an
where G(r, s, k) satisfies the Goursat problem
%G 209G 2G 209G
2 2 2 2
— 4+ —-——+4k G| = — 4+ -——+k“G|,
r|:8r2+r8r+ n(r)] S[8s2+385+ ]

k2 r
Glrk) = o fo p (L= n(p))dp,

G(r,s,k) = O ((rs)"/?),

for0 < s <r < a.lItisshownin [10,11] that G can be solved by successive approximation
for n € L°°(B). We do not show here these standard calculations for solving the Goursat
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problem and refer the reader to Section 2 in [11] for the details. Estimates in [11, Section
2] in addition show that

d
—G(ns, k)‘ < Glnllz=o 1) (12)

sup |G(r,s, k)| < Cillnllzo 1),  sup m

r,se(0, 1] r,s€[0, 1]

where the positive constants C; and C, are independent of n. Hence, (11) and (12) imply
that the solution y, € H'(0, 1) satisfies

sup |ye(r)| < cillnlg= 1) and  sup |y,(r)] < callmllze(o, 1), (13)
rel0, 1] rel0, 1]

with positive constants ¢; and ¢y independent of #. In particular, one can see that the
point value y¢(1) := y¢(1, k) is an entire function of k.

Next for a fixed integer £ > 0, we consider the following problem for the radial function
ye(V) = yi,e(’") :

2 0e+1
Y+ e+ (kzne(r) -4 o ))ye =0 (14)

on (0, 1) with the condition at the origin

Skt

lim r~¢ =, 1
Hm e () = SEr e 1 3/2) (15)
which is perturbed off of the smooth #(r) € C? background problem
2 £ +1
y8+;y6~|— <k2n— ( 3 ))y():O (16)
on (0, 1) with the same condition at the origin
ké
lim ¢ — L 1
lim r yo(r) 2T 13)2) (17)

Proposition 3.1 Assume that £ > 0, and that the n¢ are uniformly bounded in L*° and
that ne converges weak* L™ to n. Then, the solutions y. to (14), (15) converge strongly in
L? and pointwise to yo, the solution to (16), (17). Furthermore, the point value of y.(1)
converges to y,(1) as € — 0.

Proof From the assumption of L™ boundedness of n. and (13), we have that y. and
y. are both uniformly bounded on (0, 1) by the L°-norm of #.. This implies that y,
is a bounded sequence in H1(0, 1), and hence is pre-compact in L2(0, 1). Consider the
difference zc = y. — yo. We calculate that z. solves

.2, e +1
2+ “ze+ (an _U — )) ze = —k*(ne — n)ye (18)

on (0, 1) with the homogeneous condition at the origin
lim r~“z.(r) = 0. (19)
r—0

This is a generalized Bessel equation with a right-hand side
ge = —k*(ne — n)ye,

so that we can apply variation of parameters. The homogeneous solutions are spanned by
the analogues of j, and Y, which in the constant # case are spherical Bessel functions of the
first and second kind. (For simplicity of presentation we keep the notation corresponding



11 Page 8 of 16 Ambrose et al. Res Math Sci(2022)9:11

to the constant # and remark that jy is yo and Yy is the other linearly independent solution
of the homogeneous equation with # which is singular at the origin.) Their Wronskian

W(j@: Yi) :]ZYZ _jéyb

we know is nonzero, and any particular solution of (18) is given by

t8e Jt8e
i | gy, dr. 20
’/ w et /W (20)

By the condition at the origin (19) and the properties of J; and Y; there, we must have that

2e(r) = —ju(r) /0 Y&%

Hence, we have that

r Y € € iy € €
Ye(r) = yo + K%e(r) fo Y= g — ki /0 M . @2

" j(ge
. 21
W (p)dp (21)

From the precompactness of y., there exists a strongly convergent L? subsequence; call
the limit 9. Now we note that at £ — 0 we have W(£) ~ 72, jo(t) ~ t%, Yo(t) ~ ¢t~ ¢+
and y¢ () ~ t%, so the products with y. will converge strongly, in particular in L!(0, 1).
Since ne — n converges weak* L™ to zero by assumption, taking the limit in (22) for this
subsequence yields # = yo, and hence the entire sequence must converge strongly in L?
to yo. Once we have this, (22) yields the pointwise convergence of y.. We can then further
calculate

200 = =) / Y8 yap + Yi() / T8 (o) (23)

due to the fact that the other terms in the product rule cancel, and hence
ZL(1) = k%,(1) /

By the weak convergence of 7. and the strong convergence of y., the result follows. O

Y9 () (1e(p) — (o)) dp — K2Y](1) / 1Y (1) (1e(p) — (o)) d.
(24

As stated earlier, k being a transmission eigenvalue is equivalent to k being such that the
kernel of T}, ; — T x is nontrivial, i.e., there exists g # 0in L%(S?) such that (T, x — Ty x)g #
0, or in other words 0 is an eigenvalue of this operator T, x — T . Here T, is the
Neumann-to-Dirichlet operator

Ty : g+ u(l, %)

for ¢ = n or g = 1, where u(r, &) solves
d
Au + kzq(r)u =0 forr<1 and a_u =g@&) forr=1
r

From now on we assume that k? is not a Neumann eigenvalue of the above problem for
either ¢ = 1 or ¢ = n(r). Let

[e'e) 4
gE) =" > @@ (25)

=0 m=—{

Then, the solution of Av + k%v = 0 is

v(r, &) = ZZﬂz}ekrYz %),

=0 m=—¢
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and with Neumann data g, this takes the form

v(r, &) = Z Z 5 (k o (kr) Y™ (%)
=0 m=
where ji (¢) := d”(t) . Hence

Tirg = Z Z geje(k

=0 m= ka

Similarly the solution of Aw + k2n(r)w = 0 is

oo 4

w(r, &) = Z Z beye(r; k n)Y" (%)

=0 m=—¢

and with Neumann data g this takes the form

w(r, &) = Z Z (1 k )ye (r; ks m)Y]" (%),
Ve

=0 m=

and therefore

geye(1; k n) Y3
nkg ; ot —(lk ) (&).

Thus, letting y,(r = 1;k n) := y(k n) we have that (T,,x — T,x)g = 0 yields

y((k Vl) ]g(k) o
Z Z (J’@(k, n) k/@(k)> Y,/ (%) = 0.

=0 m=

So a transmission eigenvalue k corresponds to

yelkm) jek) _
vikn) k0

that is, k are the zeros of determinants

k —j
Delkn) = det |7 f(( mo ?Ek) -0 (26)
Yelkn)  —kjy (k)
which have been extensively studied (see, e.g., [2]). Note that if n(r) := n is a positive

constant, then y¢(k,n) = jo(k/n) and y,(k n) = /nkj,(k/n). In particular if n(r) €
C2%[0,1] and 8 := fol Vn(p)dp # 0 we already know that there exists real eigenvalues
k > 0 and the corresponding eigenspace is of finite dimension.

Next we look at the eigenvalues of the self-adjoint compact T, x := T,k — Tk, i€,
Trng — A0, k)g =0, forg #0.

Hence, for an eigenvector g given by (25) we have that
yelkn)  je(k) ) .
— = —A0k) )Y &) =0
Z ZE (y[ W)~ ) ‘

Thus, eigenvalues are given by

yelkn)  je(k)

MR = e T kL w)

11



11

Page 10 0of 16 Ambrose et al. Res Math Sci(2022)9:11

with corresponding eigenfunction g := g¢¥;"(%) and it has at least multiplicity 2¢ + 1.
From the assumption on k2 we have that all the denominators are different from zero.
Note that for n(r) = n constant we have

)
AR = G k) k)

Again, it is already known that if # € C?[0, 1] each A (0, k) has infinitely many real zeros

which are transmission eigenvalues. Our goal is to show the existence of real transmission
eigenvalues for perturbations of a C 2 refractive index n(r).
To this end let # € C2[0, 1] and consider a one-parametric perturbation n, € L*(0, 1) of
n such that 7, are uniformly bounded in L* and #, converges weak* L to n. From the
above calculation we have that the eigenvalues A(e, k) of T,_x := T, x — T1,x are given
by
Aue k) o= 2B 7 ®)
Velk ne)  kjy(k)
We fix £ € Ng and consider ko > 0 such that A;(0, ko) = 0, i.e., a transmission eigenvalue.
Then, we consider the function of two variables A ¢ (¢, k) as a function defined Ay : (—§, §) x
(ko — @, ko + a), with @ > 0 sufficiently small such that no other transmission eigenvalues
of (n, B) are in (ko — &, ko + «). From Proposition 3.1, we have that Ay(e, k) satisfies the
assumptions 1-3 of the version of the implicit function theorem (Theorem 4.1). Hence, if
we in addition require that

OD 20 7
we can show that there exists € < § such that for every € satisfying |€| < € there exists
k := k(e) such that Ay(¢, k(€)) = 0. Thus, there exists at least one real transmission
eigenvalue corresponding to #, in a neighborhood of ky. Obviously we apply the above
reasoning for every transmission eigenvalue separately, corresponding to every £ € Ny, as
long as the condition (27) is satisfied.

Next, let us investigate a bit further condition (27). We can obviously write

Dy(k, n)
¥y (k n)jy (k)
where D(k, n) is the determinant given by (26). If ko is a transmission eigenvalue such that
A¢(0, ko) = 0, then we have

Dy(ko, n) := kojy(ko)ye (ko, n) — je(ko)y, (ko, ) = 0.

kA0, k) :=

Thus, because Dy (ko, n) = A¢(0, ko) = 0 condition (27) is equivalent to

dDy(k, n)

& # 0. (28)

Remark 3.1 Transmission eigenfunctions corresponding to a transmission eigenvalue kg
as zero of Dy (ko, n) = 0 have jy(r) as the radial part multiplied by 2¢ 4 1 spherical harmon-
ics. The condition (27) means that the algebraic multiplicity of the transmission eigenvalue
ko is not greater than its geometric multiplicity which is counted by the number of indices
£ corresponding to the radial part of the eigenfunctions. Note also that it is possible for a
transmission eigenvalue ko to be a zero of Dy(k, n) for more than one index € [12].
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Fig. 1 Left plot depicts functions F(k) (in red) and G(k) (in blue) for £ = 0 and n = 4. Right plot depicts
functions F(k) (in red) and G(k) (in blue) for £ = 4andn =2

We cannot prove whether the condition (27) is satisfied. Up to date there is no theoretical
results regarding when this is the case for spherically symmetric media. Of course, it
always holds for simple eigenvalues. However, if we perturb off of constant media, i.e.,
n > 0 is constant, explicit calculations on Maple indicate that this condition is satisfied
for a large number of examples that we tried. In particular for constant # the determinant
Dy (k, n) after dividing by k takes the form

Dy(k n) := jy(k)je(k</n) — /nje(k)jg (k/n).
Hence, (27) at a transmission eigenvalue ko becomes
dDy (ko, n) ) . . .
| =i kyie(ko/m) — nje(ko)ji (ko/n) # 0 (29)
k=ko
For various values of £ > 0 and constant # > 0, we have used Maple to plot the following
function of k

E(k) := jy(k)je(k/n) — /nje(k)jy (k/n)
whose zeros are transmission eigenvalues and
G (k) := ji (k)je(k~/n) — nje(k)jy (k/n)
and observed that G(k) is not zero at the zeros of F(k). We have shown in Figure 1 two

instances of these plots.
Summarizing, we have proven the following theorem.

Theorem 3.1 Assume that n € C*[0,1] and n. € L*°(0, 1) is a one-parametric perturba-
tion of n such that the L°°(0, 1)-norm of ne is uniformly bounded on €, and n¢ converges to
nweak* L. Then, the inhomogeneity (ne, B) for sufficiently small € has a real transmission
eigenvalue in a neighborhood of any transmission eigenvalue ko of the unperturbed inho-
mogeneity (n, B), provided that algebraic multiplicity of kg is not greater than its geometric
multiplicity as defined in Remark 3.1.

3.1 Examples of perturbations
The existence of real transmission eigenvalues is known for general media with support
D with refractive index n € L%(D) only under the assumption that either n(x) > 1

Page 11 of 16
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or 0 < n(x) < 1 uniformly almost everywhere in D. Otherwise, the existence of real
transmission eigenvalues has been shown for spherically symmetric media assuming that
n(r) € C2[0,1] such that fol mdp # 1. Our result of Theorem 3.1 can provide
example of existence for spherically symmetric media not covered by the known results.

In the following, we provide a few examples.

Example 1 (L*° perturbations; sign changes up to the boundary) The above theory implies
existence of m real transmission eigenvalues for any refractive index of the form

ne(r) = n(r) + eye(r)

for any n € C? and y. uniformly bounded in L%, for € small enough. In particular, let B
be the ball of radius one and define

ne(r) == n+ €sin

for |€| < €, where for example # is a constant and n # 1. Obviously, n. € L°°(B) and is
not even in C[0, 1]. Theorem 3.1 provides the existence of real transmission eigenvalues
for (B, n¢). In fact for sufficiently small €y > 0 we can prove the existence of finitely many
real transmission eigenvalues and their number depends on how many real transmission
eigenvalues corresponding to # satisfy condition (28) and how small € is. More precisely
if there are m real transmission eigenvalues that satisfy (28) and € is chosen to be smaller
than the minimum of all distances between these eigenvalues, then there exists m(e)

transmission eigenvalues corresponding to 7 (7).

In particular if n(1) = 1, then the above n provides an example of the contrast n, — 1
changing sign in any neighborhood of a boundary point. The spectral analysis for the
transmission eigenvalue problem for this case is completely open.

Example 2 (L' perturbations) We also obtain existence of real transmission eigenvalues
for radially symmetric small volume perturbations (thin shells), which could be sign-
changing. Let us again let B be the ball of radius 1 and let

ne(r) = 1+ A Xrg—erg] — BXlroro+e]

for constants o, B where x are radial characteristic functions and rg is any radial value
between 0 and 1. One could also have small volume but fixed max contrasts which are
sign-changing up to the boundary, such as

ne(r) == 1+ X[1—¢1] Sin p—
That is, for any positive integer m, there exists € such that the above scatterers have m

real transmission eigenvalues for any € < €.

Example 3 (Weak perturbations; periodicity) Consider a highly oscillating radial refrac-

tive index, for example,
r
ne(r) =n(p) =n <E>

where 7 is periodic in p € [0, 1]. Here # is bounded but possibly discontinuous and sign-
changing (perhaps even up to the boundary as in the above examples). It is well known,



Ambrose et al. Res Math Sci (2022)9:11 Page130of16 11

see for example [1], that #(Z) converges weak® in L* to its constant cell average,

1
n=n= /(; n(p)dp.

Hence, by the above result, assuming that n # 1, for any positive integer m, there exists
small enough period size such that the radially periodic scatterer has m real transmission
eigenvalues. Note that for such examples, the contrast may be everywhere large. We should
point out that it is already known that for non-sign-changing but general (full dimension)
periodic refractive index, one has convergence of the transmission eigenvalues to those of
the homogenized problem [6] (see also [7] for the scattering problem for periodic media
of bounded support).

4 Future directions

It would be of interest to develop perturbation theory for transmission eigenvalues which
applies beyond the spherically symmetric case treated in detail in Sect. 3. However, this
requires perturbing the zero eigenvalue of a compact operator, which carries with it a
number of difficulties. The difficulties were overcome above because of a wealth of spec-
tral information available owing to the spherical symmetry. Nevertheless, in the general
case, we offer in this section a future direction for investigation of perturbations of trans-
mission eigenvalues in general. Namely, we give a condition on the unperturbed problem
which, if satisfied, guarantees existence of approximate transmission eigenvalues under
perturbation. Here, the approximate transmission eigenvalues are transmission eigenval-
ues for the same problem projected onto finite-dimensional subspaces of any sufficiently
large dimension. We now make this precise.

For all k, for all ¢, the operator T’E‘ maps the Hilbert space L?(dD) to itself; we denote
X = L*@D), so ’JI"G‘ : X — X If ko is a transmission eigenvalue of the unperturbed
problem, then 0 is an eigenvalue of TX, with the eigenvector being the Neumann data f
Forj € N, let X; be a subspace of X, with X; C Xj; forallj € N, and with X = UjeN Xj.
Assume that the subspaces X; are such that there exists /] € N such that for all j > J
we have f € Xj. Let the inner product on X; be the inner product induced by the inner
product on X. Let P; be the projection onto Xj.

We define TIE‘J. = P,T/g [x;» and we note that Tf} j X — Xi. For ease of notation, we will

write this simply as T’; ;= P,»']I‘i‘, with the understanding that the domain is restricted to

be X;. Then, for j > ], we consider T](;,Oiﬁ and we find
ki ki
Therefore, 0 is an eigenvalue of ']Tg?j with eigenvector f Furthermore, we also have
ko'\* k k k
(78)"f = @mioys = Tops =Ts =0

(Here, we have used that projections on Hilbert space are self-adjoint, and that 'Jl‘go is also
*
self-adjoint.) Thus, 0 is also an eigenvalue of ("Jl’goj) with eigenvector f.

Since 0 is an eigenvalue of the finite-dimensional operator Tg?j, we can write this eigenvalue
as Aj(k €) where Aj(ko, 0) = 0. We may then use the implicit function theorem to find a
function kj(e) such that A;(kj(€), €) = O for € in an interval about € = 0. From Proposition
2.1, we have that T’é depends analytically on k in regions of the complex plane C that
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exclude k such that k2 are eigenvalues of (4) withq = A,p = nand ¢ = I p = 1. In what
follows, (-, -)2(yp) denotes the L*(dD) inner product.

Theorem 4.1 Assume that
ark
dk
For all j > ], there exists €, > 0 such that for all € € (—¢j, €j+), there exists kj(e) with
ki(0) = ko, and such that A;(k;(0), 0) = 0.

ﬁf>750‘

(k€)=(ko,0)

Proof To apply the implicit function theorem, we need to know that A; is continuous;
this is true in the current finite-dimensional setting, since eigenvalues in finite dimensions
are the zeros of polynomials, and since the zeros of polynomials depend continuously on
the coefficients, which in turn depend continuously on the parameters.

Then, it remains to show that

dAf(k 0) £ 0
ak Ko 0) #0.

Since Tgo is analytic with respect to k, we have that the finite-dimensional restriction ’]I‘l(;g.
is also analytic with respect to k. By a classical result of Rellich [18] (see also [16]), we then
have that the eigenvalues are differentiable with respect to k, with formula

ark.
< T 1 >
&(k() 0) — (k.€)=(ko,0)
dk ()
ark. Tk k
This simplifies since —z* = du{}g d /%, and also since P; is self-adjoint and P;f = f.

These considerations yield

dTk
< s rf >
D) 10.0) = (ke)=tko0) |

dt {£f)

The numerator of this right-hand side is the quantity which we have assumed to be

nonzero. Thus, the implicit function theorem (specifically, Theorem 4.1) applies, and we
find the existence of a continuous curve kj(¢) such that

Aj(kj(é), €)=0.
The curve satisfies k;(0) = ko. O

Thus, we see that under fairly general conditions on the unperturbed problem, one has
approximate transmission eigenvalues for the perturbed problem, at any level, j, of approx-
imation. Of course, to take the limit of these transmission eigenvalues as j goes to infinity

would require some uniform control.
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A A specific version of the implicit function theorem
The following theorem is meant to be applied to f = A, with x corresponding to € and y
corresponding to k, and (%, ¥) = (0, ko).

Theorem 4.1 (A very specific version of the Implicit Function Theorem from Theorem 2
of [15]) Let X and Y be open subsets of R. Suppose that (x,y) € X x Y andf : X x Y — R.
Suppose that

f(ﬁ_C, 7) = O;
f(x ) is continuous in y for every fixed x € X,
f(x,y) is continuous in x for every fixedy #7y,y € Y,

BN =

fy(%, ) exists and is not equal to zero,

then there exist open Xo C X and Yo C Y with (x,7) € Xo x Yo and function ¢ : Xo — Yo
such that

fx o) =0Vx € Xo
and
¢x) =y.
Proof Consider the function
_fxy)
L&)
For y near ,
f@)’) =f(9_6,7) + (_)/ —7)13(7@7) + 0()’ —7)
by existence of the partial derivative. Since f (%, ) = 0,
oy —7)
f&3)

where the denominator is a constant. Hence, for § > O and (y — 6,5 +6) C Y,

F(x, y)

Fxy)=y—-y+

Fx,y+3)=35+0()
and

F(x,y —8) = =8+ 0(3).
So, there exists § such that

F(x,y+48) >0
and

Fx,y—3) <O.

Keeping 6 fixed, by the continuity of Finx aty =y + 6 and y =y — §, there exists a ball
Xo around X in X such that

Flx,y+38) >0
and

Flx,y—38) <0
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for every x € Xy. Since F is continuous in y for any x € Xy, the intermediate value theorem
applies and hence for each x € Xj there exists ¢p(x) € Yp := (¥ — 5,5 + §) such that

F(x, ¢(x)) = 0.

O

We note that the third hypothesis could be relaxed, as long as there were a sequence of

points converging to ¥ where continuity in x holds.
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