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Abstract—Generalized integrated interleaved (GII) error-
correcting codes nest sub-codewords to form codewords of
more powerful codes. They can achieve hyper-speed decoding
with good error correction capability. For GII codes built on
BCH codes, the first decoding stage is to decode individual
BCH sub-words. This stage largely determines the throughput
and dominates the area of the overall decoder. Unlike that in
traditional BCH decoding, longer polynomials need to be kept
in the key-equation solver (KES) step of the first stage in order
to continue the KES step in the second-stage nested decoding
of GII codes. To take advantage of the very fast storage class
memories (SCMs), GII codes with 3-error-correcting BCH sub-
codewords can be utilized. This paper proposes a low-complexity
and high-speed design for the KES of 3-error-correcting BCH
sub-word decoding. Formulas are developed to compute the
KES results directly instead of utilizing the traditional iterative
process. More importantly, through analyzing the properties of
the involved variables, the coefficients are scaled and reformu-
lated to substantially reduced the complexity. Detailed hardware
implementation architectures are also developed in this paper.
Our design achieves three times throughput with 20.2% smaller
area than the best prior design for a code over GF (210).

Index Terms—BCH codes, Berlekamp algorithm, Generalized
integrated interleaved codes, Key equation solver, Storage class
memories

I. INTRODUCTION

The new storage class memories (SCMs), such as phase
change and resistive memories, have very short sensing la-
tency, such as 100ns. On the other hand, their error rate is
much higher than that of DRAM. To realize the potential
of SCMs, error-correcting codes with hyper-speed decoding
and excellent correction capability are needed. Generalized
integrated interleaved (GII) error-correcting codes [1], [2] that
nest BCH sub-codewords to form stronger BCH codewords
are among the best candidates. Due to the relatively short
codeword length and low redundancy of SCMs, GII codes
with 3-error-correcting BCH sub-codewords can be used to
substantially increase the throughput and simplify the decoder.

GII-BCH decoding has two stages [2]. The first stage is
the BCH decoding on individual sub-words, in which a key-
equation solver (KES) computes an error locator polynomial,
Λ(x), using the syndromes. Only when the decoding fails
or miscorrections [3] are detected on some sub-words, the
second-stage nested decoding is carried out. The nested words
are utilized to compute higher-order syndromes, from which
the KES is carried out to correct more errors. Since the second
stage is activated with low probability, it is essential to speed
up and reduce the area of the first-stage sub-word decoding.

The KES for BCH decoding can be carried out using the
Berlekamp algorithm [4], which has been reformulated to
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improve the hardware efficiency [5]–[7]. Traditionally, for a
t-error-correcting BCH decoder, polynomial coefficients of de-
gree up to t are computed in the KES implementation to reduce
the complexity. However, the polynomial degrees may exceed
t when there are more than t errors. For example, in 3-error-
correcting BCH decoding, deg(Λ(x)) may reach 5. To reduce
the latency of the nested decoding, its KES for incorporating
the higher-order syndromes should continue from the results
of the KES in sub-word decoding. Reformulations have been
developed to improve the efficiency of the nested KES [8],
[9]. Nevertheless, to allow the continuation for nested KES,
all coefficients of the polynomials instead of only those of
degree up to t need to be kept in the KES of the sub-word
decoding. Truncating the polynomials as in traditional BCH
decoding will make the sub-words that can be corrected in the
following nested decoding process uncorrectable and leads to
substantial performance degradation [3].

The Peterson’s algorithm [10] has lower complexity than
the simplified Berlekamp algorithms [5]–[7] when the degree
of Λ(x) to compute is 3 [11]. However, it cannot compute the
full-length polynomials based on which the KES can continue
in the nested decoding and hence cannot be utilized for the
sub-word decoding.

This paper proposes an efficient KES that computes full
polynomials for 3-error-correcting GII-BCH sub-word decod-
ing. By analyzing all possible updating of the polynomials and
variables in the three iterations of the parallel inversionless
Berlekamp algorithm (PIBA) [7], formulas are developed to
directly derive the polynomials and variables that should be
calculated at the end of the third iteration. Simplified control
logic is also designed to decide which formulas to use based on
the input syndromes. Additionally, by utilizing the properties
of the variables and syndromes in different cases of updating,
the polynomial and variable computation formulas are scaled
and reformulated to substantially reduce the complexity. In ad-
dition, hardware architectures are developed to implement the
proposed schemes. For an example GII code over GF (210),
the proposed design achieves three times throughput with
20.2% smaller area than the PIBA architecture, which is the
most efficient applicable existing design.

II. GII DECODING AND KES ALGORITHM

Assume that Cv⊆Cv−1⊆· · ·⊆C1⊂C0 are v+1 BCH codes
of length n over GF (2q) with error correction capabilities
tv≥tv−1≥· · ·≥ t1>t0, respectively. A GII-BCH [m,v] code
can be defined as [2]

C ,
{

[c0(x), c1(x), · · · , cm−1(x)] : ci(x) ∈ C0,

c̃l(x) =
m−1∑
i=0

αil(x)ci(x) ∈ Cv−l, 0≤ l<v
}
,

(1)
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Fig. 1. FERs of BCH and GII-BCH [4,3] codes over binary symmetric channel

where α is a primitive element of GF (2q) and αil(x) is
the standard basis polynomial representation of αil. ci(x)∈C0
(0≤i<m) and c̃l(x)∈Cv−l (0≤l<v) are referred to as the sub-
codewords and nested codewords, respectively.

GII-BCH decoding consists of two stages. First, t0-error-
correcting BCH decoding is carried out for each received sub-
word yi(x)=ci(x)+ei(x), where ei(x) is the error polynomial.
2t0 syndromes are computed as S(i)

j =yi(α
j+1) (0≤j<2t0). If

some syndromes are nonzero, KES is carried out to find an
error locator polynomial Λ(x) using the 2t0 syndromes and the
Chien search follows to find the roots, which are the inverse
error locations.

Only when some sub-words fail the first-stage decoding or
are miscorrected, the second-stage nested decoding is carried
out to correct more errors. 2t syndromes are required to correct
t errors. Let ỹl(x)=

∑m−1
i=0 αil(x)yi(x) and i0, i1, · · · , ib−1 be

the indices of the b≤v sub-words that need extra error correc-
tion. Since the nested codeword c̃l(x) (0≤l<b) is at least t1-
error-correcting, nested syndromes with order 2t0≤j<2t1 can
be computed as S̃(l)

j =ỹl(α
j+1). According to (1), syndromes

with order 2t0≤j<2t1 for each of those sub-words with extra
errors can be computed as[
S

(i0)
j , S

(i1)
j , · · · , S(ib−1)

j

]T
= A−1

[
S̃

(0)
j , S̃

(1)
j , · · · , S̃(b−1)

j

]T
,

where A is a b×b matrix and Ak,w=αiwk(j+1) [2]. Once the
higher-order syndromes are calculated, the KES follows to
correct up to t1 errors in each of those sub-words. If there are
b′ sub-words that remain to be corrected, then syndromes with
order 2t1≤j<2t2 are computed for each of them by using the
higher-order nested syndromes in a similar way. This process
is repeated for up to v rounds.

The frame error rates (FERs) of GII codes can be computed
using formulas [2]. Consider codes that protect 2560-bit data
with 256-bit parity for SCMs. The best FER of GII [4,3]
codes with these overall codeword length and redundancy is
achieved when [t0, t1, t2, t3] = [3, 5, 6, 11]. Its sub-codewords
are (2560+256)/4=704-bit long. As shown in Fig. 1, it achieves
4-5 orders of magnitude lower FER compared to the (700, 640)
BCH code whose rate is the same and length is similar to the
sub-codewords. Although its FER is higher than that of the
long (2812, 2560) BCH code, its decoder can achieve much
higher throughput with lower complexity.

The KES algorithm of the lowest hardware complexity for
general binary BCH decoding is the PIBA in Algorithm 1. The

Algorithm 1: Parallel Inversionless Berlekamp Alg.
Input: syndromes Si (0 ≤ i < 2t)
Initialization:
Λ(0)(x)=1; B(0)(x)=x−1; L(0)

Λ =0; L(0)
B =−1; γ(0)=1

∆̂
(0)
even(x)=S0 + S2x

2 + · · ·+ S2t−2x
2t−2

Θ̂
(0)
even(x)=S1 + S3x

2 + · · ·+ S2t−1x
2t−2

for r = 0, 1, · · · , t− 1
1 Λ(r+1)(x)=γ(r)Λ(r)(x) + ∆̂

(r)
0 x2B(r)(x)

2 ∆̂
(r+1)
even (x)=γ(r)∆̂

(r)
even(x)/x2 + ∆̂

(r)
0 Θ̂

(r)
even(x)

3 if (∆̂(r)
0 6=0 and L(r)

B − L
(r)
Λ ≥−1)

4 B(r+1)(x)=Λ(r)(x); Θ̂
(r+1)
even (x)=∆̂

(r)
even(x)/x2

5 γ(r+1)=∆̂
(r)
0 ; L(r+1)

B =L
(r)
Λ ; L(r+1)

Λ =L
(r)
B + 2

6 else
7 B(r+1)(x)=x2B(r)(x); Θ̂

(r+1)
even (x)=Θ̂

(r)
even(x)

8 γ(r+1)=γ(r); L(r+1)
B =L

(r)
B + 2; L(r+1)

Λ =L
(r)
Λ

algorithm in [6] is only different in the initialization. The PIBA
needs t iterations for t-error-correcting decoding and Λ(x)
is updated iteratively using an auxilliary polynomial B(x).
LΛ and LB are the lengths of Λ(x) and B(x), respectively.
∆̂(r)(x)=Λ(r)(x)S(x)/x2r and Θ̂(r)(x)=B(r)(x)S(x)/x2r.
‘even’ is added as a subscript of these two polynomials
since only their even coefficients are needed. The constant
coefficient of ∆̂(r)(x), denoted by ∆̂

(r)
0 , is referred to as the

discrepancy coefficient of iteration r.
Compared to the KES in the sub-word decoding, the KES

in the nested decoding just needs to handle more syndromes.
Reformulations have been developed to efficiently incorporate
higher-order syndromes into the results of Algorithm 1 [8], [9].
Accordingly, the nested KES can start from the results of the
sub-word KES to substantially reduce the latency. The degree
of the polynomials in Algorithm 1 may exceed t when there
are more than t errors. Different from classic BCH decoding
that only needs the coefficients of Λ(x) with degree up to t
from the KES, all the four polynomials, Λ(x), B(x), ∆̂(x),
and Θ̂(x), with full length need to be computed from the
KES of sub-word decoding in order to continue the nested
KES. Therefore, the Peterson’s algorithm cannot be utilized
to simplify the KES in GII sub-word decoding even if t0 is
small, such as three.

III. EFFICIENT KES FOR GII-BCH SUB-WORD DECODING

In this section, a simplified method is proposed to carry
out the KES in the sub-word decoding with t0=3 for GII-
BCH codes. Algorithm 1 only requires 3 iterations in the case
of t0=3 and the polynomials and variables can be updated
in two different ways in each iteration. By analyzing all
possible combinations of the updating in the three iterations,
formulas are developed to directly derive the polynomials
and variables that should be calculated at the end of the
third iteration of Algorithm 1. Simplified control logic is
also designed to decide which formula to use based on the
syndromes. Additionally, by utilizing the properties of the
discrepancy coefficients, variables, and syndromes in different
cases of updating, the polynomial and variable computation
formulas are scaled and reformulated to substantially reduce
the complexity.
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TABLE I
PATTERNS OF DISCREPANCY COEFFICIENTS AND PROPERTIES OF

SYNDROMES FOR DIFFERENT EXECUTIONS OF ALGORITHM 1 FOR t = 3

branch discrepancy coefficient pattern L
(3)
Λ L

(3)
B properties

vector

000 ∆̂
(0)
0 6=0, ∆̂

(1)
0 6=0, ∆̂

(2)
0 =φ, φ6=0 3 2 S0 6=0

001 ∆̂
(0)
0 6=0, ∆̂

(1)
0 6=0, ∆̂

(2)
0 =φ, φ=0 2 3 S6

0+S2
2=S0S4+S3

0S2

010 ∆̂
(0)
0 6=0, ∆̂

(1)
0 =0, ∆̂

(2)
0 =φ, φ6=0 4 1 S0 6=0, S2=S3

0

011 ∆̂
(0)
0 6=0, ∆̂

(1)
0 =0, ∆̂

(2)
0 =φ, φ=0 1 4 S0 6=0, S4+S2

0S2=0

101 ∆̂
(0)
0 =0, ∆̂

(1)
0 6=0, ∆̂

(2)
0 =S4, φ6=0 3 2 S0=0, ∆̂

(1)
0 =S2, φ=S2

2

110 ∆̂
(0)
0 =0, ∆̂

(1)
0 =0, ∆̂

(2)
0 =S4, φ=0 5 0 S0=0, S2=0, S4 6=0

A. Direct KES with t = 3

In each iteration of Algorithm 1, the polynomial and vari-
able updating can be executed in two different ways according
to Line 4-5 and 7-8. They are referred to as branch A and
B, respectively, of the execution. A 3-bit vector, b=[b0b1b2],
is used to represent the branches in the three iterations. If
bi=‘0’, it means that branch A is executed in iteration r=i in
Algorithm 1. Otherwise, branch B is executed in that iteration.

Table I lists all possible values of the branch vector.
From initialization of Algorithm 1, ∆̂

(0)
0 =S0. Also ∆̂(1)(x)=

γ(0)∆̂(0)(x)/x2+∆̂
(0)
0 Θ̂(0)(x) according to Line 2 and hence

∆̂
(1)
0 =S2+S0S1. Similarly, tracing computations to iteration

r=1, it can be derived that ∆̂
(2)
0 equals S6

0+S2
2+S0S4+S3

0S2,
denoted by φ, or S4 if branch A or branch B, respectively, is
executed in iteration r=0. The KES is not carried out when
all syndromes are zero, in which case ∆̂

(0)
0 =∆̂

(1)
0 =∆̂

(2)
0 =0.

Hence, the branch vector, b, can never be ‘111’. In addition,
if branch B and branch A are executed in iteration r=0 and 1,
respectively, it can be derived that L(2)

B =0 and L(2)
Λ =3. As a

result, branch A will not be executed in iteration r=2. Hence,
b cannot be ‘100’ either. Therefore, a total of 6 possible values
for the branch vector are listed in Table I.

Starting from the initial values of L(0)
Λ and L(0)

B , by tracing
the updating in branch A and B over the three iterations, the
values of L(3)

Λ and L
(3)
B can be derived as listed in Table I.

The pattern of the discrepancy coefficients can be also derived
for each possible execution of Algorithm 1 as listed in Table
I using the values of L(r)

B −L
(r)
Λ . Initially, L(0)

B −L
(0)
Λ =−1.

Therefore, branch A will be executed and hence b0=‘0’ iff
∆̂

(0)
0 6=0. Regardless of whether branch A or B is executed in

iteration r=0, L(1)
B −L

(1)
Λ ≥−1 in iteration 1. Similarly, b1=‘0’

iff ∆̂
(1)
0 6=0. If branch A is executed in iteration 0, it can be

derived that L(2)
B −L

(2)
Λ ≥−1 and ∆̂

(2)
0 =φ. In this case, b2=‘0’

iff φ6=0. If branch B is executed in iteration 0, it means that
∆̂

(0)
0 =S0=0. Then φ is simplified to S2

2 . ∆̂
(1)
0 =S2 in this case.

Accordingly, φ=0 iff ∆̂
(1)
0 =0. From Table I, it can be observed

that the six possible branch conditions correspond to distinct
patterns of whether ∆̂

(0)
0 , ∆̂

(1)
0 , and φ are zero, which can

be decided from the syndromes directly. Hence, the branch
vector can be derived by simple combinational logic taking
the syndromes as the inputs.

By tracing the computations over the three iterations of
Algorithm 1, formulas for computing Λ(3)(x), ∆̂

(3)
even(x),

B(3)(x), Θ̂
(3)
even(x), and γ(3) for each possible combination

TABLE II
FORMULAS FOR Λ(3)(x) AND ∆̂

(3)
even(x) COMPUTATION

branch vector Λ(3)(x)

000 S0∆̂
(1)
0 + S2

0∆̂
(1)
0 x+ (S0S4 + S3

0S2)x2 + S0φx3

001 S0∆̂
(1)
0 + S2

0∆̂
(1)
0 x+ (S6

0 + S2
2)x2

010 S2
0 + S3

0x+ (S0S4 + S6
0)x4

011 S2
0 + S3

0x
101 S2 + S4x2 + S2

2x
3

110 1 + S4x5

branch vector ∆̂
(3)
even(x)

000 S2
0S

2
2∆̂

(1)
0 + (S0S4 + S3

0S2)S4 + S5
0φ+ S0S2

2φx
2

001 S2
0S

2
2∆̂

(1)
0 + (S6

0 + S2
2)S4

010 S3
0S

2
2 + (S0S4 + S6

0)S2 + (S0S4 + S6
0)S4x2

011 S3
0S

2
2

101 S2
4 + S4

2x
2

110 0

TABLE III
FORMULAS FOR B(3)(x), Θ̂

(3)
even(x), AND γ(3) COMPUTATION

branch vector B(3)(x) Θ̂
(3)
even(x) γ(3)

000 S0 + S2
0x+ ∆̂

(1)
0 x2 S2

0S
2
2 + S4∆̂

(1)
0 φ

001 x2 + S0x3 (S4 + S5
0) + S0S2

2x
2 ∆̂

(1)
0

010 S0 + S2
0x S2

0S
2
2 S0S4 + S6

0
011 x4 S2 + S4x2 S0

101 x2 S4 S2
110 1 0 S4

of branch executions can be derived as listed in Table II and
III. In these formulas, ∆̂

(0)
0 is directly replaced by S0.

B. Low-Complexity Reformulated and Scaled Polynomial and
Variable Computations

Computing the polynomials by the formulas in Table II and
III requires many multipliers. To reduce the complexity, the
formulas are scaled and modified in this subsection to enable
intermediate results sharing without changing decoding results.

In Algorithm 1, ∆̂(r)(x)=Λ(r)(x)S(x)/x2r and Θ̂(r)(x)=
B(r)(x)S(x)/x2r. Also it can be derived that γ(r) is the
constant coefficient of B(r)(x)S(x)/x2r−2. Hence scaling
Λ(r)(x) and ∆̂(r)(x) by a nonzero factor and scaling Θ̂(r)(x)
and B(r)(x) by a different nonzero factor do not affect the
linear combinations in Line 1 and 2 of Algorithm 1. The roots
of Λ(r)(x) are not changed and decoding results are the same.

It can be seen that S0 6=0 is a common factor in each
coefficient of the first Λ(3)(x) formula in Table II. Elim-
inating this factor, the simplified Λ(3)(x) formula for the
case of b=‘000’ is listed in Table IV. From Table I, when
b=‘001’, φ=S6

0+S2
2+S0S4+S3

0S2=0. Accordingly, S6
0+S2

2

=S0S4+S3
0S2. Hence, the formula for Λ(3)(x) computa-

tion for the case of b=‘000’ can be also used to compute
Λ(3)(x) when b=‘001’. In the case of b=‘101’, S0=0. Hence,
∆̂

(1)
0 =S2+S0S1=S2 and φ reduces to S2

2 . Therefore, the
same formula also computes Λ(3)(x) when b=‘101’. Simi-
larly, S0 6=0 can be eliminated from each coefficient of the
Λ(3)(x) formula for the case of b=‘010’ in Table II. From
Table I, ∆̂

(1)
0 =S2+S0S1=0 in the case of b=‘010’. For

binary BCH codes, S1=S2
0 and hence S2=S3

0 . Accordingly,
S4+S5

0=S4+S2
0S2 and the Λ(3)(x) formula can be simplified

as shown in Table IV. This formula allows S4+S2
0S2 to be
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TABLE IV
SCALED AND SIMPLIFIED FORMULAS FOR Λ(3)(x) AND ∆̂

(3)
even(x)

COMPUTATION

branch vector Λ(3)(x)

000, 001, 101 ∆̂
(1)
0 + S0∆̂

(1)
0 x+ (S4 + S2

0S2)x2 + φx3

010, 011 S0 + S2
0x+ (S4 + S2

0S2)x4

110 1 + S4x5

branch vector ∆̂
(3)
even(x)

000, 001, 101 S0∆̂
(1)
0 S2

2 + (S4 + S2
0S2)S4 + S4

0φ+ S2
2φx

2

010, 011 S2
0S

2
2 + (S4 + S2

0S2)S2 + (S4 + S2
0S2)S4x2

110 0

TABLE V
SCALED AND SIMPLIFIED FORMULAS FOR B(3)(x), Θ̂

(3)
even(x), AND γ(3)

COMPUTATION

branch vector B(3)(x) Θ̂
(3)
even(x) γ(3)

000,010,101 S0 + S2
0x+ ∆̂

(1)
0 x2 S2

0S
2
2 + S4∆̂

(1)
0 φ

001 S0x2 + S2
0x

3 (S0S4 + S6
0) + S2

0S
2
2x

2 S0∆̂
(1)
0

011 x4 S2 + S4x2 S0
110 1 0 S4

shared with the first formula in Table IV. When b=‘011’,
S0 6=0 can be eliminated from each coefficient of Λ(3)(x).
Besides, φ=S6

0+S2
2+S0S4+S3

0S2=0 and ∆̂
(1)
0 =S2+S3

0=0 in
this case. Hence S4+S2

0S2=(S2
2+S6

0)/S0=(∆̂
(1)
0 )2/S0=0. As

a result, when b=‘011’, Λ(3)(x) can be computed by the same
formula as for the case of b=‘010’ as listed in Table IV. Using
similar scaling and modifications, the ∆̂(3)(x) formulas are
simplified as shown in Table IV.

The formulas in Table III for computing B(3)(x), Θ̂(3)(x)
and γ(3) can be simplified as those shown in Table V. The
formulas for the case of b=‘000’ can be also used to compute
B(3)(x), Θ̂(3)(x), and γ(3) when b=‘010’, in which case
∆̂

(1)
0 =0 from Table I and φ=S0S4+S6

0+S2S
3
0+S2

2=S0S4+

S6
0+S2∆̂

(1)
0 =S0S4+S6

0 . When b=‘101’, ∆̂
(1)
0 6=0 as shown

in Table I. Hence ∆̂
(1)
0 can be multiplied to each formula

of this case listed in Table III. Also S0=0 for this case.
Hence ∆̂

(1)
0 =S2+S3

0=S2 and φ=S0S4+S6
0+S2S

3
0+S2

2=S2
2

=S2∆̂
(1)
0 . Accordingly, the same formulas for the case of

b=‘000’ can be also used for the computations when b=‘101’.
For the case of b=‘001’, the nonzero S0 is multiplied to
each polynomial and variable in Table III in order to share
intermediate results with the computation of φ.

Compared to those in Table II and III, the formulas in Table
IV and V are greatly simplified. They lead to not only a much
smaller number of multipliers but also shorter critical path in
the hardware implementation.

IV. HARDWARE ARCHITECTURES AND COMPARISONS

This section presents efficient architectures for implement-
ing the proposed 3-error-correcting KES for GII sub-word de-
coding. Our architecture is also compared to that of Algorithm
1, which is the most efficient among existing KES designs.

According to Table IV, the architecture in Fig. 2 is devel-
oped to compute Λ(3)(x) and ∆̂(3)(x). Intermediate results
are shared as much as possible to reduce the area. All the
three sets of formulas in Table IV are implemented and three
bits [d0, d1, d2] are used to choose from the three results for

𝑆0 

𝑆4 

𝑥2 

𝑥2 

0
1

0
1

1 Λ0
(3)

 

0
1

Λ1
(3)

 

𝑥2 

𝑆0
3 

𝑆0
6 

𝑥2 

𝑆2 

0
1

𝑆2 + 𝑆0
3 

𝑆0𝑆4 

𝑆0
2 𝑆0

4 

𝑆0
2𝑆2

2 Δ 0
 3 

 

0
1

Δ 2
 3 

 

𝑆2 

0
Λ2

(3)
 

0
1

Λ3
(3)

 
0

0
1

0
Λ4

(3)
 0

1
0 Λ5

(3)
 

𝑆4 

𝑑0 
𝑑1 

𝑑1 

𝑑1 

𝑑1 

𝑑2 

≠ 0? 

≠ 0? 

≠ 0? 

𝑑1 

𝑑0𝑑1
    

𝜙 

𝑆2
2 

𝑆0
2 

𝑆2 

𝑆0
2𝑆2

2 

𝑆0𝑆4 + 𝑆0
6 

𝑆4 + 𝑆0
2𝑆2 

𝑆0(𝑆2 + 𝑆0
3) 

𝑑1 

𝑑1 + 𝑑0
    

𝑑0                     𝑑1 + + 𝑑2 

0
1

𝑆0
2𝑆2

2 𝑆4(𝑆2 𝑆0
3) + + 

𝑆4 

Fig. 2. Λ(3)(x) and ∆̂(3)(x) computation architecture

𝑆0 

𝑆4 

0
10

𝑆2 

𝜙 

𝑆0
2𝑆2

2 

𝑑0 

0
1

1
𝑑2 

𝐵0
(3)

 

𝑆0
2 

0
1

0

𝑑2 

𝐵1
(3)

 

(𝑎) 

0
1

𝐵2
(3)

 

0
1

𝐵3
(3)

 0

0
1
𝑑0 𝑑1

    𝑑2
    

𝐵4
(3)

 0
1

𝑆2 0
1

𝑑0𝑑1 

0
1

𝑑2 

0
1 0

10
Θ 2

(3)
 

𝑑0𝑑1
    

𝑑2 

Θ 0
(3)

 

0
1

𝑑0 

0
1

𝑑1 
𝑆4 

𝑆0 
0
1

𝑑2 
𝛾(3) 

𝑑1𝑑2
    

𝑑2 + 𝑑0𝑑1
    + 𝑆0

3 

𝑆0
2𝑆2

2 𝑆4(𝑆2 𝑆0
3) + + 

𝑆0𝑆4 + 𝑆0
6 

(𝑏) 

𝑆0(𝑆2 + 𝑆0
3) 

(𝑐) 

Fig. 3. Computation architectures for (a) B(3)(x); (b) Θ̂(3)(x); (c) γ(3)

each polynomial coefficient. As mentioned previously, each
possible branch vector corresponds to a distinct pattern of
whether ∆̂

(0)
0 =S0, ∆̂

(1)
0 =S2+S3

0 , and φ are zero. [d0, d1, d2]
are zero testing results of these three values, respectively. The
architecture in Fig. 2 also computes additional intermediate
results to be used in Θ̂(3)(x) computation.

The architectures for computing B(3)(x), Θ̂(3)(x), and γ(3)

are shown in Fig. 3. All the inputs of these architectures
are either the syndromes or values already computed in the
architecture of Fig. 2. The architectures for deriving L(3)

Λ and
L

(3)
B are not shown in this paper. They can be derived by

K-maps with [d0, d1, d2] as inputs and implemented by very
simple combinational logic.

Our proposed architectures do not have feedback loops and
are able to process the KES for one sub-word in each clock
cycle. Besides, pipelining can be applied to reduce the critical
path. Using normal basis representation, the squarer operation
can be implemented by cyclical bit shifting [11]. When two
sets of pipelining registers are inserted according to the vertical
dashed lines in Fig. 2, the critical path of our architecture
is reduced to one multiplier and two adders. The overall
complexity of our proposed KES architecture is listed in Table
VI. The registers are all used for pipelining purposes. Over
GF (210), a normal basis multiplier can be implemented by the
area of 174 XOR gates with 6 gates in the critical path. Each
adder and register can be implemented with the area of 10 and
30 XOR gates, respectively [11]. Using these assumptions, the
total area of the proposed design can be estimated. The simple
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TABLE VI
COMPLEXITIES OF KES ARCHITECTURES FOR 3-ERROR-CORRECTING

GII-BCH SUB-WORD DECODING

Mult.Add.Reg.Mux.Sq. Total Area Crit. Path Latency # clks/
(# XORs) (# gates) (# clks) sub-word

PIBA 18 9 18 9 0 3852 7 3 3
proposed 12 11 26 22 4 3198 8 3 1

TABLE VII
SYNTHESIS RESULTS OF KES ARCHITECTURES USING TSMC 65nm

PROCESS UNDER T=1ns TIMING CONSTRAINT

Total Area (µm2) Total Power (µW )
PIBA 13534 6449

proposed 10795 6116

logic for generating the multiplexer control signals, L(3)
Λ , and

L
(3)
B is omitted since it accounts for a very small portion of

the overall complexity.
For comparison, the complexity of the PIBA architecture

[7] based on Algorithm 1 is included in Table VI. It is the
simplest BCH KES architecture among existing designs and
consists of 2t+1 processing elements (PEs) for traditional t-
error-correcting decoding. Each PE has two multipliers, one
adder, two registers, and one multiplexer. The critical path
consists of one multiplier and one adder. For 3-error-correcting
sub-word decoding, deg(Λ(x)) can be as high as 5. To keep
the longer polynomial, (2×3+1)+(5-3)=9 PEs are needed.

Both the PIBA and proposed design are synthesized using
TSMC 65nm process under T=1ns timing constraint. The
area and power requirements are listed in Table VII. The pro-
posed KES architecture achieves (13534-10795)/13534=20.2%
area reduction compared to the PIBA architecture for three-
error-correcting BCH sub-word decoding under the same
timing constraint. The area reduction is similar to the (3852-
3198)/3852=17.0% analyzed from architectural level in Table
VI. The proposed design also has lower power consumption as
shown in Table VII. In addition, the PIBA architecture requires
three clock cycles to finish the KES for each sub-word due to
the iterative process. On the other hand, the proposed design
is fully pipelined. After the initial three clock cycles of latency
resulted from the pipelining, one sub-word is processed in each
clock cycle. As a result, the proposed design also achieves
three times higher throughput.

V. CONCLUSION

This paper proposes a new method to implement the KES
for 3-error-correcting sub-word GII-BCH decoding. Full poly-
nomials are kept in our KES to enable the continuation of
the KES in the nested decoding. By analyzing all possible
computations that can be carried out in the iterative PIBA,
formulas are derived to directly compute the resulted poly-
nomials and variables. More importantly, properties of the
involved variables and syndromes are analyzed. Utilizing these
properties, novel scaling and reformulations are developed to
substantially simplify the polynomial and variable computa-
tion. The proposed architecture can achieve almost three times
higher throughput with smaller area compared to the best
previous design. Future work will study other components of
GII-BCH decoders.
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