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Abstract. In this paper we consider the inverse problem of determining struc-
tural properties of a thin anisotropic and dissipative inhomogeneity in Rm,
m = 2, 3 from scattering data. In the asymptotic limit as the thickness goes to
zero, the thin inhomogeneity is modeled by an open m�1 dimensional manifold
(here referred to as screen), and the field inside is replaced by jump conditions
on the total field involving a second order surface di↵erential operator. We
show that all the surface coe�cients (possibly matrix valued and complex) are
uniquely determined from far field patterns of the scattered fields due to in-
finitely many incident plane waves at a fixed frequency. Then we introduce
a target signature characterized by a novel eigenvalue problem such that the
eigenvalues can be determined from measured scattering data, adapting the
approach in [20]. Changes in the measured eigenvalues are used to identified
changes in the coe�cients without making use of the governing equations that
model the healthy screen. In our investigation the shape of the screen is known,
since it represents the object being evaluated. We present some preliminary
numerical results indicating the validity of our inversion approach

1. Introduction. In this paper we are concerned with nondestructive evaluation of
thin inhomogeneities via probing with waves. In many contemporary engineering de-
signs one encounters thin structures that are anisotropic, absorbing and dispersive.
Inversion methods for fast monitoring of the integrity of such complex structures
are highly desirable, and target signatures are suitable for this task. Target signa-
tures are discrete quantities that can be computed from scattering data and used as
indicators of changes in the constitutive material properties of the inhomogeneity.
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Let us first introduce the scattering problem we consider here. Let the bounded
and connected piecewise smooth region S 2 Rm, m = 2, 3 be the support of a thin
inhomogeneity with the constitutive material properties A and n. We denote by
n the unit outward normal vector defined almost everywhere on the boundary @S.
Suppose that the incident field and the other fields in the problem are time har-
monic, i.e. the time dependent incident field is of the form <

�
ui(x)ei!t

�
where ! is

the angular frequency, and where the complex valued spatially dependent function
ui(x) is a solution of

�ui + k2ui = 0 in Rm.

Then the total field u = us + ui in Rm
\ S, where us is the scattered field. If, in

addition, U denotes the total field in S then u and U , respectively, satisfy

�u+ k2u = 0 in Rm
\ S, (1)

r ·ArU + k2nU = 0 in S. (2)

Here the wave number k = !/cext with cext denoting the wave speed of the homoge-
neous background. Across the interface the field on either side and their co-normal
derivatives are continuous, i.e.

u = U and n ·ru = n ·ArU on @S. (3)

Of course the scattered field us satisfies the Sommerfeld radiation condition (see
[27])

lim
r!1

r
m�1

2

✓
@us

@r
� ikus

◆
= 0 (4)

uniformly in x̂ = x/|x|, where x 2 Rm and r = |x|. In this paper we consider
plane waves as incident fields which are given by ui := eikx·d where the unit vector
d is the incident direction. Instead of plane waves, it is also possible to consider
incident waves due to point sources located outside S, in which case the obvious
modifications need to be made in the formulation of the problem.

Now, we assume that S is cylindrical with maximum thickness 2� > 0 that is
bounded above and below by smooth bounded and connected m � 1 dimensional
manifolds �+ and ��. Furthermore there is a smooth surface � with a chosen unit
normal ⌫ such that �± := ±�f±(s)⌫(s) with s 2 � and 0  f±

 1 where f± are
smooth profile functions defined on � with boundary @� (see Figure 1).

Figure 1.
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The specific feature of our inhomogeneity is that the thickness � is much smaller
than the interrogating wavelength in free space � = 2⇡/k. This introduces an
essential computational di�culty in the numerical solution of the forward problem,
and more importantly, for our purpose, in the inverse coe�cient problem. Our
goal is to design a sensitive target signature to detect changes in the coe�cients
A and n which involve the small scale of the thickness. Hence it is reasonable
to use an asymptotic method for small � and derive an approximate model where
the inhomogeneity S is reduced to the open surface �. There is a vast literature
in asymptotic methods for thin layers [18], [19], [29] [30], [31], [32], [38], where the
di↵erent ways of performing the asymptotic analysis lead to particular types of jump
conditions across �. For example following the asymptotic approach developed in
[28] and used in [18] for a di↵erent inverse problems, (2) is replaced by the following
approximate transmission conditions

[u] = �(A�1
� 1)(f+ + f�)

⌧
@u

@⌫

�
on � (5)


@u

@⌫

�
=

�
�r� · �(A� 1)(f+ + f�)r� + �k2(1� n)

�
hui on � (6)

where [u] := u+
� u� and hui := (u+ + u�)/2 where u±(x) = lim

h!0+
u(x± h⌫) and

for a matrix valued function @u±(x)/@⌫ = lim
h!0+

⌫ ·ru(x ± h⌫) for x 2 �, with ⌫

denoting a chosen normal direction to the oriented surface �. One can see that the
coe�cients in the jump conditions involve the constitutive material properties of
the inhomogeneity as well as its thickness. If the inhomogeneity is a cylinder with
constant thickness, then f+ = f� = 1 and in this case it is possible to consider a
matrix valued coe�cient A that is �-orthotropic independent of the normal direction
⌫. For the convergence analysis of this type of approximate models we refer the
reader to [29] [30], [31], [32], [38].

In this paper we use a screen model of the above type with anisotropic coe�cients
on the surface, generalizing the model considered [20] to a more realistic situation.
Constitutive material properties of the thin inhomogeneity are represented by a
surface matrix function, and two scalar surface functions. Our inverse problem
is to determine information about these coe�cients from a knowledge of the far
field pattern of the scattered fields due to infinitely many plane waves at fixed
frequency, provide that � is known. We refer the reader to [2], [7], [8], [9], [11], [35],
[39], [42], for various reconstruction methods for the shape of an open surface in
inverse scattering. Our inversion method is based on a target signature characterized
by a novel eigenvalue problem such that the eigenvalues can be determined from
measured scattering data, adapting the approach in [20]. Changes in the measured
eigenvalues are used to identify changes in the coe�cients without making use of
the governing equations.

Spectral target signatures originated with the Singularity Expansion Method
based on resonances (or scattering poles) [6]. Recently, transmission eigenvalues
[14], [13] (which are related to non-scattering frequencies [21], [40]) have been
successfully used as target signature for non-absorbing inhomogeneities, since real
transmission eigenvalues that can be determined from multi-frequency scattering
data exist only for real valued coe�cients, (see e.g. [16], [33]). To deal with ab-
sorbing and dispersive media and develop a spectral target signature measurable
from single frequency scattering data, a general framework was introduced in [15] to
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modify the far field operator whose injectivity leads to novel eigenvalue problems.
This idea was further developed for inhomogeneities with nonempty interior in [4],
[10], [25], [23], [24], [26]. Transmission eigenvalues are used in [5] to characterize
the density of small cracks, whereas new eigenvalues are derived in [20] and [22] as
target signature for open surfaces based on an appropriate modification of the far
field operator.

In the next section we formulate precisely the inverse problem, and prove a
uniqueness result. In Section 3 we introduce an appropriate modification of the far
field operator leading to a new eigenvalue problem that serve as target signature
for the screen. Section 4 is dedicated to the analysis of this eigenvalue problem
connecting eigenvalues to the unknown coe�cients, whereas is Section 5 we show
how the eigenvalues are determined from scattering data at a fixed frequency. The
last section presents some preliminary numerical experiments.

We finally note that the fundamental ideas of uniqueness proof and the employ-
ment of point sources in the linear sampling method relate to the celebrated work
by Victor Isakov on inverse coe�cients problem for hyperbolic partial di↵erential
equations. For his contributions in this area we refer the reader to the monograph
[34] which has become a classic in the theory of inverse problem.

2. Formulation of the inverse problem. We start by formulating rigorously our
scattering problem. Let � ⇢ Rm, m = 2, 3 be an m�1 dimensional smooth compact
open manifold with boundary. We further assume that � is simply connected and
non self-intersecting such that it can be embedded as part of a piece-wise smooth
closed boundary @D circumscribing a bounded connected region D ⇢ Rm. This
determines two sides of � and we choose the positive side determined by the unit
normal vector ⌫ on � that coincides with the normal direction outward to D. The
scattering problem is: given ui find the total field us + ui such that

8
>>>>>>>><

>>>>>>>>:

�u+ k2u = 0 in Rm
\ �,

[u] = ↵

⌧
@u

@⌫

�
on �,


@u

@⌫

�
=
⇣
�r� · µr� + k2�

⌘
hui on �,

u = 0 on @�

(7)

and us satisfies the Sommerfeld radiation condition (4). In particular here we
consider time harmonic incident plane waves given by ui(x) = eikx·d where the unit
vector d denotes the direction of propagation.

For simplicity of presentation, we assume that both ↵ and µ are real valued func-
tions, whereas � is allowed to be a complex valued function representing absorption.
Our discussion can be carried through with obvious modifications if both or either
one of the coe�cients ↵ and µ have nonzero imaginary part. In the 2-dimensional
case the jump conditions on � simply become

[u] = ↵(s)

⌧
@u

@⌫

�
and


@u

@⌫

�
=

✓
�
@

@s
µ(s)

@ hui

@s
+ k2�(s) hui

◆
on �

where s denotes the arc-length variable on �. In this case all coe�cients ↵, µ and
� are scalar functions. In the case of R3 we allow for µ to be a 2⇥ 2 matrix-valued
functions defined on � describing anisotropic thin homogeneities and div�(µr�u)
is the scalar anisotropic Laplace-Beltrami operator defined on �. More specifically
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the tensor coe�cient µ is function of the inhomogeneities anisotropic physical pa-
rameters and the geometry of the surface �. Let us precisely define the tensor µ.
Obviously, µ maps a vector tangential to � at a point x 2 � to a vector tangential
to � at the same point x 2 �. To be more precise, let ⌫(x) be the smooth out-
ward unit normal vector function to D and let t̂1(x) and t̂2(x) be two perpendicular
vectors on the tangential plane to � at the point x such that t̂1, t̂2, ⌫ form a right
hand coordinative system with origin at x. Then the matrix µ(x) is given by the
following dyadic expression

µ(x) =
�
µ11(x)t̂1(x) + µ12(x)t̂2(x)

�
t̂1(x) +

�
µ21(x)t̂1(x) + µ22(x)t̂2(x)

�
t̂2(x). (8)

Note that, if ⇠(x) = at̂1(x) + bt̂2(x) for some a, b 2 C, then µ(x) · ⇠(x) is the
tangential vector given by

µ(x) · ⇠(x) = (aµ11(x) + bµ21(x))t̂1(x) + (aµ12(x) + bµ22(x))t̂2(x).

From physical considerations we assume that µ12(x) = µ21(x) for all x 2 �, so
that in the case of R3 we assume that µ is a symmetric 2 ⇥ 2 tensor with entries
µij 2 L1(�). The basic assumption throughout the paper is that µ is uniformly
positive definite, i.e.

µ(x) � µ0 in R2 or ⇠(x)
>
µ(x) · ⇠(x) � µ0|⇠(x)|

2 in R3 (9)

where µ0 > 0 is a positive constant (independent of x), and (9) holds for almost
every point x 2 � and every vector ⇠ 2 R3 tangential to � at x. The coe�cient ↵ is a
L1(�) real valued function such that ↵�1

2 L1(�). The coe�cient � is a complex
valued function in L1(�) of the form �(x) = �r +

i

k
�i, such that =(�) = �i/k  0

which models absorbing and dispersive properties of the inhomogeneity,
To establish the well-posedeness of the scattering problem (7) we define the spaces

V (Rm
\ �) := {u 2 H1

loc
(Rm

\ �) : r�u
±
2 L2(�)},

V0(Rm
\ �) := {u 2 H1

loc
(Rm

\ �) : r�u
±
2 L2(�) and u|@� = 0}.

Then in [36] it is shown that there exist a unique solution u 2 V0(Rm
\ �) of (7)

which depends continuously on ui with respect to the norm

kuk2
V
:= kuk2

H1(BR\D)
+ kuk2

H1(D) + khuik2
H1(�),

for every ball BR of radius R > 0 large enough. Note that the direct scattering
problem is a particular case of this problem: Find w 2 V (Rm

\�) such that w+ui
2

V0(Rm
\ �) such that

8
>>>>>>>>>><

>>>>>>>>>>:

�w + k2w = 0 in Rm
\ �,

[w] = ↵

⌧
@w

@⌫

�
+ ↵' on �,


@w

@⌫

�
=
⇣
�r� · µr� + k2�

⌘
hwi+  on �,

lim
r!1

r
m�1

2

✓
@w

@r
� ikw

◆
= 0

(10)
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where ' = h@ui/@⌫i|� and  =
�
�r� · µr� + k2�

�
hui

i|�. In general ' and  can
be 8

>>>><

>>>>:

' :=

⌧
@v

@⌫

�
�

1

↵
[v]

 :=
⇣
�r� · µr� + k2�

⌘
hvi �


@v

@⌫

� (11)

for some v 2 V (Rm
\�) with�v 2 L2(BR\�) for all R > 0. In fact in [36] it is shown

that there is a unique solution w 2 V (Rm
\ �), with w � v 2 V0(Rm

\ �) of (10).
For later use we define the following trace space on � of functions u 2 V0(Rm

\ �)
by

V0 (�) :=
n
u 2 H1/2(�) such that r�u 2 L2(�) and u|@� = 0

o
(12)

and its dual V �1 (�) with respect to the following duality pairing

(u, v)
V0(�),V �1(�) := (u, v)

H1/2(�),H̃�1/2(�) + (r�u,r�v)L2(�),L2(�) . (13)

We define H̃1/2(�) and H̃�1/2(�) consist of functions in H1/2(�) and H�1/2(�) that
can be extended by zero to the entire boundary @D as H1/2 and H�1/2 functions,
respectively. They are duals of H�1/2 (�) and H1/2 (�), respectively. Note that
for v 2 V (Rm

\ �), such that �v 2 L2(Rm) we have that [v] 2 H̃1/2(�) and
[@v/@⌫] 2 H̃�1/2(�). Hence ' 2 H�1/2(�) and  2 V �1(�).

For later use we also define

V (D) := {u 2 H1(D) : r�u 2 L2(�)}, (14)

V0(D) := {u 2 H1(D) : r�u 2 L2(�) and u|@� = 0}, (15)

equipped with the graph norm, and similarly

V (Rm
\D) := {u 2 H1

loc
(Rm

\D) : r�u 2 L2(�)}, (16)

V0(Rm
\D) := {u 2 H1

loc
(Rm

\D) : r�u 2 L2(�) and u|@� = 0}. (17)

It is known, thanks to the radiation condition (4), that the scattered field us(x, d)
due to the plane wave incident field ui(x, d) = eikx·d assumes the asymptotic be-
havior [27]

us(x, d) =
eikr

r
m�1

2

u1(x̂, d) +O(r�
m+1

2 ) as r = |x| ! 1 (18)

uniformly in all directions x̂ = x/|x|. The function u1(x̂, d) defined on the unit
sphere Sm�1 := {x 2 Rm, |x| = 1} is called the far -field pattern of the scattered
wave. The far field patter for various incident field are the data we use solve the
inverse scattering problem.

The (measured) scattering data is u1(x̂, d) for all observation directions x̂ 2

Sm�1 and all incident directions d 2 Sm�1. The inverse problem of interest to us
is: from the scattering data determine information about the boundary coe�cients
↵, µ and �, provided � is known.

Remark 1. It is reasonable to replace the last Dirichlet condition on @� in (7)
with a Neumann type condition, i.e. the normal derivative on @� tangential to @D
vanishes (see e.g. [19]). Furthermore, everything in this paper holds true if the
scattering data is given for incident directions d 2 Sm�1

1 ⇢ Sm�1 and observation
direction x̂ 2 Sm�1

2 ⇢ Sm�1, where Sm�1
1 and Sm�1

2 are two open subsets (possibly
the same) of the unit sphere Sm�1



A SPECTRAL TARGET SIGNATURE FOR THIN SURFACES 7

For later use we define here the fundamental solution of the Helmholtz equation

�(x, z) =

8
>><

>>:

i

4H
(1)
0 (k|x� z|) in R2,

eik|x�z|

4⇡|x� z|
in R3.

(19)

where H(1)
0 is the Hankel function of the first kind and of order 0. Note that �(x, z)

is an outgoing field i.e. satisfies the Sommerfeld radiation condition.

2.1. Unique determination of the boundary coe�cients. We show that the
scattering data uniquely determine all the coe�cients. In the following discussion we
assume that the screen and the coe�cients satisfy the assumptions at the beginning
of this section.

To prove our uniqueness theorem, we need a density result stated in the following
lemma.

Lemma 2.1. Let u(·, d) be the solution of (7) with ui(x) = eikd·x and let us(·, d)
be the corresponding scattered field. If for ' 2 H�1/2(�) and  2 V �1(�) such that

([u(·, d)] ,')
H̃1/2(�),H̃�1/2(�) + (hu(·, d)i , )

V0(�),V �1(�) = 0, 8d 2 Sm�1,

then ' = 0 and  = 0.

Proof. For any d 2 Sm�1, assume that
Z

�
[u(·, d)]' dS �

Z

�
hu(·, d)i dS = 0, (20)

where the integrals are interpreted in the sense of duality with L2(�) as the pivot
space. Let w 2 V be the solution of (10) with boundary data this ' and  . After
integrating by parts and using the transmission conditions across � for u(·, d) and
w along with the fact that both u(·, d) and w are zero on @�, (20) becomes

0 =

Z

�
[u(·, d)]

✓
1

↵
[w]�

⌧
@w

@⌫

�◆
dS

+

Z

�
hu(·, d)i

✓⇣
�r� · µr� + k2�

⌘
hwi �


@w

@⌫

�◆
dS

=

Z

�

✓⌧
@u(·, d)

@⌫

�
[w]� [u(·, d)]

⌧
@w

@⌫

�
+


@u(·, d)

@⌫

�
hwi � hu(·, d)i


@w

@⌫

�◆
dS

=

Z

@D

✓⌧
@u(·, d)

@⌫

�
[w]� [u(·, d)]

⌧
@w

@⌫

�
+


@u(·, d)

@⌫

�
hwi � hu(·, d)i


@w

@⌫

�◆
dS,

where the last equality holds because the jumps of u(·, d) and w and their normal
derivatives are zero across @D \ �. Here D is a bounded connected region D ⇢ Rm

such that � ⇢ @D. Simplifying the latter leads to

0 =

Z

@D

✓
@u+(·, d)

@⌫
w+

� u+(·, d)
@w+

@⌫

◆
dS

�

Z

@D

✓
@u�(·, d)

@⌫
w�

� u�(·, d)
@w�

@⌫

◆
dS

=

Z

@D

✓
@u+(·, d)

@⌫
w+

� u+(·, d)
@w+

@⌫

◆
dS,
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where the second integral is zero by Green’s second identity since both u and w
satisfy the Helmholtz equation inside D. Now using that outside D we have u =
us + ui and the fact that

Z

@D

us
@w+

@⌫
�
@us

@⌫
w+ dS = 0,

for radiating solutions to the Helmholtz equation us and w, we finally obtain that
Z

@D

ui
@w+

@⌫
�
@ui

@⌫
w+ dS = 0.

Using that ui(x) = e�ikx·ŷ, i.e. the plane wave in the direction d := �ŷ we have
Z

@D

�1(·, ŷ)
@w+

@⌫
�
@�1(·, ŷ)

@⌫
w+ dS = 0,

where �1(x, ŷ) = �ne�ikx·ŷ with �2 = i/4 and �3 = 1/(4⇡) is the far field pattern
of the fundamental solution �(y, x) as a function of y located at x given by (19).
Since by Green’s representation theorem

w(y) :=

Z

@D

�(·, y)
@w+

@⌫
�
@�(·, y)

@⌫
w+ dS, y 2 Rm

\D

(where we have used the symmetry of the fundamental solution), the above identity
implies that the far-field pattern w1(ŷ) of w is identically zero for all ŷ 2 Sm�1.
From Rellich’s lemma and unique continuation, w = 0 in Rm

\� as a function in V
and hence ' = 0 and  = 0 from the jump conditions.

Theorem 2.2. Assume that for a fixed wave number k, the far-field patterns

u1,1(x̂, d) and u2,1(x̂, d) corresponding to (�,↵1,�1, µ1) and (�,↵2,�2, µ2) respec-
tively, coincide for all x̂, d 2 Sm�1

, and in addition �j 2 C(�) and µj 2 C1(�),
j = 1, 2. Then ↵1 = ↵2, �1 = �2 and µ1 = µ2.

Proof. Since the far field patters coincide, from Rellich’s lemma we have that the
total fields u(·, d) := u1(·, d) = u2(·, d) in Rm

\ �. From the jump conditions of
u1(·, d) and u2(·, d) across � we have that

✓
1

↵1
�

1

↵2

◆
[u] = 0 on �, (21)

⇣
�r� · (µ1 � µ2)r� + k2(�1 � �2)

⌘
hui = 0 on �. (22)

Note that u 2 V (Rm
\�). Thus for any test functions  2 H�1/2(�) and � 2 V0(�)

after integrating by parts on the manifold � we have

0 =

✓
[u(·, d)],

✓
1

↵1
�

1

↵2

◆
 

◆

H̃1/2(�),H�1/2(�)

+
�
hu(·, d)i ,�r�·(µ1 � µ2)r��+ k2(�1 � �2)�

�
V0(�),V �1(�)

Applying Lemma 2.1 we conclude that
✓

1

↵1
�

1

↵2

◆
 = 0, 8 2 H�1/2(�). (23)

�r�·(µ1 � µ2)r��+ k2(�1 � �2)� = 0, 8� 2 V0(�). (24)

By taking  = 1 in (23) we obtain that ↵1 = ↵2 on �. Next consider (24) and for
any y0 2 �, let B⇢(y0) be an open ball centered at y0 of radius ⇢ > 0 such that
B⇢(y0)\� is contained in the interior of �. Consider a smooth function � 2 C1(�)
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such that � = 1 in B⇢/4(y0) \ � and � = 0 in � \ B⇢/2(y0). Here, B⇢/4(y0) and
B⇢/2(y0) are the balls centered at y0 of radius, respectively, ⇢/4 and ⇢/2 so we
have B⇢/4(y0) ⇢ B⇢/2(y0) ⇢ B⇢(y0). Then, since now (24) holds point-wise we can
conclude that

�1 � �2 = 0 in B⇢/8 \ �.

Since �1 and �2 are continuous on � and y0 2 B⇢/8 \ �, we have �1(y0) = �2(y0).
Since y0 is arbitrary, we conclude that the latter holds for all y0 2 �. Therefore,
�1 = �2 on �. Finally letting �1 � �2 = 0 in (24), multiplying by � 2 V0(�) and
integrating by parts we obtain

0 = �

Z

�
r�

�
(µ1 � µ2)r��

�
� dS =

Z

�
(r��) · (µ1 � µ2)(r��) dS, (25)

for all � 2 V0(�). If µ1(x0) 6= µ2(x0) for some x0 2 �, without loss of generality,
µ1(x0) � µ2(x0) � µ0 > 0 for some constant µ0 (where in the case of R3 the
inequality is understood in terms of positive definite tensors). By continuity there
exists ✏ > 0 such that µ1(x)� µ2(x) > 0 for all x 2 �\B✏(x0), where B✏(x0) is the
ball of radius ✏ centered at x0. We choose a smooth function � compactly supported
in �\B✏(x0) in (25). The positivity of µ1�µ2 implies that r�� = 0 on �\B✏(x0),
hence � is a constant on � \ B✏(x0). However, this contradicts the fact that � is
compactly supported in � \B✏(x0). Therefore, µ1 = µ2 on �.

Instead of reconstructing the coe�cients based on optimization techniques, in
the following we propose and analyze a spectral target signature measurable from
the scattering data which identifies changes in the constitutive material properties
of the screen. We remark that this target signature can detect such changes without
knowing the base “healthy” value the coe�cients nor reconstructing them.

3. The modified far field operator and a related eigenvalue problem. The
scattering data defines the far field operator F : L2(Sm�1) ! L2(Sm�1) by

Fg(x̂) =

Z

Sm�1

u1(x̂, d)g(d) dS(d).

The injectivity of this operator is related to the geometry of �, in particular F is
injective with dense range if and only if there is no Herglotz wave function given by

ui

g
(x) :=

Z

Sm�1

g(d)eikx·d dS(d), g 2 L2(Sm�1) (26)

such that h@ui

g
/@⌫i|� = 0 and

�
�r� · µr� + k2�

�
hui

g
i|� = 0 [11], [36]. Hence to

introduce the eigenvalue problem we need the following auxiliary scattering problem.
Let D be a bounded connected region D ⇢ Rm such that � ⇢ @D and � 2 C with
=(�) � 0, then find h(�) such that

8
>>>>>><

>>>>>>:

�h(�) + k2h(�) = 0 in Rm
\D,

h(�) = h(�),s + ui

h(�) = 0 on �,

@h(�)

@⌫
+ �h(�) = 0 on @D \ �,

(27)

where h(�),s is the scattered field and ui = eikd·x and h(�),s satisfies the Sommerfeld
radiation radiation condition (4). Like above, h(�),s(x, d) satisfies the asymptotic
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behavior (18) with h(�)
1 (x̂, d) the corresponding far-field pattern. The latter defines

the corresponding far field operator F (�) : L2(Sm�1) ! L2(Sm�1) by

F (�)g(x̂) =

Z

Sm�1

h(�)
1 (x̂, d)g(d) dS(d).

Now we consider the modified far field operator F : L2(Sm�1) ! L2(Sm�1)

Fg(x̂) := (Fg � F (�)g)(x̂) =

Z

Sm�1

�
u1(x̂; d)� h(�)

1 (x̂; d)
�
g(d) dS(d). (28)

Note that for the purpose of the inverse problem we assume that Fg is known
since Fg is known from measurements whereas F (�) can be precomputed since the
problems involves only � which we assume is known. Now we ask the question
whether the modified far field operator is injective. Indeed, assume that Fg = 0
for some g 2 L2(Sm�1) and let ui

g
be the Herglotz wave function (26) with kernel

g. Define solutions ug := us

g
+ ui

g
and h(�)

g := h(�),s
g + ui

g
of the scattering problems

(7) and (27), respectively, with their far-field patterns ug,1 and h(�)
g,1. By linearity,

since Fg = ug,1 � h(�)
g,1, we have that Fg = 0 implies that ug,1 = h(�)

g,1 on Sm�1.

From Rellich’s Lemma, we have that us

g
= h(�),s

g in Rm
\ D. Then, u+

g
= h(�)

g in

Rm
\ D where u+

g
= ug|Rm\D. From the boundary conditions in (27), u+

g
= 0 on

� and
@u

+
g

@⌫
+ �u+

g
= 0 on @D \ �. Then, from the boundary conditions in (7),

u�
g
= ug|D satisfies the following:

8
>>>>>><

>>>>>>:

�h+ k2h = 0 in D,

@h

@⌫
= �

1

4

⇣
�r� · µr� + k2� +

4

↵

⌘
h on �,

@h

@⌫
+ �h = 0 on @D \ �,

h = 0 on @�

(29)

where h := u�
g
. Thus, if � is not an eigenvalue of (29), then @h/@⌫ = h = 0

on @D \ �. By Holmgren’s Theorem, u�
g

:= h ⌘ 0 in D and hence by unique
continuation ug = 0 in Rm

\�. In addition from the condition on � in (7) we obtain
that both jumps of ug and @ug/@⌫ are zero. Which means that ug satisfies the
Helmholtz equation in Rm and us

g
= �ui

g
. Since us

g
is a radiating solution while ui

g

is not, g must be zero. Therefore, we have proved the following lemma.

Lemma 3.1. Assume that � 2 C with =(�) � 0 is not an eigenvalue of (29).
Then, the modified far-field operator F : L2(Sm�1) ! L2(Sm�1) is injective.

Remark 2. From Lemma 3.1 we know that if Fg = 0 has a non-trivial solution,
then � is an eigenvalue of (29). Note that the converse is not necessarily true, i.e.
if � is an eigenvalue of (29), this doesn’t mean that F is not injective, which will
become clear in the following section. Nevertheless the above connection between
the modified far field operator F and the eigenvalue problem (29) can be exploited
to detect these eigenvalues from the scattering data.

In the same way as in Lemma 3 in [20] one can also show that if � is not an
eigenvalue of (29), then the range of F : L2(S) ! L2(S) is dense. This is needed
when applying the linear sampling method to determine the eigenvalues of (29)
from a knowledge of F . Now we are in a position to define precisely the target
signatures considered in this paper:
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Definition 3.2 (Target signatures for the screen �). Given a screen � and a domain
D with � ⇢ @D the target signature for � is the set of eigenvalues of (29).

We show in this paper that the target signature for the screen � is determined
from the measured far field data, and hence it can be used to identify changes in
the coe�cients ↵,�, µ without reconstructing them.

4. The analysis of the eigenvalue problem. We proceed with the analysis of
the eigenvalue problem (29). In particular we show that its spectrum is discrete,
for real value � there exist infinitely many real eigenvalues, and provide relations
between the eigenvalues and coe�cients ↵,�, µ.

If h 2 V0(D) is a nonzero solution to (29), then h and � satisfy
Z

D

�
rh ·r'� k2h'

�
dx+

1

4

Z

�

⇣
�r� · µr� + k2� +

4

↵

⌘
h' dS

= ��

Z

@D\�
h' dS, 8' 2 V0(D). (30)

Lemma 4.1. Assume that =(�)  0. If =(�) < 0 then (29) has only the trivial

solution in V0(D).

Proof. From (30), we have
Z

D

|rh|2 � k2|h|2 dx+
1

4

Z

�
µ|r�h|

2 +
⇣
k2� +

4

↵

⌘
|h|2 dS = ��

Z

@D\�
|h|2 dS.

Taking the imaginary part,

k2

4

Z

�
=(�)|h|2 dS = �=(�)

Z

@D\�
|h|2 dS.

Since =(�)  0 and =(�) < 0, h = 0 on � and @h/@⌫ = 0 on �. Then Holmgren’s
Theorem implies that h is identically zero in D.

Corollary 1. All the eigenvalues � 2 C of (29) satisfy =(�) � 0.

We can rewrite (30) as (A+B + �K)(h,') = 0, where the sesquilinear forms A,
B, K from V0(D)⇥ V0(D) to C are defined by

A(h,')V :=

Z

D

rh ·r'+ h' dx+
1

4

Z

�

⇣
µr�h ·r�'+ µ0h'

⌘
dS,

with some constant ↵0 > 0,

B(h,')V := �(k2 + 1)

Z

D

h' dx+
1

4

Z

�

⇣
k2� +

4

↵
� µ0

⌘
h' dS,

and

K(h,')V :=

Z

@D\�
h' dS.

By means of the Riesz representation theorem, we define the bounded linear oper-
ators A, B and K on V0(D) by

(Ah,')V0(D) = A(h,'), (Bh,')V0(D) = B(h,'),

and (Kh,')V0(D) = K(h,'), 8h,' 2 V0(D) (31)
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where the scalar product is given by (·, ·)V0(D) := (·, ·)H1(D)+(·, ·)H1(�). Recall that
↵,�,µ 2 L1(�) , that µ (possible a tensor) satisfies (9) with some constant µ0 and
that =(�)  0. Then, the boundedness of A,B and K follows. For any h 2 V0(D),

A(h, h) =

Z

D

|rh|2 + |h|2 dx+
1

4

Z

�

⇣
µ|r�h|

2 + µ0|h|
2
⌘
dS

� khk2
H1(D) +

µ0

4
khk2

H1(�) � min(1, µ0/4)khk
2
V0(D),

which shows the coercivity of A. Therefore, the operator A is invertible with
bounded inverse.

Next, we will show that B and K are compact operators. For any h 2 V0(D),

kBhk2
V0(D) = �(k2 + 1)

Z

D

hBh dx+
1

4

Z

�
(k2� +

4

↵
� µ0)hBh dS

 C
�
khkL2(D)kBhkL2(D) + khkL2(�)kBhkL2(�)

�

 C
�
khkL2(D) + khkL2(�)

�
kBhkV0(D)

for some constant C > 0. Thus,

kBhkV0(D)  C
�
khkL2(D) + khkL2(�)

�
.

Then the compactness of B follows from the fact that H1(D) and H1(�) are com-
pactly embedded in L2(D) and L2(�), respectively. Similarly, the compactness of
K follows from

kKhkV0(D)  CkhkL2(D)

for some constant C > 0.
Finally the Analytic Fredholm Theory [27] applied to I + A�1(B + �K) implies

that the set of eigenvalues � 2 C is discrete with1 as the only possible accumulation
point.

4.1. Relations between eigenvalues and the surface parameters. We would
like to understand how the eigenvalues of the eigenvalue problem (29) relate to the
known coe�cients ↵, µ and �, which satisfy the assumptions in Section 2. Let us
fix a ⌧ > 0 such that k2 is not an eigenvalue of the mixed Dirichlet-Generalized
Impedance eigenvalue problem of finding h 2 V0(D)

8
>>>><

>>>>:

�h+ k2h = 0 in D,

@h

@⌫
= �

1

4

⇣
�r� · µr� + k2� +

4

↵

⌘
h on �,

@h

@⌫
+ ⌧h = 0 on @D \ �.

For a given wave number k, we can always find such a ⌧ because from the above
Fredholm property of (29) this problem can have a nontrivial solution only for
a discrete set of the parameter �. The choice of ⌧ guarantees that the operator
(A + B + ⌧K) : V0(D) ! V0(D) is invertible, where the operators A,B and K are
defined by (31). Therefore we can define the operator R : L2(@D \�) ! L2(@D \�)
that maps a function ✓ 2 L2(@D \ �) into h✓|@D\� where h✓, is the unique solution

((A+ B+ ⌧K)h✓,') =

Z

@D\�
✓' dS.
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Since h✓|@D\� 2 H
1
2 (@D\�) andH

1
2 (@D\�) is compactly embedded into L2(@D\�),

the operator R is compact. Such h✓ exists from the choice of ⌧ . Then, we see that
� 2 C is an eigenvalue of (29) if and only if

(��+ ⌧)R✓ = ✓ (32)

for some nonzero ✓. In other words, 1
��+⌧

is an eigenvalue of the compact operator
R. In particular if we assume that =(�) = 0, then the operator R is self-adjoint,
hence for a fixed ⌧ , the eigenvalues 1

��j+⌧
of the operator R are all real and ac-

cumulate to 0 as j ! 1. Hence we conclude that in this case all eigenvalues of
(29) are real, and there exists an infinite sequence of {�j}j�1 of real eigenvalues
that accumulate to ±1 as j ! 1 (because the operator R is not sign definite the
eigenvalues may in principle accumulate to both +1 and �1). However, in the
next theorem we show that the eigenvalues accumulate only to �1. In addition
the corresponding eigenfunctions form a Riesz basis for V0(D).

Remark 3. If =(�) > 0 the eigenvalue problem (29) is non-selfadjoint and in this
case all eigenvalues are complex with =(�) > 0. Then, using the theory of Agmon
on non self-adjoint eigenvalue problem in [1] is possible to prove in a similar way as
in [15] that for smooth coe�cients there exits an infinite set of complex eigenvalues
in the upper half complex plane asymptotically approaching the negative real axis.
One could handle the case of existence of eigenvalues for complex coe�cients by
modifying the impedance condition on @D \ � in the auxiliary and consequently in
the eigenvalue problem by introducing a smoothing boundary operator along the
lines of the ideas in [23] which makes the non self-adjoint operator R a trace class
operator. This idea is considered in [36]

Theorem 4.2. If k2 is not an eigenvalue of

�u+ k2u = 0 in D (33)

@u

@⌫
= �

1

4

⇣
�r� · µr� + k2� +

4

↵

⌘
u on �, u = 0 on @D \ �

then there are at most finitely many positive eigenvalues � of (29).

Proof. Assume to the contrary that there exists a sequence of positive eigenvalues
�j > 0 such that �j ! 1 as j ! 1 with normalized eigenfunctions hj satisfying

khjkH1(D) + khjkH1(�) = 1. (34)

From (30),

Z

D

|rhj |
2
� k2|hj |

2 dx+
1

4

Z

�
µ|r�hj |

2 +
⇣
k2� +

4

↵

⌘
|hj |

2 dS

=

Z

@D\�
(��j)|hj |

2 dS. (35)

Since the left-hand side is bounded and �j ! 1, hj ! 0 in L2(@D\�). Then, up to
a subsequence, hj(x) ! 0 for almost all x 2 @D \ �. By the assumption (34), there
exists a subsequence, still denoted by {hj}j2N, that converges weakly in V0(D) to
some h 2 V0(D). In particular h = 0 in D \ �. Furthermore, since each hj satisfies
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(30)

Z

D

�
rhj ·r'� k2hj'

�
dx+

1

4

Z

�
µr�hj ·r�'+

⇣
k2� +

4

↵

⌘
hj' dS

= �

Z

@D\�
�jhj' dS, 8' 2 V0(D),

we obtain that the weak limit h in addition satisfies

�h+ k2h = 0 in D and
@h

@⌫
= �

1

4

⇣
�r� · µr� + k2�+

4

↵

⌘
h on �.

From the assumption that k2 is not an eigenvalue of (33), we conclude that h = 0
in D. So, we have that hj converges weakly to h = 0 in V0(D). Therefore, up to a
subsequence, hj strongly converges to 0 in L2(D) and L2(�). From (35), we obtain
that up to a subsequence krhjkL2(D) ! 0 and kr�hjkL2(�) ! 0 as j ! 1. This
contradicts to the assumption (34).

For k large enough one can show there exists at least one positive eigenvalue.
To show this let us assume to the contrary that all eigenvalues �j are nonpositive.
From (30), each eigenfunction hj corresponding to �j satisfies

Z

D

|rhj |
2
�k2|hj |

2 dx+
1

4

Z

�

⇣
k2�+

4

↵

⌘
|hj |

2+µ|r�hj |
2 dS =

Z

@D\�
(��j)|hj |

2 dS.

Since the right-hand side is nonnegative for each j,
Z

D

|rhj |
2
� k2|hj |

2 dx+
1

4

Z

�

⇣
k2� +

4

↵

⌘
|hj |

2 + µ|r�hj |
2 dS � 0.

The set of eigenfunctions {hj}j2N form a basis for V0(D) since this is an eigenvalue
problem for a self-adjoint and compact operator, hence from the above we have that
Z

D

|rh|2 � k2|h|2 dx+
1

4

Z

�

⇣
k2� +

4

↵

⌘
|h|2 + µ|r�h|

2 dS � 0, 8h 2 V0(D).

(36)

Let h0 be a Dirichlet eigenfunction corresponding to the first Dirichlet eigenvalue
�⌘0 for Negative laplacian in D. Obviously h0 2 V0(D) and its satisfies

Z

D

|rh0|
2
� ⌘0|h0|

2 dx = 0.

Taking h := h0 in (36) we obtain

0  �

Z

D

(k2 � ⌘0)|h0|
2 dx,

and if k2 � ⌘0, this is a contradiction. If k2� + 4/↵ < 0 it is possible to show that
a positive eigenvalue exists for smaller k by choosing h0 apropriately.

We close this section by giving an expression for the first eigenvalue of (29). Let
⌘1 := ⌘1(D,�, ⌧) be the first eigenvalue of

�u+ ⌘u = 0 in D ,(37)

@u

@⌫
=

1

4

�
r� · µr�

�
u on �,

@u

@⌫
+ ⌧u = 0 on @D \ �, and u = 0 on @�
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with the additional condition u = 0 on @�, for some ⌧ > 0. Since this is an
eigenvalue problem for a positive self-adjoint operator, from the Courant-Fischer
inf-sup principle, we have

⌘1 = inf
h2V0(D),h 6=0

kruk2
L2(D) + ⌧kuk2

L2(@D\�) +
1
4

R
� µ|r�u|2 dS

kuk2
L2(D)

. (38)

This implies that for every u 2 V0(D)

kuk2
L2(D) 

1

⌘1
kruk2

L2(D) +
⌧

⌘1
kuk2

L2(@D\�) +
1

4⌘1

Z

�
µ|r�u|

2 dS. (39)

Then, using (39), for some ⇤ � 0 we can estimate

Z

D

|ru|2 � k2|u|2 dx+
1

4

Z

�
µ|r�u|

2 +
⇣
k2� +

4

↵

⌘
|u|2 dS + ⇤

Z

@D\�
|u|2 dS

�

⇣
1�

k2

⌘1

⌘Z

D

|ru|2 dx+
1

4

⇣
1�

k2

⌘1

⌘Z

�
µ|r�u|

2 dS +
1

4

Z

�

⇣
k2� +

4

↵

⌘
|u|2 dS

+
⇣
⇤�

k2⌧

⌘1

⌘Z

@D\�
|u|2 dS. (40)

Choosing ⇤ > k
2
⌧

⌘1
, and if inf� k

2� +
4

↵
> 0 and k2 < ⌘1, then the left-hand side

of (40) is positive with the choice of such ⇤. We can write our eigenvalue problem
(29) as in the following

Z

D

ru ·r'� k2u' dx+
1

4

Z

�
µr�u ·r�'+

⇣
k2� +

4

↵

⌘
u' dS + ⇤

Z

@D\�
u' dS

= (⇤� �)

Z

@D\�
u' dS, 8' 2 V0(D)

Since this is an eigenvalue problem for a positive self-adjoint operator with eigen-
value parameter ⇤ � �, we can apply the Courant-Fischer inf-sup principle to the
eigenvalues ⇤j := ⇤� �j . In particular, we obtain

�1 = sup
u2V0(D),u 6=0

Z

D

�|ru|2 + k2|u|2 dx�
1

4

Z

�

�
k2� +

4

↵

�
|u|2 + µ|r�u|

2 dS
Z

@D\�
|u|2 dS

,

(41)

provided that inf� k
2� +

4

↵
> 0 and k2 < ⌘1, where ⌘1 is defined (37). Hence under

these assumption the expression (41) together (38) shows the dependence of the
first eigenvalue �1 on the coe�cients ↵, � and µ.

5. Determination of the eigenvalues from far field data. In this section we
show that our target signature, i.e. the eigenvalues of (29)., can be determined from
far field data. This involves a non-standard analysis of the scattering problem. We
modify the approach based on the linear sampling method in [20] to our more
complex problem. To this end we can write (7) equivalently as a transmission
problem: find p 2 V0(D) and ps 2 V (Rm

\D) with ps + v 2 V (Rm
\D) (recall the
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definition of spaces (14), (15) (16), (17)), such that
8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

�p+ k2p = 0 in D,

�ps + k2ps = 0 in Rm
\D,

(p� ps) +
↵

2

⇣@p
@⌫

+
@ps

@⌫

⌘
= ' on �,

⇣@p
@⌫

�
@ps

@⌫

⌘
+K(p+ ps) =  on �,

p� ps = 'c, on @D \ �,

@p

@⌫
�
@ps

@⌫
=  c on @D \ �

lim
r!1

r
m�1

2

✓
@ps

@r
� ikps

◆
= 0

(42)

where ' 2 H�1/2(�), 2 V �1(�), 'c 2 H1/2(@D \ �) and  c 2 H�1/2(@D \ �) be
defined by

' :=
⇣
ui

�
↵

2

@ui

@⌫

⌘���
�
,  :=

⇣@ui

@⌫
�Kui

⌘���
�
, 'c := ui

|@D\�,  c :=
@ui

@⌫

���
@D\�
(43)

and the operator K : H1(�) ! H�1(�) is given by

Kw =
1

2

�
�r� · µr�w + k2�w

�
.

Here ui in general can be any function in V (Rm
\ D) or V (D) with square inte-

grable Laplacian. Now, we define the bounded linear operator H : L2(Sm�1) !

H�1/2(�)⇥ V �1(�)⇥H1/2(@D \ �)⇥H�1/2(@D \ �) by

Hg :=

 ⇣
w(�)

g
�
↵

2

@w(�)
g

@⌫

⌘���
�
,
⇣@w(�)

g

@⌫
�Kw(�)

g

⌘���
�
, w(�)

g
|@D\�,

@w(�)
g

@⌫

���
@D\�

!
,

where w(�)
g is the total field of (27) and the incident field ui

g
is the Herglotz wave

function defined by (26). From the boundary condition of (27), we have that

Hg =
⇣
�
↵

2

@w(�)
g

@⌫

���
�
,
@w(�)

g

@⌫

���
�
, w(�)

g
|@D\�,

@w(�)
g

@⌫

���
@D\�

⌘
.

Let us define the bounded compact linear operator G : R(H) ! L2(Sm�1) by

G(', ,'c, c) := ps1, (44)

where ps1 is the far-field pattern of the scattered field ps that satisfies (42). If we

take ui := w(�)
g in (43), then we obtain the factorization

F = GH,

where the modified far-field operator F is defined by (28). We next define v 2 V (D)
by

v(x) := h(x) +

Z

�

⇣
⇣(y)�(x, y) + ⌘(y)

@�(x, y)

@⌫y

⌘
dSy, (45)
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where h 2 V (D) satisfies the Helmholtz equation in D. Here, ⇣ and ⌘ on � are
chosen such that

8
<

:

⇣ +K⌘ = 2Kh

⌘ +
↵

2
⇣ = �↵

@h

@⌫

(46)

Assumption 1. We assume that the operator K �
2
↵
I : H1

0 (�) ! H�1(�) is

invertible, i.e the following variational problem for some f 2 H�1(�)

1

2

Z

�

✓
µr�w ·r��+ k2�w��

4

↵
w�

◆
dS =

Z

�
f� dS, for all � 2 H1

0 (�)

has a solution w 2 H1
0 (�).

The above assumption is always satisfied for <(�) > 0 and ↵ < 0. Otherwise we
must exclude a discrete set of k accumulating to +1. If Assumption 1 is satisfied
than (46) has unique solution ⇣, ⌘ 2 V0(�), and for such densities it is shown in [36]
that the single and double layer potentials in (45) are in V (D), and hence v 2 V (D).

Remark 4. Assume that � is an eigenvalue of (29) and h� is the corresponding
eigenfunction. It can be shown that ⇣ := �2h�/↵� 2@h�/@⌫ = Kh� and ⌘ := h�

satisfy (46).

Let

p(x) := h(x) =

Z

@D

⇣@v(y)
@⌫y

�(x, y)�
@�(x, y)

@⌫y
v(y)

⌘
dSy

�

Z

�

⇣
⇣(y)�(x, y) + ⌘(y)

@�(x, y)

@⌫y

⌘
dSy, x 2 D, (47)

ps(x) :=

Z

@D

⇣@�(x, y)
@⌫y

v(y)�
@v(y)

@⌫y
�(x, y)

⌘
dSy

�

Z

�

⇣
⇣(y)�(x, y) + ⌘(y)

@�(x, y)

@⌫y

⌘
dSy, x 2 Rm

\D. (48)

From the jump relations for the single layer potential and the double layer potential
[37], we show the following lemma.

Lemma 5.1. (p(x), ps(x)) defined by (47)-(48) is the solution of (42) with

' :=
⇣
v �

↵

2

@v

@⌫

⌘���
�
,  :=

⇣@v
@⌫

�Kv
⌘���

�
, 'c := v|@D\�,  c :=

@v

@⌫

���
@D\�

, (49)

where v is defined by (45).

Lemma 5.2. Assume that � 2 C is an eigenvalue of (29) and h�
is the corre-

sponding eigenfunction. Let w(�),s
v be the unique solution of

8
>>>><

>>>>:

�w(�),s
v

+ k2w(�),s
v

= 0 in Rm
\D,

w(�),s
v

= �v on �,

@w(�),s
v

@⌫
+ �w(�),s

v
= �

@v

@⌫
� �v, on @D \ �,

(50)
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with

lim
r!1

r
m�1

2

✓
@w(�),s

v

@r
� ikw(�),s

v

◆
= 0, (51)

where v is defined by (45). Then, G('v, v,'v,c, v,c) = 0 with

8
>>>>>>>>>><

>>>>>>>>>>:

'v :=
⇣
�
↵

2

@(w(�),s
v + v)

@⌫
+ (w(�),s

v
+ v)

⌘���
�
,

 v :=
⇣@(w(�),s

v + v)

@⌫
�K(w(�),s

v
+ v)

⌘���
�
,

'v,c := (w(�),s
v

+ v)|@D\�,

 v,c :=
@(w(�),s

v + v)

@⌫

���
@D\�

,

(52)

where the operator G is defined by (44).

Proof. By the definition G('v, v,'v,c, v,c) = pv,1 where pv,1 is the far-field
pattern of the scattered field ps

v
and (pv, psv) is the solution of (42) with (52). From

Lemma 5.1, (p, ps) defined by (47)-(48) is the solution of (42) with (49). Then,

pv := p and ps
v
:= ps � w(�),s

v are well-defined. From the jump relations for the
single and double layer potentials and the boundary conditions (50), we have that

�ps
v
+ k2ps

v
= 0 in Rm

\D, ps
v
= 0 on �,

@ps
v

@⌫
+ �ps

v
= 0 on @D \ �.

From the uniqueness of the exterior mixed boundary value problem [12], ps
v
must

be zero in Rm
\D. Thus, we have shown that G('v, v,'v,1, v,c) = 0.

Lemma 5.3. Assume that � 2 C is not an eigenvalue of (29). Let �1(·, z) be the

far-field pattern of the fundamental solution �(·, z). Then, �1(·, z) 2 R(G) for any
z 2 D, where R(G) is the range of the operator G.

Proof. Let z 2 D and hz 2 V0(D) be the unique solution of
8
>>>><

>>>>:

�hz + k2hz = 0 in D,

hz + ↵
@hz

@⌫
+
↵

2
Khz = �(·, z)�

↵

2
K�(·, z) on �,

@hz

@⌫
+ �hz =

@�(·, z)

@⌫
+ ��(·, z) on @D \ �.

and define vz by

vz(x) := hz(x) +

Z

�

⇣
⇣(y)�(x, y) + ⌘(y)

@�(x, y)

@⌫y

⌘
dSy

with ⇣ and ⌘ given by (46). Then, vz satisfies the Helmholtz equation in D. Now,

consider ('z, z,'z,c, z,c) defined by (52) with w(�),s
v := w(�),s

z and v := vz where

w(�),s
z is the solution of (50)-(51). From Lemma 5.1, (p, ps) defined by (47)-(48)

with h := hz and v := vz is the solution of (42) with the corresponding (49). Then,

pz := p and ps
z
:= ps�w(�),s

z solve (42) with ('z, z,'z,c, z,c). From the boundary

condition of (50), since w(�),s
z = ps � ps

z
, we have

ps
z
= ps + vz on � and

@ps
z

@⌫
+ �ps

z
=
@(ps + vz)

@⌫
+ �(ps + vz) on @D \ �.
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Using the definitions for v and ps and the jump relations for the single and the
double layer potentials, we obtain

ps
z
= �(·, z) on � and

@ps
z

@⌫
+ �ps

z
=
@�(·, z)

@⌫
+ ��(·, z) on @D \ �.

Since z 2 D, �(·, z) is well defined in Rm
\D. Therefore, ps

z
= �(·, z) in Rm

\D.
Thus, G('z, z,'z,c, z,c) = �1(·, z).

Lemma 5.4. Assume that � 2 C is an eigenvalue of (29). Then, the set

S := {z 2 D : �1(·, z) 2 R(G)}

is nowhere dense in D.

Proof. Assume to the contrary that there exists a dense subset U of a ball B
contained in D such that z 2 U \ S. Then, G('z, z,'z,c, z,c) = �1(·, z)

for some ('z, z,'z,c, z,c) 2 R(H). Thus ('z, z,'z,c, z,c) satisfies (52) where

w(�),s
v := w(�),s

z solves (50)-(51) and v := vz for some vz 2 V (D) satisfying
rv + k2v = 0 in D. Let (pz, psz) be the solution of (42) with ('z, z,'z,c, z,c).
Since the far-field patterns of ps

z
and �(·, z) coincide, from Rellich’s Lemma, we

obtain that ps
z
= �(·, z) in Rm

\D. Then, pz satisfies the following:
8
>>>><

>>>>:

�pz + k2pz = 0 in D,

pz + ↵
@pz
@⌫

+
↵

2
Kpz = �(·, z)�

↵

2
K�(·, z) on �,

@pz
@⌫

+ �pz =
@�(·, z)

@⌫
+ ��(·, z) on @D \ �.

(53)

The above problem (53) is solvable if and only if for any z 2 B,
Z

�

1

↵
�(·, z)p(�)

z
�
1

2

�
K�(·, z)

�
p(�)
z

dS+

Z

@D\�

@�(·, z)

@⌫
p(�)
z

+��(·, z)p(�)
z

dS = 0,

(54)

where p(�)z 2 V0(D) is an eigenfunction of (29). Using the boundary condition for

p(�)z , we can rewrite (54) as
Z

@D

@p(�)z

@⌫
�(·, z)�

@�(·, z)

@⌫
p(�)
z

dS +

Z

�

@�(·, z)

@⌫
p(�)
z

+ (Kp(�)
z

)�(·, z) dS = 0. (55)

If we consider the left-hand side of (55) as a function of z, then it solves the
Helmholtz equation in D. Therefore, (55) holds for all z 2 D. From (55) , we
have that

v(�)(z) := p(�)
z

+

Z

�

@�(·, z)

@⌫
p(�)
z

+ (Kp(�)
z

)�(·, z) dS = 0.

Since p(�)z is the eigenfunction corresponding to �, v(�) satisfies (45) with ⇣ := Kp(�)z

and ⌘ := p(�)z . Therefore, the solution (p, ps) defined by (47)-(48) with v(�) = 0 is

zero. Thus, p(�)z = 0, which is a contradiction.

Now, we are ready to state the main theorem that provides a criteria to determine
the eigenvalues of (29) from the modified far-field equation given by

Fg(x̂) = �1(x̂, z) for z 2 D (56)

where the modified far-field operator F is defined by (28).
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Theorem 5.5. (i) Assume that � 2 C is not an eigenvalue of (29). If z 2 D,

then there exists a sequence {gz
n
} in L2(Sm�1) such that

lim
n!1

kFgz
n
(x̂)� �1(x̂, z)kL2(Sm�1) = 0 (57)

and kvgz
n
kV (D) is bounded.

(ii) and Assumption 1 holds. Then, for any sequence {gz
n
} in L2(Sm�1) satisfying

(57), kvgz
n
kV (D) cannot be bounded for any z 2 D, except for a nowhere dense

set.

Proof. (i) Assume that � 2 C is not an eigenvalue of (29). From Lemma 5.3, for
any z 2 D, there exists ('z, z,'z,c, z,c) 2 R(H) such that G('z, z,'z,c, z,c) =
�1(·, z). Thus, there exists a sequence {gz

n
} in L2(Sm�1) such that

Hgz
n
:=

 ⇣
w(�)

gz
n

�
↵

2

@w(�)
gz
n

@⌫

⌘���
�
,
⇣@w(�)

gz
n

@⌫
�Kw(�)

gz
n

⌘���
�
, w(�)

gz
n
|@D\�,

@w(�)
gz
n

@⌫

���
@D\�

!

converges to ('z, z,'z,c, z,c) in H�1/2(�)⇥V �1(�)⇥H1/2(@D\�)⇥H�1/2(@D\

�), where w(�)
gz
n

is the total field solving (27) with the incident field ui := vgz
n
the

Herglotz wave function defined by (26). Using the fact that the set of Herglotz
wave functions are dense in the space of solutions to the Helmholtz equation in
V (D) [36], we have that vgz

n
converges to vz 2 V (D) such that �vz + k2vz = 0 in

D. Therefore, kvgz
n
kV is bounded as n ! 1 and if Wgz

n
:= Hgz

n
,

lim
n!1

kFgz
n
(x̂)� �1(x̂, z)kL2(Sm�1) = lim

n!1
kG(Wgz

n
)� �1(x̂, z)kL2(Sm�1) = 0,

since G is continuous.

(ii) Suppose that � in an eigenvalue of (29). Assume to the contrary that there
exists a sequence {gz

n
} in L2(Sm�1) satisfying (57) such that kvgz

n
kV (D) is bounded

for all z in a dense subset U of a ball B contained in D. Then, there exists a
subsequence, still denoted by {vgz

n
}, that converges weakly to a solution of the

Helmholtz equation vz 2 V (D). Now, we consider

'z :=
⇣
�
↵

2

@(w(�),s
z + vz)

@⌫
+ (w(�),s

z
+ vz)

⌘���
�
,

 z :=
⇣@(w(�),s

z + vz)

@⌫
�K(w(�),s

z
+ vz)

⌘���
�
,

'z,c := (w(�),s
z

+ vz)|@D\�,

'z,c :=
@(w(�),s

z + vz)

@⌫

���
@D\�

,

where w(�),s
z solves (50)-(51) with v := vz. We have that Hgn

z
converges weakly to

('z, z,'z,c, z,c). Since G is compact, we conclude that G(Hgz
n
) converges strongly

to G('z, z,'z,c, z,c) for all z 2 U . From (57), we have that

G('z,1,'z,2, z,1, z,2) = �1(·, z) for all z 2 U.

This contradicts to Lemma 5.4 and thus this completes the proof.
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6. Numerical results. We next present preliminary numerical results that illus-
trate the detection of eigenvalues from far field data, and their sensitivity to changes
in parameters. In doing this, we make several simplifying assumptions: 1) we only
perform computations in R2, 2) we assume that the coe�cients ↵, � and µ in (7)
are constant, and 3) we only consider two screens that are subsets of the unit circle.
Obviously each of these limitations should be investigated for real applications.

The results are computed in the usual way, following for example [20]. For each
choice of coe�cients and screen � we generate synthetic far field data using the
finite element method with quartic polynomials on a triangular mesh that is refined
slightly towards the points @�. The domain is truncated using a radial perfectly
matched layer, and curved edges are approximated by quartic polynomials. The
finite element space is discontinuous across @D and continuity across @D \ � is
enforced by Nitsche’s method as used in symmetric interior penalty discontinuous
Galerkin methods [3]. The code is written in Python using NGSpy [41] and makes
critical use of the surface di↵erential operators implemented in that code.

In the same way, the auxiliary problem (27) is also approximated using an NGSpy
code. Finally, in order to test the determination of eigenvalues from far field data
using a discrete version of the modified far field equation (56) we also solve the
eigenvalue problem (30) using NGSpy.

To find eigenvalues from far field data, we discretize (56) by Nystrom’s method
using Nfar equally spaced directions on the unit circle, and collocate the resulting
linear problem. Then we add noise to the “measured” far field pattern u1. In
particular if the incident and measurement directions are denoted dj , j = 1, · · · , Nfar

then then discretized modified far field operator is represented by the Nfar ⇥ Nfar

matrix A(�) given by

A(�)
j,`

= �✓(u1(dj ; d`)� h(�)
1 (dj ; d`)), 1  j, `  Nfar,

where �✓ is the angle between adjacent directions.. Then we compute a noisy
measurement matrix using

A(�),noise
j,`

= A(�)
j,`

(1 + ✏noise⇠j,`), 1  j, `  Nfar,

where ✏noise is a fixed parameter and ⇠j,` is a uniformly distributed random number
in the interval (�1, 1). In our results we choose ✏noise = 0.01 which gives roughly
0.3% error in the relative matrix 2-norm. Using the noisy matrix we solve the
discrete modified far field equation by Tikhonov regularization using a fixed regu-
larization parameter ↵Tik = 10�7 for each available � and Nz = 10 auxiliary source
points z randomly located in a subset of D bounded away from @D. The use of
multiple random z has been found necessary in other target signature calculations
using transmission eigenvalues to help identify more eigenvalues [17] (see Theo-
rem 5.5 part (ii)). Neither the size of the region containing the random sources or
the number sources has been investigated systematically. After solving the discrete
far-field equations, we then plot the averaged `2 norm of the discrete solution ~g
of the modified far field equation as a function of �. We expect peaks in the the
average norm of ~g to correspond to eigenvalues of D.

In our numerical experiments we have taken Nfar = 120. The minimum number
of incident directions needed depends on the wave number k, and we have not
investigated this aspect of the problem. The two screens that we consider are the
upper half of a unit circle, and a quarter of a unit circle (see Figs 2 and 3 left
panels). In both cases D is the unit disc, and we choose, ↵ = �2 and � = µ = 2
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Figure 2. In the left column we show the scatterer � (red curve)
and the remainder of @D as a green curve. Asterisks show the po-
sition of the random source points z in D. In the right column we
show the average `2 norm of the regularized solution of the modi-
fied far field equation against the eigenparameter �. The vertical
lines mark the position of the true eigenvalues found by solving
the interior eigenvalue problem. Top row: Dirichlet end condition.
Bottom row: Neumann end condition.

and wave number k = 4. For the upper half circle case, results are shown in Fig. 2
for the case of a Dirichlet boundary condition on @�. As we have mentioned in
Remark 1, other choices of end condition on @� are possible and in the lower panels
of Fig. 2 we assume a homogeneous Neumann condition. Clearly, in both cases, we
can identify the largest two eigenvalues, and also information about the next three
(two are close together). The corresponding result for the quarter circle scatterer
(with the same parameters) is shown in Fig. 3. From now on, we shall only present
results for the Dirichlet end condition analyzed in this paper.

In addition we also present the detection of eigenvalues when µ = 0.2, � = 1 and
↵ = �0.2 to indicate that eigenvalues can be detected for quite di↵erent choices of
the parameters. These are shown in Fig. 4. It is apparent that for either scatterer
and either choice of parameters we can detect roughly the largest 3-4 eigenvalues
depending on the end condition.

The choice of the domain D is, in theory, arbitrary provided it is su�ciently
smooth and � ⇢ @D. Of course the choice of D changes the eigenvalues and
eigenvectors. For example, in Fig. 5 we show results of detecting eigenvalues using
the parameters µ = � = 2 and ↵ = �2 when D is obtained by joining the end
points of � by a straight line. In both cases, fewer eigenvalues can be detected
and in the case of the hemisphere one eigenvalue is missed when compared to the
predictions in Fig. 2. We have no explanation for the relatively poor performance
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Figure 3. The layout of this figure is the same as in Fig. 2 except
that the scatter is now the quarter circle shown in the left column.
The same parameter values are used. Top row: Dirichlet end con-
dition. Bottom row: Neumann end condition.
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Figure 4. Here we show the detection of eigenvalues for the half
and quarter circle scatterers with Dirichlet end conditions and pa-
rameters given by µ = 0.2, � = 1 and ↵ = �0.2. See Fig. 2 for
a description of the symbols used. Top row: Half circle scatterer.
Bottom: Quarter circle scatterer.



24 FIORALBA CAKONI, HEEJIN LEE, PETER MONK AND YANGWEN ZHANG

-1 0 1

0

0.5

1

-6 -4 -2 0 2 4
Parameter 

0

500

1000

1500

In
di

ca
to

r |
|g

||
-1 -0.5 0

0

0.5

1

-6 -4 -2 0 2 4
Parameter 

0

2000

4000

In
di

ca
to

r |
|g

||

Figure 5. Here we show the detection of eigenvalues for the half
and quarter circle scatterers with Dirichlet end conditions and pa-
rameters given by µ = 0.2 = � = 2 and ↵ = �2. The domain D is
now obtained by joining the end points of � by a straight line. See
Fig. 2 for a description of the symbols used. Top row: Half circle
scatterer. Bottom: Quarter circle scatterer.

in this case, but note that the solution of the auxiliary problem will have a stronger
singularity at @� compared to the case when D is a circle. We therefore designed
two new domains D where arcs of circles are used to more smoothly extend � to
obtain D. Results for these rounded domains are shown in Fig. 6. Eigenvalues for
the hemisphere are now accurately predicted, and two eigenvalues are determined
also for the quarter circle.

Using the eigenvalue solver it is possible to examine the changes in the predicted
eigenvalues of the modified far field operator as the parameters in the surface model
change. For example, for the domain shown in Fig. 2 (a half circle scatterer with
D a circle), we have examined how the first five eigenvalues in magnitude depend
on ↵, � and µ in Fig. 7. One-by-one the parameters ↵, � and µ are varied from
their base value ↵ = �2 and � = µ = 2. For the parameter ↵ we see that the
eigenvalues sensitive to changes only for ↵ greater than approximately minus one,
whereas for the other parameters the eigenvalues change throughout the range of
the parameters considered.

The changes in the eigenvalues predicted in Fig. 7 are, of course, seen in the
eigenvalues calculated via the modified far field equation. In Fig. 8 we focus on
the largest pair of eigenvalues calculated by solving the modified far field equation
when ↵ = �2 and µ = 2 and � = 0.4, 0.5, 0.6. The large change in the eigenvalues
is reflected in the obvious shift in the peaks of the graphs.

7. Conclusion. In this paper we have examined a new set of target signatures
based on eigenvalues for a thin inhomogeneity modeled by generalized transmission



A SPECTRAL TARGET SIGNATURE FOR THIN SURFACES 25

-1 0 1
-1

-0.5

0

0.5

1

-6 -4 -2 0 2 4
Parameter 

0

500

1000

1500

In
di

ca
to

r |
|g

||

-1 -0.5 0

0

0.5

1

-6 -4 -2 0 2 4
Parameter 

0

1000

2000

3000

In
di

ca
to

r |
|g

||

Figure 6. An example of non-circular domains D containing �.
These domains are smoother than those in Fig. 5 and allow the
approximation of more eigenvalues (the same parameters are used).
Top row: Half circle scatterer. Bottom: Quarter circle scatterer.
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Figure 7. Changes in the first five eigenvalues (in magnitude)
computed by the finite element eigenvalue solver for the half-circle
scatterer and disk D as functions of the parameters ↵, � and µ.
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Figure 8. Predictions of the eigenvalues for the problem when
↵ = �2 and µ = 2 and � = 0.4, 0.5 and 0.6. The shift in the
eigenvalues predicted in Fig. 7 (middle graph) is evident in the
large translation of the peaks for the three cases.

conditions. Concentrating on the theory, we have proved a new uniqueness result
and shown that the eigenvalues can be determined from the solution of a modified
far field operator. Limited numerical results show that this determination can
be carried out using a discrete modified far field equation and noisy data. More
numerical testing is needed to determine how to obtain the domain D that provides
an accurate determination of the eigenvalues in a given case.
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