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ABSTRACT

The generalized integrated interleaved BCH (GII-BCH)
codes are among the best error-correcting codes for next-
generation terabit/s memories. The key equation solver
(KES) in the nested decoding of GII codes limits the achiev-
able clock frequency. Recently, by polynomial scalar pre-
computation, the critical path of the nested KES for Reed-
Solomon (RS)-based GII codes has been reduced to one
multiplier. However, for GII-BCH codes, the nested KES has
more complicated formulas in order to skip the odd iterations
and hence prior techniques do not directly extend. This pa-
per proposes novel reformulations of the nested BCH KES
to enable scalar pre-computation. Additionally, polynomial
scaling is incorporated to enable complexity reduction. As a
result, the critical path of the nested BCH KES with odd iter-
ations skipped is reduced to one multiplier. For an example
GII-BCH code over GF (212), the proposed design reduces
the average nested BCH KES latency to around a half with
similar silicon area compared to the best prior design.

Index Terms— BCH codes, Error-correcting codes, Gen-
eralized integrated interleaved codes, Key equation solver.

1. INTRODUCTION

Hyper-speed decoding and excellent random error-correction
capability are essential to next-generation memories. These
goals are reached by the generalized integrated interleaved
(GII) codes [1, 2] that nest short BCH sub-codewords to gen-
erate codewords of stronger BCH codes. They achieve hun-
dreds of megabit/s throughput with orders of magnitude better
correction capability compared to traditional BCH codes [3].

The GII decoding has two stages. Conventional BCH
decoding is first carried out on individual sub-codewords.
The key equation solver (KES) step, such as the Berlekamp-
Massey (BM) algorithm [4], takes syndromes to compute
the error locator polynomial. It limits the achievable clock
frequency. By using a discrepancy polynomial, the critical
path of the KES is reduced to one multiplier in the reformu-
lated inversionless (ri-)BM algorithm [5]. When there are
extra errors, the second-stage nested decoding is activated
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and higher-order syndromes are acquired utilizing the nested
codewords. The KES of the nested decoding can continue
from the KES results of sub-codeword decoding [2]. How-
ever, the riBM algorithm cannot be applied to reduce the
critical path, since the higher-order syndromes are not avail-
able in the first stage to initialize the discrepancy polynomial.

Re-initializing the discrepancy polynomial before the
nested KES [6] requires many large multiplier-adder trees.
Instead, the higher-order syndromes are incorporated into the
nested KES iterations one by one in [7] and the area is reduced
by scaling polynomials to enable product term sharing [3, 8].
However, the designs in [3,7,8] actually have two multipliers
in the critical path. They rely on the slow-down and re-timing
techniques [9] to reduce the critical path to one multiplier and
waste half of the clock cycles when only one sub-codeword
has extra errors, which happens with very high probability.
By scalar pre-computation, the critical path is truly reduced
to one multiplier in the fast nested KES algorithms for GII
codes based on Reed-Solomon (RS) codes [10]. However, to
skip the odd iterations, the nested KES for GII-BCH codes
has more complicated formulas. As a result, it is much more
difficult to pre-compute the scalars and the techniques in [10]
for GII-RS codes do not directly apply.

This paper proposes a scaled fast nested KES algorithm
for GII-BCH codes with the odd iterations skipped. Novel
algorithmic reformulations are developed to pre-compute the
polynomial scalars in parallel with the polynomial updating
so that the critical path is truly reduced to one multiplier with-
out applying the slow-down technique. To reduce the com-
plexity, the polynomials are also scaled to enable product term
sharing while keeping one multiplier in the critical path. As
a result, the average nested BCH KES latency is reduced to
almost a half in terms of the number of clock cycles. For an
example GII-BCH code over GF (212), the proposed design
has similar area and only one more gate in the critical path
compared to the best prior work [3].

2. GII-BCH CODES AND NESTED KES

A GII codeword is divided into m sub-codewords c0, c1, · · · ,
cm−1 ∈ C0 over GF (2q). Besides, the nesting of the sub-
codewords as defined in (1) using primitive element α ∈
GF (2q) generates c̃l ∈ Cv−l. Cv ⊆ Cv−1 ⊆ · · · ⊆ C1 ⊂ C0



are RS or BCH codes over GF (2q). For GII-BCH codes,
αil=αil(x) as defined in [2]. Alternative nestings for im-
proving the decoding locality are available in [11–13].

C,

{
c=[c0,· · ·, cm−1] :ci∈C0, c̃l=

m−1∑
i=0

αilci∈Cv−l, 0≤ l<v

}
(1)

Denote the error-correction capability of Ci by ti (0≤i≤
v). In the sub-codeword decoding, 2t0 syndromes, Sj=
y(αj+1) (0≤j<2t0), are computed for each received sub-
codeword y(x). If any syndrome is nonzero, the KES is
carried out. The r-th iteration of the BM algorithm com-

putes a discrepancy coefficient δ(r)=
∑L

(r)
Λ

i=0 Λ
(r)
i Sr−i, where

L
(r)
Λ is the length of Λ(r)(x), and then uses δ(r) to update

the error locator polynomial Λ(r)(x). For BCH decoding,
the odd iterations can be skipped since S2i+1=S2

i . In the
end, root search is done for Λ(2t0)(x) to find the error lo-
cations. Computing δ(r) using a large multiplier-adder tree
followed by Λ(r)(x) updating leads to long critical path. The
critical path is reduced to one multiplier and one adder in
the riBM algorithm [5] by using discrepancy polynomial
∆̂(r)(x)=Λ(r)(x)S(x)/xr, whose ∆̂

(r)
0 =δ(r). It is initialized

as
∑2t0−1

j=0 Sjx
j and updated simultaneously with Λ(r)(x).

In the second-stage nested decoding, higher-order syn-
dromes are computed from (corrupted) nested codewords c̃l.
These syndromes are converted to higher-order syndromes
of the sub-codewords by reversing the linear combination in
(1). Then more errors in the sub-codewords can be corrected.
The nested decoding is repeated for up to v rounds to correct
the sub-codewords with up to t1, t2, · · · , tv errors. More
details about the decoding process are available in [2, 7].

Algorithm 1 Nested GII-BCH KES Algorithm
input: Λ

(u)
even(x),Λ(u)

odd(x),B(u)
even(x),B(u)

odd(x),∆̂(u)
even(x),Θ̂(u)

even(x),
γ(u), k(u) from previous KES;
Si (u≤i<w); Sw=0

initialization:
∆̂

(u)
even(x)=∆̂

(u)
even(x)+SuΛ

(u)
even(x)

Θ̂
(u)
even(x)=Θ̂

(u)
even(x)+SuB

(u)
even(x)

for r = u, u+ 2, · · · , w − 2

1) Λ
(r+2)
even (x)=γ(r)Λ

(r)
even(x)+∆̂

(r)
0 x2B

(r)
even(x)

2) Λ
(r+2)
odd (x)=γ(r)Λ

(r)
odd(x)+∆̂

(r)
0 x2B

(r)
odd(x)

3) ∆̂
(r+2)
even (x)=γ(r)(∆̂

(r)
even(x)/x2+Sr+1Λ

(r)
odd(x)/x+Sr+2Λ

(r)
even(x))

+∆̂
(r)
0 (Θ̂

(r)
even(x)+Sr+1xB

(r)
odd(x)+Sr+2x2B

(r)
even(x))

if (∆̂(r)
0 6=0 and k(r)≥−1)

4) B
(r+2)
even (x)=Λ

(r)
even(x); B(r+2)

odd (x)=Λ
(r)
odd(x)

5) Θ̂
(r+2)
even (x)=∆̂

(r)
even(x)/x2+Sr+1Λ

(r)
odd(x)/x+Sr+2Λ

(r)
even(x)

6) γ(r+2)=∆̂
(r)
0 ; k(r+2)=−k(r)−2

else
7) B

(r+2)
even (x)=x2B

(r)
even(x); B(r+2)

odd (x)=x2B
(r)
odd(x)

8) Θ̂
(r+2)
even (x)=Θ̂

(r)
even(x)+Sr+1xB

(r)
odd(x)+Sr+2x

2B
(r)
even(x)

9) γ(r+2)=γ(r); k(r+2)=k(r)+2

The riBM algorithm cannot be used to continue the KES
in the nested decoding since the higher-order syndromes are

not available in the very beginning to initialize ∆̂(x). To
avoid using multiplier-adder trees to compute δ(r), Algorithm
1 [3] has been developed. It can continue from the riBM re-
sults of the sub-codeword decoding or previous nested decod-
ing to incorporate higher-order syndromes Su through Sw−1.
In this algorithm, B(x) and Θ̂(x) are auxiliary polynomials
and odd iterations are skipped. As can be observed from Line
3, this algorithm has two multipliers in the critical path. To
make the critical path one multiplier, the solution in [3] is to
apply slow-down and re-timing [9], which require two sub-
codewords to be interleaved in the nested decoding.

3. SCALED FAST NESTED BCH KES ALGORITHM
AND ARCHITECTURE

With very high probability, only one sub-codeword has extra
errors and needs nested decoding [10]. In this case, dummy
zeros are inserted if the slow-down technique is applied as
in [3] and half of the clock cycles are wasted. For GII-RS
codes, by pre-computing the polynomial scalars, fast nested
KES algorithms were developed [10] to truly reduce the criti-
cal path to one multiplier without applying slow-down. How-
ever, the nested BCH KES algorithm skipping every odd it-
eration (Algorithm 1) has much more complicated formulas
than the nested RS KES algorithm [7]. Hence, the techniques
in [10] do not directly extend to GII-BCH codes.

In this section, by reformulating Algorithm 1, a scaled fast
nested BCH KES algorithm with one multiplier in the critical
path is developed. The approach for critical path reduction in
our design is to pre-compute the combined scalars needed for
iteration r before iteration r starts with one multiplier in the
data path, although it may take multiple clock cycles. Mul-
tiplying the scalars to the polynomials in iteration r also has
one multiplier in the data path. Accordingly, the critical path
is reduced to one multiplier. Besides, scaled versions of the
polynomials in Algorithm 1 are used to enable product term
sharing and hence reduce the number of multiplications.

First, let us scale the polynomials to reduce the total
number of multiplications. In Algorithm 1, the sum of
γ(r)Sr+2Λ

(r)
even(x) and ∆̂

(r)
0 Sr+2x

2B
(r)
even(x) from Line 3

equals Λ
′(r+2)
even (x)=Sr+2Λ

(r+2)
even (x). If Λ

′(r+2)
even (x) is used

instead, no separate multiplication is needed and two mul-
tiplications are saved. Every polynomial should be scaled
by the same factor in order to keep the decoding results the
same. Different from the scaling scheme in [3], S−1

r+2 is mul-
tiplied back to Λ

′(r+2)
even (x) in the next iteration to simplify

the combined scalar and facilitate the scalar pre-computation.
Although finite field inverters have longer data path, the com-
putation of S−1

r+2 can start earlier and gets pipelined since
the syndromes are available before the nested KES. Simi-
larly, the first and second rows of Line 3 of Algorithm 1 are
scaled versions of Θ̂

(r+2)
even (x) in Lines 5 and 8, respectively.

If Θ̂
′(r+2)
even (x)=γ(r)Θ̂

(r+2)
even (x) or ∆̂

(r)
0 Θ̂

(r+2)
even (x) is utilized,



additional multiplications are saved. However, unlike the
scaling by syndromes, γ(r) or ∆̂

(r)
0 is not available in ad-

vance and their inversion increases the critical path. Instead,
these additional scalars are multiplied to the other polynomi-
als to make the overall scalar for every polynomial the same.
Add ‘′’ to the polynomials and coefficients to differentiate the
scaled algorithm. Overall, the combined scalar for Λ

′(r)
even(x)

is γ′(r−2)γ′(r)(Sr+2S
−1
r ) or ∆̂

′(r−2)
0 γ′(r)(Sr+2S

−1
r ). Fol-

lowing this analysis and Algorithm 1, it is derived that
the scalar of Λ

′(r)
even(x) accumulated over the iterations is

∆̂
′(r−2)
0 γ′(r−2)σ(r−4) · · ·σ(u)(Sr+2S

−1
r ), where σ(i)=γ′(i)

or ∆̂
′(i)
0 if Lines 4-6 or 7-9, respectively, of Algorithm 1 were

executed in iteration i.

Algorithm 2 Scaled Fast Nested GII-BCH KES Algorithm
input: Λ

′(u)
even(x),Λ′(u)odd (x),B′(u)even(x),B′(u)odd (x),∆̂′(u)even(x),Θ̂′(u)even(x)

γ′(u),k(u),ρ(u),ξ(u),λ(u),φ(u),β(u),ζ(u) from previous KES;
Si (u≤i<w); Sw+j=0 (0≤j≤8); set Su−1=1 if first round;
set S′i=Si if Si 6=0, set S′i=1 otherwise (u−1≤i≤w+8)

initialization:
∆̂
′(u)
even(x)=∆̂

′(u)
even(x)+SuΛ

′(u)
even(x)

Θ̂
′(u)
even(x)=Θ̂

′(u)
even(x)+SuB

′(u)
even(x)

Λ
′(u)
even(x)=S′uΛ

′(u)
even(x); B′(u)even(x)=S′uB

′(u)
even(x)

execute Subroutine 1
for r = u, u+ 2, · · · , w − 2

1) if (∆̂′(r)0 =0) set ρ(r)=1, ρ(r)Si
=g

(r)
i , ξ(r)=ξ(r)Si

= 0 (i=1,2)

2) Λ
′(r+2)
even (x)=ρ

(r)
S2

Λ
′(r)
even(x)+ξ

(r)
S2
x2B

′(r)
even(x)

3) Λ
′(r+2)
odd (x)=ρ

(r)
S1

Λ
′(r)
odd(x)+ξ

(r)
S1
x2B

′(r)
odd (x)

4) ∆̂
′(r+2)
even (x)=ρ(r)∆̂

′(r)
even(x)/x2+ρ

(r)
S1

Λ
′(r)
odd(x)/x+ρ

(r)
S2

Λ
′(r)
even(x)

+ξ(r)Θ̂
′(r)
even(x)+ξ

(r)
S1
xB
′(r)
odd (x)+ξ

(r)
S2
x2B

′(r)
even(x)

(set ρ(r)Si
=ξ

(r)
Si

=0 if Sr+i=0 (i=1,2))
5) execute Subroutine 2

if (∆̂′(r)0 6=0 and k(r)≥−1)
6) B

′(r+2)
even (x)=ρ

(r)
S2

Λ
′(r)
even(x)

7) B
′(r+2)
odd (x)=ρ

(r)
S1

Λ
′(r)
odd(x)

8) Θ̂
′(r+2)
even (x)=ρ(r)∆̂

′(r)
even(x)/x2+ρ

(r)
S1

Λ
′(r)
odd(x)/x+ρ

(r)
S2

Λ
′(r)
even(x)

(set ρ(r)Si
=0 if Sr+i=0 (i=1,2))

9) execute Subroutine 3
10) k(r+2)=−k(r)−2

else
11) if (∆̂′(r)0 =0) set ξ(r)=1, ξ(r)Si

=g
(r)
i (i=1,2)

12) B
′(r+2)
even (x)=ξ

(r)
S2
x2B

′(r)
even(x)

13) B
′(r+2)
odd (x)=ξ

(r)
S1
x2B

′(r)
odd (x)

14) Θ̂
′(r+2)
even (x)=ξ(r)Θ̂

′(r)
even(x)+ξ

(r)
S1
xB
′(r)
odd (x)+ξ

(r)
S2
x2B

′(r)
even(x)

(set ξ(r)Si
=0 if Sr+i=0 (i=1,2))

15) execute Subroutine 4
16) k(r+2)=k(r)+2

The accumulated scalar has (r−u)/2+2 terms to multiply
even if (Sr+2S

−1
r ) is pre-computed. To keep one multiplier

in the data path, at most i+1 terms can be iteratively multi-
plied up in i iterations. Hence, the combined scalar cannot

be computed by one multiplier before iteration r starts. To
address this issue, c(r−4)

u =σ(r−4) · · ·σ(u) is dropped from all
scalars. The remaining part of the Λ

′(r)
even(x) scalar is

ρ
(r)
S2

= ∆̂
′(r−2)
0 γ′(r−2)Sr+2S

−1
r . (2)

All computations on the syndromes can be finished in ad-
vance, and γ′(r−2) equals either γ′(r−4) or ∆̂

′(r−4)
0 . Hence,

γ′(r−2)Sr+2S
−1
r can be pre-computed in iteration r−4 as

either γ′(r−4)(Sr+2S
−1
r ) or ∆̂

′(r−4)
0 (Sr+2S

−1
r ). Then,

it is multiplied with ∆̂
′(r−2)
0 in iteration r−2 to derive

ρ
(r)
S2

. The combined scalars for ∆̂
′(r)
even(x) and Λ

′(r)
odd(x) are

ρ(r)=∆̂
′(r−2)
0 γ′(r−2) and ρ

(r)
S1

=∆̂
′(r−2)
0 γ′(r−2)Sr+1S

−1
r−1,

respectively. Similarly, they are pre-computed with one mul-
tiplier in the data path.

The scalar of Θ̂
′(r)
even(x) is still ∆̂

′(r)
0 after the additional

scaling for product term sharing. It can be derived that

ξ(r) =∆̂
′(r)
0 /c(r−4)

u = γ′(r−2)∆̂
′(r−2)
2 + ∆̂

′(r−2)
0 φ(r−2)

+ γ′(r−2)Sr−1S
−1
r−3Λ

′(r−2)
1 + γ′(r−2)SrS

−1
r−2Λ

′(r−2)
0 ,

(3)

where φ(r−2)=Θ̂
′(r−2)
0 /c

(r−4)
u . Similarly, each term in (3)

can be also computed with one multiplier in data path before
iteration r. The combined scalars for B′(r)

odd (x) and B′(r)
even(x)

are ξ(r)
S1

=ξ(r)Sr+1S
−1
r−1 and ξ(r)

S2
=ξ(r)Sr+2S

−1
r , respectively.

They are also pre-computed with one multiplier in data path.
Overall, the proposed scaled fast nested BCH KES algo-
rithm is summarized in Algorithm 2 and the four subroutines.

Subroutine 1 Scalar Initialization
1) g(u)i =S′u+iS

′−1
u+i−2 (1≤i≤8); g(u)j,k =g

(u)
j g

(u)
k (j=5,6; k=1,2,3,4)

2) h(u)
i =γ′(u)g

(u)
i (1≤i≤4); h(u)

j,k =γ′(u)g
(u)
j,k (j=3,4; k=1,2)

3) ρ(u)S1
=g

(u)
1 ρ(u); ρ(u)S2

=g
(u)
2 ρ(u)

4) ξ(u)S1
=g

(u)
1 ξ(u)+g

(u)
1 Suλ

(u); ξ(u)S2
=g

(u)
2 ξ(u)+g

(u)
2 Suλ

(u)

5) ξ(u)=ξ(u)+Suλ
(u)

6) φ(u)
S1

=g
(u)
3 φ(u)+g

(u)
3 Suβ

(u); φ(u)
S2

=g
(u)
4 φ(u)+g

(u)
4 Suβ

(u)

7) φ(u)=φ(u)+Suβ
(u)

Subroutine 2 Scalar Updating
1) if (∆̂′(r)0 6=0) set τ (r)=∆̂

′(r)
0 , otherwise set τ (r)=ζ(r)

2) if (∆̂′(r)0 =0) set ρ(r)=1

3) ρ(r+2)=γ′(r)τ (r); ρ(r+2)
S1

=h
(r)
3 τ (r); ρ(r+2)

S2
=h

(r)
4 τ (r)

4) ξ(r+2)=γ′(r)∆̂
′(r)
2 +h

(r)
1 Λ

′(r)
1 +h

(r)
2 Λ

′(r)
0 +∆̂

′(r)
0 φ(r)

ξ
(r+2)
S1

=h
(r)
3 ∆̂

′(r)
2 +h

(r)
3,1Λ

′(r)
1 +h

(r)
3,2Λ

′(r)
0 +∆̂

′(r)
0 φ

(r)
S1

ξ
(r+2)
S2

=h
(r)
4 ∆̂

′(r)
2 +h

(r)
4,1Λ

′(r)
1 +h

(r)
4,2Λ

′(r)
0 +∆̂

′(r)
0 φ

(r)
S2

(set h(r)
i =h

(r)
3,i=h

(r)
4,i=0 if Sr+i=0 (i=1,2))

5) ζ(r+2)=ρ(r)τ (r); λ(r+2)=h
(r)
2 Λ

′(r)
0

6) g(r+2)
i =g

(r)
i+2 (1≤i≤6); g(r+2)

j =S′r+j+2S
′−1
r+j (j=7,8)

g
(r+2)
k,l =g

(r)
k+2g

(r)
l+2 (k=5,6; l=1,2,3,4)

Algorithm 2 can start from the KES results from sub-
codeword decoding or previous nested decoding round. In
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Fig. 1. PE architectures of scaled nested GII-BCH KES

the former case, γ′(u), ρ(u), ξ(u), λ(u), φ(u), β(u), and ζ(u)

inputs are set to γ(u), γ(u), ∆̂
(u)
0 , Λ

(u)
0 , Θ̂

(u)
0 , B(u)

0 , and
γ(u), respectively. When an additional scalar introduced for
product sharing is zero, the combined scalars are adjusted to
eliminate its effect, such as in Lines 4, 8, and 14 of Algorithm
2. As it can be observed from Algorithm 2 and the four sub-
routines, none of the computations requires more than one
multiplier in the data path. As a result, the overall critical
path only consists of one multiplier.

Subroutine 3 Scalar Updating in ‘if’
1) γ′(r+2)=∆̂

′(r)
0

2) h(r+2)
i =∆̂

′(r)
0 g

(r)
i+2 (1≤i≤4); h(r+2)

j,k =∆̂
′(r)
0 g

(r)
j+2,k+2(j=3,4;k=1,2)

3) φ(r+2)=∆̂
′(r)
2 +g

(r)
1 Λ

′(r)
1 +g

(r)
2 Λ

′(r)
0

φ
(r+2)
S1

=g
(r)
5 ∆̂

′(r)
2 +g

(r)
5,1Λ

′(r)
1 +g

(r)
5,2Λ

′(r)
0

φ
(r+2)
S2

=g
(r)
6 ∆̂

′(r)
2 +g

(r)
6,1Λ

′(r)
1 +g

(r)
6,2Λ

′(r)
0

(set g(r)i =g
(r)
5,i =g

(r)
6,i =0 if Sr+i=0 (i=1,2))

4) β(r+2)=g
(r)
2 Λ

′(r)
0

Subroutine 4 Scalar Updating in ‘else’
1) γ′(r+2)=γ′(r)

2) h(r+2)
i =γ′(r)g(r)i+2(1≤i≤4); h(r+2)

j,k =γ′(r)g(r)j+2,k+2(j=3,4;k=1,2)

3) φ(r+2)=φ(r); φ(r+2)
S1

=g
(r)
5 φ(r); φ(r+2)

S2
=g

(r)
6 φ(r)

4) β(r+2)=0

Algorithm 2 can be implemented by the architecture in
Fig. 1. The processing elements (PEs) implement the poly-
nomial updating and the four subroutines are implemented in
the pre-processing unit (PU). There are d(tv+1)/2e groups of
PEs but only one single PU. Fig. 1 only shows the group of
PEs processing the i-th coefficients of the polynomials. The
PU architecture can be easily derived from the four subrou-
tines. For conciseness, its details are not shown. The critical
path is highlighted by the thicker wires in Fig. 1. It only con-
sists of one multiplier and four adders/multiplexers. Adopting
the scaling for product term sharing, each PE group only re-
quires 6 instead of 14 multipliers.

Table 1. Complexities of nested GII-BCH KES architectures
Add. Mult. Reg. Mux. Total Crit. path Average

# XORs # gates # clks

Nested KES (Alg.1) [3] 210 300 367 90 77112 11 10.06
Scaled nested KES [3] 210 190 410 273 57648 12 10.06

proposed 225 222 253 293 59308 13 5.03

4. COMPLEXITY ANALYSES AND COMPARISONS

This section analyzes the complexity of the proposed scaled
fast nested BCH KES architecture using a 4kB GII-BCH code
over GF (212) with v=3 and error-correction capability [t0,
t1, t2, t3]=[28, 32, 39, 58] as an example. This code is a
good candidate for Flash memory applications.

The nested KES architecture has d(tv+1)/2e=30 groups
of PEs. The complexity of the PEs can be counted from Fig.
1 and the PU is implemented by 15 adders, 42 multipliers,
41 registers, 23 multiplexers, and 2 inverters. Each adder,
multiplier, register, multiplexer, and inverter over GF (212)
can be implemented by the area of 12, 201, 36, 12, and 233
XORs, respectively [3]. Overall, the complexity is estimated
as in Table 1.

As shown in Table 1, the proposed design has similar area
as the scaled nested KES design in [3]. The area overhead
would be even smaller for codes with larger tv . In the case
that the i-th nested decoding round is carried out for only
one sub-codeword, the proposed design needs ti−ti−1+1 in-
stead of 2(ti−ti−1+1) clock cycles, since it does not inter-
leave two sub-codewords as a result of applying the slow-
down technique and hence insert dummy zeros. For practi-
cal settings, with more than 99% probability, there is only
one sub-codeword with extra errors and the number of er-
rors does not exceed t1. As a result, with only one more
gate in the critical path, the proposed design reduces the av-
erage number of clock cycles for the nested KES to almost a
half. In terms of throughput over area ratio, the proposed de-
sign achieves (2×12/13)/(59308/57648)=180% higher ef-
ficiency. The achievable latency reduction remains about the
same for different GII-BCH codes. The designs in [7, 8] are
not compared because they are for the nested KES of GII-RS
codes and require twice the iterations.

5. CONCLUSION

This paper proposes a scaled fast nested KES algorithm and
architecture for GII-BCH codes. Novel algorithmic reformu-
lations are developed to enable the pre-computation of com-
bined scalars and polynomial updating in parallel with only
one multiplier in the critical path without applying the slow-
down technique. Besides, polynomial scaling is incorporated
to substantially reduce the area. As a result, the average la-
tency of the nested KES for GII-BCH codes is reduced to
about a half with similar area requirement compared to the
best prior design. Future work will simplify the other compo-
nents of GII-BCH decoders.
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