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Abstract—Generalized integrated interleaved (GII) codes nest
a set of linear block codewords to generate codewords belonging
to stronger codes. They are among the best error-correcting
codes for next-generation hyper-speed digital communications
and storage. Serial encoders for GII codes based on BCH codes
have been previous investigated. They consist of BCH encoders
whose inputs and outputs are multiplied by vectors decided by
the nesting scheme. However, parallel GII encoders for high-
speed systems can not be designed by directly extending serial
encoders due to the unique feature that BCH codes of different
error-correcting capabilities are involved. Moreover, GII decoder
complexity and latency can be greatly reduced by sharing the
encoder to compute short remainders for syndrome computation.
Although previous resource-shareable BCH encoders can be
utilized to implement resource-shareable GII encoders, they are
all serial. This paper first proposes a low-complexity scheme to
handle the different error-correcting capabilities of the involved
codes and align the input and parity symbols for parallel
processing. Then two efficient parallel resource-shareable BCH
encoder architectures to be used as GII encoder components
are developed. The first design is achieved by deriving parallel
register state update formulas for concatenated linear-feedback
shift registers (LFSRs). Through reformulating the remainder
polynomial divisions, the second design allows the inputs to
be added to different LFSR taps, and accordingly reduces the
complexity by a significant portion. For an example 160-parallel
GII-BCH encoder considered for Flash memory applications, the
second proposed design requires 14% smaller area compared to
the first one. Besides both of them lead to around 50% latency
reduction in the nested syndrome computation with small area
overheads compared to the best possible alternative design.

Index Terms—BCH codes, error-correcting codes, generalized
integrated interleaved codes, parallel resource-shareable encoder.

I. INTRODUCTION

For next-generation digital storage and communications,
such as Flash memories and optical communications, error-
correcting codes achieving hyper throughput with high coding
gain are needed. Generalized integrated interleaved (GII) codes
[1]–[4] are excellent candidates for such systems. A GII [m, v]
code nests m > 1 Reed-Solomon (RS) or BCH sub-codewords
to form codewords of v (v < m) stronger RS or BCH codes.
Decoding is carried out individually on each sub-codeword
most of the time to achieve hyper throughput. Also more errors
can be corrected by utilizing the nested codewords.

Much research has been carried out on GII decoder design
recently [5]–[8]. However, the design of GII encoder has only
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been investigated in [9], [10] and both of them are serial
architectures. For a GII [m, v] code, the encoder consists of
m individual RS/BCH encoders of different error-correcting
capabilities. The inputs and outputs of the RS/BCH encoders
are multiplied by vectors according to the nesting scheme. The
design of GII-BCH encoders faces more challenges compared
to that of GII-RS encoders since the nesting is defined by
polynomials instead of finite field elements. In [10], an alter-
native nesting scheme is developed to reduce the degree of the
polynomials involved in the vectors for encoding.

Highly-parallel architectures are needed to realize the speed
potential of GII codes. This paper focuses on parallel GII-
BCH encoder design since it is more involved. Our proposed
architectures can be easily extended to GII-RS codes. Parallel
BCH encoders have been well-studied [11]–[18]. However,
the design of parallel GII-BCH encoders faces many new
challenges that do not exist for individual BCH encoders.
Zeros need to be padded to the input polynomials of BCH
encoders to make the total number of input coefficients a
multiple of the parallelism, L. Due to the differences in the
dimensions of the v nested codewords, different numbers of
zeros need to be padded to the m BCH encoder inputs in the
GII encoder and the outputs are generated at different clock
cycles. On the other hand, the input and output polynomial
coefficients need to be aligned according to their degrees when
they are added up in the vector multiplications. Besides, the
polynomials in the vectors to be multiplied to the BCH encoder
inputs and outputs have different degrees according to the
nesting scheme. This makes the coefficient alignment an even
more challenging issue to solve.

In many digital communication and storage systems, the
error-correcting encoder and decoder are not activated at the
same time. In this case, the encoder can be shared to reduce
the complexity of the decoder. It was proposed in [19] to
utilize the multi-mode BCH encoder from [20] developed
using z-transform to compute short remainder polynomials,
from which the syndrome computation for the first step of
BCH decoding can be greatly simplified. Such a resource-
shareable BCH encoder can be adopted to realize resource-
shareable GII encoders. In particular, the GII decoding consists
of two stages: sub-codeword and nested decoding. Syndrome
computation is the first step in both stages. The multi-
round nested decoding accounts for the majority portion of
the overall worst-case decoding latency, which needs to be
shortened for time-constraint memory systems. A resource-
shareable GII encoder would allow short reminder polynomials
over different factors of the BCH generator polynomials to be
computed simultaneously during the sub-codeword decoding.
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The remainders can be stored and directly used in the nested
decoding. As a result, such an encoder not only helps to reduce
the decoder area but also substantially shortens the nested
decoding latency.

The resource-shareable BCH encoder in [19] is serial and
it has large iteration bound, which decides the minimum
achievable critical path and hence the clock period. Although
it was shown in [21] that the encoding scheme can be modified
to reduce the iteration bound, the resulted parities are not
protected. Developing an L-parallel BCH encoder through
unfolding [22] further increases the iteration bound by L times.
On the other hand, the register state look-ahead approach [12]
that achieves parallel designs with much shorter critical path
for a traditional BCH encoder implemented by a single linear
feedback shift register (LFSR) can not be directly extended
to the resource-shareable encoder in [19] since it consists of
multiple concatenated LFSRs.

This paper first develops methodologies to solve the align-
ment issues of the coefficients for parallel GII-BCH encoding.
Then two low-complexity parallel resource-shareable BCH
encoder architectures to be utilized as GII-BCH encoder
components are proposed. Both of our architectures are based
on register state look-ahead computation and their critical
paths are much shorter than that of the architecture derived
by unfolding. In our first design, unlike that in previous work
for a single LFSR, a formula is developed to describe the state
update of the overall resource-shareable encoder with multiple
concatenated LFSRs by analyzing the effects of the input and
current register state on the next register state. Besides, the
complexity reduction achievable by applying transformations
on the concatenated LFSRs are analyzed and the structures of
the involved matrices are given. Instead of depending on the
z-transform, our second proposed parallel resource-shareable
BCH encoder is achieved by reformulating the generator
polynomial divisions to a set of iterative divisions by its
factors. As a result, the critical path is further shortened and
the complexity can be further reduced by modifying the input
taps of each concatenated LFSR. The critical paths of both
proposed designs are a small fraction of that of an unfolded
version of the serial architecture in [19]. For an example
160-parallel GII-BCH ([8,3]) encoder over GF (212) with
90% code rate considered for Flash memory applications, the
second proposed design requires 14% smaller area compared
to the first one under the same timing constraint and both
of them lead to around 50% latency reduction in the nested
syndrome computation compared to a GII encoder using the
best previous parallel BCH encoder [18].

The structure of this paper is as follows. In Section II, GII-
BCH encoding and serial resource-shareable BCH encoders
are introduced. Section III presents the coefficient alignment
scheme for enabling parallel GII encoding. The two proposed
parallel resource-shareable BCH encoders are detailed in Sec-
tion IV and V. Complexity analyses and comparisons are given
in Section VI and conclusions follow in Section VII.

II. BACKGROUND

A ([m, v], n) GII-BCH code is defined by using v + 1
BCH codes Cv(n, kv) ⊆ · · · ⊆ C1(n, k1) ⊂ C0(n, k0)

Algorithm 1 Systematic GII-BCH encoding algorithm
Input :d0(x), · · · , dm−1(x)
Output :[d0(x), p0(x)], · · · , [dm−1(x), pm−1(x)]
1) First-level BCH encoding
For i = m− 1,m− 2, · · · , v

Enc{di(x), g0(x)} → ci(x) = [di(x), pi(x)] (2)

2) Higher-level BCH encoding
For i = v − 1, v − 2, · · · , 0
• Compute fi(x)

fi(x) = π(i)(x) · [ci+1(x), · · · , cm−1(x)]′. (3)

• Generate p∗i (x)

Enc{di(x) + Uwv−i
(fi(x)), gv−i(x)} → [di(x), p∗i (x)].

(4)
• Compute pi(x)

pi(x) = p∗i (x) + Lwv−i
(fi(x)). (5)

of length n and dimension kv ≤ · · · ≤ k1 < k0 over
GF (2q). A GII codeword consists of m sub-codewords,
c0(x), c1(x), · · · , cm−1(x), each of which is a codeword of C0.
Besides, linear combinations of the sub-codewords as defined
below are codewords of the stronger codes C1, · · · , Cv [1], [2]

C ,{c(x) = [c0(x), · · · , cm−1(x)] : ci(x) ∈ C0,

c̃l(x) =
m−1∑
i=0

hl,i(x)ci(x) ∈ Cv−l, 0 ≤ l < v}.
(1)

In the above equation, hl,i(x) is the standard basis represen-
tation of αil, where α is a primitive element of GF (2q).

H(x) =


h0,0(x) h0,1(x) · · · h0,m−1(x)
h1,0(x) h1,1(x) · · · h1,m−1(x)

...
... · · ·

...
hv−1,0(x) hv−1,1(x) · · · hv−1,m−1(x)


is referred to as the nesting matrix.

Let g0(x), · · · , gv(x) be the generator polynomials of the
C0(n, k0), · · · , Cv(n, kv) BCH codes, respectively. Their de-
grees are denoted by w0, · · · , wv . Systematic GII encod-
ing can be carried out according to Algorithm 1 [2]. In
this algorithm,‘′’ denotes transpose. Enc{a(x), g(x)} repre-
sents traditional systematic BCH encoding that computes the
parity polynomial as the remainder of a(x)xdeg(g(x)) di-
vided by g(x), which is denoted by Rem(a(x)xdeg(g(x)))g(x).
Here deg(·) means the degree of the polynomial. Each
sub-codeword ci(x) of GII-BCH code is in the format of
[di(x), pi(x)], where di(x) and pi(x) are the data polyno-
mial and parity polynomial, respectively. The encoding of
cv(x), cv+1(x), · · · , cm−1(x) is carried out as traditional BCH
encoding and it is referred to as the first-level encoding in this
paper. The encoding of cv−1(x), · · · , c1(x), c0(x) is carried



3

D D D D

g0 g1 gw-2 gw-1

d(x)
c(x)

Fig. 1. Serial LFSR for (n, k) BCH encoding.

out according to (3)-(5) in Algorithm 1 and is called the
higher-level encoding. In (3),

π(i)(x) = (Γ(i)(x))−1i ·Θ
(i)(x) mod gi(x),

where Γ(i)(x) consists of row 0 through i − 1 and column 0
through i− 1 of H(x) (0 ≤ i < v) and Θ(i)(x) is composed
of row 0 through i − 1 and column i through m − 1 of
H(x). (Γ(i)(x))−1i denotes the i-th row of (Γ(i)(x))−1. La(·)
is the function that keeps the lowest a terms of the polynomial
and Ub(·) deletes the b lowest terms and divides xb from the
polynomial. Let f(x) = fn−1x

n−1 + fn−2x
n−2 + · · · + f0.

Then La(f(x)) = fa−1x
a−1 + fa−2x

a−2 + · · · + f0 and
Ub(f(x)) = fn−1x

n−b−1 + fn−2x
n−b−2 + · · · + fb. From

Algorithm 1, the dimension of ci(x) is k0 for v ≤ i < m and
kv−i for 0 ≤ i < v.

Let the error-correction capabilities of Cv, · · · , C1, C0 be
τv ≥ · · · ≥ τ1 > τ0. GII decoding consists of two stages
[2]. The first stage is traditional BCH decoding of individual
sub-codewords c0(x), c1(x), · · · , cm−1(x). The second-stage
nested decoding is activated when some sub-codewords have
more than τ0 errors. In the η-th (1 ≤ η ≤ v) nested decoding
round, assume that δη sub-codewords remain to be corrected.
First, higher-order syndromes of the nested codewords are
calculated as S̃(l)

j = ỹl(α
j+1) (0 ≤ l < δη, 2τη−1 ≤ j ≤

2τη − 1), where ỹl(x) =
∑m−1
i=0 hl,i(x)yi(x) and yi(x) is

the i-th received sub-codeword. Then these nested syndromes
are converted to higher-order syndromes S

(l)
j = yl(α

j+1)
for those δη corrupted sub-codewords by reversing the linear
combinations. From these higher-order syndromes, up to τη
errors can be corrected in each of the δη sub-codewords. This
process is repeated for up to δη ≤ v rounds. Since all the n
coefficients of ỹl(x) are needed for the polynomial evaluation,
the nested syndrome computation accounts for a significant
part of the nested decoding latency [6].

Serial architectures for GII encoders have been proposed
in [9], [10]. They consist of m serial BCH encoders, among
which m − v encoders are used to implement the first-level
encoding in (2) and the rest v encoders are responsible for
the computations in (4) for higher-level encoding. The inputs
and outputs of the BCH encoders are multiplied with π(i)(x)
according to (3). The degree of the polynomials in π(i)(x) is
reduced by using a row-echelon nesting matrix in [10]. To take
advantage of the high-speed potential of GII codes, parallel GII
encoders are needed. However, parallel GII encoder designs
have not been investigated so far although many work has
been done on developing parallel BCH encoders.

Let mj(x) be the minimal polynomial of GF (2q) [23]
that contains αj as a root. The generator polynomial of a
τ -error-correcting binary (n, k) BCH code over GF (2q) is

DDDD DD

0

1 1: ENC
0: DEC

or 1: ENC
0: DEC

Fig. 2. Serial resource-shareable (n, k) BCH encoder architecture.

g(x) = LCM(m1(x),m3(x), · · · ,m2τ−1(x)), where LCM
means the least common multiple. Let w = deg(g(x)) = n−k.
Rewrite the generator polynomial as g(x) = xw+gw−1x

w−1+
· · · + g1x

1 + g0, where gw−1, · · · , g1, g0 ∈ GF (2). A serial
LFSR architecture for implementing systematic BCH encoding
is shown in Fig. 1. During the first k clock cycles, the coeffi-
cients of the message polynomial d(x) is sent to the right-most
tap of the LFSR starting from the most significant coefficient.
After k clock cycles, the coefficients of Rem(d(x)xw)g(x) are
located in the registers. Then these coefficients are shifted out
through the bottom switch in Fig. 1 to form the parity part of
the codeword.

Parallel BCH encoders can be derived by applying look-
ahead computation to the register state of the LFSR [11]–[18].
Denote the state of the registers in Fig. 1 in clock cycle t by
r(t) = [rw−1(t), rw−2(t), · · · , r0(t)]′. Let u(t) be the input
of the encoder at clock cycle t. The register state in the next
clock cycle can be derived as

r(t+ 1) = Ar(t) + bu(t), (6)

where b = [gw−1, gw−2, · · · , g1, g0]′ and

A =


gw−1 1 0 · · · 0
gw−2 0 1 · · · 0

...
...

...
. . .

...
g1 0 0 · · · 1
g0 0 0 · · · 0


is referred to as a companion matrix. Substitute (6) back to
itself by p times, it can be derived that

r(t+ L) = ALr(t) + BLuL(t), (7)

where BL = [AL−1b, · · · ,Ab,b] and uL(t) =
[u(t), · · · , u(t + L − 2), u(t + L − 1)]′. From (7), an L-
parallel encoder can be derived. The register state can be
also transformed to r(t) = T × rT (t). Accordingly, AL

and BL in (7) are replaced by ALT = T−1ALT and
BLT = T−1BL, respectively [12]. Much work has been done
to find a transformation matrix T to reduce the gate count
and/or critical path of the matrix multiplications [12]–[17]. It
was found in [18] that adding the input to a different tap of
the serial LFSR leads to significant gate count reduction in the
parallel LFSR without affecting the critical path. The input tap
modification is also described by state transformation in [17].

In many digital storage and communication systems, the
encoder and decoder are not activated at the same time.
Hence, the encoder can be shared to simplify the computa-
tions in the decoder. By applying z-transform to the serial
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LFSR in Fig. 1, the long LFSR for BCH encoding is de-
composed into concatenated of short LFSRs for individual
minimal polynomials [20]. Accordingly, the architecture in
Fig. 2 [19] can be utilized to implement both encoding
and remainder computation. When the second inputs of the
AND gates are set to ‘1’, this architecture is basically the
multi-mode encoder from [20]. When those inputs are set
to ’0’, the remainders are computed. In this case, since the
input to each LFSR is added to the right-most tap, rj(x) =
Rem(Udeg(mj(x))(y(x))xdeg(mj(x)))mj(x), where y(x) is the
received codeword, are calculated by the LFSRs. Since
deg(Ldeg(mj(x))(y(x))) < deg(mj(x)), Rem(y(x))mj(x) =
rj(x)+Ldeg(mj(x))(y(x)). Denote Rem(y(x))mj(x) by r̄j(x).
If αj is a root of mj(x), then y(αj) = r̄j(α

j). As a result, the
syndromes for BCH decoding can be computed by evaluating
r̄j(x), which only has up to q instead of n coefficients as in
y(x).

Resource-shareable GII-BCH encoder can be achieved by
using multi-mode BCH encoders with concatenated LFSRs
to simplify the syndrome computation in GII decoding. The
worst-case latency of GII decoding is largely decided by the
multi-round nested decoding process and the nested syndrome
computation accounts for a significant portion of the latency
[6]. Fortunately, the generator polynomial gi(x) of Ci is
a factor of gj(x) for Cj (i < j). Hence, gj(x) can be
decomposed into gi(x) and other factors. The remainders over
those decomposed factors enable great reduction on the nested
syndrome computation latency.

The design of parallel resource-shareable GII-BCH en-
coders faces two major challenges. First, serial GII-BCH
encoders can not be directly extended to implement parallel
GII-BCH encoders. The reason is that zeros need to be padded
to the data coefficients for BCH encoding in the case that
the number of coefficients is not an integer multiple of the
parallelism, L. However, the numbers of data coefficients,
k0, k1, · · · , kv , in the sub-codewords are different. Different
numbers of zeros need to be padded to align the coefficients
with the same degrees when polynomials need to be added
up as required in (3), (4), and (5). Besides, the polynomials
in the π(i)(x) vectors have different degrees. This makes
the coefficient alignment even more complicated. The second
challenge lies in the parallel design of multi-mode resource-
shareable BCH encoders. Assuming g(x) is decomposed into
l factors, the iteration bound, T∞, of the serial design in
Fig. 2 consists of l + 1 XOR gates, l − 1 AND gates and
1 multiplexer. The minimum achievable clock period is lower
bounded by T∞. If unfolding [22] is applied to derive an L-
parallel architecture, the minimum achievable clock period is
dLT∞e. Although the register state update formula in (6) can
be used to describe each individual LFSR in the multi-mode
encoder of Fig. 2, the overall encoder can not be described by
a similar formula. This is because that the registers for each
LFSR are updated based on the contribution of all the registers
located in each of the previous LFSRs and the cumulative
sum of all the right-most register outputs is fed back to the
inputs of every LFSR through the multiplexer. Accordingly
it is difficult to apply the look-ahead computation to derive
parallel architectures.

0 3 3 3 3 3 4 4 4 4 4 5 5 5 5

1 1 1 1 1 3 3 3 3 3 4 4 4 4 4

0 0 1 1 1 1 1 3 3 3 3 3 4 4 4

0 0 1 1 1 1 1 3 3 3 3 3 4 4 4

clk:

clk:

clk:

clk:

Fig. 3. Clock cycle numbers in which the coefficients of sub-codeword i are
processed or generated by BCH encoder i (0 ≤ i < 4) in parallel ([4, 2], 15)
GII-BCH encoding with L = 5.

In the following, a polynomial coefficient alignment scheme
for parallel GII-BCH encoding is first developed. Then two
architectures for parallel multi-mode resource-shareable BCH
encoders are proposed. In the first proposed design, novel state
look-ahead formulas for the multi-mode BCH encoder are pro-
posed to achieve a low-complexity parallel resource-shareable
GII-BCH encoder with short critical path. By reformulating
the remainder computation in multi-mode BCH encoding, our
second GII-BCH encoder allows the input to be added to
different taps of the concatenated LFSRs and accordingly
achieves lower complexity and even shorter critical path for
larger parallelisms.

III. POLYNOMIAL COEFFICIENT ALIGNMENT FOR
PARALLEL GII-BCH ENCODING

For L-parallel encoding, the coefficients with the same
degree of x should be added up in the di(x) + Uwv−i

(fi(x))
and p∗i (x)+Lwv−i

(fi(x)) computations of (4) and (5), respec-
tively. However, the data polynomial di(x) has k0 coefficients
for v ≤ i < m and kv−i coefficients for 0 ≤ i < v.
Hence different numbers of zeros need to be padded before
the most significant data coefficients to make the total number
of coefficients sent to each BCH encoder a multiple of L.
It was found in [18] that the parallel BCH encoder can be
substantially simplified if the input is added to a different tap
of the corresponding serial LFSR. This requires zeros to be
padded after the least significant data coefficient and further
complicates the coefficient alignment. Besides, the higher-
level encoding needs to coordinate with the availability of the
relevant coefficients from the first-level encoding taking into
account the degrees of the polynomials in the π(i)(x) vectors.

The issues on the alignment of the coefficients for parallel
GII encoding can be further explained using a toy code. Let
us consider the encoder of a ([4, 2], 15) GII-BCH code over
GF (24) with [τ0, τ1, τ2] = [2, 3, 4] and L = 5. The nesting
matrix H(x) in row-echelon form [10] below is adopted

H(x) =

[
1 1 1 1
0 1 x x2

]
.

In this case, π(0)(x) = [1, 1, 1] and π(1)(x) = [x, x2]. For this
code, w0, w1, w2 are 8, 10, 14, respectively. Hence, c2(x) and
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c3(x) have 8 parities each. They are generated by using BCH
encoder 2 and 3, each of which is a (15, 7) encoder. c1(x) and
c0(x) have 10 and 14 parities, respectively. They are computed
utilizing BCH encoder 1 and 0, which are a (15, 5) encoder
and a (15, 1) encoder, respectively.

Each data or parity symbol in a codeword of this GII code
is denoted by a square in Fig. 3. The digits in the squares
are the clock cycle numbers in which the coefficients of ci(x)
(0 ≤ i < 4) are processed or generated by BCH encoder i.
For example, each of c2(x) and c3(x) has n − w0 = 7 data
symbols. Hence Ld7/Le − 7 = 3 zeros are padded before the
most significant data coefficient. These inputs are processed in
clock cycle 0 and 1. It was shown in [18] that the complexity
of the matrix multiplications in parallel single-LFSR BCH
encoders is minimized when the input is added to the L-th
tap from the most significant tap (MST) in the corresponding
serial LFSR, although L zeros need to be padded after the least
significant data coefficient. When this input-tap modification is
adopted, the padded zeros cost another clock cycle and hence
the first L = 5 parity symbols in the encoding of c3(x) and
c2(x) are generated in clock cycle 3 as shown in Fig. 3. For
conciseness, the zero paddings are not shown in Fig. 3.

To generate c1(x), [d2(x), d3(x)]′ need to be multiplied
with π(1)(x) = [x, x2] according to (3). Then the higher
coefficients of the product, Uw1(f1(x)), are added to those of
d1(x) according to (4) to produce the input to the (15, 5) BCH
encoder 1. Due to the multiplications of x and x2, Uw1

(f1(x))
has 2 more coefficients than d1(x). Since d(2 + deg(d1(x)) +
1)/Le − d(deg(d1(x)) + 1)/Le = 1, the coefficients of d1(x)
need to wait until clock cycle 0 + 1 = 1 to be processed.
Besides, Ld(1+deg(d1(x))+1)/Le−(1+deg(d1(x))+1) = 4
and Ld(2 + deg(d1(x)) + 1)/Le − (2 + deg(d1(x)) + 1) = 3
zeros need to be padded before the most significant coefficients
of d2(x) and d3(x), respectively, due to the multiplications
with x and x2 in order to align the coefficients with the same
degree of x in Uw1(f1(x)) for the computations in (4). When
the input is added to the MST of the LFSRs in BCH encoder
1, the first L coefficients of p∗1(x) are computed in clock cycle
2. However, they need to be delayed until the corresponding
coefficients of Lw1

(f1(x)) are available as in (5). Hence, the
first L coefficients of p1(x) are generated in clock cycle 3.
Similarly, the clock cycle numbers in which the coefficients
of d0(x) are processed and p0(x) are generated can be derived
as shown in Fig. 3.

In the GII encoder, BCH encoder v through m − 1 are
implemented by single LFSRs and the inputs of these encoders
can be always added to the L-th tap instead of the MST to
reduce the corresponding parallel encoder complexity. To en-
able resource-shareable GII encoding, BCH encoder 0 through
v− 1 consist of concatenated LFSRs. Whether the inputs can
be added to a none-MST in these encoders depends on the
design as will be detailed in Section IV and V.

Because of the variations on the sub-codeword dimensions
and polynomial degrees in the π(i)(x) vectors, the coefficients
of ci(x)(1 ≤ i < 4) may need to be delayed for different
numbers of clock cycles before they are processed by BCH
encoders for generating different sub-codewords as can be
observed from Fig. 3. For example, the coefficient of x13 in

D D

output

D

input 

D

Fig. 4. Proposed L-parallel alignment block (AB)-(ρ, σ, θ)

c2(x) is processed in clock cycle 0 and those of x12 through x9

are processed in clock cycle 1 in BCH encoder 2 to generate
the parity part of c2(x). However, c2(x) is multiplied with
x before it is used to form the input to BCH encoder 1 to
compute p1(x). Therefore, the coefficients of x13 through x9

from c2(x) should be added to the coefficients of x14 through
x10 from c1(x) in clock cycle 1 to form the inputs of BCH
encoder 1. This requires the coefficient of x13 from c2(x)
to be delayed and combined with those of x12 through x9.
Additionally, it is possible that the coefficients to be processed
in the same clock cycle for higher-level encoding are available
in non-adjacent clock cycles. For example, in Fig. 3, the
coefficient of x8 of c2(x), which is available in clock cycle
1, and those of x7 through x4, which are available in clock
cycle 3, form the L = 5 symbols that are added with the
coefficients of x9 through x5 from p∗1(x) in clock cycle 3 to
compute p1(x) according to (5).

All the alignment issues faced by parallel GII-BCH encod-
ing can be addressed by the proposed alignment block (AB)
shown in Fig. 4. It has three parameters. ρ is the number of
split symbols on the bottom branch. σ and θ are the numbers
of ρ-bit registers and L-bit registers on the left and right sides,
respectively. The registers on the left part allow the coefficients
available from different clock cycles to be put together into
the same packet of L coefficients. The registers on the right
part further hold the scrambled packet as needed before it is
processed by the following computations.

Take the coefficients of c2(x) utilized for c0(x) encoding
in Fig. 3 as an example. To compute Lw2

(f0(x)), since
π(0) = [1, 1, 1], the coefficients of x13 through x9 and x8

through x4 in c2(x) need to be added to the coefficients of the
same degrees in c0(x) in clock cycles 3 and 4, respectively.
For the coefficients of x13 through x9, x13 is available in
clock cycle 0 and the other four are available in clock cycle
1. Hence, the 5 input symbols are split to 1 and 4 symbols, and
the symbols on the bottom go through 1-0=1 register. Since
this packet is added to the symbols of c0(x) in clock cycle
3, the scrambled packet goes through 3-1=2 more registers.
Hence, an alignment with (ρ, σ, θ) = (1, 1, 2) is needed. For
the coefficients of x8 through x4, parts of the coefficients are
data and the other parts are parities. When the input tap to
the LFSR is shifted, the parities may not be generated in
the clock cycle right after the data coefficients are sent in
to decoder 2, as shown in the example of Fig. 3. These cases
can be also handled by the proposed AB. For aligning this
packet, since the coefficient of x8 is available in clock cycle
1 and the others in this packet are generated in clock cycle
3, the bottom input symbols of the corresponding AB should
go through 3-1=2 registers. These coefficients are added to
those of c0(x) in clock cycle 4. Therefore, the symbols need
to go through 4-3=1 more register. Accordingly, an alignment
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Fig. 5. Parallel GII-BCH ([4, 2], 15) encoder with L = 5 corresponding to
the clock cycle number chart in Fig. 3

with (ρ, σ, θ) = (1, 2, 1) is required for this packet. The
alignments needed for different packets from the same sub-
codeword have the same ρ value and registers can be shared.
Therefore, take the maximum of the σ and θ values needed for
different packets, a single AB can be utilized. Hence, an AB-
(ρ, σ, θ) = (1, 2, 2) block is needed to align the coefficients
of x13 through 1 of c2(x) for computing Lw2(f0(x)), and the
control signals of the multiplexers in the AB change according
to the number of delays needed.

Once the clock cycle number chart is decided, a parallel GII
encoder can be designed utilizing the proposed AB shown
in Fig. 4. Take the clock cycle number chart in Fig. 3
as an example, the corresponding parallel GII-BCH encoder
architecture is developed as illustrated in Fig. 5. The ABs
on the left of the BCH encoders are used to handle the
coefficient alignment for Uwv−i(fi(x)) computation and those
to the right are responsible for aligning the coefficients for
Lwv−i

(fi(x)) calculation. As explained in the previous para-
graph, an AB-(1, 2, 2) is utilized to align the c2(x) coefficients
for Lw2

(f0(x)) calculation. Take the coefficient alignment of
c1(x) for Lw2(f0(x)) calculation as another example. Aligning
the coefficients of x13 through x9 with those of c0(x) requires
an AB-(4, 2, 0) and the alignment for those of x8 through 1
needs an AB-(4, 1, 0). By taking the maximum of the σ and
θ values of these ABs, the coefficient alignment of c1(x) for
Lw2

(f0(x)) calculation can be handled by an AB-(4, 2, 0). By
following the same procedure, the parameters for the rest of
the ABs located at the both sides of Fig. 5 can be determined.

To facilitate the storage or transmission of the codeword, the
last data coefficient packet should be output in the clock cycle
right before the first parity coefficient packet is generated.
Besides, the coefficient of the same degree from each sub-
codeword should appear at the output in the same clock
cycle. Such synchronization can be handled by adjusting the
parameters of the ABs and/or adding delay elements. Take the
encoder in Fig. 5 as an example. The data coefficients for c0(x)
are sent to BCH encoder 0 in clock cycle 0. They are delayed
by two clock cycles so that they appear as the systematic
part of c0(x) at the output in clock cycle 2 right before the
first packet of parity coefficients appear in clock cycle 3. To
synchronize the coefficients of c1(x) with those of c0(x) of
the same degree at the output of the GII encoder, the data
coefficients of c1(x) need to be delayed for one more clock
cycle since they are sent to the BCH encoder in clock cycle 1
according to Fig. 3. This additional delay can be realized by

increasing the θ parameter of the AB at the output of c1(x)
by one. As a result, an AB-(4, 2, 1) is utilized as shown in
Fig. 5. The data coefficients of c2(x) and c3(x) also need
to be delayed by two clock cycles to be synchronized at the
outputs. These delays can be implemented by the AB-(1, 2, 2)
blocks since they already have θ = 2 registers on the right
side of Fig. 4. Hence, no further adjustment is needed.

To reduce the complexity, the ABs with the same input
signal can share registers. BCH encoders v through m−1 in a
GII-BCH encoder pass their inputs to be the systematic parts
of their outputs. Hence, the ABs connected to the input and
output of each of these encoders actually have the same input
signals and they can share registers. For example, the AB-
(1, 1, 0), AB-(1, 2, 0), and AB-(1, 2, 2) connected to the input
and output of BCH encoder 2 in Fig. 5 can share registers.
max{σ} = max{1, 2, 2} = 2 registers are needed to delay the
split input coefficients and max{θ} = max{0, 0, 2} = 2 are
required to further delay the packets.

IV. PARALLEL RESOURCE-SHAREABLE GII-BCH
ENCODER BASED ON REGISTER STATE LOOK-AHEAD

A parallel resource-shareable GII encoder can be achieved
by employing parallel resource-shareable BCH encoders.
However, the design of such parallel BCH encoders have not
been previously investigated. Unfolding the serial resource-
shareable BCH encoder in [19] to derive a parallel architecture
would lead to overwhelmingly long critical path when the
parallelism is large. Besides, although look-ahead computation
can be applied to (6) to derive parallel architectures for a single
LFSR, it is not applicable to the concatenated LFSRs in Fig. 2.
This is because, unlike that for individual LFSRs, the update
of the registers in an LFSR in Fig. 2 is dependent on the other
LFSRs. To derive a parallel architecture for resource-shareable
BCH encoders, a single formula describing the update of all
registers in every LFSR of Fig. 2 is needed.

Assume that the generator polynomial of the BCH code
is decomposed into l shorter polynomials as g(x) =
β0(x)β1(x) · · ·βl−1(x) and deg(βj(x)) = γj (0 ≤ j < l).
The architecture in Fig. 2 can be utilized to implement the
serial encoding of this code if the j-th LFSR from the
left is configured according to βj(x). Let βj(x) = xγj +

β
(j)
γj−1x

γj−1 + · · · + β
(j)
0 , where β

(j)
γj−1, · · · , β

(j)
0 are binary

bits. Let b(j) = [β
(j)
γj−1, β

(j)
γj−2, · · · , β

(j)
0 ]′ and A(j) be a

γj × γj companion matrix whose left-most column is b(j).
C

(j)
i is a γj × γi matrix whose left-most column is also

b(j) for j = 1, 2, · · · , l − 1 and 0 ≤ i < j, but the rest
columns are zero. Also denote the register state at clock cycle
t by r(t) = [r(l−1)(t), r(l−2)(t), · · · , r(0)(t)], where r(j)(t)
includes the state of the γj registers in the j-th LFSR.

From Fig. 2, the register state at clock cycle t + 1 is
dependent on the register state and the multiplexer output
at clock cycle t. Denote the multiplexer output by u(t). The
register update can be described in general as

r(t+ 1) = Âr(t) + b̂u(t). (8)

The current register state affects the next register state through
the output of the first XOR gate located at the output of the
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right-most register in each LFSR. The horizontal input of this
XOR gate decides the contribution of the registers in the same
LFSR, which can be described by A(j). The vertical input of
this XOR gate determines the effect of the registers from the
other LFSRs, which can be represented by C

(j)
i . Accordingly,

Â is in the format of

Â =


A(l−1) C

(l−1)
l−2 · · · C

(l−1)
1 C

(l−1)
0

0 A(l−2) · · · C
(l−2)
1 C

(l−2)
0

...
...

. . .
...

...
0 0 · · · A(1) C

(1)
0

0 0 · · · 0 A(0)

 (9)

Since u(t) contributes to each LFSR separately through the
right-most XOR gate, b̂ = [(b(l−1))′, (b(l−2))′, · · · , (b(0))′]′.
For an (n, k) serial BCH encoder, u(t) equals to the data input
in the first k clock cycles and is connected to the feedback
from the registers in the next n − k clock cycles when the
parities are shifted out. Since the feedback is the XOR result of
the right-most XOR gate in every LFSR, u(t) can be described
as

u(t) =

{
d(t) in the first k clock cycles
Iβ · r(t) in the rest n− k clock cycles

. (10)

Here d(t) is the t-th data symbol, and Iβ =
[1, 0, · · · , 0︸ ︷︷ ︸

γl−1−1

|1, 0, · · · , 0︸ ︷︷ ︸
γl−2−1

| · · · |1, 0, · · · , 0︸ ︷︷ ︸
γ0−1

].

By substituting (8) back to itself L times, a formula for
L-parallel resource-shareable BCH encoding is derived as

r(t+ L) = ÂLr(t) + B̂LuL(t), (11)

where B̂L = [ÂL−1b̂, · · · , Âb̂, b̂]. In the first dk/Le clock
cycles, the data coefficients are processed and uL(t) =
[u(t), u(t+ 1), · · · , u(t+L−1)]′ = [d(t), d(t+ 1), · · · , d(t+
L−1)]′. In later clock cycles, the entries of uL(t) are decided
by the register state. To achieve parallel processing, uL(t)
should be written in the format such that it only depends on
r(t). From (10), u(t + 1) = Iβr(t + 1). Replacing r(t + 1)
by the formula in (8), it can be derived that u(t + 1) =
Iβ(Â + b̂Iβ)r(t). The formulas for u(t + 2), u(t + 3), · · ·
in terms of r(t) can be derived in a similar way. As a result,

uL(t) =

{
dL(t) in the first dk/Le clock cycles
V · r(t) in the rest d(n− k)/Le clock cycles

,

(12)
where V = [v′0,v

′
1, · · · ,v′L−1]′ and vη = Iβ · (Â + b̂ · Iβ)η

(0 ≤ η < L).
Inspired by the schemes in [15]–[17], the register state can

be transformed to r(t) = T ·rT (t) to reduce the complexity of
the pre-processing matrix, B̂L, in parallel resource-shareable
encoders. Here T is an invertible matrix. For a traditional BCH
encoder, using transformation matrix T = AL [17] converts
(7) to rT (t + L) = ALrT (t) + (T−1BL)uL(t). For long
BCH codes, L is usually less than the length of the generator
polynomial. In this case, AL has L dense columns since A is
a companion matrix. More importantly, using T = AL makes
T−1BL consist of only columns with single nonzero entries.

LFSR

0

LFSR

l-1

LFSR

1

1: ENC 

0: DEC

L

0

1

Fig. 6. Proposed parallel resource-shareable BCH encoder based on register
state look-ahead

D

L

1

0

L

1: ENC

0: DEC

B(j)
LS

B(j)
LT

(AL)(j)

Fig. 7. Architecture for the j-th parallel LFSR in resource-shareable encoder

As a result, using T = AL leads to one of the simplest designs
for parallel single LFSR. In the case of the resource-shareable
BCH encoder that consists of multiple concatenated LFSRs,
A becomes Â. Although Â itself is not a companion matrix,
it consists of blocks of companion matrices and matrices with
single nonzero columns. As a result, using T = ÂL as the
transformation matrix for parallel resource-shareable encoder
would intuitively also lead to great complexity reduction.

When T = ÂL, (11) becomes

rT (t+ L) = ÂLrT (t) + B̂LTuL(t), (13)

where B̂LT = Â−LB̂L. Besides, the bottom formula for
uL(t) in (12) becomes

uL(t) = Vr(t) = VT · rT (t). (14)

Accordingly, the T matrix multiplication for reversing the reg-
ister transformation can be combined with the V matrix mul-
tiplication as a single constant matrix multiplication by VT =

VT. Rewrite B̂LT as [(B
(l−1)
LT )′, (B

(l−2)
LT )′, · · · , (B(0)

LT )′]′,
where the dimension of (B

(j)
LT ) is γj × L. From simulations,

it was found that (B
(j)
LT ) for 1 ≤ j < l are all zero when

γ0 ≥ L. Besides, column i of B
(0)
LT (0 ≤ i < L) has a single

nonzero entry at row i. Intuitively, this is analogues to the
simplification on the pre-processing matrix achieved by using
T = AL for single LFSR.

To construct a parallel resource-shareable BCH encoder,
each parallel LFSR needs to have its own register update
equation. Divide ÂL into submatrices (AL)(j) and (CL)

(j)
i

in the same manner as that in (9). Multiplying out the
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components of the matrices in (13), it can be derived that

r
(l−1)
T (t+ L) =(A

L
)
(l−1)

r
(l−1)
T (t)+B

(l−1)
LT uL(t)+(CL)

(l−1)
l−2 r

(l−2)
T (t)+

· · ·+(CL)
(l−1)
1 r

(1)
T (t)+(CL)

(l−1)
0 r

(0)
T (t)

...

r
(1)
T (t+ L) =(A

L
)
(1)

r
(1)
T (t) + B

(1)
LTuL(t) + (CL)

(1)
0 r

(0)
T (t)

r
(0)
T (t+ L) =(A

L
)
(0)

r
(0)
T (t) + B

(0)
LTuL(t)

,

(15)
From (15), an L-parallel resource-shareable BCH encoder
architecture can be developed as shown in Fig. 6. The details of
each LFSR block are shown in Fig. 7. For encoding, the output
of the LFSRs are multiplied with the (CL)

(j)
i matrices and

the results are added to later LFSRs according to (15). For the
remainder computations needed in the decoding, the second
inputs of the AND gates in Fig. 6 are ‘0’, and each LFSR
operates separately. As it was mentioned previously, B(j)

LT for
1 ≤ j < l are zero. Hence, the B

(j)
LT multiplication blocks in

LFSR 1 through l−1 can be deleted. The received polynomial
is not multiplied with any power of x in the remainder
computation for decoding. This is equivalent to adding the
input to the leftmost tap in the serial LFSR architecture in Fig.
1. Accordingly, the pre-processing matrix in the j-th LFSR of
Fig. 6 becomes B

(j)
LS , which has one single nonzero entry in

each column when L ≤ γj and consists of a γj × γj identity
part when L > γj [18].

Two types of paths need to be considered to decide the
critical path of the proposed encoder in Fig. 6. The first
type starts from the outputs of the LFSRs, goes through the
(CL)

(j)
i matrix multiplications and AND gates, and ends at

the registers in the LFSRs after the XOR tree. The second
type starts from the output of the last LFSR, goes through
the VT matrix multiplication and the multiplexer to generate
uL(t), and then passes the computation units in the LFSRs.
The relative lengths of these two types of paths are decided
by the data paths of (CL)

(j)
i vs VT matrix multiplications.

From simulations, (CL)
(j)
i has min(L, γi) nonzero columns.

Hence, the maximum number of nonzero columns among
all the (CL)

(j)
i matrices is max(min(L, γi)). Decompose

VT into VT = [V
(l−1)
T ,V

(l−2)
T , · · · ,V(0)

T ], where V
(j)
T is

a L × γj binary matrix. Simulations also showed that V
(j)
T

(0 ≤ j < l) consists of min(2L, γj) nonzero columns. Since∑l−1
j=0 min(2L, γj) > max(min(L, γi)), the second type of

paths is the critical path of the overall encoder.

The above design is developed by applying state look-ahead
on the serial multi-mode encoder in Fig. 2. The input of each
LFSR in this figure can only be added to the MST. If the
input is added to an alternative tap, the signal sent to the next
LFSR would be different and the corresponding output p(x)
would not be the correct parities. As a result, the input-tap
modification technique in [18] can not be employed to reduce
the number of ‘1’s in (CL)

(j)
i . For larger γj , (CL)

(j)
i matrix

multiplications account for a significant portion of the overall
encoder area.

V. PARALLEL RESOURCE-SHAREABLE GII-BCH ENCODER
BASED ON ALGORITHMIC REFORMULATION

Although our first parallel resource-shareable BCH encoder
proposed in the previous section can achieve much shorter
critical path than the unfolded version of [19], it has two
limitations. First, as mentioned earlier, the input of each
decomposed LFSR in Fig. 2 must be added to the MST and
the complexities of (CL)

(j)
i matrix multiplications can not

be simplified. Through algorithmic reformulations, our second
design proposed in this section allows input-tap modifications
and makes some of the C

(j)
i (0 ≤ i < j, 1 ≤ j < l) in

(9) have a single nonzero entry. This substantially reduces
the number of ’1’s in the ÂL matrix for parallel processing.
Secondly, as discussed previously, the longest path in Fig. 6 is
the feedback path that includes the VT matrix multiplication.
By eliminating the VT matrix multiplication, our second
design also has shorter critical path. Although polynomial
multiplication post-processing is needed, the overall area of
our second encoder is substantially smaller than that of the
first proposed design in the case of larger L for high-speed
applications.

The BCH encoding with generator polynomial g(x) =
β0(x)β1(x) · · ·βl−1(x) does not have to be decomposed by
utilizing the z-transform as in [20]. Assume that

d(x)xγ0 =q0(x)β0(x) + p0(x)

q0(x)xγ1 =q1(x)β1(x) + p1(x)

...
ql−2(x)xγl−1 =ql−1(x)βl−1(x) + pl−1(x),

(16)

where qi(x) and pi(x) are the quotient and reminder, respec-
tively, from the above division by βi(x). Substitute the second
equation of (16) into the first one scaled by xγ1 .

d(x)xγ0+γ1 = q1(x)β0(x)β1(x) + p0(x)xγ1 + p1(x)β0(x).

By repeating a similar scaling and substitution process for the
rest of the equations in (16), it can be derived that

d(x)xw = ql−1(x)β0(x)β1(x) · · ·βl−1(x) + p(x),

where

p(x)=

(
· · ·
((
p0(x)xγ1 +p1(x)β0(x)

)
xγ2 + · · ·

)
· · ·

)
xγl−1

+pl−1(x)β0(x)β1(x) · · ·βl−2(x).
(17)

and w = γ0 +γ1 + · · ·+γl−1. It can be easily proved that the
degree of the p(x) computed in (17) is less than w. Hence,
p(x) equals the remainder polynomial, Rem(d(x)xw)g(x),
needs to be computed by the BCH encoding.

Our proposed reformulated resource-shareable BCH encod-
ing consists of two stages. The first stage implements the poly-
nomial divisions according to (16). The second stage utilizes
the remainders generated from the first stage to compute the
parities according to (17). A serial architecture for the first
stage is shown in Fig. 8. It shares similar concatenated LFSRs
as the one in Fig. 2. However, the input u(t) is only sent to
the first LFSR and there is no feedback from the last LFSR to
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Fig. 8. Stage 1 of the proposed serial resource-shareable BCH encoder based
on algorithmic reformulation.
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Fig. 9. Stage 1 of the proposed L-parallel resource-shareable BCH encoder
based on algorithmic reformulation.

the previous LFSRs. The polynomial multiplication needed for
the second stage can be implemented by architectures similar
to that of finite impulse response (FIR) filters [22].

In Fig. 8, although u(t) is not sent to every LFSR, it is
included in the output of first LFSR. The inputs of the right-
most XOR gate in every LFSR consist of u(t) and the outputs
of the right-most registers of all the previous LFSRs. Since
these inputs are the same as those of the right-most XOR
gate in each LFSR shown in Fig. 2, the state update of all
registers in Fig. 8 can be described by a single formula as in
(8) with the same Â and b̂. Accordingly, the formula for L-
parallel processing of our second encoder is the same as (11),
except that uL(t) is simplified to dL(t). Similarly, ÂL and
B̂L can be decomposed to blocks of submatrices, and a set of
equations in the same format as (15) can be used to describe
parallel processing. As a result, a parallel architecture for the
first stage of the encoder can be developed as shown in Fig.
9.

The equations in (16) can be reformulated to further reduce
the parallel encoder complexity. For a LFSR whose length is
w, d(x)xw is divided by the configuration polynomial of the
LFSR when the input d(x) is added to the MST. Adding the
input to the δ-th tap from the MST implements the division by
d(x)xw−δ . Nevertheless, the same result of dividing d(x)xw

can be derived by padding δ zeros after the least significant
coefficient of d(x), which effectively carries out the division
on (d(x)xδ)xw−δ = d(x)xw. It was found in [18] that adding
the input to a different tap of the LFSR changes the b vector
in (6) and leads to a much simpler BL matrix for parallel
processing. To take advantage of the input-tap modification,
our second resource-shareable BCH encoder multiplies the
divisor in the j-th (0 ≤ j < l) equation of (16) by x−δj ,
which translates to shifting the input of the j-th LFSR by δj
taps. The same parity polynomial p(x) is computed provided

that δ =
∑l−1
j=0 δj zeros are padded to d(x) and the formula

in (17) is modified to

p(x)=

(
· · ·
((
p̂0(x)xγ1−δ1 +p̂1(x)β0(x)

)
xγ2−δ2 +· · ·

)
· · ·

)
xγl−1−δl−1

+p̂l−1(x)β0(x)β1(x) · · ·βl−2(x),
(18)

where p̂j(x) is the remainder generated by LFSR j whose
input is shifted by δj taps. Note that these p̂j(x) are different
from the pj(x) in (16). All the δ zeros are padded to d(x),
the input of LFSR 0. No zero is padded to the inputs of the
other LFSRs.

Unlike the first proposed resource-shareable BCH encoder,
the input to LFSR j can be shifted by δj > 0 taps in
our second design. The C

(j)
i submatrices in the Â matrix

of (9) describe how the current state of the registers affect
the next state. If the addition of the input to LFSR j for
1 ≤ j < l in Fig. 9 is shifted by 0 < δj ≤ L taps,
each C

(j)
i (0 ≤ i < j) becomes a matrix that has a single

nonzero entry in the δj-th row of the first column. Moreover,
all C

(j′)
i with j′ > j and 0 ≤ i < j become zero. These

matrices are much simpler than the C
(j)
i with a dense column

in the first proposed design. Such sparse C
(j)
i submatrices

lead to simplified (CL)
(j)
i submatrices for parallel processing.

It can be derived that the lowest complexity of (CL)
(j)
i is

achieved by shifting the input to the j-th LFSR by L taps
if γj ≥ L and by γj taps when γj < L. The latter case is
equivalent to adding the input to the least significant tap of
the LFSR. Following similar analysis, it can be found that
the complexity of the B̂L matrix multiplication in our second
design is similar to that in the first proposed encoder if the
input to LFSR 0 is shifted by L or more taps. Besides, although
this second design requires polynomial multiplications in the
second stage, it does not need the VT matrix multiplication.
Overall, reformulating the encoding process and modifying
the input taps of the LFSRs lead to significant complexity
reduction in the L-parallel design, especially when L is large.
Also due to the elimination of the VT matrix, the critical
paths of the overall parallel architecture now lie in the (AL)(j)

matrix multiplications in the LFSRs of Fig. 7. The other
components of the encoder can be pipelined. Since (AL)(j)

has smaller dimension than VT , the critical path of our second
proposed L-parallel resource-shareable BCH encoder is also
shorter than that of our first design.

To avoid additional coefficient alignment issues, the total
number of zeros, δ, to be padded after the least significant
coefficient of the data input, d(x), should be an integer
multiple of L. If the last packet of data coefficients are sent to
the parallel BCH encoder in clock cycle a and the first packet
of parity coefficients are generated in clock cycle b, it means
that δ = (b − a − 1)L zeros are padded. As mentioned in
the previous paragraph, for j > 0, δj is set to L if γj ≥ L
and to γj if γj < L. On the other hand, setting δ0 to L or
larger greatly simplifies B̂L, whose multiplication contributes
more to the encoder area compared to that of (CL)

(j)
i . If

δ0 = δ −
∑l−1
j=1 δj is smaller than L, then b − a − 1 should

be increased to the smallest value such that δ0 ≥ L. The



10

TABLE I
COMPLEXITIES AND CRITICAL PATHS OF 160-PARALLEL

RESOURCE-SHAREABLE BCH ENCODERS

poly [18] [19] unfoldedFProp. enc. 1FProp. enc. 2F

# of XORs g3(x)60069 (0.50) 58150 (0.48) 120902 (1.00) 98431 (0.81)
g2(x)39941 (0.54) 41786 (0.57) 73371 (1.00) 70962 (0.97)
g1(x)33313 (0.63) 35152 (0.66) 53246 (1.00) 46598 (0.88)

critical pathg3(x) 8 800 11 9
(# of gates)g2(x) 8 800 11 9

g1(x) 8 800 10 9

Rem. length for 690 354 354 354
nest. syn. comp.

F: gi(x) of the encoder is decomposed into gi(x) = g′i(x)g0(x).

parameters of the ABs need to be adjusted accordingly for
different values of b− a− 1.

VI. COMPLEXITY ANALYSES AND COMPARISONS

This section analyzes the complexities of the two proposed
encoders using a ([8, 3], 4095) GII-BCH code over GF (212)
with [t0, t1, t2, t3] = [28, 32, 39, 58] as an example. This code
is considered because its overall codeword length is around
4kB and the code rate is 90%, which are required for Flash
memory applications. For this code, the degrees of the gen-
erator polynomials, g0(x), g1(x), g2(x), g3(x), of the involved
BCH codes are [w0, w1, w2, w3] = [336, 384, 462, 690]. The
parallelism of the encoder is set to L = 160 in order to achieve
terabit/s throughput. Our encoders are also compared with the
best possible alternative designs in this section.

The encoder for this GII-BCH code with m = 8 and v = 3
has 8 BCH encoders. Encoder 3 through 7 implement BCH
encoding using g0(x). Encoder 0 through 2 are for BCH
codes with generator polynomials g3(x), g2(x), and g1(x),
respectively. Note that gi(x) is a factor of gj(x) if i < j.
The proposed resource-shareable BCH encoder designs can
be applied to any decomposition of the generator polynomial.
However, splitting a generator polynomial into more parts
leads to higher complexity. Decomposing g0(x) into shorter
factors would reduce the latency of the syndrome computa-
tion in the sub-codeword decoding. On the other hand, the
worst-case latency of the GII-BCH decoding is dominated
by the nested decoding process, which is carried out for
up to v = 3 rounds. To reduce the latency of the nested
syndrome computation as well as the area of the overall GII-
BCH encoder, BCH encoder 0 through 2 are implemented
by decomposing the corresponding generator polynomials into
two parts as g3(x) = g0(x)g′3(x), g2(x) = g0(x)g′2(x), and
g1(x) = g0(x)g′1(x), respectively, and encoder 3 through 7
are implemented by non-decomposed single parallel LFSRs
according to g0(x). In this case, the remainders from dividing
the received sub-codewords, yi(x) (0 ≤ i < m), by g0(x)
are used to compute the syndromes in the sub-codeword
decoding. The remainders of the nested received codewords,
ỹi(x) (0 ≤ i < v), divided by g′i(x) are utilized to calculate
the syndromes in each of the nested decoding rounds.

The complexity of our two proposed resource-shareable
BCH encoders are analyzed and the results are shown in Table
I. Decomposing the generator polynomial gi(x) (1 ≤ i ≤ v)

into two parts, the first proposed parallel BCH encoder shown
in Fig. 6 only consists of two LFSR blocks, one (CL)

(1)
0

matrix multiplication of dimension deg(g′i(x))×w0, and one
VT matrix multiplication of dimension L × wi. Each LFSR
block is implemented by the parallel architecture in Fig. 7.
To implement a matrix multiplication, the number of XOR
gates needed is estimated as the sum of the numbers of ‘1’s in
each row minus one. A 2-to-1 multiplexer has the same area
requirement as an XOR gate. The areas of a 2-input AND gate
and a register are estimated as 1/2 and 3 times, respectively,
the area of an XOR gate. The overall complexity in Table I is
derived using these assumptions. The encoders with longer
generator polynomials have more gates in the critical path
since their VT matrices are larger.

The architecture of the first stage of the second proposed
reformulated parallel resource-shareable BCH encoder shown
in Fig. 9 also has two LFSRs and one (CL)

(1)
0 matrix mul-

tiplication. However, it does not have the VT multiplication.
Let δ(i)0 and δ(i)1 be numbers of input taps shifted in LFSR 0
and 1, respectively, in BCH encoder i (0 ≤ i < v). For BCH
encoder 0, deg(g′3(x)) = 690 − 336 = 354 > L. Hence, δ(0)1

is set to L. Besides, deg(g0(x)) = 336, which is also larger
than L. Hence, δ(0)0 is also set to L. Since δ(0)0 + δ

(0)
1 = 2L,

2L zeros are padded after the least significant coefficient of
the data input polynomial. For BCH encoder 1 and 2, the
same number of zeros are padded to simplify the alignment.
deg(g′2(x)) = 462−336 = 126 and deg(g′1(x)) = 384−336 =

48. Both of them are smaller than L. Hence, δ(1)1 = 126 and
δ
(2)
1 = 48. Since δ(i)0 +δ

(i)
1 should be 2L. δ(1)0 and δ(2)0 are set

to 2L − 126 = 194 and 2L − 48 = 272, respectively. Stage
2 of the second proposed encoder with generator polynomial
gi(x) computes p(x) = p̂1(x)g0(x) + p̂0(x)xdeg(g

′
i(x))−δ

(v−i)
1 .

p̂0(x) and p̂1(x) are the remainders of divisions by g0(x) and
g′i(x), respectively, and hence deg(p̂0(x)) ≤ deg(g0(x)) − 1
and deg(p̂1(x)) ≤ deg(g′i(x))− 1. If deg(g′i(x)) ≤ L, the L-
parallel version of the FIR filter architecture for implementing
the multiplication of p̂1(x)g0(x) reduces to a wi×deg(g′i(x))
constant matrix multiplication. Since deg(g′1(x)) = 48 is
small, the number of non-zero entries in the corresponding
constant matrix multiplication of stage 2 is much smaller than
that of the VT matrix. Therefore, the area of BCH encoder
2 with generator polynomial g1(x) using the second design is
much smaller than that using the first proposed design. On the
other hand, the complexity of the stage-2 polynomial multipli-
cation increases at a faster pace with deg(g′i(x)) compared to
that of VT matrix multiplication. Hence, the area saving of our
second design over the first design is less significant for BCH
encoder 1 with generator polynomial g2(x). As deg(g′i(x))

further increases, the multiplication with (CL)
(1)
0 contributes

to a larger percentage of the overall encoder complexity.
Since our second design substantially simplifies (CL)

(1)
0 for

larger deg(g′i(x)), it can achieve substantial area reduction
compared to the first proposed design for BCH encoder 0
with generator polynomial g3(x). As analyzed previously, the
second proposed encoder architecture also has shorter critical
path due to the elimination of the VT matrix multiplication.

Parallel resource-shareable BCH encoder with generator
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TABLE II
TOTAL AREAS AND CRITICAL PATHS OF 160-PARALLEL

RESOURCE-SHAREABLE GII-BCH ([8,3], 4095) ENCODERS

[18] [19] unfolded Prop. enc. 1 Prop. enc. 2

Alignment 23277 24477 24477 27759
BCH encoders 0-2 133323 135088 247519 215991
BCH encoders 3-7 144840 144840 144840 144840

Pipelining reg. 5760 0 5760 5760
total area 307200 304405 422596 394350

(# of XORs) (0.73) (0.72) (1.00) (0.93)

critical path 8 800 11 9
(# of gates)

encoding latency 30 29 30 31
(# of clks)

Rem. length for 690 354 354 354
nest. syn. comp.

polynomial decomposition does not exist previously. The best
alternative design for reducing the decoding complexity is
to use the remainder polynomial from the division by the
original generator polynomial, which is implementable by a
traditional BCH encoder, to compute the syndromes. Among
existing parallel BCH encoders, the one from [18] has the
lowest complexity and short critical path. Hence, this design
is compared to the proposed designs in Table I. In this table,
the areas of different designs are normalized to that of the
first proposed encoder. Although the BCH encoder architecture
in [18] has smaller area and shorter critical path than the
proposed designs, if it is used to construct a GII-BCH encoder,
the maximum length of the remainder polynomials needed
for the syndrome computation in both the sub-codeword and
nested decoding of GII codes is max(w0, w1, w2, w3) = 690.
On the other hand, the proposed designs compute the nested
syndromes by using the remainders of dividing each nested
codeword ỹi(x) by g′i(x) and the longest remainder length
is max(w1 − w0, w2 − w0, w3 − w0) = 354. All remainder
polynomials are computed simultaneously during the first-
stage sub-codeword decoding of GII decoding. They can be
stored and used directly in the second-stage nested decoding.
Hence, the latency of the nested syndrome computation is
determined by the maximum length of the involved remainder
polynomials. As a result, the proposed designs reduce the
latency of the nested decoding by around a half in terms of
the number of clock cycles compared to the GII-BCH encoder
using traditional BCH encoders from [18]. For completeness,
the multi-mode encoder in [19] is unfolded with a factor of
L and the complexity is estimated in Table I. A L-unfolded
design has L times logic gates and the same number of
register as the serial design. Besides, the iteration bound,
which decides the shortest achievable critical path, is increased
to L times of the iteration bound in the serial design [22].

Utilizing the proposed parallel resource-shareable BCH
encoders, GII-BCH encoders can be developed and their
complexities are listed in Table II. The parameters of the ABs
can be determined following the explanations in Section III
and the ABs with the same input signals can share registers
as explained previously. Since the parameters of the ABs
need to be increased accordingly to allow zero padding in
the second proposed GII-BCH encoder design, its alignment

TABLE III
SYNTHESIS RESULTS OF 160-PARALLEL RESOURCE-SHAREABLE

GII-BCH ([8,3], 4095) ENCODERS USING TSMC 65nm PROCESS UNDER
T = 1ns TIMING CONSTRAINT

[18] Prop. enc. 1Prop. enc. 2

area (µm2) 596047 830033 715031
area ratio 0.72 1.00 0.86

enc. throughput (terabit/s) 1.09 1.09 1.06
nest. syn. comp. clk cycle ratio 1.95 1.00 1.00

scheme needs more gates to implement compared to that of
the first proposed design. In the first proposed design and
the one derived from unfolding, the inputs of the LFSRs are
added to the MSTs. Hence, these designs require additional
registers to delay the coefficients of p∗i (x) until those of
Lwv−i

(fi(x)) are generated. Therefore, the complexities of
their alignment schemes are larger than that of the design using
the BCH encoder from [18]. The complexities of BCH encoder
0 through 2 from Table I are added up and listed in Table II.
Encoder 3 through 7 do not employ any decomposition and
are implemented by the architecture from [18].

The encoding latency of each design is also listed in Table
II. Processing n = 4095 inputs with a parallelism of L = 160
needs d4095/160e = 26 clock cycles. However, the zero
paddings needed to align the coefficients introduce another
3 clock cycles. Additionally, the longest data path that starts
from the output of the BCH encoders goes through 3 ABs, 8
XOR gates, and 3 multiplexers before it reaches the output
of the GII-BCH encoder. Two of the ABs have θ = 0
and hence only have one multiplexer each in the data path.
Therefore, this path has 15 gates. It is longer than those in
the parallel BCH encoders and needs to be pipelined into
two stages. Accordingly, the latency of the first proposed GII-
BCH encoder is 26 + 3 + 1 = 30 clock cycles. The second
proposed design requires one more clock cycle due to the
additional zero padding to the input polynomial for enabling
input-tap modifications. Adding up the complexities of the
alignment scheme, BCH encoders, and the pipelining registers,
the total areas of the GII-BCH encoders are derived as shown
in Table II. Comparing to the first proposed architecture, the
area reduction achieved by our second design is less significant
compared to the ratio shown in Table I since 5 out of the
8 BCH encoders with generator polynomial g0(x) are the
same in both designs. Although the proposed encoders have
larger areas compared to those using traditional BCH encoders,
the latency required for the nested syndrome computation is
reduced to around a half as analyzed previously.

To further evaluate the complexities of the proposed parallel
resource-shareable GII-BCH encoders, they are synthesized
using TSMC 65nm process under T = 1ns timing constraint
with the standard voltage threshold (SVT). The total area
is listed in Table III. For comparison, the parallel GII-BCH
encoder architecture using the traditional BCH encoder from
[18] is also synthesized under the same timing constraint.
Since the critical path of the unfolded version of [19] is
overwhelmingly long, it is not further compared. The second
proposed design achieves 14% area reduction compared to the
first design. This area saving is more significant than that in
Table II since the second design has shorter critical path. The
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TABLE IV
MINIMUM ACHIEVABLE CLOCK PERIODS AND AREA REQUIREMENTS OF

160-PARALLEL RESOURCE-SHAREABLE GII-BCH ([8,3], 4095)
ENCODERS USING TSMC 65nm PROCESS

[18] Prop. enc. 1 Prop. enc. 2
timing constraint (ns) 0.8 1.0 0.85

area (µm2) 642267 830033 775545
area ratio 0.77 1.00 0.93

enc. throughput (terabit/s) 1.37 1.09 1.24
nest. syn. comp. clk cycle ratio 1.95 1.00 1.00

area ratios between the GII encoder using the BCH encoder
from [18] and the first proposed encoder are similar in Table II
and III despite the shorter critical path of the former encoder.
This is because that the matrices involved in the proposed
designs are smaller and substructure sharing can be performed
more efficiently by the synthesis tool.

To evaluate the minimum achievable clock periods of the
proposed designs, syntheses are carried out with different tim-
ing constraints. The tightest timing constraints that can be met
without negative slacks are listed in Table IV together with the
corresponding area. The second proposed encoder can achieve
much shorter clock period than the first proposed design due
to the shorter critical path. The area ratio between these two
designs matches that listed in Table II from our analysis. Since
the parallel GII-BCH encoder architecture using the traditional
BCH encoder from [18] has much shorter critical path, it
can meet an even tighter timing constraint. However, its area
compared to that of the first proposed encoder has a higher
ratio than that from Table II as the matrices involved in the
proposed designs are much smaller and their implementation
can be further optimized by the synthesis tool.

The generator polynomials can be decomposed into more
factors using the proposed designs to further reduce the lengths
of the remainders needed for syndrome computation. However,
the Â matrix will be divided into more blocks of submatrices,
and thus both the total area and the critical path of the proposed
GII-BCH resource-shareable encoders will increase very fast
with L. For smaller L, the complexity of the polynomial
multiplication in stage 2 of the second proposed design would
be much higher than the complexity of the eliminated VT

multiplication. As a result, the first proposed encoder is a better
choice for smaller L. For example, when L = 30, the numbers
of XOR gates needed for the GII-BCH encoders constructed
using the first and second proposed designs are estimated to
be 91838 and 106237, respectively.

The proposed designs can be extended to GII-RS encoders.
Since the π(i)(x) vectors are replaced by vectors consisting
of constant finite field elements, the alignment issues become
simpler for GII-RS encoding. Although the generator polyno-
mials of RS codes are non-binary, similar techniques can still
be utilized to reduce the complexities of the matrices involved
in the parallel LFSRs for RS encoding. Our design can be
also applied to the case where Cv, · · · , C1, C0 have the same
dimension but different lengths. In this case, the alignment
scheme needs to be adjusted. However, the two proposed
parallel resource-shareable BCH encoder architectures can be
directly employed.

VII. CONCLUSIONS

For the first time, this paper considers the design of par-
allel resource-shareable GII-BCH encoders. Low-complexity
schemes are developed to solve the coefficient alignment issues
caused by the differences on the dimensions of the BCH
codes involved in the GII code construction and the variations
on the degrees of the polynomials multiplied to the sub-
codewords in the encoding. Additionally, two efficient parallel
architectures are proposed to enable the sharing of GII-BCH
encoders to reduce the complexity and latency of decoders.
The proposed encoders can reduce the latency of the nested
syndrome computation in the nested decoding by around a
half with small area overhead compared to the best possible
alternative design. Besides, the second encoder developed
through algorithmic reformulations achieves substantial area
reduction compared to the first one in the case of larger
parallelisms. Future work will focus on further reducing the
complexity of parallel resource-shareable GII encoders.
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