Bulletin of the American Physical Society

APS March Meeting 2021

Volume 66, Number 1

Monday-Friday, March 15-19, 2021; Virtual; Time Zone: Central Daylight Time, USA

Session B05: Active Matter and Liquid Crystals in Biological and Bio-Inspired Systems II

11:30 AM-2:30 PM, Monday, March 15, 2021

Room: 05

Sponsoring Units: DSOFT DBIO DPOLY GSNP Chair: Kinjal Dasbiswas, University of California, Merced

Abstract: B05.00008 : Tunable spontaneous circulation of microtubule-based active fluid confined in a compressed water-in-oil droplet using milli-fluidic devices

12:54 PM-1:06 PM Live

← Abstract →

Presenter:

Yen-Chen (Anderson) Chen

(Department of Mechanical Engineering, Worcester Polytechnic Institute)

Authors:

Yen-Chen (Anderson) Chen

(Department of Mechanical Engineering, Worcester Polytechnic Institute)

Brock Jolicoeur

(Department of Physics, Worcester Polytechnic Institute)

Chih-Che C Chueh

(Department of Aeronautics & Astronautics, National Cheng Kung University)

Kun-Ta Wu

(Department of Physics, Worcester Polytechnic Institute)

Active matter consumes local fuels to self-propel. When confined in a closed circular boundary, they can self-organize into a circulatory flow. Such coherence originates from the interactions between the active matter and boundaries, and boundary conditions play an important role on self-organization of active fluid. Herein, we probed how fluid boundaries influenced the self-organization of active fluid. The fluid boundaries were created by confining the active fluid in a compressed water-in-oil droplet. Due to surface tension, the droplet shaped into a cylinder-like geometry. Since water and oil were both fluids, their interface was fluid. We systematically probed how droplet shapes and the amount of oil surrounding the droplet influenced the development of circulation. We found that the formation of circulatory flows depended on the thickness of the oil layer surrounding the droplet, implying that the fluid dynamics between the active fluid within the droplet and the oil outside the droplet were coupled. We used a 3D COMSOL-based simulation successfully reproduced such oil-layer dependence. Finally, we developed two milli-fluidic devices to deform the droplet and alter the oil layer thickness manually to trigger and suppress the intra-droplet circulatory flow in real time.

This site uses cookies. To find out more, read our Privacy Policy.

I Agree