
Inverse Problems

PAPER

Target signatures for thin surfaces
To cite this article: Fioralba Cakoni et al 2022 Inverse Problems 38 025011

 

View the article online for updates and enhancements.

You may also like
A modified transmission eigenvalue
problem for scattering by a partially coated
crack
Samuel Cogar

-

Nonflooding Hybrid Polymer Fuel Cell
Weida Shen, Fengyuan Zhang, Ajay
Prasad et al.

-

An inverse electromagnetic scattering
problem for a cavity
Fang Zeng, Fioralba Cakoni and Jiguang
Sun

-

This content was downloaded from IP address 165.230.224.17 on 09/01/2022 at 16:18

https://doi.org/10.1088/1361-6420/ac4154
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuHdTzmb3DkMeESC-dFsZhwduXSAZw13vIW2h3xTwDewKXU7ks0ZuWEZvP7ajT_jWK3gWSmbr0LhaJPNS38iWci0TnkCzKSIOoVIFPFskCAvRIZ_TIA8aDWmlYhuw7p31oDEU1jskkGPTcYfXAjncdrb8mG2ArFztsS5ereSDPcoxPQ215Yvj6w1zhocgO-nNHtw9l4Nu3y8oXswxRjfBPuQqAnw0MkMRKB9mnaJK4bX3L5r6rFDC91n2sTOXRRjUohC_9f56CHBjWKGzvNHlwy1oj-UXSXJOA&sig=Cg0ArKJSzB2HPZzHJH5i&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=http://iopscience.org/books


Inverse Problems

Inverse Problems 38 (2022) 025011 (28pp) https://doi.org/10.1088/1361-6420/ac4154

Target signatures for thin surfaces

Fioralba Cakoni1 , Peter Monk2 and Yangwen Zhang2,∗

1 Department of Mathematics, Rutgers University, New Brunswick, NJ, United
States of America
2 Department of Mathematical Sciences, University of Delaware, Newark, DE,
United States of America

E-mail: ywzhangf@udel.edu

Received 24 June 2021, revised 24 November 2021
Accepted for publication 8 December 2021
Published 4 January 2022

Abstract
We investigate an inverse scattering problem for a thin inhomogeneous scatterer
in Rm, m = 2, 3, which we model as an m − 1 dimensional open surface. The
scatterer is referred to as a screen. The goal is to design target signatures that are
computable from scattering data in order to detect changes in the material prop-
erties of the screen. This target signature is characterized by a mixed Steklov
eigenvalue problem for a domain whose boundary contains the screen. We show
that the corresponding eigenvalues can be determined from appropriately modi-
!ed scattering data by using the generalized linear sampling method. A weaker
justi!cation is provided for the classical linear sampling method. Numerical
experiments are presented to support our theoretical results.

Keywords: inverse scattering, inhomogeneous media, scattering by screens,
nondestructive testing, the Steklov eigenvalue problem

(Some !gures may appear in colour only in the online journal)

1. Introduction

Target signatures are discrete quantities that can be computed from scattering data and used
to classify targets or serve as indicators of changes in targets. A classical choice is the singu-
larity expansion method introduced to classify targets in radar scattering proposed by Baum
[5, 21], although this method eventually turned out to be dif!cult to determine in the radar
application since highly accurate time domain data is needed. More recently, Cakoni, Colton
and Haddar suggested that transmission eigenvalues might provide target signatures for detect-
ing changes in an object using multi-frequency time harmonic data (see [8] for an introduction
to transmission eigenvalues and the target signatures). By sweeping through the frequency
data, transmission eigenvalues can be determined from the far !eld operator for the scattered
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data provided the medium is non-conducting. For a conducting medium the eigenvalues may
be complex, and hence cannot be detected using real probing frequencies.

In an attempt to circumvent this problem, Cakoni, Colton, Meng and Monk [9] introduced
a modi!ed far !eld operator by subtracting the far !eld operator for scattering by an arti!cial
domain containing the scatterer and having an impedance boundary condition with variable
impedance. In this case the target signatures correspond to Steklov eigenvalues for the arti!cial
domain and scatterer, and these can be determined using data at a single frequency. Further-
more, the method can be applied to conducting objects since the arti!cial impedance problem
can have a complex parameter. The use of Steklov eigenvalues was later extended to Maxwell’s
equations [11], and the theoretical analysis was greatly improved by giving a general frame-
work for determining target signatures from far !eld data using the generalized linear sampling
method (GLSM) to determine the Steklov eigenvalues [2]. This latter paper also introduced a
new class of target signatures based on an arti!cial modi!ed interior transmission problem. All
the previously mentioned papers had the disadvantage that it is not known if Steklov eigen-
values exist for conducting media (but if they do, they can be detected!). This situation was
remedied by Cogar [14] who further modi!ed the Steklov problem by introducing a smoothing
operator into the impedance boundary condition. This allows the existence of complex Steklov
type eigenvalues for the new boundary condition to be proved.

All the previously mentioned work has involved scattering from bodies with a nontrivial
interior (i.e. containing a disk in R2 or a sphere in R3). However if the scatterer is thin compared
to the wavelength of the probing radiation, it is often desirable to treat it as a screen with zero
thickness but having special transmission conditions across the surface that model, approxi-
mately, the thin body. In this paper we will use a special case of the transmission condition
developed in [10] (see also [17]) for delaminating media.

An obvious problem with developing a Steklov type target signature for a screen is that there
is no interior. Instead, we propose to use an arti!cial domain and a mixed Steklov eigenvalue
problem. In particular, suppose the screen is denoted by Γ; we assume that we can extend Γ to
obtain a closed piecewise smooth surface that is the boundary of a bounded connected region
D ⊂ Rm. Thus Γ ⊂ ∂D. We then modify the far !eld pattern using a mixed scattering problem
in the exterior of D having a variable impedance denoted λ. Modifying the measured far !eld
pattern using the far !eld pattern from this arti!cial scattering problem allows us to demonstrate
a connection between the far !eld operator and an interior mixed Steklov eigenvalue problem
posed on D. In particular, the mixed Steklov eigenvalues can be determined from the measured
far !eld pattern due to scattering by the screen. We further connect properties of the surface
impedance of the screen to the target signatures. Finally, we provide some numerical results in
2D that illustrate the theory.

The choice of the domain D is somewhat arbitrary beyond the constraint that Γ ⊂ ∂D. Our
limited numerical results suggest that the choice can effect the number and quality of the
eigenvalues that can be determined. For the simple curves in 2D that we have considered it
is suf!cient to use the convex hull of the points on Γ. Obviously this is not appropriate for
more general screens.

This is the !rst paper on Steklov type target signatures for screens. A related work on mod-
i!ed transmission target signatures for cracks can be found in [13]. We remark that the method
presented here aims to detect changes in the material properties of the screen represented by
coef!cients in the jump conditions of the total !eld, and assumes that the geometry of the open
surface is known. Most of available literature concerns the reconstruction of the shape of an
open surface, and we refer the reader to [1, 3, 6, 7] for some related non-iterative inversion
methods.
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The paper proceeds as follows. In the next section de!ne the direct (or forward) problem
and our proposal for target signatures. Then in section 3 we show that the mixed Steklov eigen-
values de!ned in section 2 can be determined using the linear sampling method (LSM) or the
GLSM. As usual, the justi!cation of the use of the convenient LSM is incomplete (for more dis-
cussion of this point, see [8] and comments later in this paper), while for the GLSM a complete
theory can be given. Nevertheless we use the LSM for our numerical results. Results connect-
ing the mixed Steklov eigenvalues to the impedance of Γ are provided in section 4 where we
note, for example, that a constant impedance can be determined from measurements of a single
eigenvalue. Next, in section 5, we show preliminary numerical results of determining eigen-
values from far !eld data, and investigate the sensitivity of the eigenvalues to perturbations
of the impedance. Conclusions are presented in section 6. The paper ends with an appendix
(appendix A) on the exact calculation of mixed Steklov eigenvalues relevant to our study.

2. The direct, auxiliary and inverse problem

In this section we de!ne the forward problem and target signatures. We assume that Γ is an
open piecewise smooth m − 1 dimensional, oriented and non-self-intersecting surface in Rm

for m = 2, 3. More precisely, we considerΓ to be a subset of a closed piecewise smooth surface
∂D circumscribing a connected region D ⊂ Rm. Let ν denote the unit outward normal to ∂D
and let the normal derivative ∂νu = ∇u · ν. For a piecewise smooth function w we de!ne the
jump on Γ by

[[w]] = w|Rm\D − w|D.

The surface material parameter σ := k(α1 + iα2) is a complex valued L∞(Γ) function with
non-negative imaginary part α2 ! 0, where k denotes the wave number of the background
medium which is proportional to the interrogating frequency. Given an incident !eld ui and the
surface parameter σ, the forward problem for Γ is to !nd u ∈ H1

loc(Rm) such that

∆u + k2u == 0 in Rm \ Γ, u = us + ui in Rm, (1a)

[[∂νu]] + σu = 0 on Γ, [[u]] = 0 on Γ, (1b)

lim
r→∞

r
m−1

2 (∂rus − ikus) = 0 uniformly in x̂ = x/r, r = ‖x‖. (1c)

In practice, we usually take the incident !eld ui to be plane wave given by ui(x) = exp(ikd ·
x), where we denote the incident direction by the unit vector d. The far !eld pattern u∞(x̂; d)
for ‖x̂‖ = 1 is de!ned from the following asymptotic behavior of the scattered !eld [16]

us(x) =
exp(ikr)

r
m−1

2

{
u∞(x̂; d) + O

(
1

r
m−1

2

)}
as r →∞. (2)

Remark 1. The inverse problem we are concerned with is, provided that the shape Γ of the
surface is known, determine indicators of changes in the surface material parameter σ from a
knowledge of the far !eld pattern u∞(x̂; d) for observation directions x̂ and incident directions
d on the unit sphere or circle S := {x ∈ Rm : ‖x‖ = 1} at a !xed wave number k.
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Before moving on to the inverse problem, we recall the radiating fundamental solution
Φ(x, z) to the Helmholtz equation

Φ(x, z) :=






eik|x−z|

4π|x − z| in R3,

i
4

H(1)
0 (k|x − z|) in R2,

(3)

where H(1)
0 denoting the Hankel function of the !rst kind of order zero. This will be used in the

upcoming analysis.
Our approach is based on the development of a target signature for σ that uses the eigen-

values of an appropriate eigenvalue problem. We remark that this target signature can detect
changes on σ without knowing the base healthy value of σ nor reconstructing it. To introduce
the eigenvalue problem we need the following auxiliary scattering problem.

Given λ ∈ C with I(λ) ! 0, the auxiliary scattering impedance problem that we consider
is to !nd w(λ) ∈ H1

loc(Rm \ D) such that

∆w(λ) + k2w(λ) = 0 in Rm \ D, w(λ) = w(λ),s + ui in Rm \ D,

(4a)

∂νw
(λ) + λw(λ) = 0 on Γ, ∂νw

(λ) = 0 on ∂D \ Γ, (4b)

lim
r→∞

r
m−1

2
(
∂rw

(λ),s − ikw(λ),s) = 0 uniformly in x̂ = x/r. (4c)

As before, the far !eld pattern w(λ)
∞ corresponding to the scattered !eld w(λ),s is de!ned by

the asymptotic condition

w(λ),s(x) =
exp(ikr)

r
m−1

2

{
w(λ)

∞ (x̂; d) + O
(

1

r
m−1

2

)}
.

The far !eld pattern of the above auxiliary problem can be computed and involves only the
known geometry of the surface Γ, and surface impedance parameter λ.

From the known measured far !eld pattern u∞(x̂; d), and the arti!cial far !eld pattern
w(λ)

∞ (x̂; d), we de!ne the standard far !eld operators for g ∈ L2(S) by

(Fg)(x̂) =

∫

S
u∞(x̂; d)g(d) dsd , (F(λ)g)(x̂) =

∫

S
w(λ)

∞ (x̂; d)g(d) dsd.

We also de!ne the modi!ed far !eld operator F : L2(S) → L2(S) by

(Fg)(x̂) =

∫

S
(us

∞(x̂; d) − w(λ),s
∞ (x̂; d))g(d) dsd.

Obviously, the modi!ed far !eld operator is

Fg = Fg − F(λ)g. (5)

For theoretical purposes, we sometimes use the Herglotz wave function

ui
g(x) =

∫

S
exp(ikx · d)g(d) dsd (6)
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for g ∈ L2(S) as the incident !eld ui in the forward problem (1) and auxiliary problem (4). Let
ug and w(λ)

g be the solution of the two problems by using this function. Furthermore, we write
the corresponding far !eld patterns as ug,∞ and w(λ)

g,∞.

Lemma 1. Let ug,∞ and w(λ)
g,∞ be de!ned as above, then Fg = ug,∞ − w(λ)

g,∞.

Throughout the remainder of the paper we make the following assumption on the domain
D in relation to the interrogating wave number k.

Assumption 1. k2 is not a mixed Dirichlet and Neumann eigenvalue of −∆, i.e. of the
problem

∆u + k2u = 0 in D, u = 0 on Γ, ∂νu = 0 on ∂D \ Γ. (7)

We note that assumption 1 is not a restriction since based on the interrogation frequency
known to us, we can easily choose ∂D containing Γ that satis!es this assumption.

Next, we consider the following mixed Steklov eigenvalue problem:

∆h + k2h = 0 in D, ∂νh − σh = −λh on Γ, ∂νh = 0 on ∂D \ Γ. (8)

This is an extension to the Helmholtz equation of the standard sloshing problem. To relate the
eigenvalue problem (8) to the modi!ed far !eld operator, we consider the injectivity of F .

Lemma 2. Assume that λ ∈ C is not an eigenvalue of (8). Then the operator F : L2(S) →
L2(S) is injective.

Proof. Suppose Fg = 0 for some g ∈ L2(S), by lemma 1 we have ug,∞ = w(λ)
g,∞ on S, and

Rellich’s lemma [16, lemma 2.12] implies us
g = w(λ),s

g in Rm \ D. Adding the Herglotz incident
!eld ui

g to both scattered !elds us
g and w(λ),s

g we have ug = w(λ)
g in Rm \ D. Denoting ug|Rm\D

by u+
g and ug|D by u−

g , then u+
g = w(λ)

g in Rm \ D. Using the boundary conditions for w(λ)
g we

have

∂νu+
g + λu+

g = 0 on Γ, ∂νu+
g = 0 on ∂D \ Γ.

But on Γ we have

ug := u+
g = u−

g and ∂νu+
g − ∂νu−

g + σug = 0.

Therefore, we have

∂νu−
g = (σ − λ)u−

g on Γ, ∂νu−
g = ∂νu+

g = 0 on ∂D \ Γ.

This shows that u−
g is a solution of (8).

If λ ∈ C is not an eigenvalue of the mixed Steklov eigenvalue problem (8), then u−
g ≡ 0 in

D. In this case, the analyticity of the solution of the Helmholtz equation implies that we have
that ug = 0 in Rm \ Γ. In addition we obtain that the jumps of ug and ∂νug are both zero, which
means that ug solves the Helmholtz equation in Rm and us

g = −ui
g, which is possible only if

g = 0 since us
g is a radiating solution whereas ui

g is an entire solution.
Therefore, if λ is not an eigenvalue of (8), the modi!ed far !eld operator F is injective. "

Remark 2. From lemma 2 we know that if Fg = 0 has a non-trivial solution, then λ is
an eigenvalue of problem (8). Note that the converse is not necessarily true, i.e. if λ is an
eigenvalue of (8), this doesn’t mean that F is not injective, which will become clear in the
following section. Nevertheless the above connection between the modi!ed far !eld operator F

5
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and the eigenvalue problem (8) can be exploited to detect these eigenvalues from the scattering
data.

Lemma 3. Assume that λ ∈ C is not an eigenvalue of problem (8). Then the range of
F : L2(S) → L2(S) is dense.

Proof. Let F∗ : L2(S) → L2(S) be the adjoint of F , and de!ne R : L2(S) → L2(S) by
Rg(x̂) := g(−x̂). Since the far !eld patterns of the solution of both (1) and (4) satisfy a reci-
procity relation (see [16, theorem 8.8] for (1), a similar proof holds for (4), using (5) together
with the argument in [16, theorem 3.30] we have that

F∗g = F∗g − F(λ)∗g = R(F − F(λ))Rg = RFRg.

Thus F∗ is injective if λ ∈ C is not an eigenvalue of (8), which implies F has dense range. "
Now we are in a position to de!ne precisely the target signatures considered in this paper:

Definition 1 (Target signatures for the screen Γ). Given a screen Γ and a domain D
with Γ ⊂ ∂D the target signature for the scatterer is the set of mixed Steklov eigenvalues
de!ned by (8).

3. Determination of the eigenvalues from far field data

We now show that mixed Steklov eigenvalues can be determined from far !eld data. This
involves a non-standard analysis of the exterior scattering problem. We prove results for the
convenient LSM, and more precise results for the GLSM.

The forward problem (1) is a particular case of the following transmission problem: given
ϕ ∈ H1/2(∂D), ψ ∈ H−1/2(∂D) !nd p ∈ H1(D) and ps ∈ H1

loc(Rm \ D) such that

∆ps + k2 ps = 0 in Rm \ D, ∆p + k2 p = 0 in D, p− ps = ϕ on ∂D,

(9a)

∂ν p− ∂ν ps − σp = ψ on Γ, ∂ν p− ∂ν ps = ψ on ∂D \ Γ, (9b)

lim
r→∞

r
m−1

2 (∂r ps − ikps) = 0 uniformly in x̂ = x/r. (9c)

Indeed, if we take ϕ := ui|∂D andψ := ∂νui|∂D, then the solution u of problem (1) is given by
u := p in D and u := ps + ui in Rm \ D. In addition, since u is continuous across ∂D, we have
u ∈ H1

loc(Rm).
Now we de!ne the bounded linear operator H : L2(S) → H1/2(∂D) × H−1/2(∂D) by

H(g) :=
(
w(λ)

g |∂D, ∂νw(λ)
g |∂D

)
, (10)

where w(λ)
g is the total !eld in the scattering problem (4) with the Herglotz wave function

incident !eld ui := ui
g; see (6) for the de!nition of ui

g.
Let R(H) denote the closure of the range of H in H1/2(∂D) × H−1/2(∂D), and de!ne the

bounded linear and compact operator G : R(H) → L2(S) by

G : (ϕ,ψ) +→ p∞, (11)

6
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where p∞ is the far !eld pattern of ps that solves (9) (the compactness of G follows from real
analyticity of p∞(x̂)). The discussion in section 2 implies the following factorization for the
modi!ed far !eld operator

F = GH.

For any h ∈ H1(D) that is solution to the Helmholtz equation ∆h + k2h = 0 let us de!ne
v ∈ H1(D) by

v(x) := h(x) −
∫

Γ
σ(y)h(y)Φ(x, y) dsy, (12)

which is a solution to the Helmholtz equation in D. De!ne, for x /∈ Γ,

p(x) := h(x) =

∫

∂D
(∂νv(y)Φ(x, y) − ∂νΦ(x, y)v(y)) dsy

+

∫

Γ
σ(y)h(y)Φ(x, y) dsy, x ∈ D,

ps(x) :=
∫

∂D
(∂νΦ(x, y)v(y) − ∂νv(y)Φ(x, z)) dsy

+

∫

Γ
σ(y)h(y)Φ(x, y) dsy, x ∈ Rm \ D.

Standard results in scattering theory, particularly the jump relations for single and double
layer potentials in [16, theorem 3.1], give the following result:

Lemma 4. (p(x), ps(x)) is the solution of (9) with ϕ := v|∂D and ψ := ∂νv|∂D.

In addition, from the statement of the above lemma together with Rellich’s lemma and the
de!nition (11) of the operator G we have:

Lemma 5. Assume that λ is an eigenvalue of the mixed Steklov eigenvalue problem (8). Let
w(λ),s

v be the unique solution of

∆w(λ),s + k2w(λ),s = 0 in Rm \ D, (13a)

∂νw
(λ),s = −∂νv on ∂D \ Γ, (13b)

∂νw
(λ),s + λw(λ),s = −∂νv − λv on Γ, (13c)

lim
r→∞

r
m−1

2
(
∂rw

(λ),s − ikw(λ),s) = 0 uniformly in x̂ = x/r, r = ‖x‖. (13d)

Then

G(ϕv ,ψv) = 0, with ϕv := (w(λ),s
v + v)|∂D, ψv := ∂ν(w(λ),s

v + v)|∂D,

where v is de!ned by (12) with h := h(λ), the eigenfunction corresponding to the eigenvalue λ.

Remark 3. It can be seen from the variational formula of the problem (8) along with
assumption 1 that a mixed Steklov eigenvalue λ must have nonnegative imaginary part. This
guarantees the well-posedness of problem (13) under the assumptions of lemma 5.

7
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Note that (ϕv ,ψv) ∈ R(H). This follows from the fact that the set of Herglotz wave functions
ui

g given by (6) is dense in the space

{
v ∈ H1(D) : ∆v + k2v = 0 in D

}
,

which is proven in [8, lemma 2.1], together with the trace theorem and the well-posedness
of (13).

The above reasoning makes it clear that if λ is a modi!ed mixed Steklov eigenvalue, then
the kernel of G is nontrivial but not necessarily the kernel of the modi!ed far !eld operator
F since the function v in (12) is not necessarily a Herglotz wave function. Nevertheless we
can exploit the above relationships to determine the eigenvalues λ from a knowledge of the
modi!ed far !eld operator. To this end, let Φ∞(x̂, z) be the far !eld pattern of the radiating
fundamental solution Φ(x, z) to the Helmholtz equation.

Lemma 6. Assume that λ ∈ C is not an eigenvalue of (8). Then Φ∞(·, z) ∈ R(G) for any
z ∈ D.

Proof. Let z ∈ D and, since λ ∈ C is not an eigenvalue of (8), consider the unique solution
hz ∈ H1(D) to the following problem

∆hz + k2hz = 0 in D,

∂ν(hz − Φ(·, z)) − σhz = −λ(hz − Φ(·, z)) on Γ,

∂ν(hz − Φ(·, z)) = 0 on ∂D \ Γ.

Now de!ne vz ∈ H1(D) by

vz(x) := hz(x) −
∫

Γ
σ(y)hz(y)Φ(x, y) dsy, (14)

which is a solution to the Helmholtz equation in D. Then, by construction using lemma 4,

G(ϕz,ψz) = Φ∞(·, z), with ϕz := (w(λ),s
z + vz)|∂D, ψz := ∂ν(w(λ),s

z + vz)|∂D,

where w(λ),s
z is the solution of (13) with v := vz. This can be deduced in the same way as in the

proof of lemma 5, noting that now h in the de!nition of v is not a mixed Steklov eigenfunction,
but rather the solution of the mixed Steklov problem with data coming from the boundary traces
of the fundamental solution Φ(x, z) for z ∈ D. Hence the solution ps to (9) corresponding to
(ϕz,ψz) is identically equal to Φ(., z). "

Lemma 7. Assume that λ ∈ C is an eigenvalue of (8). Then the set of points z ∈ D for which
Φ∞(·, z) ∈ R(G) is nowhere dense in D.

Proof. Assume to the contrary thatΦ∞(·, z) ∈ R(G) for z in a dense subset of a ball B included
in D. Then there exists (ϕz,ψz) ∈ R(H) such that G(ϕz,ψz) = Φ∞(·, z). We call pz and ps

z the
solution of (9) with ϕ :=ϕz and ψ :=ψz.

Following similar arguments as in the proof of [8, lemma 2.1] together with lemma 5, one
obtains that if λ is an eigenvalue of (8), then a pair (ϕ,ψ) ∈ R(H) is such that

ϕ := (w(λ),s
v + v)|∂D, ψ := ∂ν (w(λ),s

v + v)|∂D,

8
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where w(λ),s
v solves (13) with some incident wave v ∈ Hinc where

Hinc :=
{
v ∈ H1(D) : ∆v + k2v = 0

}
. (15)

Thus for the pair (ϕz,ψz) we have the corresponding vz ∈ Hinc and w(λ),s
z solving (13) with

v := vz. An application of Rellich’s lemma implies that pz = Φ(·, z) in Rm \ D and thus pz
satis!es

∆pz + k2 pz = 0 in D,

∂ν pz − σpz + λpz = ∂νΦ(·, z) + λΦ(·, z) on Γ,

∂ν pz = ∂νΦ(·, z) on ∂D \ Γ.

From the Fredholm alternative, the above problem is solvable if and only if
∫

∂D
∂νΦ(·, z)p(λ)

z ds +

∫

Γ
λΦ(·, z)p(λ)

z ds = 0, for all z ∈ B, (16)

where p(λ)
z is in the kernel of the adjoint problem, i.e. satis!es

∆p(λ)
z + k2 p(λ)

z = 0 in D,

∂ν p(λ)
z − σp(λ)

z + λp(λ)
z = 0 on Γ,

∂ν p(λ)
z = 0 on ∂D \ Γ.

Using the boundary conditions for p(λ)
z , (16) gives

∫

∂D

(
∂νΦ(·, z)p(λ)

z − ∂ν p(λ)
z Φ(·, z)

)
ds +

∫

Γ
σp(λ)

z Φ(·, z) ds = 0,

which holds now for all z ∈ D since the left-hand side as a function of z is a solution to the
Helmholtz equation in D hence real analytic. Thus we have that

v(z) := p(λ)
z −

∫

Γ
σp(λ)

z Φ(·, z) ds = 0.

Similarly to the discussion at the beginning of this section, p and ps de!ned by the formula
below (14) corresponding to this v := 0, solve (9) with zero data, hence both are zero. Thus the
eigenfunction p(λ)

z = 0, which is a contradiction. "
Now we are ready to show how the eigenvalues, real or complex, of the mixed Steklov

eigenvalue problem (8) can be determined from the modi!ed far !eld operator F , by means of
the LSM.

To this end, we consider the modi!ed far !eld equation given by

(Fg)(x̂) = Φ∞(x̂, z) for z ∈ D, (17)

and let vg denote the Herglotz wave function with kernel g ∈ L2(S)

vg(x) :=
∫

S
exp(ikx · d)g(d) dsd.

9
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Theorem 1. Let {gz
n}∞n=0 denote a sequence in L2(S) such that

lim
n→∞

‖Fgz
n − Φ∞(x̂, z)‖L2(S) = 0. (18)

(a) Assume λ is not an eigenvalue of (8). Then, for every z ∈ D there exists a sequence {gz
n}

in L2(S) satisfying (18) such that ‖vgz
n
‖H1(D) is bounded.

(b) Assume λ is an eigenvalue of (8). Then for any sequence {gz
n} in L2(S) satisfying (18),

‖vgz
n
‖H1(D) cannot be bounded for all z dense in a ball B ⊂ D.

Proof. If λ is not an eigenvalue of (8), then from lemma 6 we have that G(ϕz,ψz) =
Φ∞(·, z) with (ϕz,ψz) ∈ R(H). Thus, there exits a sequence {gz

n} in L2(S) such that(
w(λ)

gz
n
|∂D, ∂νw

(λ)
gz

n
|∂D

)
converges to (ϕz,ψz) in H1/2(∂D) × H1/2(∂D), where w(λ)

gn
is the total

!eld in the scattering problem (4) with the Herglotz wave function vgz
n

as incident !eld. In
particular, vgz

n
converges to a vz ∈ Hinc given by (15). Hence, by continuity of G we have

lim
n→∞

‖Fgz
n − Φ∞(·, z)‖L2(S) = lim

n→∞
‖G(Hgz

n) − Φ∞(·, z)‖L2(S) = 0,

and

lim
n→∞

vgz
n
= vz in H1(D),

which proves part (a).
Next, assume to the contrary that ‖vgz

n
‖H1(D), with gz

n satisfying (18), is bounded for all z ∈ B
in a ball included in D. This means that {vgz

n
} converges weakly to some vz ∈ Hinc. Let

ϕz := (w(λ),s
z + vz)|∂D, ψz := ∂ν(w(λ),s

z + vz)|∂D,

where w(λ),s
z solves (13) with v := vz, which is the weak limit of Hgz

n (note that the trace operator
is continuous and the solution of (13) depends continuously of v). Since G is compact we have
that GHgz

n converge strongly to G(ϕz,ψz) and since Fgz
n = GHgz

n we conclude that G(ϕz,ψz) =
Φ∞(·, z) for all z ∈ B ⊂ D. But this is not possible from lemma 7, and the second part is
proven. "

The above theorem states that for every sequence {gz
n} in L2(S) satisfying (18) we have

that ‖vgz
n‖H1(D) is bounded for all z ∈ B ⊂ D if and only if λ is not an eigenvalue of (8). This

provides the mathematical foundation of the LSM for determining these eigenvalues from F .
We remark that for the existence of a sequence {gz

n} in L2(S) satisfying (18), we need that
Φ∞(x̂, z) is in the closure of the range of F . This is guaranteed if λ is not an eigenvalue of
(8) since the range of F is dense in L2(S). If λ is an eigenvalue of (8) this information is not
available and may depend on Γ and σ. Thus, if λ is an eigenvalue of (8), either such a sequence
{gz

n} exists and ‖vgz
n
‖H1(D) becomes unbounded, or such {gz

n} does not exist in contrast to the
behavior when λ is not an eigenvalue of (8). Either way the behavior differs from when λ is
not an eigenvalue, and this fact can potentially be used in the detection of eigenvalues.

Due to the ill-posedness of (17), one actually solves the Tikhonov regularized version of
the modi!ed far !eld equation

(
αI + F∗F

)
g = F∗Φ∞(·, z) for z ∈ D.

The problem with the above criterion of determining the eigenvalues λ is that there is no
theoretical guarantee that the regularized solution gα of the modi!ed far !eld equation would

10
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capture the behavior of vg described by theorem 1. Nevertheless, as our numerical examples
show, this seems to be the case in practice.

The GLSM, !rst introduced in [4] aims at correcting for the above theoretical de!ciency
of the LSM. We shall present an alternative criterion to determine the eigenvalues of (8)
from F based on this method which unfortunately requires some restrictive assumptions. In
this framework, we have the modi!ed far !eld operator F : L2(S) → L2(S), which assumes
the factorization F = GH with H : L2(S) → H1/2(∂D) × H−1/2(∂D) and G : R(H) → L2(S).
In addition let B : L2(S) → R+ be a continuous functional. For a given parameter α > 0 and
φz :=Φ∞(·, z) ∈ L2(S) we de!ne the functional

Jα(φz, g) :=αB(g) + ‖Fg − φz‖2
L2(S)

and let

jα(φz) := inf
g∈L2(S)

Jα(φz, g). (19)

The proposition below provides a characterization of the range of G in terms F and B. The
following version of the GLSM is proven in [2, appendix].

Proposition 1. Assume that F has dense range, and for any given sequence {gn} ∈ L2(S)
the sequence {B(gn)} is bounded if and only if the sequence {‖Hgn‖} is bounded. Let {gα}
be a minimizing sequence such that

Jα(φz, gα) # jα(φz) + Cα

with a constant C > 0 independent of α. Then φz ∈ R(G) if and only if the sequence B(gα) is
bounded as α→ 0.

We notice that lemmas 6 and 7 state that λ is an eigenvalue of (8) if and only points z
such that Φ∞(·, z) ∈ R(G) are nowhere dense in D. It remains to !nd an appropriate continuous
functional B given in terms of data that satis!es the assumption in proposition 1.

The !rst criterion uses Bg := (F(λ)g, g)L2(S) where F(λ) : L2(S) → L2(S) is the far !eld oper-
ator corresponding to the auxiliary scattering problem (13). In [2, lemma 1(i)] it is shown that
this B satis!es the assumption of proposition 1, provided that a real value of λ is not eigenvalue
of the mixed Steklov eigenvalue problem:

∆q + k2q = 0 in D, ∂νq + λq = 0 on Γ, ∂νq = 0 on ∂D \ Γ. (20)

We remark that the proof in [2, lemma 1(i)] is for the case when the impedance condition is on
the entire boundary, i.e. Γ = ∂D. However all the necessary mathematical tools related to the
properties of F(λ) developed in [12, 18] simply require that λ is in L∞(∂D) (including being
zero on part of ∂D). To avoid repetition, in the following we only state the result.

Theorem 2. Assume that the modi!ed far !eld operator F : L2(S) → L2(S) has dense
range, and λ is not an eigenvalue of (20). Consider

Jα(Φ∞(·, z), g) :=α|(Fλg, g)| + ‖Fg − Φ∞(·, z)‖2,

11
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and the corresponding jα(Φ∞(·, z)) given by (19). Let gz
α be a minimizing sequence such that

Jα(Φ∞(·, z), gz
α) # jα(Φ∞(·, z)) + Cα,

with C > 0 a constant independent of α > 0. Then λ ∈ C is a mixed modi!ed Steklov eigen-
value of (8) if and only if the set of points z such that |(Fλgz

α, gz
α)| < ∞ as α→ 0 is nowhere

dense in D.

The assumption that λ is not an eigenvalue of (20) is somewhat restrictive for σ real valued
because it can happen that a real λ could be simultaneously eigenvalue of (20) as well a value
of interest, i.e. an eigenvalue of (8). To de!ne a second criterion, we recall that or any operator
T : W → W , where W is a complex Hilbert space with adjoint T∗ : W → W we de!ne

R(T) :=
1
2

(T + T∗), I(T) :=
1
2i

(T − T∗).

Then if F : L2(S) → L2(S) is the far !eld operator corresponding to the physical scattering
problem (1), we set

F# := |R(F)|− I(F).

The second criterion uses Bg := (F#g, g)L2(S).
We must show that this choice also satis!es the assumptions of proposition 1. For this we

need to assume that Γ is such that there is no non-trivial Herglotz wave function vg such that
vg|Γ = 0, i.e. H is injective. This is a geometric assumption on Γ. Open surfaces or arcs that do
not satisfy this assumption cannot be fully characterized. Moreover, the assumption excludes
Γ being part of a straight line or plane, or part of a circle/sphere of certain particular radius.

We now adopt the notation

H
1
2 (Γ) := {u|Γ : u ∈ H

1
2 (∂D)}, H̃

1
2 (Γ) := {u ∈ H

1
2 (Γ) : supp u ⊆ Γ},

i.e. in other words, H̃
1
2 (Γ) contains functions u ∈ H

1
2 (Γ) such that their extension by zero to

the whole boundary ∂D is in H
1
2 (∂D). It is known [20] that H− 1

2 (Γ) is the dual space of H̃
1
2 (Γ)

and H̃− 1
2 (Γ) is the dual space of H

1
2 (Γ), and that we have the following chain of dense and

compact embeddings

H̃
1
2 (Γ) ⊂ H

1
2 (Γ) ⊂ L2(Γ) ⊂ H̃− 1

2 (Γ) ⊂ H− 1
2 (Γ).

We start by factorizing F as

F = −GσH,

where H : L2(S) → H
1
2 (Γ) ⊂ H̃− 1

2 (Γ) is given by

H : g +→ vg|Γ, with vg(x) :=
∫

S
g(d)eikx·d dsd,

and G : H̃− 1
2 (Γ) → L2(S) is given by

G : h +→ v∞,

12
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where v∞ is the far !eld pattern of v ∈ H1
loc(Rm) satisfying

∆v + k2v = 0 in Rm \ Γ, (21a)

[[∂νv]] + σv = h on Γ, [[v]] = 0 on Γ, (21b)

lim
r→∞

r
m−1

2 (∂rv − ikv) = 0 uniformly in x̂ = x/r. (21c)

The adjoint operator H∗ : H̃− 1
2 (Γ) → L2(S) is given by

H∗ϕ(x̂) :=
∫

Γ
ϕ(y)e−ikx̂·y dsy.

Here and in what follows the superscript ∗ denotes the adjoint in the H− 1
2 (Γ)-inner product.

From the assumption we have that H∗ has dense range in L2(S). Note that [[∂νv]] ∈ H̃− 1
2 (Γ).

On the other hand from the jump relations for the single layer potential, we see that

Sϕ(x) :=
∫

Γ
ϕ(y)Φ(x, y) dsy, ϕ ∈ H̃− 1

2 (Γ),

satis!es (21) with h := (−I + σSΓ)ϕ, where SΓ : H̃− 1
2 (Γ) → H

1
2 (Γ) ⊂ H̃− 1

2 (Γ) is the bound-
ary integral operator Sϕ(x) :=

∫
Γ ϕ(y)Φ(x, y)dsy restricted to Γ (see [20]) and I is the identity

operator. Obviously S∞ϕ = H∗ϕ. Thus we have the factorization

H∗ = −G(I − σSΓ). (22)

Lemma 8. Assume that Γ is such that there is no non-trivial Herglotz wave function vg such
that vg|Γ = 0. Then G : H̃− 1

2 (Γ) → L2(S) is injective with dense range.

Proof. Injectivity of G follows from the well-posedeness of the direct scattering problem.
The range of G coincides with the range of H∗ since the operator I − σSΓ : H̃− 1

2 (Γ) → H̃− 1
2 (Γ)

is bijective. To show this, we notice that σSΓ : H̃− 1
2 (Γ) → H̃− 1

2 (Γ) is compact due to compact
embedding of H

1
2 (Γ) into H̃− 1

2 (Γ). Hence, it suf!ces to prove injectivity. To this end let ϕ0 be
such that (I − σSΓ)ϕ0 = 0, and consider

w(x) :=
∫

Γ
ϕ0(y)Φ(x, y) dsy

which satis!es (21) with h = 0, thus w = 0 in Rm \ Γ. Again the jump relation for the normal
derivative of the single layer potential implies that ϕ0 = 0. Then the result follows from the
fact that the range of H∗ is dense. "

As a consequence of the above lemma and the previous discussion we have

Proposition 2. Assume that Γ is such that there is no non-trivial Herglotz wave function
vg such that vg|Γ = 0. Then the operators G∗ : L2(S) → H̃− 1

2 (Γ), H : L2(S) → H̃− 1
2 (Γ) and

H∗ : H̃− 1
2 (Γ) → L2(S) are injective with dense range.

13
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Combining both above factorizations we have

F = H∗(I − σSΓ)−1σH = H∗σ(σI − |σ|2SΓ)−1σH. (23)

Now we may verify the following:

Lemma 9. Let A := (σI − |σ|2SΓ)−1 : H̃− 1
2 (Γ) → H̃− 1

2 (Γ), and assume that R(σ(x)) !
σ0 > 0 for x ∈ Γ. The following properties hold true:

(a) I(ϕ, Aϕ)
H− 1

2 (Γ)
# 0.

(b) R(A) = A0 + C, where C : H̃− 1
2 (Γ) → H̃− 1

2 (Γ) is compact and A0 satis!es

(ϕ, A0ϕ) ! c0‖ϕ‖2

H− 1
2 (Γ)

for allϕ ∈ R(H) = H̃− 1
2 (Γ).

(c) A is injective in R(H) = H̃− 1
2 (Γ).

Proof. We have

I
(
ϕ, (σI − |σ|2SΓ)ϕ

)
H− 1

2 (Γ)
= I(σ)‖ϕ‖2

H− 1
2 (Γ)

− |σ|2I(ϕ, SΓϕ)
H− 1

2 (Γ)

= I(σ)‖ϕ‖2

H− 1
2 (Γ)

− |σ|2I〈ϕ, SΓϕ〉
H̃− 1

2 ,H
1
2

> 0,

where 〈·, ·〉 denotes the duality H− 1
2 (Γ), H

1
2 (Γ). This follow from the fact that I(σ) ! 0 and

the known fact [18, lemma 1.14] that

I〈φ, Sφ〉
H̃− 1

2 (∂D),H
1
2 (∂D)

< 0 for all φ ∈ H̃− 1
2 (φ) with φ /= 0,

and that ϕ ∈ H− 1
2 (Γ) can be extended by zero to the whole ∂D in H− 1

2 (∂D). The statement
then follows form the fact that A is the inverse of (σI − |σ|2SΓ).

Concerning the second part, we observe that

A := (σI − |σ|2SΓ)−1 = σ−1(I − σSΓ)−1 = σ−1(I + σSΓ(I − σSΓ)−1),

where σSΓ(I − σSΓ)−1 is compact as product of the bounded operator σ(I − σSΓ)−1

and the compact operator SΓ. The latter is true due to compact embedding of H
1
2 (Γ)

into H̃− 1
2 (Γ). Therefore we can write R(A) := A0 + C with A0 := R(σ)

|σ|2 I coercive and

C :=R( σ2

|σ|2 SΓ(I − σSΓ)−1) compact.
Finally the last part is obvious since A is invertible. "

Lemma 9 along proposition 2 allows us to apply [8, theorem 2.31] or [18, theorem 2.15] to
state the so-called F# factorization statement. To this end let us de!ne

A# := |R(A)|− I(A).

Theorem 3. Let A := (σI − |σ|2SΓ)−1 : H̃− 1
2 (Γ) → H̃− 1

2 (Γ), and assume that there is no
non-trivial Herglotz wave function vg such that vg|Γ = 0 and R(σ) ! σ0 > 0 on Γ. Then

F# = (σH)∗A#(σH),

14
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where A# : H̃− 1
2 (Γ) → H̃− 1

2 (Γ) is self-adjoint and satis!es the coercivity property

(
ϕ, A#ϕ

)
! c‖ϕ‖2

H− 1
2 (Γ)

for allϕ ∈ R(H) = H̃− 1
2 (Γ).

Moreover, R(H∗) = R(F
1
2
#).

Now we are ready to formulate a second criterion to determine the mixed modi!ed Steklov
eigenvalues of (8).

Lemma 10. Assume thatΓ is such that there is no non-trivial Herglotz wave function vg such
that vg|Γ = 0. Under the assumptions of theorem 3, the functional B : g +→ (F#g, g)L2(S) =

‖F
1
2
#g‖L2(S) satis!es the property that for any given sequence {gn} ∈ L2(S) the sequence

{B(gn)} is bounded if and only if the sequence {‖Hgn‖} is bounded as n →∞.

Proof. Assume that Bgn is bounded. Then using the above factorization we have

Bgn = (F#gn, gn) = (A#σHgn, σHgn) ! c‖σHgn‖2

H− 1
2 (Γ)

,

where c is the constant appearing in theorem 3. Thus ‖Hgn‖
H− 1

2 (Γ)
is bounded.

Noting that Hgn = vgn |Γ, we now show that this implies ‖vgn‖H1(BR) is also bounded.
Assume to the contrary that ‖vgn‖H1(BR) is unbounded, which means that ‖gn‖L2(S) is
unbounded.Hence, by extracting a subsequence, we can assume that ‖gn‖L2(S) →∞ as n →∞.
Now consider gn/‖gn‖L2(S). Again after extracting a subsequence, this sequence converges to
some function ϕ weakly in L2(S). Hence

1
‖gn‖L2(S)

∫

S
gn(ŷ)eikx·̂y dŷ →

∫

S
ϕ(ŷ)eikx·̂y dŷ := vϕ as n →∞

point-wise on BR. But due to the boundedness of ‖vgn‖H− 1
2 (Γ)

,

1
‖gn‖L2(S)

‖vgn‖H− 1
2 (Γ)

→ 0 as n →∞,

whence vϕ|Γ = 0 which contradicts the assumption of the lemma. Hence ‖vgn‖H1(BR) is
bounded as n →∞.

Now from the well-posedness of (13) we conclude that {Hgn} is bounded in H1/2(∂D) ×
H−1/2(∂D) where Hg is given by (10).

Conversely assume that {Hgn} is bounded in H1/2(∂D) × H−1/2(∂D). Then from the
Green’s representation theorem we have that the scattered !eld w(λ),s

gn
is bounded in H1(BR\D)

and hence the incident !eld vgn is also bounded in H1(BR), hence by the trace theorem
‖Hgn‖

H− 1
2 (Γ)

is bounded. Now

Bgn = (F#gn, gn) = (A#σHgn, σHgn) # Cmax‖σHgn‖2

H− 1
2 (Γ)

,

where Cmax < ∞ depends on the bound on A#. Thus B(gn) is also bounded which completes
the proof. "

15
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Lemma 10 allows us to apply proposition 1 with B := (F#g, g)L2(S) to obtain the following
result on the determination of the eigenvalues of (8).

Theorem 4. Assume that the modi!ed far !eld operator F : L2(S) → L2(S) has dense
range, R(σ) ! σ0 > 0 on Γ, and that there is no non-trivial Herglotz wave function vg such
that vg|Γ = 0. Consider

Jα(Φ∞(·, z), g) :=α(F#g, g) + ‖Fg − Φ∞(·, z)‖2,

and the corresponding jα(Φ∞(·, z)) given by (19). Let gz
α be a minimizing sequence such that

Jα(Φ∞(·, z), gα) # jα(Φ∞(·, z)) + Cα,

with C > 0 a constant independent of α > 0. Then λ ∈ C is a mixed modi!ed Steklov eigen-
value of (8) if and only if the set of points z such that (F#gz

α, gz
α) < ∞ as α→ 0 is nowhere

dense in D.

In contrast to theorem 2, the above theorem provides a rigorous criterion for determining the
eigenvalues under a geometric assumption onΓwithout restricting the value of the parameterλ.
We also remark that it is possible to obtain the regularized version of the statement in theorems
2 and 4 for noisy modi!ed far !eld operator F . We refer the reader to [2, 8] for details on this
matter.

4. Relations between eigenvalues and the surface parameter

We now turn our attention to the eigenvalue problem (8), in particular understanding how its
eigenvalues relate to the unknown coef!cient σ. This eigenvalue problem is a modi!cation of
the so called sloshing eigenvalue problem. Let us !x a constant α ! 0 such that k2 is not a
mixed Robin–Neumann eigenvalue of

∆h + k2h = 0 in D, ∂νh + (α− σ(x))h = 0 on Γ,

∂νh = 0 on ∂D \ Γ.

Such an α can always be found because a given k2 cannot be a mixed Robin–Neumann eigen-
value for all α ! 0. Indeed, the left-hand side of the following variational form of the above
problem

∫

D

(
∇h · ∇ϕ− k2hϕ

)
dx +

∫

Γ
(α− σ)hϕ ds = 0 for all ϕ ∈ H1(D),

determines by means of the Riesz representation theorem an α parametric family of operators
in H1(D) that is invertible plus compact and depends analytically on α ∈ C. Hence the analytic
Fredholm theory [16] can be applied. Since k and D satisfy assumption 1, the kernel of this
operator forα ∈ C with I(α) < 0 is trivial. Hence the set ofα for which the kernel is nontrivial
is at most discrete.

Hence we can de!ne the operator R : L2(Γ) → L2(Γ) mapping

R : θ +→ hθ|Γ,

16
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where hθ ∈ H1(D) is the unique solution of

∫

D

(
∇hθ · ∇ϕ− k2hθϕ

)
dx +

∫

Γ
(α− σ)hθϕ ds =

∫

Γ
θϕ ds for all ϕ ∈ H1(D).

Obviously, this operator is compact, since hθ|Γ ∈ H
1
2 (Γ) which is compactly embedded in

L2(Γ). Then λ is an eigenvalue of (8) if and only if

(−λ + α)Rθ = θ.

In other words 1
−λ+α are the eigenvalues of the compact operator R and hence form at most a

countable discrete set (note that the eigenvalues λ /= α from the assumption on k2).
When the coef!cient σ(x) is real valued, the compact operator R is in addition self-adjoint.

Thus, it has an in!nite sequence of real eigenvalues 1
−λ j+α , j = 1, . . . which accumulate to

zero. Hence we conclude that in this case all eigenvalues of (8) are real, and there exists a
sequence {λ j} j!1 of eigenvalues which accumulate to ±∞ (because the operator R is not
sign de!nite the eigenvalues can in principal accumulate to both ±∞). However we show
next, that they accumulate only to −∞ as j →∞ since there are only !nitely many positive
eigenvalues. In addition the corresponding eigenfunctions hj form a Riesz basis for H1(D). If
I(σ) > 0 there are no real eigenvalues, and since R is not selfadjoint the existence of non-real
complex eigenvalues requires a special investigation, which is beyond the scope of this paper.

Theorem 5. Suppose the !xed wave number k and domain D satisfy assumption 1. For real
valued positive σ > 0, there exists at least one positive eigenvalue λ > 0 of (8). Furthermore,
there are at most !nitely many positive eigenvalues of (8), hence they accumulate only at −∞.

Proof. Assume to the contrary that all eigenvalues λ j # 0. For the eigenfunction h j corre-
sponding to λ j we have

∫

D

(
|∇h j|2 − k2|h j|2

)
dx −

∫

Γ
σ|h j|2 ds = −λ j

∫

Γ
|h j|2 ds ! 0.

Since the eigenfunctions form a Riesz basis we have that for all h ∈ H1(D)

∫

D

(
|∇h|2 − k2|h|2

)
dx −

∫

Γ
σ|h|2 ds ! 0, (24)

which is not possible. Indeed if σ > 0 this is not satis!ed for h = 1.
Next assume that there exists a sequence of positive eigenvalues λ j > 0, j → +∞ converg-

ing to +∞ with eigenfunctions h j normalized such that

‖h j‖H1(D) + ‖h j‖L2(Γ) = 1.

Then since the left-hand side of the following expression is bounded

∫

D

(
|∇h j|2 − k2|h j|2

)
dx −

∫

Γ
σ|h j|2 ds = −λ j

∫

Γ
|h j|2 ds, (25)
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we see that h j → 0 in L2(Γ) as j →∞. Next, a subsequence hj converges weakly in H1(D) to
some h ∈ H1(D). Since each h j satis!es

∫

D

(
∇h j · ∇ϕ− k2h jϕ

)
dx −

∫

Γ
σh jϕ ds + λ j

∫

Γ
h jϕ ds = 0 ∀ ϕ ∈ H1(D),

we !nd that the weak limit satis!es ∆h + k2h = 0 and hence ν · ∇h ∈ H− 1
2 (∂D) is well

de!ned. Since ν · ∇h j = 0 on ∂D\Γ we can conclude that the weak limit also satis!es
ν · ∇h = 0 on ∂D\Γ. From the above we also know that h = 0 on Γ. Hence, using assumption
1, we can conclude that the weak limit h = 0 in D. Therefore, choosing a subsequence, we see
that hj → 0 strongly in L2(D). From (25) we can now conclude that, again choosing a subse-
quence, also ‖∇h j‖L2(D) → 0 which contradicts the assumed normalization and completes the
proof. "

Remark 4. Note that it is possible to prove that an eigenvalue λ(k) of (8) seen as function
of the wave number k blows up as k → k0 where k2

0 is an eigenvalue of (7).

Let τ 1 := τ 1(D,Γ,α) > 0 for 0 < α < ∞ be the !rst mixed Robin–Neumann eigenvalue of

∆u + τu = 0 in D, ∂νu + αu = 0 on Γ, ∂νu = 0 on ∂D \ Γ,

which, since this is an eigenvalue problem for a positive self-adjoint operator, satis!es

τ1 = inf
u∈H1(D),u /=0

‖∇u‖2
L2(D) + α‖u‖2

L2(Γ)

‖u‖2
L2(D)

. (26)

Hence for every nonzero h ∈ H1(D) we have

1
τ1
‖∇h‖2

L2(D) +
α

τ1
‖h‖2

L2(Γ) ! ‖h‖2
L2(D).

Again, σ is real valued, we can then estimate for some Λ ! 0,

∫

D

(
|∇h|2 − k2|h|2

)
dx −

∫

Γ
σ|h|2 ds + Λ

∫

Γ
|h|2 ds

!
(

1 − k2

τ1

)∫

D
|∇h|2 dx +

∫

Γ

(
Λ− αk2

τ1
− σ

)
|h|2 ds

!
(

1 − k2

τ1

)∫

D
|∇h|2 dx + Λ∗

∫

Γ
|h|2 ds.

We choose Λ ! 0 suf!ciently large such that Λ∗ := minΓ
(
Λ − αk2/τ1 − σ

)
> 0 and k2 < τ 1.

For such a choice of Λ and k, our eigenvalue problem (8) becomes

∫

D
|∇h|2 − k2|h|2 dx −

∫

Γ
σ|h|2 ds + Λ

∫

Γ
|h|2 ds = (Λ− λ)

∫

Γ
|h|2 ds,

where now the left-hand-side de!nes a self-adjoint positive operator. Therefore its eigenvalues
Λ j :=Λ− λ j satisfy the Courant–Fischer inf-sup principle (see e.g. [19]).
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Figure 1. The domains of the Steklov eigenvalue problem (8).

Figure 2. One level mesh of the domains in !gure 1.

In particular, from the above assuming that σ > 0 and the wave number k2 < τ 1(D,Γ,α)
(which does not depend on the unknown function σ), we have that the largest positive
eigenvalue of (8), whose existence is guaranteed by (7), satis!es

λ1 = sup
u∈H1(D),u /=0

−
∫

D|∇u|2 + k2|u|2 dx +
∫
Γσ|hu|2 ds∫

Γ|u|2 ds
. (27)

This property states that the largest positive eigenvalue is monotonic increasing with respect
to the L∞(Γ) norm of σ. It is possible to write similar relations for other eigenvalues based on
the Courant–Fischer inf-sup principle for all the eigenvalues Λ− λ j. Furthermore the shifting
constant Λ which depends on σ is related to the magnitude of λ1 is, and this can be used to
get some information on σ. We also noticed that if σ < 0 in Γ such that −σ > αk2/τ 1 and for
k2 < τ 1(D,Γ,α) all the eigenvalues of (8) are negative.

The simplest case occurs when σ is constant. In this case, if we let λ(0)
n denote the nth

eigenvalue of (8) with σ = 0 we immediately have

λn = σ + λ(0)
n , n = 1, 2, . . . . (28)

In this case we may determine σ by measuring a single λn and computing λ(0)
n .

Now if σ is a small perturbation of a constant σ0 we could try a perturbation expansion. Let

σ = σ0 + εσ1,

h = h0 + εh1 + ε2h2 + · · · ,

λ = λ̃0 + ελ̃1 + ε2λ̃2 + · · · ,
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Figure 3. Sensitivity of Steklov eigenvalues to changes in the parameters α and β, for
two different screens. We plot the relative change in the !rst six Steklov eigenvalues
for each screen. The numbers in the legends refer to the computed eigenvalues of the
unperturbed screen with σ = 1. The left column is for the half circle and right is for the
quadrant. Top is the change of α from 1 to 2 with β = 0, bottom is the change of β from
−0.7 to 0.7 with α = 1.

where ε is a small parameter. We are particularly interested in the case where σ0 is constant,
but at this stage allow σ0 and σ1 to vary long Γ. Plugging in to (8) and equating orders of ε we
obtain to O(1)

∆h0 + k2h0 = 0 in D, ∂νh0 − σ0h0 = −λ̃0h0 on Γ,

∂νh0 = 0 on ∂D \ Γ,

which is our standard Steklov eigenvalue problem. To O(ε) we obtain

∆h1 + k2h1 = 0 in D, ∂νh1 − σ0h1 + λ̃0h1 = σ1h0 − λ̃1h0 on Γ,

∂νh1 = 0 on ∂D \ Γ.

This is not generally solvable, and the solvability criterion furnishes a way to determine the
solution. In particular the σ1h0 − λ̃1h0 must be orthogonal to the eigenspace of the adjoint of
the eigenvalue problem (8). This relation, which involves the eigenfunctions (8) of could be
used to compute σ1. This perturbation approach can be rigorously justi!ed for real or complex
σ using perturbation analysis with perturbation theory with explicit !rst correction term of
Osborn [22].
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Figure 4. The average of the -2 norm of the discrete approximation gz against the Steklov
parameter λ. The crosses in each !gure show the position of Steklov eigenvalues com-
puted by our !nite element eigenvalue code. Left: semicircle. Right: quadrant. Sharp
peaks in the averaged norm of g compute from far !eld data correspond to Steklov
eigenvalues.

5. Numerical experiments

We now show some numerical results that support our claims in the paper, for the sake of
simplicity, we restrict our attention to examples in R2 instead of R3.

We start by investigating the sensitivity of eigenvalues of (8) to the size, position and mixed
boundary conditions of the scatter. Here D is a half circle or a quadrant, see !gure 1, the wave
number k = 2, the function σ depends on the angle θ and is given by:

σ(θ) =






1 if 0 < θ <
π

3
+ β,

1 + α sin2(3β − 3θ) if
π

3
+ β < θ <

2π
3

+ β,

1 if
2π
3

+ β < θ < π,

where θ is the angle of (x, y) ∈ Γ, α ! 0 and β ∈ [0, π/3] are parameters.
We use a standard conforming !nite element method to !nd approximations of the largest

Steklov eigenvalues. We assume that the mesh is chosen so that each component of the
boundary Γ and ∂D\Γ is exactly covered by a union of edges; see !gure 2 for an example.

Let Vh denote the space of continuous piecewise quadratic !nite elements on a mesh Th of
Ω consisting of regular triangles of maximum diameter h > 0. The computational domain is
then Ωh = ∪K∈Th K. Then we !nd that the discrete eigenpairs (λh, wh) satisfy

(∇wh,∇vh) − k2 (wh, vh) − 〈σwh, vh〉Γ = −〈λhwh, vh〉Γ ∀ vh ∈ Vh.

We only compute the !rst six eigenvaluesλh j, j = 1, . . . , 6 since we can only determine the !rst
few eigenvalues from the far !eld data. We shall investigate how changes in σ (due to changes
in α and β) are detected by changes in the measured Steklov eigenvalues. When reporting
changes in eigenvalues we use the relative change de!ned by

λh j (α, β) − λh j(0, 0)
λh j(0, 0)

, j = 1, . . . , 6. (29)
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Figure 5. Results for detecting changes in the eigenvalues due to changes in σ (via
changes in α and β). Top: changing with respect to α by !xing β = 0. Middle and
bottom: changing with respect to β by !xing α = 1.

Figure 3 shows plots of the relative change (de!ned by (29)) in the !rst six eigenvalues
computed by our !nite element model as a function of α (top row) and β (bottom row). When
examining the sensitivity of the eigenvalues to α, the parameters are chosen from 1 to 2; when
examining the sensitivity to β, we consider β from −0.7 to 0.7. We examine results for the half
circle and quadrant. We see that for the change in both α and β, the !rst eigenvalue shows the
most change regardless of the size of the scatter.
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Next, we demonstrate !nding Steklov eigenvalues from far !eld data. We !rst compute
scattering data (approximating u∞), then for several choices of the Steklov parameter λ
we approximate the corresponding far !eld pattern h∞ and then solve a discrete analogue
of the far !eld equation using Tikhonov regularization with a !xed Tikhonov parameter
γ = 10−10.

For the forward problem, we truncate the mesh by a perfectly matched layer with con-
stant absorption parameters. We choose meshes where the triangle diameter is approximately
1/32 of the wavelength in the element. In each case we use 60 incoming waves with direc-
tions dj, j = 1, . . . , 60, uniformly on the unit circle and hence compute a 60 × 60 matrix
A with A-,m ≈ u∞ (d-, dm). Similarly we obtain a matrix B approximating h∞. Setting the
data vector bz with -th entry to be bz,- = φ∞ (d-, z) , 1 # - # 60 for some z ∈ B. Finally we
compute an approximation to the Herglotz kernel gz using Tikhonov regularization, setting
M = A − B and

gz =
(
(M)∗ M + γI

)−1(M)∗bz,

where the superscript ∗ denotes the conjugate transpose of the given matrix and γ is
the Tikhonov regularization parameter. This is repeated for 20 randomly placed z ∈ B
and the norm of gz is averaged. This method follows the standard approach in, for
example, [9].

The choice of 60 directions and 20 points z ∈ B is essentially arbitrary, but we need suf!-
ciently many incoming waves to be able to approximate the far !eld operator. Our results in
!gure 4 are for α = β = 0, peaks in the norm of gz correspond well to eigenvalues. Higher
eigenvalues cannot be detected.

In !gure 5 we investigate detecting changes by using α = 0, 0.5 and 1, and
β = 0, ±0.2, ±0.5.We can solve the far !eld equation as above, and determine shifts in Steklov
eigenvalues from shifts in the peaks of the averaged norm of gz. We have shown that Steklov
eigenvalues can detect changes.

For complex valued σ the existence of eigenvalues has not been proved and we have not
tested this case numerically. Assuming such eigenvalues exist, we conjecture that by using a
complex Steklov parameter λ we could detect them by extending the search domain to include
a region of the complex plane containing the eigenvalues as was done for modi!ed Steklov
eigenvalues in [15].

6. Conclusion

In this work, we studied the inverse scattering problem of obtaining target signatures for a
screen. The method is based on invoking an arti!cial domain such that the boundary of this
domain contains the screen. Then we use the far !eld pattern of an auxiliary scattering problem
having a mixed impedance and Neumann boundary condition to modify the far !eld operator
for the screen. This results in target signatures that are the eigenvalues of a mixed Steklov eigen-
value problem. We analyze the problem when the function σ describing the surface properties
of the screen is real.

It would be interesting to investigate this problem when σ is complex, and analyze the
case more elaborate models for the screen. Another issue is the optimal choice of the arti!cial
domain such that the mixed Steklov eigenvalues are sensitive to changes in σ. Finally, more
complex models for the change in σ need to be tested.
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Appendix A. Series solution of the mixed Steklov eigenvalue problem

We use the results in section appendix A.1 below to test our Steklov eigenvalue solver.

A.1. Sector of a circle

This example gives the exact mixed Steklov eigenvalues for the domain shown in the left panel
of !gure 1. We consider the sector of an circle given in polar coordinates by

Dα = {(r, θ) | 0 < r < r2, 0 < θ < α}

for some 2π > α > 0. On the segment of the boundary given by r = r2, 0 < θ < α we impose
the Steklov boundary condition

∂νu = λ(0)u, (A.1)

and on the remaining boundaries we impose the homogeneous Neumann boundary condition.
The superscript (0) refers to the fact that we set σ = 0 in (8).

Separation of variables gives the following solution which satis!es the Neumann boundary
condition for θ = 0,α

u(r, θ) = cos(nπθ/α)Jnπ/α(kr).

Satisfaction of the Steklov boundary condition gives the following equation for the Steklov
eigenvalues

λ(0)
n = k

(Jnπ/α)′(kr2)
Jnπ/α(kr2)

.

For a given constant σ the observed eigenvalues are

λn = σ + λ(0)
n . (A.2)

In table appendix A.1 we show the !rst nine eigenvalues λ(0)
n for the half-circle considered in

section 5 where r2 = 1, α = π and k = 2. Corresponding plots of the !rst six eigenfunctions
are shown in !gure A1 (table A1).
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Figure A1. First six eigenfunctions corresponding to the eigenvalues in table
appendix A.1.

Table A1. First 9 eigenvalues for a sector with k = 2, α = π and r2 = 1.

λ(0)
0 λ(0)

1 λ(0)
2 λ(0)

3 λ(0)
4 λ(0)

5 λ(0)
6 λ(0)

7 λ(0)
8

−5.151 8 −0.223 6 1.269 1 2.472 7 3.585 9 4.658 4 5.709 0 6.746 4 7.775 3

Table A2. First 10 eigenvalues for an annular sector with k = 2, α = π/2, and r2 = 1.

r1 λ(0)
0 λ(0)

1 λ(0)
2 λ(0)

3 λ(0)
4 λ(0)

5 λ(0)
6 λ(0)

7 λ(0)
8

0.8 −0.756 5 0.169 2 2.356 7 4.881 2 7.308 9 9.576 0 11.727 0 13.809 7 15.855 7
0.9 −0.384 9 0.041 3 1.248 2 3.053 4 5.238 1 7.611 8 10.041 4 12.450 0 14.802 5

A.2. Angular sector

The domain considered here is not used in our study, but shows that a thin domain D can
support eigenfunctions along the screen. We consider the sector of an annulus given in polar
coordinates by

Dα = {(r, θ) | r1 < r < r2, 0 < θ < α},
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Figure A2. Density plots of the !rst six eigenfunctions corresponding to the eigenvalues
in table A2 for r1 = 0.9.

for some 2π > α > 0. On the segment of the boundary given by r = r1, 0 < θ < α we impose
the Steklov boundary condition (A.1) and on the remaining boundaries we impose the Neu-
mann boundary condition. Separation of variables gives the following solution which satis!es
the Neumann boundary condition for θ = 0,α

u(r, θ) = cos(nπθ/α)(C1H(1)
nπ/α(kr) + C2H(2)

nπ/α(kr)).

Satisfaction of the Neumann boundary condition on r = r1 gives

k(C1(H(1)
nπ/α)′(kr1) + C2(H(2)

nπ/α)′(kr1)) = 0.

So with this constraint

u(r, θ) = C3 cos(nπ/α)((H(2)
nπ/α)′(kr1))H(1)

nπ/α(kr) − (H(1)
nπ/α)′(kr1)H(2)

nπ/α(kr).
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Satisfaction of the Steklov boundary condition gives the following equation for the Steklov
eigenvalues

λ(0)
n = k

(H(2)
nπ/α)′(kr1) ) (H(1)

nπ/α)′(kr2) − (H(1)
nπ/α)′(kr1)(H(2)

nπ/α)′(kr2)

(H(2)
nπ/α)′(kr1) ) H(1)

nπ/α(kr2) − (H(1)
nπ/α)′(kr1)H(2)

nπ/α(kr2)
.

For a given constant σ the observed eigenvalues are then given by (A.2).
In table A2 we show the !rst nine eigenvalues λ(0)

n for the sector where r2 = 1, α = π/2
and k = 2 for two different values of r1. Corresponding plots of the !rst six eigenfunctions are
shown in !gure A2.
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