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Abstract

We investigate an inverse scattering problem for a thin inhomogeneous scatterer
in R”, m = 2,3, which we model as an m — 1 dimensional open surface. The
scatterer is referred to as a screen. The goal is to design target signatures that are
computable from scattering data in order to detect changes in the material prop-
erties of the screen. This target signature is characterized by a mixed Steklov
eigenvalue problem for a domain whose boundary contains the screen. We show
that the corresponding eigenvalues can be determined from appropriately modi-
fied scattering data by using the generalized linear sampling method. A weaker
justification is provided for the classical linear sampling method. Numerical
experiments are presented to support our theoretical results.

Keywords: inverse scattering, inhomogeneous media, scattering by screens,
nondestructive testing, the Steklov eigenvalue problem

(Some figures may appear in colour only in the online journal)

1. Introduction

Target signatures are discrete quantities that can be computed from scattering data and used
to classify targets or serve as indicators of changes in targets. A classical choice is the singu-
larity expansion method introduced to classify targets in radar scattering proposed by Baum
[5, 21], although this method eventually turned out to be difficult to determine in the radar
application since highly accurate time domain data is needed. More recently, Cakoni, Colton
and Haddar suggested that transmission eigenvalues might provide target signatures for detect-
ing changes in an object using multi-frequency time harmonic data (see [8] for an introduction
to transmission eigenvalues and the target signatures). By sweeping through the frequency
data, transmission eigenvalues can be determined from the far field operator for the scattered

*Author to whom any correspondence should be addressed.

1361-6420/22/025011+28$33.00 © 2022 IOP Publishing Ltd  Printed in the UK 1


https://doi.org/10.1088/1361-6420/ac4154
https://orcid.org/0000-0002-4648-8780
https://orcid.org/0000-0002-4352-183X
mailto:ywzhangf@udel.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ac4154&domain=pdf&date_stamp=2022-1-4

Inverse Problems 38 (2022) 025011 F Cakoni et al

data provided the medium is non-conducting. For a conducting medium the eigenvalues may
be complex, and hence cannot be detected using real probing frequencies.

In an attempt to circumvent this problem, Cakoni, Colton, Meng and Monk [9] introduced
a modified far field operator by subtracting the far field operator for scattering by an artificial
domain containing the scatterer and having an impedance boundary condition with variable
impedance. In this case the target signatures correspond to Steklov eigenvalues for the artificial
domain and scatterer, and these can be determined using data at a single frequency. Further-
more, the method can be applied to conducting objects since the artificial impedance problem
can have a complex parameter. The use of Steklov eigenvalues was later extended to Maxwell’s
equations [11], and the theoretical analysis was greatly improved by giving a general frame-
work for determining target signatures from far field data using the generalized linear sampling
method (GLSM) to determine the Steklov eigenvalues [2]. This latter paper also introduced a
new class of target signatures based on an artificial modified interior transmission problem. All
the previously mentioned papers had the disadvantage that it is not known if Steklov eigen-
values exist for conducting media (but if they do, they can be detected!). This situation was
remedied by Cogar [14] who further modified the Steklov problem by introducing a smoothing
operator into the impedance boundary condition. This allows the existence of complex Steklov
type eigenvalues for the new boundary condition to be proved.

All the previously mentioned work has involved scattering from bodies with a nontrivial
interior (i.e. containing a disk in R? or a sphere in R?). However if the scatterer is thin compared
to the wavelength of the probing radiation, it is often desirable to treat it as a screen with zero
thickness but having special transmission conditions across the surface that model, approxi-
mately, the thin body. In this paper we will use a special case of the transmission condition
developed in [10] (see also [17]) for delaminating media.

An obvious problem with developing a Steklov type target signature for a screen is that there
is no interior. Instead, we propose to use an artificial domain and a mixed Steklov eigenvalue
problem. In particular, suppose the screen is denoted by I'; we assume that we can extend I to
obtain a closed piecewise smooth surface that is the boundary of a bounded connected region
D C R™. Thus I' C 9D. We then modify the far field pattern using a mixed scattering problem
in the exterior of D having a variable impedance denoted A. Modifying the measured far field
pattern using the far field pattern from this artificial scattering problem allows us to demonstrate
a connection between the far field operator and an interior mixed Steklov eigenvalue problem
posed on D. In particular, the mixed Steklov eigenvalues can be determined from the measured
far field pattern due to scattering by the screen. We further connect properties of the surface
impedance of the screen to the target signatures. Finally, we provide some numerical results in
2D that illustrate the theory.

The choice of the domain D is somewhat arbitrary beyond the constraint that I' C dD. Our
limited numerical results suggest that the choice can effect the number and quality of the
eigenvalues that can be determined. For the simple curves in 2D that we have considered it
is sufficient to use the convex hull of the points on I'. Obviously this is not appropriate for
more general screens.

This is the first paper on Steklov type target signatures for screens. A related work on mod-
ified transmission target signatures for cracks can be found in [13]. We remark that the method
presented here aims to detect changes in the material properties of the screen represented by
coefficients in the jump conditions of the total field, and assumes that the geometry of the open
surface is known. Most of available literature concerns the reconstruction of the shape of an
open surface, and we refer the reader to [1, 3, 6, 7] for some related non-iterative inversion
methods.
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The paper proceeds as follows. In the next section define the direct (or forward) problem
and our proposal for target signatures. Then in section 3 we show that the mixed Steklov eigen-
values defined in section 2 can be determined using the linear sampling method (LSM) or the
GLSM. As usual, the justification of the use of the convenient LSM is incomplete (for more dis-
cussion of this point, see [8] and comments later in this paper), while for the GLSM a complete
theory can be given. Nevertheless we use the LSM for our numerical results. Results connect-
ing the mixed Steklov eigenvalues to the impedance of I" are provided in section 4 where we
note, for example, that a constant impedance can be determined from measurements of a single
eigenvalue. Next, in section 5, we show preliminary numerical results of determining eigen-
values from far field data, and investigate the sensitivity of the eigenvalues to perturbations
of the impedance. Conclusions are presented in section 6. The paper ends with an appendix
(appendix A) on the exact calculation of mixed Steklov eigenvalues relevant to our study.

2. The direct, auxiliary and inverse problem

In this section we define the forward problem and target signatures. We assume that I" is an
open piecewise smooth m — 1 dimensional, oriented and non-self-intersecting surface in R™
for m = 2, 3. More precisely, we consider I to be a subset of a closed piecewise smooth surface
0D circumscribing a connected region D C R™. Let v denote the unit outward normal to 9D
and let the normal derivative 0, u = Vu - v. For a piecewise smooth function w we define the
jump on I' by

[[’LU]] = 'LU|]Rm\B — 'LU|D.

The surface material parameter o := k(«; + i) is a complex valued L>°(I") function with
non-negative imaginary part a, > 0, where k denotes the wave number of the background
medium which is proportional to the interrogating frequency. Given an incident field «’ and the
surface parameter o, the forward problem for I is to find u € H,._(R™) such that

Au+ku==0 inR"\T, u=u'+u inR"™, (1a)
[Opull + cu=0 onT, [ul =0 onT, (1b)
lim " (Oyu’ — iku')y =0 uniformlyin X =x/r, r = ||x|. (1c)
F—00

In practice, we usually take the incident field « to be plane wave given by u/(x) = exp(ikd -
x), where we denote the incident direction by the unit vector d. The far field pattern u..(x; d)
for ||x|| = 1 is defined from the following asymptotic behavior of the scattered field [16]

ey = PR {uoo(fc;d) +0 <ll> } as r — oo. )

r oz r 2

Remark 1. The inverse problem we are concerned with is, provided that the shape I" of the
surface is known, determine indicators of changes in the surface material parameter o from a
knowledge of the far field pattern u.,(X; d) for observation directions X and incident directions
d on the unit sphere or circle S:= {x € R™: ||x|| = 1} at a fixed wave number k.
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Before moving on to the inverse problem, we recall the radiating fundamental solution
®(x, z) to the Helmholtz equation

eiklx—z|
—_ in R3,
D(x,z) = ‘i‘”\x —Z| 3)
ZHg“(k\x —z)) in R?,

where H{"’ denoting the Hankel function of the first kind of order zero. This will be used in the
upcoming analysis.

Our approach is based on the development of a target signature for ¢ that uses the eigen-
values of an appropriate eigenvalue problem. We remark that this target signature can detect
changes on o without knowing the base healthy value of ¢ nor reconstructing it. To introduce
the eigenvalue problem we need the following auxiliary scattering problem.

Given \ € C with J()\) > 0, the auxiliary scattering impedance problem that we consider
is to find w™ € H} (R™\ D) such that

Aw® + 2w =0 in R"\ D, w = w™ £y in R™\ D,
(4a)

opw™ + ™ =0 onT, dyw™ =0 ondD\T, (4b)

lim P (Bw™ — ikw™) =0 uniformlyin ¥ = x/r. (4c)

As before, the far field pattern w)) corresponding to the scattered field w™+ is defined by
the asymptotic condition

. 1
WS (x) = exl?n(flfr) {wfﬁ,)(fc;d) +0 (m) } :
T rr

The far field pattern of the above auxiliary problem can be computed and involves only the
known geometry of the surface I', and surface impedance parameter \.

From the known measured far field pattern u..(X;d), and the artificial far field pattern
wY (*; d), we define the standard far field operators for g € L*(S) by

(Fg)(x) = /Moo(f;d)g(d) dsa, (FVg)®) = /wéﬁ)(,%;d)g(d) dsg.
s s
We also define the modified far field operator F : L*(S) — L*(S) by
Fod) = [ i) — G s ds

Obviously, the modified far field operator is
Fg:Fg—F(A)g. )

For theoretical purposes, we sometimes use the Herglotz wave function

Uy (x) = / exp(ikx - d)g(d) dsg (6)
S
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for g € L*(S) as the incident field ' in the forward problem (1) and auxiliary problem (4). Let
ug and wy) be the solution of the two problems by using this function. Furthermore, we write

the corresponding far field patterns as ug », and w{), .

Lemma 1. Let ug,, and w), be defined as above, then Fg = ug o — wiy,.

Throughout the remainder of the paper we make the following assumption on the domain
D in relation to the interrogating wave number k.

Assumption 1. k?* is not a mixed Dirichlet and Neumann eigenvalue of —A, i.e. of the
problem

Au+kKu=0 inD, u=0 onT, du=0 ondD\T. (7)

We note that assumption 1 is not a restriction since based on the interrogation frequency
known to us, we can easily choose D containing I" that satisfies this assumption.
Next, we consider the following mixed Steklov eigenvalue problem:

Ah+kh=0 inD, Oyh —ch=—Mh onT, d,h=0 ondD\T. (8)

This is an extension to the Helmholtz equation of the standard sloshing problem. To relate the
eigenvalue problem (8) to the modified far field operator, we consider the injectivity of F.

Lemma 2. Assume that A € C is not an eigenvalue of (8). Then the operator F : L*(S) —
L*(S) is injective.

Proof. Suppose Fg = 0 for some g € L*(S), by lemma 1 we have u, o, = w?), on S, and
Rellich’s lemma [16, lemma 2.12] implies u, = w?)"" in R™\ D. Adding the Herglotz incident
field u, to both scattered fields u}, and w("* we have u, = w( in R™ \ D. Denoting ug|gm 5
by uj and ug|p by u, , then u = w{ in R™ \ D. Using the boundary conditions for w{" we
have

+ + _ + _
Opuy +Auy =0 onT, Buug =0 ondD\T.
But on I" we have

ot — + - _
ugi=u, =u, and Oyu, —yu, +ou, =0.

Therefore, we have

duu; = (=N, onT,  Ju; =duf =0 ondD\T.

This shows that u, is a solution of (8).

If A € Cis not an eigenvalue of the mixed Steklov eigenvalue problem (8), then u, = 0 in
D. In this case, the analyticity of the solution of the Helmholtz equation implies that we have
that u, = 0in R” \ T". In addition we obtain that the jumps of u, and 9, u, are both zero, which
means that u, solves the Helmholtz equation in R™ and u, = —u;, which is possible only if
g = 0 since u, is a radiating solution whereas u, is an entire solution.

Therefore, if A is not an eigenvalue of (8), the modified far field operator F is injective. [

Remark 2. From lemma 2 we know that if Fg = 0 has a non-trivial solution, then X is
an eigenvalue of problem (8). Note that the converse is not necessarily true, i.e. if A is an
eigenvalue of (8), this doesn’t mean that F is not injective, which will become clear in the
following section. Nevertheless the above connection between the modified far field operator 7

5
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and the eigenvalue problem (8) can be exploited to detect these eigenvalues from the scattering
data.

Lemma 3. Assume that A € C is not an eigenvalue of problem (8). Then the range of
F LAX(S) — L*(S) is dense.

Proof. Let F*:L*S)— L*(S) be the adjoint of F, and define R:L*(S) — L*(S) by
Rg(x) := g(—x). Since the far field patterns of the solution of both (1) and (4) satisfy a reci-
procity relation (see [16, theorem 8.8] for (1), a similar proof holds for (4), using (5) together
with the argument in [16, theorem 3.30] we have that

F'g=F'g—F"g=R(F — FV)Rg = RFRg.
Thus F* is injective if A € C is not an eigenvalue of (8), which implies F has dense range. [J

Now we are in a position to define precisely the target signatures considered in this paper:

Definition 1 (Target signatures for the screen I').  Given a screen I' and a domain D
with I' C OD the target signature for the scatterer is the set of mixed Steklov eigenvalues
defined by (8).

3. Determination of the eigenvalues from far field data

We now show that mixed Steklov eigenvalues can be determined from far field data. This
involves a non-standard analysis of the exterior scattering problem. We prove results for the
convenient LSM, and more precise results for the GLSM.

The forward problem (1) is a particular case of the following transmission problem: given
¢ € H'2(0D), v € H'/*(OD) find p € H'(D) and p* € H}..(R™ \ D) such that

Ap'+ kP =0 in R"\D, Ap+kp=0 inD, p—p =¢ ondD,

(%a)
Oyp—0,p—op=1 onT, Oyp—0,p' =1 ondD\T, (9b)
rlig P O,p" — ikp') =0 uniformlyinx = x/r. (9¢)

Indeed, if we take @ := ui|aD and ¢ == O, u’ |ap, then the solution u of problem (1) is given by
u:=pinDand u:=p' 4+ u' in R" \5. In addition, since u is continuous across 9D, we have
u € HL (R™).

Now we define the bounded linear operator 4 : L*(S) — H'/*(0D) x H~'/>(OD) by

H(g) = (wi]op. Bvw’|op) . (10)

where wg) is the total field in the scattering problem (4) with the Herglotz wave function
incident field u' := Uy see (6) for the definition of U

Let R(#) denote the closure of the range of H in H'/2(OD) x H~'/>(dD), and define the
bounded linear and compact operator G : R(H) — L*(S) by

G:(p9) = po, Y
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where p_ is the far field pattern of p* that solves (9) (the compactness of G follows from real
analyticity of p,,(x)). The discussion in section 2 implies the following factorization for the
modified far field operator

F =GH.

For any h € H'(D) that is solution to the Helmholtz equation Ak + kK*h = 0 let us define
v € HY(D) by

0(0) = hx) — /F R, y) ds, (12)
which is a solution to the Helmholtz equation in D. Define, for x ¢ T,
Px) = hiw) = /0 D))~ 0B b,
+ /Fa(y)h(y)tb(x,y) ds,, x €D,
P = /d @00~ 0,00)0(x.2) b,

+ /U(y)h(y)tb(x,y) dsy, x€R"\D.
r
Standard results in scattering theory, particularly the jump relations for single and double
layer potentials in [16, theorem 3.1], give the following result:
Lemmad4. (p(x),p’(x)) is the solution of (9) with ¢ :=v|gp and 1 == 0, v|sp.

In addition, from the statement of the above lemma together with Rellich’s lemma and the
definition (11) of the operator G we have:

Lemma 5. Assume that \ is an eigenvalue of the mixed Steklov eigenvalue problem (8). Let
w™NS be the unique solution of

AwNs I Pw™ =0 in R™\ D, (13a)
Dyuw™M = —9,v ondD\T, (13b)
Dyw™s £ AN = —9,v— v on T, (13¢)
rgrog rT (0w — ikw™) =0 uniformlyink = x/r, r = ||x||. (13d)

Then
g(s@v, /(/)’U) = 03 Wlth (Pv = (wq())\),S + v)‘(?D& /(/)’U = al/(wg;/\),s + v)|i)Da
where v is defined by (12) with h == h™, the eigenfunction corresponding to the eigenvalue \.

Remark 3. It can be seen from the variational formula of the problem (8) along with
assumption 1 that a mixed Steklov eigenvalue A must have nonnegative imaginary part. This
guarantees the well-posedness of problem (13) under the assumptions of lemma 5.
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Note that (¢, 1,) € R(#H). This follows from the fact that the set of Herglotz wave functions
u; given by (6) is dense in the space

{veH'(D): Av+kv=0inD},

which is proven in [8, lemma 2.1], together with the trace theorem and the well-posedness
of (13).

The above reasoning makes it clear that if A is a modified mixed Steklov eigenvalue, then
the kernel of G is nontrivial but not necessarily the kernel of the modified far field operator
F since the function v in (12) is not necessarily a Herglotz wave function. Nevertheless we
can exploit the above relationships to determine the eigenvalues A from a knowledge of the
modified far field operator. To this end, let ®,(x,z) be the far field pattern of the radiating
fundamental solution ®(x, z) to the Helmholtz equation.

Lemma 6. Assume that A € C is not an eigenvalue of (8). Then ®,.(-,z) € R(G) for any
z€D.

Proof. Letz € D and, since A € C is not an eigenvalue of (8), consider the unique solution
h. € H'(D) to the following problem

Ah, 4+ k*h, =0 inD,
Op(h; — ®(-,2)) — oh; = —A(h, — ®(,z)) on[,
Op(h, — @(-,2)) =0 ondD\T.

Now define v. € H'(D) by

v (x) = h,(x) — /a(y)hz(y)@(x,y) ds,, (14)
r
which is a solution to the Helmholtz equation in D. Then, by construction using lemma 4,

G b)) = Boo(-,2),  with @, = (W™ +v)|ap, 1, =W + v.)|an,

where ng\),s is the solution of (13) with v := v,. This can be deduced in the same way as in the
proof of lemma 5, noting that now 4 in the definition of v is not a mixed Steklov eigenfunction,
but rather the solution of the mixed Steklov problem with data coming from the boundary traces
of the fundamental solution ®(x,z) for z € D. Hence the solution p’ to (9) corresponding to
(¢, 1,) is identically equal to ©(.,z). O

Lemma 7 Assume that A € C is an eigenvalue of (8). Then the set of points z € D for which
D (-, z) € R(G) is nowhere dense in D.

Proof. Assume to the contrary that ®..(-,z) € R(G) forz in adense subset of a ball B included
in D. Then there exists (¢, ;) € R(H) such that G(p,¢.) = ®(-,z). We call p, and p; the
solution of (9) with ¢ :=¢_and ¢ :==1)_.

Following similar arguments as in the proof of [8, lemma 2.1] together with lemma 5, one
obtains that if A is an eigenvalue of (8), then a pair (p, ¥) € R(H) is such that

@ = WM + v)|ap, Y =0, (WM + v)|ap,
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where wM* solves (13) with some incident wave v € H;,. where
Hye = {v e H'(D): Av+ kv =0}. (15)

Thus for the pair (¢,,,) we have the corresponding v, € Hi, and wg)"" solving (13) with
v:=v,. An application of Rellich’s lemma implies that p. = ®(-,z) in R” \ D and thus p,
satisfies

Ap. +kp.=0 inD,
Oup: — op; + Ap. = 0, P(,2) + A®(-,z) on T,
Oyp, = 0,0(-,z) ondD\T.

From the Fredholm alternative, the above problem is solvable if and only if

Oy ®(,2)p" ds + / A(-,2)pVds =0, forallz € B, (16)
oD T

where p%V is in the kernel of the adjoint problem, i.e. satisfies
Ap?) + K p?) =0 inD,
Oy p?) — Ep?) + Xp?) =0 onT,
o,pN =0 on 9D\ T.

Z

Using the boundary conditions for p%V, (16) gives

/ (0,2, 20" — 9, PV ®(,2)) ds + / 0PV B(-,z)ds = 0,
oD T

which holds now for all z € D since the left-hand side as a function of z is a solution to the
Helmbholtz equation in D hence real analytic. Thus we have that

v(z) =P — / oPVB(,z)ds = 0.
T

Similarly to the discussion at the beginning of this section, p and p’ defined by the formula
below (14) corresponding to this v := 0, solve (9) with zero data, hence both are zero. Thus the
eigenfunction p = 0, which is a contradiction. O

Now we are ready to show how the eigenvalues, real or complex, of the mixed Steklov
eigenvalue problem (8) can be determined from the modified far field operator F, by means of
the LSM.

To this end, we consider the modified far field equation given by

(Fg)x) = ®o(x,2) forze D, 17

and let v, denote the Herglotz wave function with kernel g € L*(S)

Vg(x) ::/S exp(ikx - d)g(d) dsy.



Inverse Problems 38 (2022) 025011 F Cakoni et al

Theorem 1. Let {g5}>°, denote a sequence in L*(S) such that

lim[[Fg, — ®oo(X,2)]|125) = 0. (18)

(a) Assume X is not an eigenvalue of (8). Then, for every z € D there exists a sequence {g%}
in LA(S) satisfying (18) such that ||vg || g1 p, is bounded.

(b) Assume X is an eigenvalue of (8). Then for any sequence {g-} in L*(S) satisfying (18),
lvgz || 11y cannot be bounded for all z dense in a ball B C D.

Proof. If X\ is not an eigenvalue of (8), then from lemma 6 we have that G(p,,v,) =
Do (,z) with (p,,1,) € R(H). Thus, there exits a sequence {g5} in L*(S) such that

(wg)\m), Buw;%) DD) converges to (., %,) in H'/2(OD) x H'*(OD), where wY is the total

field in the scattering problem (4) with the Herglotz wave function v, as incident field. In
particular, v,z converges to a v* € Hiy given by (15). Hence, by continuity of G we have

nl_igé”]:gf, - ‘I)oc("z)||L2(S) = nl_i>rglo\|g(7-[gf,) - ‘I)oc("Z)HH(S) =0,
and

limv,: =v° in H'(D),
n—0o0
which proves part (a).
Next, assume to the contrary that ||v,: || 1), With g, satisfying (18), is bounded forall z € B
in a ball included in D. This means that {v,: } converges weakly to some v, € Hiy. Let

o, =W +v,)|op, ¥, = Oy (W™ + )| ops

where wV* solves (13) with v := v,, which is the weak limit of g, (note that the trace operator
is continuous and the solution of (13) depends continuously of v). Since G is compact we have
that GHg? converge strongly to G(¢., 1,) and since Fg> = GHgZ we conclude that G(¢., ;) =
®(+,z) for all z € B C D. But this is not possible from lemma 7, and the second part is
proven. (|

The above theorem states that for every sequence {g3} in L*(S) satisfying (18) we have
that [|vg: || 1 (p is bounded for all z € B C D if and only if A is not an eigenvalue of (8). This
provides the mathematical foundation of the LSM for determining these eigenvalues from F.
We remark that for the existence of a sequence {g>} in L*(S) satisfying (18), we need that
®.(*%,2) is in the closure of the range of F. This is guaranteed if A is not an eigenvalue of
(8) since the range of F is dense in L*(S). If \ is an eigenvalue of (8) this information is not
available and may depend on I' and o. Thus, if A is an eigenvalue of (8), either such a sequence
{g5} exists and ||vg: || 1, becomes unbounded, or such {g7} does not exist in contrast to the
behavior when X is not an eigenvalue of (8). Either way the behavior differs from when A is
not an eigenvalue, and this fact can potentially be used in the detection of eigenvalues.

Due to the ill-posedness of (17), one actually solves the Tikhonov regularized version of
the modified far field equation

(al + F'F)g=F'®u(2) forzeD.

The problem with the above criterion of determining the eigenvalues A is that there is no
theoretical guarantee that the regularized solution g, of the modified far field equation would

10
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capture the behavior of v, described by theorem 1. Nevertheless, as our numerical examples
show, this seems to be the case in practice.

The GLSM, first introduced in [4] aims at correcting for the above theoretical deficiency
of the LSM. We shall present an alternative criterion to determine the eigenvalues of (8)
from F based on this method which unfortunately requires some restrictive assumptions. In
this framework, we have the modified far field operator F : L*(S) — L*(S), which assumes
the factorization F = GH with H : LAS) — HY2(0D) x H-Y2(OD) and G : R(H) — L(S).
In addition let B: L>(S) — R™ be a continuous functional. For a given parameter a > 0 and
¢. =D (-,z) € L*(S) we define the functional

Jo(¢2.8) = aB(g) + | Fg — .7

and let

Ja(@) = inf Ju(¢;, ). (19)
gEL2(S)

The proposition below provides a characterization of the range of G in terms F and B. The
following version of the GLSM is proven in [2, appendix].

Proposition 1. Assume that F has dense range, and for any given sequence {g,} € L*(S)
the sequence {B(g,)} is bounded if and only if the sequence {||Hg,||} is bounded. Let {g,}
be a minimizing sequence such that

Jo(b2, 80) < ]a(¢2) + Ca

with a constant C > 0 independent of o. Then ¢, € R(G) if and only if the sequence B(g,,) is
bounded as o — 0.

We notice that lemmas 6 and 7 state that A is an eigenvalue of (8) if and only points z
such that &, (-,z) € R(G) are nowhere dense in D. It remains to find an appropriate continuous
functional 53 given in terms of data that satisfies the assumption in proposition 1.

The first criterion uses Bg := (FVg, 8),2(s, where FV : L(S) — L*(S) is the far field oper-
ator corresponding to the auxiliary scattering problem (13). In [2, lemma 1(i)] it is shown that
this B satisfies the assumption of proposition 1, provided that a real value of \ is not eigenvalue
of the mixed Steklov eigenvalue problem:

Ag+kqg=0 inD, Oyq+X=0 onT, 0,q=0 onoD\T. (20)

We remark that the proof in [2, lemma 1(i)] is for the case when the impedance condition is on
the entire boundary, i.e. I' = 0D. However all the necessary mathematical tools related to the
properties of F™ developed in [12, 18] simply require that X is in L*(9D) (including being
zero on part of dD). To avoid repetition, in the following we only state the result.

Theorem 2. Assume that the modified far field operator F : L*(S) — L*(S) has dense
range, and \ is not an eigenvalue of (20). Consider

Jo(@oo(2), 8) = a|(F'g, &) + | Fg — P 2)|1%,
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and the corresponding j, (P (-,z)) given by (19). Let g%, be a minimizing sequence such that
Jo(Poo(+,2), 85) < Jo(Poo(,2)) + Cav,

with C > 0 a constant independent of a > 0. Then \ € C is a mixed modified Steklov eigen-
value of (8) if and only if the set of points z such that |(F*g%,, g%)| < oo as a — 0 is nowhere
dense in D.

The assumption that ) is not an eigenvalue of (20) is somewhat restrictive for o real valued
because it can happen that a real A could be simultaneously eigenvalue of (20) as well a value
of interest, i.e. an eigenvalue of (8). To define a second criterion, we recall that or any operator
T:W — W, where W is a complex Hilbert space with adjoint 7% : YW — WV we define

1 1
R(T) = E(T + 7, IT) = Z(T —T).

Then if F : L*(S) — L*(S) is the far field operator corresponding to the physical scattering
problem (1), we set

Fyu = |R(F)| — I(F).

The second criterion uses Bg := (F4g, 8)2(s)-

We must show that this choice also satisfies the assumptions of proposition 1. For this we
need to assume that I" is such that there is no non-trivial Herglotz wave function v, such that
ve|r = 0, i.e. H is injective. This is a geometric assumption on I'. Open surfaces or arcs that do
not satisfy this assumption cannot be fully characterized. Moreover, the assumption excludes
I" being part of a straight line or plane, or part of a circle/sphere of certain particular radius.

We now adopt the notation

HY(T):={u|r:u € H(OD)}, HY():={u e HX(I') : suppu C T},

i.e. in other words, H > (I') contains functions u € H 3 (I') such that their extension by zero to
the whole boundary 0D is in H 2 (OD). 1t is known [20] that H -3 () is the dual space of H 3 @)

and H~2(T') is the dual space of H(T), and that we have the following chain of dense and
compact embeddings

H(T) c HE(T)  [A(T) c H *(T) ¢ H ().
We start by factorizing F as
F = —-GoH,

where H : LX(S) — H2(T') C H~2(T) is given by
H:g— velp, with v,(x) = /g(d)eikx‘d dsg,
S
and G : H=2(T') — LX(S) is given by

G:h— vy,

12
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where v is the far field pattern of v € H, 1

loc

(R™) satisfying

Av+Kv=0 inR"\T, (21a)
[Oov]l+ov=h onT, [vI=0 onT, (21b)
lim r% (Oyv — ikv) = 0 uniformlyinx = x/r. 21¢)
F—00

The adjoint operator H* : H~2(T) — L(S) is given by
H p(3) = / o(y)e & ds, .
r

Here and in what follows the superscript * denotes the adjoint in the H ‘%(F)-inner product.
From the assumption we have that H* has dense range in L*(S). Note that [0, v] € H -3 @T).
On the other hand from the jump relations for the single layer potential, we see that

Selx) = /F PBCy)ds,, o € D),

satisfies (21) with h:=(—I + oSp)p, where Sy : H~2(T') — H2(T') C H (T is the bound-
ary integral operator S¢(x) = fr P(y)P(x, y)ds, restricted to I' (see [20]) and [ is the identity
operator. Obviously S, = H*p. Thus we have the factorization

H* = -G — oSr). (22)

Lemma 8. Assume that ' is such that there is no non-trivial Herglotz wave function v, such
that v,|T' = 0. Then G : I:I_%(F) — L*(S) is injective with dense range.

Proof. Injectivity of G follows from the well-posedeness of the direct scattering problem.
The range of G coincides with the range of H* since the operator [ — oSt : H3 ) —H = )
is bijective. To show this, we notice that ¢St : H ‘%(F) S H2 (I") is compact due to compact
embedding of H 2 (I') into A -3 (I'). Hence, it suffices to prove injectivity. To this end let ¢, be
such that (/ — oSt)¢, = 0, and consider

w(x) = /F wo(»)P(x,y) ds,

which satisfies (21) with 2 = 0, thus w = 0 in R™ \ T'. Again the jump relation for the normal
derivative of the single layer potential implies that ¢, = 0. Then the result follows from the
fact that the range of H* is dense. (]

As a consequence of the above lemma and the previous discussion we have

Proposition 2. Assume that T is such that there is no non-trivial Herglotz wave function
vg such that vy|I' = 0. Then the operators G* (LA(S) — I:I_%(I‘), H:L*S)— I:I_%(I‘) and
H*: ﬁ‘%(F) — LX(S) are injective with dense range.

13
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Combining both above factorizations we have
F=H'(I —oSr) 'oH = H'G@I — |o|*Sr) " 'cH. (23)
Now we may verify the following:

Lemma 9. Let A:=(GI — |o|2Sp) "' : H2(I) — H 2(I'), and assume that R(o(x)) >
oo > 0 for x € I. The following properties hold true:

(@) 3(90,A90)H,%(F) <. . .
(b) R(A) = Ay + C, where C: H 2(T') — H 2(I) is compact and Ay satisfies

a3 5N ~ 1
(0, Agp) > cngonr%(F) forallp € R(H) = H 2(I).
(¢) Ais injective in R(H) = H2(T).
Proof. We have
5 I — lol? — 2 o ~12A
I (e, (@1 — o] Sr)w)H,%(F) IOl g~ o380,y

11 >0,
2.H?

_ 2 2

=3@llel, y ., ~lol3eSre)
where (-, -) denotes the duality H~2(I"), H2(T"). This follow from the fact that J(c) > 0 and
the known fact [18, lemma 1.14] that

3¢, S¢) <0 forall ¢ € H 2($) with ¢ # 0,

H 3 (OD).H 3 (OD)

and that ¢ € H -3 (") can be extended by zero to the whole 9D in H -3 (OD). The statement
then follows form the fact that A is the inverse of (1 — |o|*St).
Concerning the second part, we observe that

A=GI—|of*Sr) ' =7 'U—0oSp) ' =7 'U + oSrd — oSr) ),

where oSp(I — oSr)~! is compact as product of the bounded operator o(/ — oSp)~!
and the compact operator Sp. The latter is true due to compact embedding of H %(1“)

into f{‘%(F). Therefore we can write R(A):=Ag+ C with Ag:= DCT(‘Z)I coercive and

Ci= m(%sp(l — oSr)~") compact.
Finally the last part is obvious since A is invertible. |

Lemma 9 along proposition 2 allows us to apply [8, theorem 2.31] or [18, theorem 2.15] to
state the so-called F'4 factorization statement. To this end let us define

Ay =|RA)| — T(A).

Theorem 3. Let A:= (] — |o|*Sp) ! :I:I_%(F) — ﬁ_%(F), and assume that there is no
non-trivial Herglotz wave function v, such that ve|r = 0 and R(c) > o9 > 0 onT. Then

F# = (O’H)*A#(O'H),

14
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where Ay : H? T — H? (D) is self-adjoint and satisfies the coercivity property

S -1
(e.Aw0) Zellgll y - forally & RUED = H *(T).

1
Moreover, R(H*) = R(F;#).

Now we are ready to formulate a second criterion to determine the mixed modified Steklov
eigenvalues of (8).

Lemma10. Assume that 1 is such that there is no non-trivial Herglotz wave function v, such
that vg|I' = 0. Under the assumptions of theorem 3, the functional B: g — (Fyg,8)12s) =

1
HF;gH 12 Satisfies the property that for any given sequence {g,} € L%(S) the sequence
{B(g,)} is bounded if and only if the sequence {||Hg,||} is bounded as n — oo.

Proof. Assume that Bg, is bounded. Then using the above factorization we have

Bg, = (Fygn g1) = (AgoHg,, cHg,) > CIIUHgnH;%(F),

where c is the constant appearing in theorem 3. Thus ||Hg, ||H7 b is bounded.

Noting that Hg, = v, |r, we now show that this implies ||vg, ||z, is also bounded.
Assume to the contrary thE.lt Vg, |18,y is unbounded, which means that ||g,|;2 is
unbounded. Hence, by extracting a subsequence, we can assume that || g,[ 2, — 00 asn — oo.
Now consider g,/||gx|l;2s)- Again after extracting a subsequence, this sequence converges to
some function ¢ weakly in L*(S). Hence

l ikx-y PPN
W/Sgn(ﬁ)elkx;v dy — /Sgo(j))elkx»y dy = v, asn— oo
nllL~(S)

point-wise on Bg. But due to the boundedness of ||vg, ||H7 by

1

—— Ve, || 1 —0 asn— oo,
HgnHLZ(S)

H 2()

whence v,|r =0 which contradicts the assumption of the lemma. Hence ||vg, [|z1(5,) is
bounded as n — oo.

Now from the well-posedness of (13) we conclude that {#g,} is bounded in H'/*(OD) x
H~'/2(dD) where Hg is given by (10).

Conversely assume that {Hg,} is bounded in H'/2(OD) x H~'/>(dD). Then from the
Green’s representation theorem we have that the scattered field wg)"" is bounded in H'(Bg\D)
and hence the incident field v,, is also bounded in H 1(Bg), hence by the trace theorem
\|Hg,,||H7% o is bounded. Now

Bg, = (Fy8n gn) = (AgoHg,, cHg,) < CmaxHO-HgnHjhlf%(F),

where Crax < 00 depends on the bound on A. Thus B(g,) is also bounded which completes
the proof. (]

15
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Lemma 10 allows us to apply proposition 1 with B:= (F4g, 8);2s, to obtain the following
result on the determination of the eigenvalues of (8).

Theorem 4. Assume that the modified far field operator F : L*(S) — L*(S) has dense
range, R(c) > oo > 0 on I, and that there is no non-trivial Herglotz wave function vg such
that vg|r = 0. Consider

Jo(®@uc(-,2), 8) = UF 48, 8) + || Fg — @oc 2|,
and the corresponding j. (P (:,2)) given by (19). Let g%, be a minimizing sequence such that

Ja(Poc(+,2), 8a) < Jja(Poo(:,2)) + Cav,

with C > 0 a constant independent of a > 0. Then \ € C is a mixed modified Steklov eigen-
value of (8) if and only if the set of points z such that (F4g%,,8%) < oo as o — 0 is nowhere
dense in D.

In contrast to theorem 2, the above theorem provides a rigorous criterion for determining the
eigenvalues under a geometric assumption on I" without restricting the value of the parameter .
We also remark that it is possible to obtain the regularized version of the statement in theorems
2 and 4 for noisy modified far field operator /. We refer the reader to [2, 8] for details on this
matter.

4. Relations between eigenvalues and the surface parameter

We now turn our attention to the eigenvalue problem (8), in particular understanding how its
eigenvalues relate to the unknown coefficient o. This eigenvalue problem is a modification of
the so called sloshing eigenvalue problem. Let us fix a constant & > 0 such that k> is not a
mixed Robin—Neumann eigenvalue of

Ah+k*h=0 inD, Oh+(@a—oc(x)h=0 onT,
Oh=0 onoD\T.

Such an « can always be found because a given k> cannot be a mixed Robin—Neumann eigen-
value for all o > 0. Indeed, the left-hand side of the following variational form of the above
problem

/ (Vh -V — kzhﬁ) dx + /(a —o)hpds =0 for all ¢ € H'(D),
D r

determines by means of the Riesz representation theorem an o parametric family of operators
in H'(D) that is invertible plus compact and depends analytically on o € C. Hence the analytic
Fredholm theory [16] can be applied. Since k and D satisfy assumption 1, the kernel of this
operator for o € C with J(«) < 0is trivial. Hence the set of « for which the kernel is nontrivial
is at most discrete.

Hence we can define the operator R : L*(I") — L*(I') mapping

R:0 l—)heh‘,

16
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where hy € H'(D) is the unique solution of
/ (th -V — kzhgcp) dx + /(a — o)hgpds = /9@ ds forall p € H\(D).
D r r

Obviously, this operator is compact, since hy|r € H %(1") which is compactly embedded in
L*(I). Then A is an eigenvalue of (8) if and only if

(=2 + RO =0.

1
— Mo

countable discrete set (note that the eigenvalues A # o from the assumption on k?).
When the coefficient o(x) is real valued, the compact operator R is in addition self-adjoint.
Thus, it has an infinite sequence of real eigenvalues 1,... which accumulate to

In other words are the eigenvalues of the compact operator R and hence form at most a

zero. Hence we conclude that in this case all eigenvalues of (8) are real, and there exists a
sequence {A j}j>1 of eigenvalues which accumulate to 00 (because the operator R is not
sign definite the eigenvalues can in principal accumulate to both +o00). However we show
next, that they accumulate only to —oo as j — oo since there are only finitely many positive
eigenvalues. In addition the corresponding eigenfunctions 4; form a Riesz basis for H'(D). If
J(o) > 0 there are no real eigenvalues, and since R is not selfadjoint the existence of non-real
complex eigenvalues requires a special investigation, which is beyond the scope of this paper.

Theorem 5. Suppose the fixed wave number k and domain D satisfy assumption 1. For real
valued positive o > 0, there exists at least one positive eigenvalue X > 0 of (8). Furthermore,
there are at most finitely many positive eigenvalues of (8), hence they accumulate only at —oo.

Proof. Assume to the contrary that all eigenvalues A; < 0. For the eigenfunction 4; corre-
sponding to \; we have

/D (IVh)|> = K |hj?) dx — /Fa|hj|2ds = —)\j/r\hj\zds > 0.

Since the eigenfunctions form a Riesz basis we have that for all 1 € H'(D)
/ (IVh|* = K*|h*) dx — /a\h|2ds >0, (24)
D r

which is not possible. Indeed if ¢ > 0 this is not satisfied for 4 = 1.
Next assume that there exists a sequence of positive eigenvalues A; > 0, j — +oc converg-
ing to ++oo with eigenfunctions 4 ; normalized such that

il oy + 1l 20y = 1.

Then since the left-hand side of the following expression is bounded

/ (IVh|> = K |hj?) dx — /a|hj|2ds = —Aj/\hj\zds, (25)
D T T

17
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we see that h; — 0 in L*(T') as j — oo. Next, a subsequence h; converges weakly in H'(D) to
some h € H'(D). Since each h; satisfies

/ (th-Vgo—kzhjgo) dx — /ahjgods—i—)\j/hjgods:o Y ¢ € H(D),
D r r

we find that the weak limit satisfies Ak + k*h = 0 and hence v - Vi € H*%(aD) is well
defined. Since v - Vh; =0 on OD\I' we can conclude that the weak limit also satisfies
v - Vh = 0on OD\I'. From the above we also know that 2 = 0 on I'. Hence, using assumption
1, we can conclude that the weak limit # = 0 in D. Therefore, choosing a subsequence, we see
that i1; — 0 strongly in L*(D). From (25) we can now conclude that, again choosing a subse-
quence, also || V|| 12, — 0 which contradicts the assumed normalization and completes the
proof. (]

Remark 4. Note that it is possible to prove that an eigenvalue A(k) of (8) seen as function
of the wave number k blows up as k — ko where k3 is an eigenvalue of (7).

Let,:=71(D,T', ) > 0 for 0 < av < oo be the first mixed Robin—Neumann eigenvalue of
Au+7u=0 1in D, Oou+au=0 onT, Ou=0 ondD\T,
which, since this is an eigenvalue problem for a positive self-adjoint operator, satisfies

2 2
||quL2(D)_;a”u”L2(F). (26)

ueH" (D),uz0 ”u”LZ(D)

T =

Hence for every nonzero h € H (D) we have
1 2 o 2 2
T_IHVhHLZ(D) + T_1||h||L2(F) > HhHLZ(D)'

Again, o is real valued, we can then estimate for some A > 0,

/ (IVh|* — &*|h]*) dx — /a\h|2ds+A/\h|2ds
D r I
2 2
> (1— k-) /|Vh|2dx+/ (A— ok —a> ) ds
71 D r 71
k2 2 2
>(1-— |[Vh|”dx + A, [ |h]” ds.
1 D r

We choose A > 0 sufficiently large such that A, :=minp (A — ak?/7 — o) > Oand k* < 7.
For such a choice of A and k, our eigenvalue problem (8) becomes

/|Vh|2 — k?|h|* dx — /a|h\2ds+A/\h|2ds =(A— A)/|h\2ds,
D T T r

where now the left-hand-side defines a self-adjoint positive operator. Therefore its eigenvalues
Aj:= A — )\j satisfy the Courant—Fischer inf-sup principle (see e.g. [19]).

18
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I r

OD\I'
OD\T

Figure 1. The domains of the Steklov eigenvalue problem (8).

Figure 2. One level mesh of the domains in figure 1.

In particular, from the above assuming that ¢ > 0 and the wave number kK < 7(D,T, )
(which does not depend on the unknown function o), we have that the largest positive
eigenvalue of (8), whose existence is guaranteed by (7), satisfies

_ 2 k2 2d h 2d
M= sup JpIVul? + I |ul* dx + [po|hul s @7

u€H" (D).uz0 Jrlul ds
This property states that the largest positive eigenvalue is monotonic increasing with respect
to the L*°(I") norm of o. It is possible to write similar relations for other eigenvalues based on
the Courant—Fischer inf-sup principle for all the eigenvalues A — A ;. Furthermore the shifting
constant A which depends on ¢ is related to the magnitude of )\ is, and this can be used to
get some information on o. We also noticed that if o < 0in I such that — > ak” /7 and for
k* < 71(D,T, o) all the eigenvalues of (8) are negative.
The simplest case occurs when ¢ is constant. In this case, if we let /\,(10) denote the nth
eigenvalue of (8) with ¢ = 0 we immediately have

M=0c+20 n=1,2,.... (28)

In this case we may determine o by measuring a single )\, and computing \?.
Now if ¢ is a small perturbation of a constant oy we could try a perturbation expansion. Let

o = 0g + €0y,
h=ho+eh +ehy+ -,
A=Xo+eh +eEd+ e,
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Figure 3. Sensitivity of Steklov eigenvalues to changes in the parameters « and /3, for
two different screens. We plot the relative change in the first six Steklov eigenvalues
for each screen. The numbers in the legends refer to the computed eigenvalues of the
unperturbed screen with 0 = 1. The left column is for the half circle and right is for the
quadrant. Top is the change of « from 1 to 2 with 5 = 0, bottom is the change of /3 from
—0.7t0 0.7 with v = 1.

where € is a small parameter. We are particularly interested in the case where o is constant,
but at this stage allow oy and o to vary long I'. Plugging in to (8) and equating orders of ¢ we
obtain to O(1)

Ahy+ kKhg=0 inD, Ay ho — oohg = —Nohy on T,
Oyhp=0 ondD\T,

which is our standard Steklov eigenvalue problem. To O(e) we obtain

Ahy + k2h1 =0 inD, Oyhy — oohy + 5\0]’11 = o1hy — 5\1]’1() on I,
Oyhy =0 ondD\T.

This is not generally solvable, and the solvability criterion furnishes a way to determine the
solution. In particular the o1hy — Ahy must be orthogonal to the eigenspace of the adjoint of
the eigenvalue problem (8). This relation, which involves the eigenfunctions (8) of could be
used to compute 0. This perturbation approach can be rigorously justified for real or complex
o using perturbation analysis with perturbation theory with explicit first correction term of
Osborn [22].
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Figure 4. The average of the £ norm of the discrete approximation g. against the Steklov
parameter A. The crosses in each figure show the position of Steklov eigenvalues com-
puted by our finite element eigenvalue code. Left: semicircle. Right: quadrant. Sharp
peaks in the averaged norm of g compute from far field data correspond to Steklov
eigenvalues.

5. Numerical experiments

We now show some numerical results that support our claims in the paper, for the sake of
simplicity, we restrict our attention to examples in R? instead of R*.

We start by investigating the sensitivity of eigenvalues of (8) to the size, position and mixed
boundary conditions of the scatter. Here D is a half circle or a quadrant, see figure 1, the wave
number k = 2, the function o depends on the angle 6 and is given by:

1 if0<9<g+ﬂ,

2
o@) = { 1+ asin?(35 — 30) if§+ﬂ<9<§+ﬂ,

2
1 if§+5<9<w,

where 6 is the angle of (x,y) € I', & > 0 and § € [0, 7/3] are parameters.

We use a standard conforming finite element method to find approximations of the largest
Steklov eigenvalues. We assume that the mesh is chosen so that each component of the
boundary I" and OD\T  is exactly covered by a union of edges; see figure 2 for an example.

Let V;, denote the space of continuous piecewise quadratic finite elements on a mesh 7, of
Q consisting of regular triangles of maximum diameter 4 > 0. The computational domain is
then €2, = Uke7;, K. Then we find that the discrete eigenpairs (A, wy,) satisty

(Vwy, Vo) — k& (wy, v) — (owy, v = —(Nwn, vp)r - ¥ vy € Vi

We only compute the first six eigenvalues \;;, j = 1, . . ., 6 since we can only determine the first
few eigenvalues from the far field data. We shall investigate how changes in o (due to changes
in « and ) are detected by changes in the measured Steklov eigenvalues. When reporting
changes in eigenvalues we use the relative change defined by

Anj (v, B) — A (0,0)
Aj(0,0) ’

j=1,...,6. (29)

21



Inverse Problems 38 (2022) 025011 F Cakoni et al

50 70
a=0 a=0
45 * eigenvalue (a=0) # eigenvalue (a=0)
a=05 60 a=1
40 O  eigenvalue (a=0.5) O eigenvalue (a=1)
35 50
5 5
30
E E 40
c c
8% 8
@ 30
< <
15 20
10
S 10
5
° — N . 0 " ¥ P "
0.6 0.4 0.2 0 0.2 04 0.6 06 0.4 0.2 o 0.2 0.4 06
Steklov parameter A Steklov parameter A
180 T - 90
=0 =0
160 + eigerwalue (3=0) 80 +  eigervalue (3=0)
3=-02 #=-0.5
140 [] eigenvalue (3=-0.2) 70 O eigenvalue (3=-0.5)
o120 o 60
k-] k-]
g 100 S 50
c
@ o
E 80 E’do
< 0 Z 30t
40 20
20 10
0o * 0 -
0.6 0.4 0.2 0 0.2 04 0.6 0.6 04 0.2 0 0.2 04 0.6
Steklov parameter A Steklov parameter A
200 120
=0 =0
180 #  eigenvalue (7=0) #*  eigervalue (7=0)
=02 100 b =05 1
160 O eigerwalue (7=0.2) O eigenvalue (3=0.5)
140
o o 80
k-] B
g 120 £
= E
£ 100 S 80
g g
& 80 S
> >
< < 40
60
40
20
20
0 * 0 *
06 0.4 0.2 0 0.2 04 0.6 06 04 02 0 0.2 0.4 0.6
Steklov parameter A Steklov parameter A

Figure 5. Results for detecting changes in the eigenvalues due to changes in o (via
changes in a and (). Top: changing with respect to « by fixing # = 0. Middle and
bottom: changing with respect to 3 by fixing o = 1.

Figure 3 shows plots of the relative change (defined by (29)) in the first six eigenvalues
computed by our finite element model as a function of « (top row) and  (bottom row). When
examining the sensitivity of the eigenvalues to «, the parameters are chosen from 1 to 2; when
examining the sensitivity to 3, we consider 3 from —0.7 to 0.7. We examine results for the half
circle and quadrant. We see that for the change in both v and [, the first eigenvalue shows the
most change regardless of the size of the scatter.
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Next, we demonstrate finding Steklov eigenvalues from far field data. We first compute
scattering data (approximating u,), then for several choices of the Steklov parameter A
we approximate the corresponding far field pattern s, and then solve a discrete analogue
of the far field equation using Tikhonov regularization with a fixed Tikhonov parameter
v =101,

For the forward problem, we truncate the mesh by a perfectly matched layer with con-
stant absorption parameters. We choose meshes where the triangle diameter is approximately
1/32 of the wavelength in the element. In each case we use 60 incoming waves with direc-
tions d;, j = 1,...,60, uniformly on the unit circle and hence compute a 60 x 60 matrix
A with Ay, = uy (dy,d,). Similarly we obtain a matrix B approximating /.. Setting the
data vector b, with (th entry to be b,y = ¢ (dy,2),1 < £ < 60 for some z € B. Finally we
compute an approximation to the Herglotz kernel g, using Tikhonov regularization, setting
M=A—Band

g. = (M) M +~1) " M)°b.,

where the superscript * denotes the conjugate transpose of the given matrix and v is
the Tikhonov regularization parameter. This is repeated for 20 randomly placed z € B
and the norm of g, is averaged. This method follows the standard approach in, for
example, [9].

The choice of 60 directions and 20 points z € B is essentially arbitrary, but we need suffi-
ciently many incoming waves to be able to approximate the far field operator. Our results in
figure 4 are for o = 8 = 0, peaks in the norm of g_ correspond well to eigenvalues. Higher
eigenvalues cannot be detected.

In figure 5 we investigate detecting changes by using « =0,0.5 and 1, and
B =0,40.2,+0.5. We can solve the far field equation as above, and determine shifts in Steklov
eigenvalues from shifts in the peaks of the averaged norm of g.. We have shown that Steklov
eigenvalues can detect changes.

For complex valued o the existence of eigenvalues has not been proved and we have not
tested this case numerically. Assuming such eigenvalues exist, we conjecture that by using a
complex Steklov parameter A we could detect them by extending the search domain to include
a region of the complex plane containing the eigenvalues as was done for modified Steklov
eigenvalues in [15].

6. Conclusion

In this work, we studied the inverse scattering problem of obtaining target signatures for a
screen. The method is based on invoking an artificial domain such that the boundary of this
domain contains the screen. Then we use the far field pattern of an auxiliary scattering problem
having a mixed impedance and Neumann boundary condition to modify the far field operator
for the screen. This results in target signatures that are the eigenvalues of a mixed Steklov eigen-
value problem. We analyze the problem when the function o describing the surface properties
of the screen is real.

It would be interesting to investigate this problem when o is complex, and analyze the
case more elaborate models for the screen. Another issue is the optimal choice of the artificial
domain such that the mixed Steklov eigenvalues are sensitive to changes in o. Finally, more
complex models for the change in o need to be tested.
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Appendix A. Series solution of the mixed Steklov eigenvalue problem

We use the results in section appendix A.1 below to test our Steklov eigenvalue solver.

A.1. Sector of a circle

This example gives the exact mixed Steklov eigenvalues for the domain shown in the left panel
of figure 1. We consider the sector of an circle given in polar coordinates by

D, ={(r,0)|0<r<r, 0<0<a}

for some 27 > a > 0. On the segment of the boundary given by r = r,, 0 < § < a we impose
the Steklov boundary condition

Ayu = \Ou, (A.1)

and on the remaining boundaries we impose the homogeneous Neumann boundary condition.
The superscript (0) refers to the fact that we set ¢ = 0 in (8).

Separation of variables gives the following solution which satisfies the Neumann boundary
condition for § = 0, «

u(r, 0) = cos(nm /) g, /o (kr).

Satisfaction of the Steklov boundary condition gives the following equation for the Steklov
eigenvalues

(er/a)/(er)

A =k :
" er/a(er)

For a given constant ¢ the observed eigenvalues are

Ao=o+ 29 (A.2)

In table appendix A.1 we show the first nine eigenvalues A’ for the half-circle considered in
section 5 where r, = 1, & = 7w and k = 2. Corresponding plots of the first six eigenfunctions
are shown in figure A1 (table Al).
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Figure A1. First six eigenfunctions corresponding to the eigenvalues in table
appendix A.1.

Table A1. First 9 eigenvalues for a sector withk =2, a = mand r, = 1.

)\E)O) )\(10) )\(20) )\gO) )\5;0) )\g)) )\20) )\%0) A;O)

—5.1518 —02236  1.2691 24727 35859 4.6584 57090  6.7464  7.7753

Table A2. First 10 eigenvalues for an annular sector withk = 2, « = 7/2, and r, = 1.

r Ay AP AY A AY AP AY AP A

0.8 —0.7565 0.1692 23567 48812 7.3089 9.5760 11.7270 13.8097 15.8557
09 —0.3849 0.0413 1.2482 3.0534 52381 7.6118 10.0414 124500 14.8025

A.2. Angular sector

The domain considered here is not used in our study, but shows that a thin domain D can
support eigenfunctions along the screen. We consider the sector of an annulus given in polar
coordinates by

Dy, ={(r0)|rn<r<r, 0<6<a}l,
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Figure A2. Density plots of the first six eigenfunctions corresponding to the eigenvalues
in table A2 for r; = 0.9.

for some 27t > a > 0. On the segment of the boundary given by r = r;, 0 < 6 < « we impose
the Steklov boundary condition (A.1) and on the remaining boundaries we impose the Neu-
mann boundary condition. Separation of variables gives the following solution which satisfies
the Neumann boundary condition for § = 0, «

u(r, 0) = cos(nmd /a)(C,H"

et

(kr) + CngjT)/a(kr)).
Satisfaction of the Neumann boundary condition on r = r; gives

K(Ci(HY, Y (kry) + C2(H?, Y (kry)) = 0.

nm/a et

So with this constraint

u(r,0) = Cs cos(nm /a)((Hfjj/a)’(krl))Hf;)/a(kr) - (Hflir)/a)’(krl YH?

nm/a

(kr).
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Satisfaction of the Steklov boundary condition gives the following equation for the Steklov
eigenvalues

3O — g Geri)) () kra) — (H ) k) (H, ) )
" (H,2) ) kr) H,), (kr) — (), Y kr)H,Y, (k)

For a given constant o the observed eigenvalues are then given by (A.2).

In table A2 we show the first nine eigenvalues \? for the sector where r, = 1, a = 7/2
and k = 2 for two different values of r;. Corresponding plots of the first six eigenfunctions are
shown in figure A2.
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