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ABSTRACT. In this paper we consider the inverse problem of determining struc-
tural properties of a thin anisotropic and dissipative inhomogeneity in R™,
m = 2,3 from scattering data. In the asymptotic limit as the thickness goes to
zero, the thin inhomogeneity is modeled by an open m—1 dimensional manifold
(here referred to as screen), and the field inside is replaced by jump conditions
on the total field involving a second order surface differential operator. We
show that all the surface coefficients (possibly matrix valued and complex) are
uniquely determined from far field patterns of the scattered fields due to in-
finitely many incident plane waves at a fixed frequency. Then we introduce
a target signature characterized by a novel eigenvalue problem such that the
eigenvalues can be determined from measured scattering data, adapting the
approach in [20]. Changes in the measured eigenvalues are used to identified
changes in the coefficients without making use of the governing equations that
model the healthy screen. In our investigation the shape of the screen is known,
since it represents the object being evaluated. We present some preliminary
numerical results indicating the validity of our inversion approach

1. Introduction. In this paper we are concerned with nondestructive evaluation of
thin inhomogeneities via probing with waves. In many contemporary engineering de-
signs one encounters thin structures that are anisotropic, absorbing and dispersive.
Inversion methods for fast monitoring of the integrity of such complex structures
are highly desirable, and target signatures are suitable for this task. Target signa-
tures are discrete quantities that can be computed from scattering data and used as
indicators of changes in the constitutive material properties of the inhomogeneity.
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Let us first introduce the scattering problem we consider here. Let the bounded
and connected piecewise smooth region S € R™, m = 2,3 be the support of a thin
inhomogeneity with the constitutive material properties A and n. We denote by
n the unit outward normal vector defined almost everywhere on the boundary 0S.
Suppose that the incident field and the other fields in the problem are time har-
monic, i.e. the time dependent incident field is of the form R (u‘(z)e™*) where w is
the angular frequency, and where the complex valued spatially dependent function
ui(x) is a solution of
Au' 4+ E*u' =0 in R™.

Then the total field v = u® + v’ in R™ \ S, where u® is the scattered field. If, in
addition, U denotes the total field in S then v and U, respectively, satisfy

Au+k*u=0 in R™\ S, (1)
V- AVU + k*nU =0 in S. (2)

Here the wave number k = w/cext With cext denoting the wave speed of the homoge-
neous background. Across the interface the field on either side and their co-normal
derivatives are continuous, i.e.

u=U and n-Vu=n-AVU on 0S. (3)

Of course the scattered field u® satisfies the Sommerfeld radiation condition (see
[27])

S

lim r 7 L (Ou
or

s\
Jim —iku ) =0 (4)
uniformly in & = z/|z|, where £ € R™ and r = |z|. In this paper we consider
plane waves as incident fields which are given by u’ := e***"? where the unit vector
d is the incident direction. Instead of plane waves, it is also possible to consider
incident waves due to point sources located outside S, in which case the obvious
modifications need to be made in the formulation of the problem.

Now, we assume that S is cylindrical with maximum thickness 26 > 0 that is
bounded above and below by smooth bounded and connected m — 1 dimensional
manifolds I't and I'~. Furthermore there is a smooth surface I" with a chosen unit
normal v such that I't := £5f%(s)v(s) with s € T and 0 < f* < 1 where f* are

smooth profile functions defined on I'" with boundary OI" (see Figure 1).

FIGURE 1.
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The specific feature of our inhomogeneity is that the thickness § is much smaller
than the interrogating wavelength in free space A\ = 27/k. This introduces an
essential computational difficulty in the numerical solution of the forward problem,
and more importantly, for our purpose, in the inverse coefficient problem. Our
goal is to design a sensitive target signature to detect changes in the coefficients
A and n which involve the small scale of the thickness. Hence it is reasonable
to use an asymptotic method for small 6 and derive an approximate model where
the inhomogeneity S is reduced to the open surface I'. There is a vast literature
in asymptotic methods for thin layers [18], [19], [29] [30], [31], [32], [38], where the
different ways of performing the asymptotic analysis lead to particular types of jump
conditions across I'. For example following the asymptotic approach developed in
[28] and used in [18] for a different inverse problems, (2) is replaced by the following
approrimate transmission conditions

[u] = 5(A_1_1)(f++f_)<g:j> onT (5)
[gi] = (-Vr-8(A=1)(fT +f)Vr +0k*(1=n)) (u) on T (6)

where [u] ;= vt —u~ and (u) := (ut +u™)/2 where u*(z) = hli%1+ w(z & hr) and
—
for a matrix valued function du®(z)/ov = hlirngz/ -Vu(z £ hv) for z € T', with v
—

denoting a chosen normal direction to the oriented surface I'. One can see that the
coefficients in the jump conditions involve the constitutive material properties of
the inhomogeneity as well as its thickness. If the inhomogeneity is a cylinder with
constant thickness, then f© = f~ = 1 and in this case it is possible to consider a
matrix valued coeflicient A that is I'-orthotropic independent of the normal direction
v. For the convergence analysis of this type of approximate models we refer the
reader to [29] [30], [31], [32], [38].

In this paper we use a screen model of the above type with anisotropic coefficients
on the surface, generalizing the model considered [20] to a more realistic situation.
Constitutive material properties of the thin inhomogeneity are represented by a
surface matrix function, and two scalar surface functions. Our inverse problem
is to determine information about these coefficients from a knowledge of the far
field pattern of the scattered fields due to infinitely many plane waves at fixed
frequency, provide that T is known. We refer the reader to [2], [7], [8], [9], [11], [35],
[39], [42], for various reconstruction methods for the shape of an open surface in
inverse scattering. Our inversion method is based on a target signature characterized
by a novel eigenvalue problem such that the eigenvalues can be determined from
measured scattering data, adapting the approach in [20]. Changes in the measured
eigenvalues are used to identify changes in the coefficients without making use of
the governing equations.

Spectral target signatures originated with the Singularity Expansion Method
based on resonances (or scattering poles) [6]. Recently, transmission eigenvalues
[14], [13] (which are related to non-scattering frequencies [21], [40]) have been
successfully used as target signature for non-absorbing inhomogeneities, since real
transmission eigenvalues that can be determined from multi-frequency scattering
data exist only for real valued coefficients, (see e.g. [16], [33]). To deal with ab-
sorbing and dispersive media and develop a spectral target signature measurable
from single frequency scattering data, a general framework was introduced in [15] to
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modify the far field operator whose injectivity leads to novel eigenvalue problems.
This idea was further developed for inhomogeneities with nonempty interior in [4],
[10], [25], [23], [24], [26]. Transmission eigenvalues are used in [5] to characterize
the density of small cracks, whereas new eigenvalues are derived in [20] and [22] as
target signature for open surfaces based on an appropriate modification of the far
field operator.

In the next section we formulate precisely the inverse problem, and prove a
uniqueness result. In Section 3 we introduce an appropriate modification of the far
field operator leading to a new eigenvalue problem that serve as target signature
for the screen. Section 4 is dedicated to the analysis of this eigenvalue problem
connecting eigenvalues to the unknown coeflicients, whereas is Section 5 we show
how the eigenvalues are determined from scattering data at a fixed frequency. The
last section presents some preliminary numerical experiments.

We finally note that the fundamental ideas of uniqueness proof and the employ-
ment of point sources in the linear sampling method relate to the celebrated work
by Victor Isakov on inverse coefficients problem for hyperbolic partial differential
equations. For his contributions in this area we refer the reader to the monograph
[34] which has become a classic in the theory of inverse problem.

2. Formulation of the inverse problem. We start by formulating rigorously our
scattering problem. Let I' C R™, m = 2,3 be an m—1 dimensional smooth compact
open manifold with boundary. We further assume that I' is simply connected and
non self-intersecting such that it can be embedded as part of a piece-wise smooth
closed boundary 0D circumscribing a bounded connected region D C R™. This
determines two sides of I' and we choose the positive side determined by the unit
normal vector v on I' that coincides with the normal direction outward to D. The
scattering problem is: given u’ find the total field u® + v’ such that

Au+k*u=0 inR™\T,

=2} o

[gﬂ = ( — Vr - pVr + kQﬂ) (u) onT,

u=0 ondl

and u® satisfies the Sommerfeld radiation condition (4). In particular here we
consider time harmonic incident plane waves given by u’(x) = ¢***'¢ where the unit
vector d denotes the direction of propagation.

For simplicity of presentation, we assume that both « and p are real valued func-
tions, whereas (3 is allowed to be a complex valued function representing absorption.
Our discussion can be carried through with obvious modifications if both or either
one of the coefficients o and p have nonzero imaginary part. In the 2-dimensional
case the jump conditions on I'" simply become

=a(g)  md gt = (- Zue % e se @) ot

where s denotes the arc-length variable on I'. In this case all coefficients «, p and
3 are scalar functions. In the case of R3 we allow for 4 to be a 2 x 2 matrix-valued
functions defined on I' describing anisotropic thin homogeneities and divp(uVru)
is the scalar anisotropic Laplace-Beltrami operator defined on I'. More specifically
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the tensor coefficient p is function of the inhomogeneities anisotropic physical pa-
rameters and the geometry of the surface I'. Let us precisely define the tensor .
Obviously, u maps a vector tangential to I" at a point z € T' to a vector tangential
to I' at the same point € T'. To be more precise, let v(z) be the smooth out-
ward unit normal vector function to D and let £, (x) and f5(x) be two perpendicular
vectors on the tangential plane to I' at the point x such that ¢, s, form a right
hand coordinative system with origin at x. Then the matrix pu(z) is given by the
following dyadic expression

() = (par ()t (@) + paa(@)ba(2)) B (@) + (p21(@)E(2) + poz(2)tz(2)) E2(z). (8)

Note that, if £(z) = afy(x) + bta(x) for some a,b € C, then pu(z) - £(z) is the
tangential vector given by

p(x) - &(z) = (ap1(x) + bpar (2))t1(2) + (apa2(z) + buoa(x))ta(z).

From physical considerations we assume that pi2(x) = poi(x) for all z € T, so
that in the case of R? we assume that p is a symmetric 2 x 2 tensor with entries
wij € L>®(T"). The basic assumption throughout the paper is that p is uniformly
positive definite, i.e.

p(@)>po B2 or &) w(e)-E(x) > pol¢(@)? in R® (9)

where g > 0 is a positive constant (independent of x), and (9) holds for almost
every point € T and every vector £ € R? tangential to I at x. The coefficient « is a
L°°(T) real valued function such that a=! € L>°(T"). The coefficient 3 is a complex
valued function in L*°(T") of the form S(z) = B, + %ﬂi, such that $(8) = 6;/k <0
which models absorbing and dispersive properties of the inhomogeneity,

To establish the well-posedeness of the scattering problem (7) we define the spaces

V(R™\T) :={ue H. (R™\T): Vru® € L*(T)},

Vo(R™\T) := {u € H. (R™\T) : Vru™ € L*(T") and ulgr = 0}.

Then in [36] it is shown that there exist a unique solution u € Vo(R™ \ T) of (7)
which depends continuously on 1’ with respect to the norm

ull? <=l g, + s oy + 1) sy,
for every ball Br of radius R > 0 large enough. Note that the direct scattering
problem is a particular case of this problem: Find w € V(R™\T') such that w+u’ €
Vo(R™\ T) such that

Aw+E*w=0 inR™\T,

[w] = a<‘21;’> +ap onT,
[aw (10)

ool = (= Ve ur +K28)w) + v onT,

—_

lim rm;1 <5w — zkw) =0
r—s00 or
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where ¢ = (Ou’/Ov)|r and ¢ = ( — V- uVr + k?B) (u')|r. In general ¢ and ¢ can

o= (ge) -2l

b= (= Ve pVr +£26) () - Bﬂ

for some v € V(R™\T) with Av € L?(Bg\T') for all R > 0. In fact in [36] it is shown
that there is a unique solution w € V(R™ \ T), with w —v € Vo(R™\ T) of (10).

For later use we define the following trace space on I' of functions u € Vo(R™ \ T')
by

(11)

Vo (T) = {u € HY2(T') such that Vpu € L*(T) and ulor = o} (12)
and its dual V! (') with respect to the following duality pairing
(W, V) v,y v-1r) = (W) ey g-1/2@y + (Vow, Vo) pa oy rery - (13)

We define H'/2(I") and H~/?(T") consist of functions in H'/2(T") and H~'/2(T") that
can be extended by zero to the entire boundary 9D as H'/? and H~'/? functions,
respectively. They are duals of H=/2(I') and H'Y? ('), respectively. Note that
for v € V(R™\ T), such that Av € L*(R™) we have that [v] € H?(T) and
[Ov/dv] € H-'/2(T"). Hence ¢ € H~/2(T") and ¢ € V—1(T).

For later use we also define

V(D) :={u€ H (D) : Vru € L*(I")}, (14)
Vo(D) := {u € H'(D) : Vru € L*(T") and u|sr = 0}, (15)

equipped with the graph norm, and similarly
V(R™\ D) := {u € H. . (R™\ D) : Vru € L*(I")}, (16)

Vo(R™\ D) :={u € H.L.(R™\ D) : Vru € L*(T") and u|gr = 0}. (17)
It is known, thanks to the radiation condition (4), that the scattered field u®(x,d)

due to the plane wave incident field u’(x,d) = e***'¢ assumes the asymptotic be-
havior [27]

etkr m1
u(x,d) = 7 Uoo(Z,d) + O(r~ " 27) as r = |z| = o0 (18)
rz

uniformly in all directions & = x/|z|. The function u (&, d) defined on the unit
sphere S™~! := {2 € R™, |z| = 1} is called the far-field pattern of the scattered
wave. The far field patter for various incident field are the data we use solve the
inverse scattering problem.

The (measured) scattering data is ue(Z,d) for all observation directions & €
S™=1 and all incident directions d € S™~!. The inverse problem of interest to us
is: from the scattering data determine information about the boundary coefficients
a, u and B, provided I' is known.

Remark 1. It is reasonable to replace the last Dirichlet condition on 9T in (7)
with a Neumann type condition, i.e. the normal derivative on 9I" tangential to 9D
vanishes (see e.g. [19]). Furthermore, everything in this paper holds true if the
scattering data is given for incident directions d € ST_l C S™! and observation
direction & € S5"~' € §™~1, where ST and S5~ ! are two open subsets (possibly
the same) of the unit sphere S™~1
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For later use we define here the fundamental solution of the Helmholtz equation
iHél)(k|x —2z|) inR?,
(I)((E, Z) = eik|m—z| (19)
——  inR3%
4rlr — 2|
where Hél) is the Hankel function of the first kind and of order 0. Note that ®(x, z)

is an outgoing field i.e. satisfies the Sommerfeld radiation condition.

2.1. Unique determination of the boundary coefficients. We show that the
scattering data uniquely determine all the coefficients. In the following discussion we
assume that the screen and the coefficients satisfy the assumptions at the beginning
of this section.

To prove our uniqueness theorem, we need a density result stated in the following
lemma.

Lemma 2.1. Let u(-,d) be the solution of (7) with u'(z) = e*¥* and let u®(-,d)
be the corresponding scattered field. If for p € H=/2(I') and ¢ € V—Y(T') such that

([u(-, d)] 7@)[{1/2@),15171/2(1“) + ((u(-,d)) ﬂmvo(r),v—l(r) =0, Vde Sm_la
then ¢ =0 and ¢ = 0.
Proof. For any d € S™~ !, assume that

/ (-, )] S — / (ulrd)) 1 dS = 0, (20)
N T

where the integrals are interpreted in the sense of duality with L?(T) as the pivot
space. Let w € V be the solution of (10) with boundary data this ¢ and . After
integrating by parts and using the transmission conditions across I' for u(-,d) and
w along with the fact that both u(-,d) and w are zero on JI', (20) becomes

0= [t an (Flul - (52)) as
+/p<u("d)> ((—vr -wr+k26)<w> - [?ﬂ) ds
— [ (D) - s (G2 ) + [ 2422w~ tutea | 5] ) as
- ({2~ e ) (52 + [ 242D — ey [ 52] ) s

where the last equality holds because the jumps of u(-,d) and w and their normal
derivatives are zero across 0D \ I'. Here D is a bounded connected region D C R™
such that I' C 9D. Simplifying the latter leads to

B out(-,d) | ow™
_/59D<8v wT —u"(-,d) ay)dS,
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where the second integral is zero by Green’s second identity since both u and w
satisfy the Helmholtz equation inside D. Now using that outside D we have u =

u® + u* and the fact that
+ s
/ usaw —au whdS =0,
5 8V 8V

for radiating solutions to the Helmholtz equation u® and w, we finally obtain that

. + 7
/ ulaw _8u wtdsS =0.
8D

ov ov
Using that u’(z) = e~%*%%_i.e. the plane wave in the direction d := —§ we have
owt 0P (-, 9
[ ot - 2=y as <o,
8D ov ov

where ® (7, 7) = y,e "% with 75 = i/4 and 73 = 1/(4n) is the far field pattern
of the fundamental solution ®(y,z) as a function of y located at x given by (19).
Since by Green’s representation theorem

. owt  0P(,y) R
wiy) = [ ety - et as, yerm\D

(where we have used the symmetry of the fundamental solution), the above identity
implies that the far-field pattern w.(4) of w is identically zero for all § € S™~1.
From Rellich’s lemma and unique continuation, w = 0 in R™ \ I" as a function in V
and hence ¢ = 0 and ¥ = 0 from the jump conditions. O

Theorem 2.2. Assume that for a fired wave number k, the far-field patterns
Ul,00(&, d) and ug o (&,d) corresponding to (I', cq, B1, p1) and (T, g, B2, p2) respec-
tively, coincide for all ,d € S™1, and in addition B; € C(T') and u; € CH(T),
j=1,2. Then ay = ag, 1 = P2 and p1 = peo.

Proof. Since the far field patters coincide, from Rellich’s lemma we have that the
total fields u(-,d) := u1(-,d) = ua(-,d) in R™ \ T. From the jump conditions of
ui(+,d) and uz(+,d) across I' we have that

1 1

(3~ 2 )ui=0 onr. (21)

(€3] (%)

( — Vr - (= p2) Ve + K (81 — 52)) (uy=0 onT. (22)

Note that € V/(R™\T). Thus for any test functions ¢ € H~/2(T") and ¢ € Vp(T")
after integrating by parts on the manifold I we have

1 1
0 = (weal (- 2) w)mw_mm

+ (<’LL(, d)> ) _VF'O’[/I - MQ)VF¢ + k2(61 - ﬂ?)d)) Vo(I),V-1(I)
Applying Lemma 2.1 we conclude that

LN S DV _1/2
(al a2> V=0, YyeH Y). (23)
— Vr(p1 — p2)Vro + k2 (81 — B2)p =0, Vo € Vo(T). (24)

By taking ¢ = 1 in (23) we obtain that a; = a2 on I'. Next consider (24) and for
any yo € I', let B,(yo) be an open ball centered at yo of radius p > 0 such that
B,(yo) NT" is contained in the interior of I'. Consider a smooth function ¢ € C*°(T")
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such that ¢ = 1in B,/4(yo) NI and ¢ = 0 in I' \ B,/2(y0). Here, B,/4(yo) and
B,/2(yo0) are the balls centered at yo of radius, respectively, p/4 and p/2 so we
have B,/4(y0) C B,2(y0) C B,(yo). Then, since now (24) holds point-wise we can
conclude that

B1—B2=0 ian/gﬂF.
Since $; and Bz are continuous on I' and yo € B,,;s N T', we have $1(yo) = B2(yo)-
Since yq is arbitrary, we conclude that the latter holds for all yo € I". Therefore,
B1 = B2 on T'. Finally letting 81 — f2 = 0 in (24), multiplying by ¢ € V5(T") and
integrating by parts we obtain

0= —/FVF((Ml - MQ)VF¢)¢dS = /F(VF¢) : (Ml - M2)(VF¢) ds, (25)

for all ¢ € Vo(T'). If py(zo) # pa(mo) for some zy € I', without loss of generality,
p1(zo) — p2(wo) > po > 0 for some constant po (where in the case of R? the
inequality is understood in terms of positive definite tensors). By continuity there
exists € > 0 such that p(x) — pe(x) > 0 for all x € T'N B(xg), where B.(xg) is the
ball of radius € centered at xy. We choose a smooth function ¢ compactly supported
in 'NB(xp) in (25). The positivity of p; — pe implies that Vr¢ = 0 on I'N B (xo),
hence ¢ is a constant on I' N B.(z¢). However, this contradicts the fact that ¢ is
compactly supported in I' N Be(xg). Therefore, g = ps on T O

Instead of reconstructing the coefficients based on optimization techniques, in
the following we propose and analyze a spectral target signature measurable from
the scattering data which identifies changes in the constitutive material properties
of the screen. We remark that this target signature can detect such changes without
knowing the base “healthy” value the coefficients nor reconstructing them.

3. The modified far field operator and a related eigenvalue problem. The
scattering data defines the far field operator F : L?>(S™~1) — L2(S™~1) by

Fo@) = [ uladlo(@as(a).

The injectivity of this operator is related to the geometry of I', in particular F is
injective with dense range if and only if there is no Herglotz wave function given by

ul(x) = /Sm_l g(d)e**4dS(d),  geL*(S™1) (26)

such that (Qu!,/Ov)|r = 0 and (— Vr - uVr + k*8)(ul)|r = 0 [11], [36]. Hence to
introduce the eigenvalue problem we need the following auxiliary scattering problem.
Let D be a bounded connected region D C R™ such that I' C 9D and A € C with
J(A) > 0, then find AN such that

AR 4+ E2pN =0 in R™\ D,

AN = BN

AN =0 onT, (27)
h(N)
aTJr)\h()‘) =0 onodD\T,
v

where h(*)% is the scattered field and u’ = e***® and h(})* satisfies the Sommerfeld
radiation radiation condition (4). Like above, h{*):3(z,d) satisfies the asymptotic



10 FIORALBA CAKONI, HEEJIN LEE, PETER MONK AND YANGWEN ZHANG

behavior (18) with h(oé)(:fc, d) the corresponding far-field pattern. The latter defines
the corresponding far field operator F) : L2(S™~1) — L2(S™1) by

FO(@) = [ h(@,dgld) dS(@).
Sm,—l
Now we consider the modified far field operator F : L*(S™~1) — L?(S™1)

f@CﬂZZ(Fb-—P“”gXﬁ):‘/. (uoo(#3d) — Q) (#5d)) 9(d) dS(d).  (28)

§m—1
Note that for the purpose of the inverse problem we assume that Fg is known
since Fg is known from measurements whereas F*) can be precomputed since the
problems involves only I" which we assume is known. Now we ask the question
whether the modified far field operator is injective. Indeed, assume that Fg = 0

for some g € L*(S™') and let u!, be the Herglotz wave function (26) with kernel

g. Define solutions u, := u$ + u!, and hy‘) = hy)’s +u}, of the scattering problems
(7) and (27), respectively, with their far-field patterns u, o and hg)‘go By linearity,
since Fg = tug 0o — hg),‘o)o, we have that Fg = 0 implies that uy o = h(gf\go on S™1,
From Rellich’s Lemma, we have that uy = th),s in R™\ D. Then, u} = h_y‘) in

R™\ D where u = tug|gm 5. From the boundary conditions in (27), uf = 0 on

ut
I' and aa;’ + Auf = 0 on dD\T. Then, from the boundary conditions in (7),

u,; = ug|p satisfies the following:

g
Ah+k*h=0 in D,

h 1 4
af:—f(—vp.wﬁk?wr—)h onT,

v 4 67 (29)
oh

54—)\}1—0 on OD\T,

h=0 onodl

where h := u . Thus, if A is not an eigenvalue of (29), then oh/Ov = h = 0
on 0D \T. By Holmgren’s Theorem, ug, = h =0 in D and hence by unique
continuation vy = 0 in R™\T". In addition from the condition on I' in (7) we obtain
that both jumps of uy and Ou,/0v are zero. Which means that u, satisfies the
Helmholtz equation in R™ and ug = —uy. Since uy is a radiating solution while ug
is not, g must be zero. Therefore, we have proved the following lemma.

Lemma 3.1. Assume that A € C with S(A) > 0 is not an eigenvalue of (29).

Then, the modified far-field operator F : L*(S™~1) — L2(S™~1Y) is injective.

Remark 2. From Lemma 3.1 we know that if /g = 0 has a non-trivial solution,
then A is an eigenvalue of (29). Note that the converse is not necessarily true, i.e.
if A is an eigenvalue of (29), this doesn’t mean that F is not injective, which will
become clear in the following section. Nevertheless the above connection between
the modified far field operator F and the eigenvalue problem (29) can be exploited
to detect these eigenvalues from the scattering data.

In the same way as in Lemma 3 in [20] one can also show that if A is not an
eigenvalue of (29), then the range of F : L?(S) — L*(S) is dense. This is needed
when applying the linear sampling method to determine the eigenvalues of (29)
from a knowledge of F. Now we are in a position to define precisely the target
signatures considered in this paper:
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Definition 3.2 (Target signatures for the screen I'). Given a screen I' and a domain
D with I’ C 0D the target signature for I' is the set of eigenvalues of (29).

We show in this paper that the target signature for the screen I' is determined
from the measured far field data, and hence it can be used to identify changes in
the coefficients «, 3, i without reconstructing them.

4. The analysis of the eigenvalue problem. We proceed with the analysis of
the eigenvalue problem (29). In particular we show that its spectrum is discrete,
for real value 8 there exist infinitely many real eigenvalues, and provide relations
between the eigenvalues and coefficients «, 3, .

If h € V(D) is a nonzero solution to (29), then h and A satisfy

1 4
/ (Vh~V¢fk2h¢)dx+f/<7Vp~qu+k2B+—)h¢dS
D 4 Jr «Q
— ) / hzdS, Ve € Vo(D). (30)
D\T

Lemma 4.1. Assume that S(5) < 0. If S(\) < 0 then (29) has only the trivial
solution in Vo(D).

Proof. From (30), we have
1 4
/ IVh? — K2 da + > / | Vrhf? + (kQB + 7)|h|2d5 - —)\/ In|2 ds.
D 4 Jr a OD\T

Taking the imaginary part,

k‘2

— [ S(B)|n|*dS = —%()\)/ |h|? dS.

4 Jr dD\T
Since $(B) < 0 and F(A) <0, h=0o0nI' and Oh/dv = 0 on I'. Then Holmgren’s
Theorem implies that h is identically zero in D. 0

Corollary 1. All the eigenvalues A € C of (29) satisfy S(A) > 0.
We can rewrite (30) as (A+ B + AK)(h, ¢) = 0, where the sesquilinear forms A,
B, K from Vy(D) x Vo(D) to C are defined by

1
A(h, @)y ;:/ Vh-Ve+ hpds + 1/ (wph.vp¢+uoh¢) ds,
D I

with some constant ag > 0,
2 — 1 2 4 —
Blh,@)v = —(K*+1) | hpde+ 7 | (KB+ = = po)hpas,
D 4 Jr «Q
and
K(h,o)v ::/ hpdS.
OD\T'

By means of the Riesz representation theorem, we define the bounded linear oper-
ators A, B and K on V5 (D) by

(Ah7 LP)VQ(D) = A(ha 90)7 (Bhv @)VO(D) = B(ha 50)3
and  (Kh, p)v,(p)y = K(h,), Yh,oc Vo(D) (31)
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where the scalar product is given by (-, -)v,(py := (-, ") a1 (py + (-, *) (). Recall that
a, B, € L(T) , that p (possible a tensor) satisfies (9) with some constant po and
that 3(8) < 0. Then, the boundedness of A, B and K follows. For any h € V,(D),

1
A(h, h) :/ |Vh|? +|h*dz + Z/ (u|vph\2 +uo|h\2) ds
D r
Ho .
> [l oy + 1PN oy = min(L, o/ DRI ()
which shows the coercivity of A. Therefore, the operator A is invertible with

bounded inverse.
Next, we will show that B and K are compact operators. For any h € V(D),

_ 1 4 _
BRI, oy = —(k:2+1)/ hEhdx+Z/(k25+——uo)hBhds
D r «
< C(I|kll2(p)|IBA| L2(py + 1Al 2(r) BR[| 2 (1))
< C(Ihllzzoy + IhllLz@)) 1Bl vy ()

for some constant C' > 0. Thus,

IBAllvy 0y < C(IPllL2 oy + 1Al L2(ry)-

Then the compactness of B follows from the fact that H'(D) and H(T') are com-
pactly embedded in L?(D) and L?(T"), respectively. Similarly, the compactness of
K follows from

KA vy 0y < ClIh]| L2y

for some constant C' > 0.

Finally the Analytic Fredholm Theory [27] applied to I + A~(B + AK) implies
that the set of eigenvalues A € C is discrete with co as the only possible accumulation
point.

4.1. Relations between eigenvalues and the surface parameters. We would
like to understand how the eigenvalues of the eigenvalue problem (29) relate to the
known coefficients «, p and g, which satisfy the assumptions in Section 2. Let us
fix a 7 > 0 such that k2 is not an eigenvalue of the mixed Dirichlet-Generalized
Impedance eigenvalue problem of finding h € V(D)

Ah+k?h=0 in D,

on 1 L. 4
5_—1(—vp-wp+k ,6’+a)h onT,
oh

g—l—rh:O on OD\T.

For a given wave number k, we can always find such a 7 because from the above
Fredholm property of (29) this problem can have a nontrivial solution only for
a discrete set of the parameter A. The choice of 7 guarantees that the operator
(A + B+ 7K) : V5(D) — Vo(D) is invertible, where the operators A,B and K are
defined by (31). Therefore we can define the operator R : L2(OD\T') — L?(0D\T)
that maps a function § € L?(0D \T) into hg|sp\r Where hg, is the unique solution

(A +B + 1K) hg, @) = / 0% ds.
OD\T'
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Since hg|ap\r € Hz(OD\T') and Hz (9D\I') is compactly embedded into L2(OD\T'),
the operator R is compact. Such hy exists from the choice of 7. Then, we see that
A € C is an eigenvalue of (29) if and only if

(A +7T)RO=10 (32)

for some nonzero . In other words, — is an eigenvalue of the compact operator
R. In particular if we assume that $(8) = 0, then the operator R is self-adjoint,
hence for a fixed 7, the eigenvalues ﬁ of the operator R are all real and ac-
cumulate to 0 as j — oo. Hence we conclude that in this case all eigenvalues of
(29) are real, and there exists an infinite sequence of {\;},;>1 of real eigenvalues
that accumulate to £oo as j — oo (because the operator R is not sign definite the
eigenvalues may in principle accumulate to both +o0co and —oc). However, in the
next theorem we show that the eigenvalues accumulate only to —oco. In addition
the corresponding eigenfunctions form a Riesz basis for V5(D).

Remark 3. If §(8) > 0 the eigenvalue problem (29) is non-selfadjoint and in this
case all eigenvalues are complex with &(A) > 0. Then, using the theory of Agmon
on non self-adjoint eigenvalue problem in [1] is possible to prove in a similar way as
in [15] that for smooth coefficients there exits an infinite set of complex eigenvalues
in the upper half complex plane asymptotically approaching the negative real axis.
One could handle the case of existence of eigenvalues for complex coefficients by
modifying the impedance condition on 9D \ T in the auxiliary and consequently in
the eigenvalue problem by introducing a smoothing boundary operator along the
lines of the ideas in [23] which makes the non self-adjoint operator R a trace class
operator. This idea is considered in [36]

Theorem 4.2. If k2 is not an eigenvalue of
Au+k*u=0 in D (33)
ou 1 9 4
—:—7(—VF~qu+k B—i——)u onl, uw=0 ondD\T
v 4 @
then there are at most finitely many positive eigenvalues A of (29).

Proof. Assume to the contrary that there exists a sequence of positive eigenvalues
Aj > 0 such that A\; — oo as j — oo with normalized eigenfunctions h; satisfying

il v oy + 1Rl ey = 1. (34)

From (30),
1 4
[ 0P =Rl o+ [ ulVen + (126 + 2 )iy ds
D r «
— [ eamPas. @9
&D\

Since the left-hand side is bounded and A\; — oo, h; — 0 in L?(OD\T'). Then, up to
a subsequence, h;(x) — 0 for almost all € 9D\ T'. By the assumption (34), there
exists a subsequence, still denoted by {h;};en, that converges weakly in Vy(D) to
some h € Vy(D). In particular h = 0 in D \ I'. Furthermore, since each h; satisfies



14 FIORALBA CAKONI, HEEJIN LEE, PETER MONK AND YANGWEN ZHANG
(30)
o 1 AN,
(Vhy - V= k*h;) de + 7 | uVrh; - Vip+ (k ﬁ—f—a)hj(pds
D T

—— [ Ahpds. e (D),
OD\T

we obtain that the weak limit A in addition satisfies
8h 1

Ah+kh=0 D and 22 ( Vi - uVr 4+ k2B4 = )h onT.
ov 4

From the assumption that k2 is not an eigenvalue of (33), we conclude that h = 0
in D. So, we have that h; converges weakly to h = 0 in V(D). Therefore, up to a
subsequence, h; strongly converges to 0 in L?(D) and L*(T"). From (35), we obtain
that up to a subbequence IVhjllz2(py — 0 and [|[Vrhj| g2y — 0 as j — oo. This
contradicts to the assumption (34). O

For k large enough one can show there exists at least one positive eigenvalue.
To show this let us assume to the contrary that all eigenvalues A; are nonpositive.
From (30), each eigenfunction h; corresponding to \; satisfies

1
/|th|2—k2|hj\2dx+4/ (k26+ Mg+l Vensds = [ (=xy)|hy[2as.
D 8D\

Since the right-hand side is nonnegative for each j,
1
/ [Vhyl? = k2| do + 5 / (k2/3 + )|h 2 4 u|Vrh; 2 dS > 0.
D

The set of eigenfunctions {h;};en form a basis for V(D) since this is an eigenvalue
problem for a self-adjoint and compact operator, hence from the above we have that

1
/|Vh|27k2|h|2dz+4/(k25+ >|h\2+u\vph|2dS>O Vh € Vo(D).
D
(36)

Let hg be a Dirichlet eigenfunction corresponding to the first Dirichlet eigenvalue
—np for Negative laplacian in D. Obviously hg € Vp(D) and its satisfies

/ |Vho|* = nolho|? dz = 0.
D

Taking h := hg in (36) we obtain

os—/wﬂwwmﬁm,
D

and if k2 > 1, this is a contradiction. If k28 + 4/a < 0 it is possible to show that
a positive eigenvalue exists for smaller k by choosing hy apropriately.

We close this section by giving an expression for the first eigenvalue of (29). Let
m :=m(D,T,7) be the first eigenvalue of

Au+nu=0 inD (37)
Ou_ 1(v Vr) r, Uy ru=0 onoD \T du=0 ondl
o 1 r-g4VvVrju on By TU = on , and u= on
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with the additional condition v = 0 on OI', for some 7 > 0. Since this is an
eigenvalue problem for a positive self-adjoint operator, from the Courant-Fischer
inf-sup principle, we have

- ||Vu|| D) +T||U||L2(8D\F) + 4fF H|VFU|2 dS
heVo(D),h#0 lull7zpy '

m= (38)

This implies that for every u € V(D)
oy < o1Vl + - lulaoonr + 5~ [ #lVeuPds.  (39)
m M 4m Jr
Then, using (39), for some A > 0 we can estimate

/|Vu|2 Juf? dz + = / Vral? + (K25 + )|u|2ds+A/ luf2 dS
D OD\T'

2

(177 /\Vu|2dx+zll(lf%)/MVFUFdSJr /(k2B+ Bjup as
(A—k;l) /BD\F w2dS.  (40)

4
Choosing A > T, and if infr k28 + — > 0 and k2 < 7y, then the left-hand side
e

of (40) is posmve with the choice of such A. We can write our eigenvalue problem
(29) as in the following

1 4
/ Vu- Vg — k*upde + - / uVru - Vrg + (kzﬁ + —)u@dS + A/ up dS
D 4 Jr @ dD\T
:(Af/\)/ up dsS, Vo e W(D)
OD\T
Since this is an eigenvalue problem for a positive self-adjoint operator with eigen-

value parameter A — A, we can apply the Courant-Fischer inf-sup principle to the
eigenvalues A; := A — A;. In particular, we obtain

1
/—|Vu|2+k2|u\2dx—1/(k2ﬁ+ —)|ul* + p|Vrul*dS
D

AL = sup
u€Vp(D),u#0 / |u|2 ds
OD\T'

)

(41)
4
provided that infp k23 + S > 0 and k% < 1y, where 7, is defined (37). Hence under

these assumption the expression (41) together (38) shows the dependence of the
first eigenvalue A; on the coefficients o, 8 and p.

5. Determination of the eigenvalues from far field data. In this section we
show that our target signature, i.e. the eigenvalues of (29)., can be determined from
far field data. This involves a non-standard analysis of the scattering problem. We
modify the approach based on the linear sampling method in [20] to our more
complex problem. To this end we can write (7) equivalently as a transmission
problem: find p € Vo(D) and p* € V(R™ \ D) with p* +v € V(R™ \ D) (recall the
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definition of spaces (14), (15) (16), (17)), such that

Ap+k?’p=0 inD,
Ap® +k*p* =0 inR™\ D,
s a/dp  Op°\
(p—p)+§($+8y)—s0 on T,
dp Op° s
(5, — 5 ) TKw+p) =0 onT, (42)
p—p° =@, ondD\T,
op 0p°
v _Yr _ r
ov  Ov Ve ondD}
lim rm21<3p —ikps> =0
r—00 or

where ¢ € H=Y2(T'),4» € V1T, p. € HY/?(0D\T) and . € H-/2(OD \ T) be
defined by
o’

v lap\r
(43)

r’ Y= (8615 _’CUi)

and the operator K : H*(T') — H~1(T") is given by

a aui)

v= <Ui_§8u

r’ Pe = ul|6D\1"a Yo 1=

Kw = % (—VF - uVrw + /4}2511)) .

Here u' in general can be any function in V(R™ \ D) or V(D) with square inte-
grable Laplacian. Now, we define the bounded linear operator H : L*(S™~!) —
H-Y2() x V-YT') x HY/2(dD\T) x H-Y?2(dD \T) by

(A) (\) \)
| () _ @ Owg Qwg™ V) o %’
Hy: ((wg 2 v ) r’( Kwg ) 9 lop\r Ov lap\r )’

ov
where wé)‘) is the total field of (27) and the incident field u, is the Herglotz wave
function defined by (26). From the boundary condition of (27), we have that

aw_((f)

A A
) g BD\F) 8V

2 ov I’ ov

Hg:(

r ‘aD\r)'

Let us define the bounded compact linear operator G : R(H) — L?(S™~1) by

g(@awv‘pcﬂbc) = Poos (44)
where p3_ is the far-field pattern of the scattered field p® that satisfies (42). If we
take u’ := wé)‘) in (43), then we obtain the factorization

F =GH,

where the modified far-field operator F is defined by (28). We next define v € V(D)
by

0®(z,y)

o) = hiw) + [ (Coppie. ) + )7

) ds,, (45)
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where h € V(D) satisfies the Helmholtz equation in D. Here, ¢ and n on I" are
chosen such that

¢+ Kn=2Kh
LYo oh (46)
CRECEE a@u

Assumption 1. We assume that the operator K — 21 : H}(I') — H YT is
invertible, i.e the following variational problem for some f € H—(T)

1

_ 4 _
5/1“ (uva -Vro + k*fwd — awqb) ds = /quﬁdS, for all ¢ € H(T)

has a solution w € Hg(T).

The above assumption is always satisfied for R(8) > 0 and o < 0. Otherwise we
must exclude a discrete set of k accumulating to +oo. If Assumption 1 is satisfied
than (46) has unique solution ¢,n € V5(T'), and for such densities it is shown in [36]
that the single and double layer potentials in (45) are in V(D), and hence v € V(D).

Remark 4. Assume that A is an eigenvalue of (29) and h* is the corresponding
eigenfunction. It can be shown that ¢ := —2h*/a — 20h*/0v = Kh* and n := h*
satisfy (46).

Let

)=o) = [ (Gt - ) as,

vy
- [ (cwon +n®5 DY as, wep, ()
r Y

v [ (Tt - Gle.y)) as,

- [ (Wt + a5 as,. zerm\D. (13)
r Yy

From the jump relations for the single layer potential and the double layer potential
[37], we show the following lemma.

Lemma 5.1. (p(x),p°(z)) defined by (47)-(48) is the solution of (42) with

v= (U_%%Nr’ yi= (%_’CU) % OD\T’

where v is defined by (45).

(49)

F7 Pe 1= Ul(’?D\Fa wc =

Lemma 5.2. Assume that A\ € C is an eigenvalue of (29) and h is the corre-

sponding eigenfunction. Let ng)’S be the unique solution of

AwV* 4+ P =0 in R™\ D,
ng)’S =—v onl,

8w£)‘)’s

ov

Fxwfe = =90 onaD\T,
1%
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with

r—00

(A),s
lim "% (8wy — ikwq(f‘)’s> =0, (51)
where v is defined by (45). Then, G(@uv, Vv, Pu,c, Yv.c) = 0 with

_(_QMMW”+M
Po = 2 ov

(a(wE})’S +v)

Yo = ov
Pu.c = (W +0)|apyr,

O(wiM* +v)
¢v,c = 87
v

where the operator G is defined by (44).

N),s ’
+ @M+ )]

— K + ”)> ‘r’ (52)

OD\T"’

Proof. By the definition G(¢y, ¥, Yu.c: Vo) = Pv,co Where p, o is the far-field
pattern of the scattered field pS and (p,, p?) is the solution of (42) with (52). From
Lemma 5.1, (p,p®) defined by (47)-(48) is the solution of (42) with (49). Then,

py = p and p) = p° — wf,)‘)’s are well-defined. From the jump relations for the
single and double layer potentials and the boundary conditions (50), we have that
Ip;

ApS +k*pS =0 inR™\D, p:=0 onT,

” +Ap; =0 ondD\T.

From the uniqueness of the exterior mixed boundary value problem [12], p? must
be zero in R™ \ D. Thus, we have shown that G(yy, ¥y, Yu.1, Yu.c) = 0. O

Lemma 5.3. Assume that A € C is not an eigenvalue of (29). Let ®oo(-, 2) be the
far-field pattern of the fundamental solution ®(-,z). Then, P (-, z) € R(G) for any
z € D, where R(G) is the range of the operator G.

Proof. Let z € D and h, € V(D) be the unique solution of
Ah, +k?h, =0 in D,

oh, « o
h, +a % + EIChZ =d(,z) — §K<I>(-,z) on T,
O an, = 2202 L 3p(2) onOD\ T

ov ov

and define v, by

v.(z) == hz(x)-i-/r (C(y)¢(w,y)+ﬁ(y)CW)dSy

with ¢ and n given by (46). Then, v, satisfies the Helmholtz equation in D. Now,

consider (¢,, ¥z, ¢z ¢, ¥z ) defined by (52) with wW’S = wg/\)’s and v := v, where
w™M* is the solution of (50)-(51). From Lemma 5.1, (p,p®) defined by (47)-(48)
with h := h, and v := v, is the solution of (42) with the corresponding (49). Then,
p. := pand ps := p° —wM"* solve (42) with (2, ¥z, @z, Y5 c). From the boundary

condition of (50), since wg)‘)’s = p® — p3, we have

d(p® +v.)
ov

p;

5 + A(p® +v,) ondD\T.

p=p°+wv, onl' and

+Apk =
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Using the definitions for v and p® and the jump relations for the single and the
double layer potentials, we obtain

0pz

pl =®(,2) onI'" and + Apl =

O(-
0 a(u %) 4 AB(,2) onOD\T.
Since z € D, ®(-,2) is well defined in R™ \ D. Therefore, p$ = ®(-,2) in R™ \ D.
ThuS, g(@z,wza @z,c»wz,c) - (I)oo(a Z) O
Lemma 5.4. Assume that A € C is an eigenvalue of (29). Then, the set

S:={z€D:P(-,2) € R(G)}

is nowhere dense in D.
Proof. Assume to the contrary that there exists a dense subset U of a ball B
contained in D such that z € UNS. Then, G(¢., ¥z @eciVze) = Pools, 2)

for some (., %z, Pz.c,¥se) € R(H). Thus (.,%., 9z, ) satisfies (52) where

wM* = W™ solves (50)-(51) and v := wv, for some v, € V(D) satisfying
Vv + k?v = 0 in D. Let (p.,pS) be the solution of (42) with (¢., s, Pz.c, ¥z .c)-
Since the far-field patterns of p¢ and (-, z) coincide, from Rellich’s Lemma, we
obtain that p = ®(-,z) in R™ \ D. Then, p, satisfies the following:

Ap. +k?p, =0 in D,

dp. e
Pz B (I)( ) - EIC(I)(7Z) on I, (53)
apz 3{)( )
— D(- D\T.
B + Ap. 5 + A®(-,2) on dD\
The above problem (53) is solvable if and only if for any z € B,
/ l@(-,z)ﬁ(z’\)—l(lCé(~7z))ﬁg’\) dS+/ L’("Z)@MH@(-,Z)@M ds =0,
ra 2 dD\T ov

(54)
where p¢") € Vo(D) is an eigenfunction of (29). Using the boundary condition for

Y, we can rewrite (54) as

ey .
/8 Op: q»(.,z)‘%gy’)pg”ds+/ra@(§y 2) 5t + (KpY®(-, 2)dS = 0. (55)

Dal/

as a function of z, then it solves the

If we consider the left-hand side of (55)
(55) holds for all z € D. From (55) , we

Helmholtz equation in D. Therefore,
have that

d(.
I

Since f)?‘) is the eigenfunction corresponding to A, v) satisfies (45) with ¢ := /C;EQ)
and 7 := po"). Therefore, the solution (p, p*) defined by (47)-(48) with v =0 is
)

zero. Thus, p;”’ = 0, which is a contradiction. O

Now, we are ready to state the main theorem that provides a criteria to determine
the eigenvalues of (29) from the modified far-field equation given by

Fg(2) = Po(Z,2) for z€ D (56)
where the modified far-field operator F is defined by (28).
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Theorem 5.5. (i) Assume that A € C is not an eigenvalue of (29). If z € D,
then there exists a sequence {g2} in L?(S™~1) such that

Tim (| Fgi () = Boo(, 2)]| ety = 0 (57)

and ||vgz |v(py s bounded.

(ii) and Assumption 1 holds. Then, for any sequence {gZ} in L?(S™~1) satisfying
(57), [lvgz v (py cannot be bounded for any z € D, except for a nowhere dense
set.

Proof. (i) Assume that A € C is not an eigenvalue of (29). From Lemma 5.3, for

any z € D, there exists (¢z, V2, Pz, Vz,c) € R(H) such that Gz, 1z, 020, h2c) =
@, (-, 2). Thus, there exists a sequence {gZ} in L?(S™~!) such that

(\) (A ()
Hy? = (w(i\) _ gawgfb ) (awg’z‘ — ]Cw()z‘))’ w(/z\)|aD r 3109;
n I 2 v JIr’\ v 95 ) | 7o PP Ty lapyr

converges to (¢, Vs, Pr.c, Yre) in H-V2(T) x VTHT) x HY/2(0D\T') x H~Y/2(0D\
I'), where w!(]%) is the total field solving (27) with the incident field u’ := vy the
Herglotz wave function defined by (26). Using the fact that the set of Herglotz
wave functions are dense in the space of solutions to the Helmholtz equation in
V(D) [36], we have that vg- converges to v, € V(D) such that Av, + k?v, = 0 in

D. Therefore, ||vg: ||y is bounded as n — oo and if Wy := Hg7,
Jim [|[Fgn () = Poo(@, 2) [ L2sm—1) = Hm {|G(Wez) — Poo(, 2) | L2em—1) = 0,
since G is continuous.

(ii) Suppose that A in an eigenvalue of (29). Assume to the contrary that there
exists a sequence {gZ} in L?(S™™!) satisfying (57) such that ||vg= ||y (p) is bounded
for all z in a dense subset U of a ball B contained in D. Then, there exists a
subsequence, still denoted by {vg: }, that converges weakly to a solution of the
Helmholtz equation v, € V(D). Now, we consider

(A).s

o (_ %6(102 8V+ ve) (s 4 Uz))
(w4 v,)

V== ( Ov

Pz = (WY +v.)ap\r,

8(w§)‘)’5 +v,)
Pz = P
1%

)

)

K@ +0.))

OD\T’

where w™* solves (50)-(51) with v := v,. We have that Hg? converges weakly to
(P2, Y2y QzesVzc). Since G is compact, we conclude that G(HgZ) converges strongly
t0 G(2, Y2y @20, Ysc) for all z € U. From (57), we have that

g(@z,lv@z,2vwz,1vwz,2) = (I)oo(az) for all z € U.

This contradicts to Lemma 5.4 and thus this completes the proof. O
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6. Numerical results. We next present preliminary numerical results that illus-
trate the detection of eigenvalues from far field data, and their sensitivity to changes
in parameters. In doing this, we make several simplifying assumptions: 1) we only
perform computations in R?, 2) we assume that the coefficients a, 8 and pu in (7)
are constant, and 3) we only consider two screens that are subsets of the unit circle.
Obviously each of these limitations should be investigated for real applications.

The results are computed in the usual way, following for example [20]. For each
choice of coefficients and screen I' we generate synthetic far field data using the
finite element method with quartic polynomials on a triangular mesh that is refined
slightly towards the points OI'. The domain is truncated using a radial perfectly
matched layer, and curved edges are approximated by quartic polynomials. The
finite element space is discontinuous across 9D and continuity across 9D \ T' is
enforced by Nitsche’s method as used in symmetric interior penalty discontinuous
Galerkin methods [3]. The code is written in Python using NGSpy [41] and makes
critical use of the surface differential operators implemented in that code.

In the same way, the auxiliary problem (27) is also approximated using an NGSpy
code. Finally, in order to test the determination of eigenvalues from far field data
using a discrete version of the modified far field equation (56) we also solve the
eigenvalue problem (30) using NGSpy.

To find eigenvalues from far field data, we discretize (56) by Nystrom’s method
using N, equally spaced directions on the unit circle, and collocate the resulting
linear problem. Then we add noise to the “measured” far field pattern u... In
particular if the incident and measurement directions are denoted d;, j = 1,- -+ , Nar
then then discretized modified far field operator is represented by the Ngay X Npar
matrix AX) given by

AY) = MO(us(dy; de) — RO (dj3d)), 1< j,0 < Npar,

where A# is the angle between adjacent directions.. Then we compute a noisy
measurement matrix using

Ag‘j\g)’nOise = AE?\K)(l + enoisegj,é); 1 S ]7€ S Nfau

where €poise is a fixed parameter and &; 4 is a uniformly distributed random number
in the interval (—1,1). In our results we choose €ngise = 0.01 which gives roughly
0.3% error in the relative matrix 2-norm. Using the noisy matrix we solve the
discrete modified far field equation by Tikhonov regularization using a fixed regu-
larization parameter aery = 1077 for each available A and N, = 10 auxiliary source
points z randomly located in a subset of D bounded away from dD. The use of
multiple random z has been found necessary in other target signature calculations
using transmission eigenvalues to help identify more eigenvalues [17] (see Theo-
rem 5.5 part (ii)). Neither the size of the region containing the random sources or
the number sources has been investigated systematically. After solving the discrete
far-field equations, we then plot the averaged f5 norm of the discrete solution §
of the modified far field equation as a function of \. We expect peaks in the the
average norm of g to correspond to eigenvalues of D.

In our numerical experiments we have taken Ng,, = 120. The minimum number
of incident directions needed depends on the wave number k, and we have not
investigated this aspect of the problem. The two screens that we consider are the
upper half of a unit circle, and a quarter of a unit circle (see Figs 2 and 3 left
panels). In both cases D is the unit disc, and we choose, « = —2 and = pu = 2
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FIGURE 2. In the left column we show the scatterer ' (red curve)
and the remainder of 9D as a green curve. Asterisks show the po-
sition of the random source points z in D. In the right column we
show the average ¢ norm of the regularized solution of the modi-
fied far field equation against the eigenparameter A. The vertical
lines mark the position of the true eigenvalues found by solving
the interior eigenvalue problem. Top row: Dirichlet end condition.
Bottom row: Neumann end condition.

and wave number k = 4. For the upper half circle case, results are shown in Fig. 2
for the case of a Dirichlet boundary condition on JI'. As we have mentioned in
Remark 1, other choices of end condition on JI" are possible and in the lower panels
of Fig. 2 we assume a homogeneous Neumann condition. Clearly, in both cases, we
can identify the largest two eigenvalues, and also information about the next three
(two are close together). The corresponding result for the quarter circle scatterer
(with the same parameters) is shown in Fig. 3. From now on, we shall only present
results for the Dirichlet end condition analyzed in this paper.

In addition we also present the detection of eigenvalues when = 0.2, 8 =1 and
a = —0.2 to indicate that eigenvalues can be detected for quite different choices of
the parameters. These are shown in Fig. 4. It is apparent that for either scatterer
and either choice of parameters we can detect roughly the largest 3-4 eigenvalues
depending on the end condition.

The choice of the domain D is, in theory, arbitrary provided it is sufficiently
smooth and I' C 9dD. Of course the choice of D changes the eigenvalues and
eigenvectors. For example, in Fig. 5 we show results of detecting eigenvalues using
the parameters 4 = § = 2 and @« = —2 when D is obtained by joining the end
points of I' by a straight line. In both cases, fewer eigenvalues can be detected
and in the case of the hemisphere one eigenvalue is missed when compared to the
predictions in Fig. 2. We have no explanation for the relatively poor performance



A SPECTRAL TARGET SIGNATURE FOR THIN SURFACES

—_

0.5
F % k¥
0 * *
*
-0.5
-1
-1 0
1
0.5
*
. *
0 N
*
-0.5
-1
-1 0
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FIGURE 5. Here we show the detection of eigenvalues for the half
and quarter circle scatterers with Dirichlet end conditions and pa-
rameters given by p = 0.2 = 8 =2 and a = —2. The domain D is
now obtained by joining the end points of I' by a straight line. See
Fig. 2 for a description of the symbols used. Top row: Half circle
scatterer. Bottom: Quarter circle scatterer.

in this case, but note that the solution of the auxiliary problem will have a stronger
singularity at dI' compared to the case when D is a circle. We therefore designed
two new domains D where arcs of circles are used to more smoothly extend IT" to
obtain D. Results for these rounded domains are shown in Fig. 6. Eigenvalues for
the hemisphere are now accurately predicted, and two eigenvalues are determined
also for the quarter circle.

Using the eigenvalue solver it is possible to examine the changes in the predicted
eigenvalues of the modified far field operator as the parameters in the surface model
change. For example, for the domain shown in Fig. 2 (a half circle scatterer with
D a circle), we have examined how the first five eigenvalues in magnitude depend
on «, 8 and u in Fig. 7. One-by-one the parameters «, 8 and u are varied from
their base value a« = —2 and f = pu = 2. For the parameter o we see that the
eigenvalues sensitive to changes only for a greater than approximately minus one,
whereas for the other parameters the eigenvalues change throughout the range of
the parameters considered.

The changes in the eigenvalues predicted in Fig. 7 are, of course, seen in the
eigenvalues calculated via the modified far field equation. In Fig. 8 we focus on
the largest pair of eigenvalues calculated by solving the modified far field equation
when o = —2 and g = 2 and § = 0.4,0.5,0.6. The large change in the eigenvalues
is reflected in the obvious shift in the peaks of the graphs.

7. Conclusion. In this paper we have examined a new set of target signatures
based on eigenvalues for a thin inhomogeneity modeled by generalized transmission
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FIGURE 6. An example of non-circular domains D containing I'.
These domains are smoother than those in Fig. 5 and allow the
approximation of more eigenvalues (the same parameters are used).
Top row: Half circle scatterer. Bottom: Quarter circle scatterer.
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FIGURE 8. Predictions of the eigenvalues for the problem when
a=—-2and g = 2 and B = 0.4,0.5 and 0.6. The shift in the
eigenvalues predicted in Fig. 7 (middle graph) is evident in the
large translation of the peaks for the three cases.

conditions. Concentrating on the theory, we have proved a new uniqueness result
and shown that the eigenvalues can be determined from the solution of a modified
far field operator. Limited numerical results show that this determination can
be carried out using a discrete modified far field equation and noisy data. More
numerical testing is needed to determine how to obtain the domain D that provides
an accurate determination of the eigenvalues in a given case.
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