Efficient Nested Key Equation Solver for Short
Generalized Integrated Interleaved BCH Codes

Zhenshan Xie and Xinmiao Zhang
Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43210 USA
Email: {xie.855, zhang.8952} @osu.edu

Abstract—Generalized integrated interleaved (GII) codes can
nest BCH sub-codewords to form stronger BCH codewords. They
are among the best candidates for error correction in the new
storage class memories (SCMs). However, SCMs require short
codeword length and low redundancy. In this case, the nested
key equation solver (KES), which is a key step in GII decoding,
has a small number of iterations. The initialization and/or scalar
pre-computation in previous nested KES designs have large area
and may take even longer time than the iterations themselves.
This paper proposes an efficient nested KES design for short
GII-BCH codes. The polynomial updating is decomposed into
two steps to reduce the critical path without requiring scalar
pre-computation. Besides, the KES is reformulated to reduce the
number of clock cycles without incurring any area overhead.
For an example code over GF(2'°) that protects 2560 bits with
10% redundancy, the proposed design achieves at least 25% area
reduction and 37% reduction on the area-time product averaged
over the nested decoding rounds compared to prior efforts.

I. INTRODUCTION

The new fast storage class memories (SCMs) may bring
paradigm shifts to many systems, such as computer memory
architecture, machine learning, and big data analytics. Error-
correcting codes with hyper-speed decoding and excellent cor-
rection capability are essential to realizing the speed potential
of SCMs. Generalized integrated interleaved (GII) codes [1],
[2] that generate stronger BCH codewords by nesting short
BCH sub-codewords are among the best candidates for SCMs.

GII decoding has two stages [2]. The first is the traditional
BCH decoding on individual sub-words. A key equation solver
(KES), such as the Berlekamp-Massey (BM) algorithm, takes
the syndromes and computes the error locator polynomial. If
some sub-words failed the decoding or were miscorrected,
the multi-round second-stage nested decoding is activated to
correct extra errors. In each round, higher-order sub-word
syndromes are derived from those of the nested words. Then
the nested KES is carried out to update the error locator
polynomial and accordingly correct more errors.

Since the higher-order syndromes are not available in the
beginning to initialize the discrepancy polynomial, the con-
ventional reformulated inversionless (ri-)BM architecture [3]
cannot be used to reduce the critical path of the nested KES.
Re-initializing the discrepancy polynomial as in [4] before the
nested KES requires many multiplier-adder trees. The critical

This work was supported in part by Kioxia Corporation and by the National
Science Foundation under Award No. 2011785.

path is reduced to two multipliers by incorporating higher-
order syndromes iteratively into existing KES results in [5]-
[7]. Although it can be further reduced by a half using the
slow-down and re-timing techniques, the decoding of two sub-
words needs to be interleaved. By pre-computing the combined
polynomial scalars, the critical path is truly reduced to one
multiplier in [8], [9] although 5 clock cycles are needed for
the pre-computation.

Since SCMs require short codeword length and low re-
dundancy, the error correction capabilities of the BCH codes
involved in the GII codes and their differences are small. This
means that the KES of each nested decoding round has a small
number of iterations and the involved polynomials are short.
In this case, the scalar pre-computations in [7], [9] targeting
at longer codes require not only more clock cycles but also
larger area compared to the nested KES iterations themselves.

This paper proposes an efficient nested KES design for
short GII-BCH codes. The polynomial updating with long
data path is decomposed into two steps so that the critical
path is reduced to one multiplier without any scalar pre-
computation. Shareable substructures are identified to reduce
the area requirement. Additionally, by reformulating the nested
KES algorithm, the order of the error locator and discrepancy
polynomial updating is switched so that one more clock cycle
is eliminated in the end. Efficient implementation architectures
are also developed for the proposed nested KES algorithm.
Although the proposed design needs two clock cycles for each
nested KES iteration, it does not require expensive scalar pre-
computation. For an example code over GF(2!°) that protects
2560 bits with 10% redundancy considered for SCMs, the
proposed architecture achieves at least 25% area reduction and
37% improvement on the area-time product (ATP) averaged
over the nested decoding rounds compared to prior work.

II. GII-BCH DECODING AND NESTED KES ALGORITHMS

Let C,C---CCiCCy be v+1 BCH codes defined over
GF(27) with error-correction capabilities t,>--- >t1>ty. A
GII-BCH [m,v] code with m length-n sub-codewords can be
constructed from these BCH codes as [2]:

mol (1)
(z) = Z o’ (z)ei(x) € Cv—z,0§l<v},

1=0

ca {[co(x),cl(:v), o eme1(2)] ¢ ei(z) € Co,

Algorithm 1: Nested GII-BCH KES Algorithm

Input: AL, (), AS(2), Blila(x), B (x). Alidn (),
@gﬁ)en(x), v, k™ from previous KES;
Si (u<i<w); Sy,=0
Initialization: .
AL (2)=AL0n (2)+SuAlln ()
O%itn (2)=08n (x)+Su Bl ()
Iterations: for r=u,u+2,---,w—2
D ALE (@) =y DA (2)+ A 2? B L ()
r+2 r r A (7 r
2 A (2)=9" Ay () +A 0 By (2)
3) AL (@)= (Acven (@) /€2 + i1 Mgy (0) [a-+ Sr42 A en (@)
AT Ol (0) 4812 BY) (1)+ 8 4227 B (7))
if (A7)0 and £ >—1)
9 BLE @)=Alk(2): B (@) =A0) (@)
5 OLE) (@) =A% (1) /22 + 811 AL () /2+Srs2 A e ()
6) ,Y(?“-FQ):AE)’“); L2 —_(r)_9o

else
7 B (2)=2Blin(2); Boh® (w)=a”Bl) ()
8) 00U (2)=0%)n ()45 112BY), ()45 120 Blghn (z)
9) Ay (), (42 _f() 4o

where ¢;(x) is a sub-codeword, ¢ () is a nested codeword, «
is a primitive element of GF(29), and o (z) is the polynomial
form of the standard basis representation of o',

GII-BCH decoding includes two stages. The first is the
traditional BCH decoding that corrects <t errors in each
received sub-word. 2ty syndromes are computed from each
received sub-word, y(z), as Sj=y(al*!) (0<j<2to). Then
a KES, such as the BM algorithm [10], uses the syndromes
to iteratively compute the error locator polynomial A(x).
In iteration 7, a discrepancy coefficient §(")=3" Agr)S,,,_,- is
calculated to update the polynomials. The riBM algorithm uti-
lizes a discrepancy polynomial A(") (z)=A(z)S(x)/z", whose
constant coefficient, Aér), equals 5(r) [3]. A(m) is initialized
as S(x) and updated in parallel with A(x) so that the critical
path is reduced to one multiplier and one adder.

The second-stage nested decoding can correct more errors.
2t higher-order syndromes are needed to correct ¢ extra
errors. Let the indices of the sub-words with extra errors
be ig, - ,ip—1 (b<w). Since the nested codewords are at
least ¢1-error-correcting, 2(¢; —to) higher-order syndromes are
computed as S‘J(-l):gjl(aj“) (0<l<b, 2tg<j<2t;), where
G1(2)="""" @ (2)y;(x). From (1), higher-order syndromes
for the sub-words can be derived as

T

(i0) (1) (ib—1) —1[&0) &) so-1)]T
[SjO,Sj ,-“,Sjb] A [Sj L85 8¢ } , (2

where Au’w:aiw“(ﬂ-l) (0<u,w<b). Then the BM algorithm
takes the 2(t;—tp) higher-order syndromes to correct <t;
errors in each of the b sub-words. If there are b’ <v—1 sub-
words with more errors, 2(t;—t1) higher-order syndromes are
derived in the next round and this process is repeated for up
to v rounds.

The KES in the nested decoding cannot continue from the
result of the sub-word decoding and use the riBM algorithm to
shorten the critical path since the higher-order syndromes are
not available in the beginning to initialize A (x). In [4], A(z) is

re-initialized according to all the higher-order syndromes using
expensive multiplier-adder trees. Algorithm 1 [7] incorporates
two higher-order syndromes, S;.11 and S,2, to update A(a:)
in iteration so that the correct 6("+2) is always ready before
iteration r+2 and the odd iterations are skipped for GII-
BCH decoding. In this algorithm, ‘even’ and ‘odd’ denote
the even and odd coefficients, respectively, of the polynomi-
als. B(z) and ©(z) are auxiliary polynomials assisting the
updating of A(z) and A(z), respectively. A scaled nested
KES (SNK) algorithm was also developed in [7] to reduce the
area requirement. The critical paths of these algorithms have
two multipliers due to the computations in Line 3. Although
they are reduced to one multiplier by applying slow-down
and re-timing [11], two sub-words are interleaved to increase
the efficiency. The critical path is truly shortened to one
multiplier in the scaled fast nested KES (SFNK) algorithm
[9] by combining and pre-computing the scalars in Line 3,
which introduce 5 clock cycles at initialization. Besides, both
the SNK and SFNK designs require a number of multipliers
for scalar pre-computation.

A major application of GII codes is SCMs and they require
short codes with low redundancy, such as 2560 data bits
protected by 10% redundancy. An example GII-BCH code for
these code parameters is a [4,3] code over GF(2!) with sub-
codeword length n=704 and [to, t1, t2, t3]=[3,5,6,11]. For such
short codes, the 5 clock cycles for scalar pre-computation [9]
are more than the number of clock cycles for the nested KES
iterations themselves, which is t;—¢,_1 for nested decoding
round 7. Also when ¢, is smaller, the scalar pre-computation
in [7] and [9] may dominate the overall nested KES area.

III. EFFICIENT KES FOR GII-BCH NESTED DECODING

An alternative approach is proposed in this section to reduce
the critical path of the nested KES to one multiplier. Instead
of combining and pre-computing the scalars, the computations
in Line 3 of Algorithm 1 are broken down and implemented
in two clock cycles. Besides, reformulations are carried out to
eliminate one clock cycle in the end. As a result, the proposed
nested KES for decoding iteration i requires 2(¢;—t;—1) clock
cycles with no extra latency for scalar pre-computation or
initialization. For small ¢;—¢; 7 as in short GII codes, the
proposed design achieves significant latency reduction com-
pared to previous approaches. Additionally, multipliers are
shared among the computations and no complicated scalar pre-
calculation is needed. Hence, the proposed design also requires
much smaller area than prior architectures.

Each term in the parentheses in Line 3 of Algorithm 1
has up to one scalar, and the second scalar is outside of
the parentheses. Denote the sums in the first and second
parentheses by A'e(qun(a:) /z? and (:)/e(qfe)n(x), respectively. To
reduce the critical path to one multiplier, they are computed in
the first clock cycle and then multiplied with v(") and A{” in
the second clock cycle. They are also used to update (:)(JL%) (z)
as in Line 5 and 8 of Algorithm 1. The coefficients of the
same degree in these polynomials can be calculated using
four multipliers. In the second clock cycle, each coefficient

Algorithm 2: Nested GII-BCH KES w. Switched Updating

Input: AL, (z), A% (x), BSl,(z), B (z), A, (z),
@gﬁ)en(:r), ~ | k™ from previous KES;
syndromes S; (u—1<i<w-—2)
set S, —1=0 for the first nested decoding round

Iterations: for r=u,u+2, - ,w—2

D AL (@) =A% (2)+ 8, 1 AT, () Ja+S A ()

D) OLn(2)=0 e () 4+, - 1Bodd()/2+S8r Blon ()

B AL @)= AL @)+ A B)

4 ATED ()= AL ()+Ag’“>x ") (x)

R LA A +A<T3@£z>en()

6 if (A(T)#O and k<”> 1)

7 B2 (z)= AEZLH(): BUE P (2)=A0 ()

8) Lt (2)=Al). () /2

9) ,y(r+2)_5(7‘)’ k(r+2) k,(r) 2

10) else))

1 BRED (@)= Bl (@): B (o)=a* B ()
12) OutY (2)=6%),, (z

13) ,y(r+2) ,yv) k(r+2)_k(7')+2

in A&Jgf)(z): (T)A/e(fe)n()/x? +A(T)®/6(Qn() is computed
by usin another two multipliers. Besides, the four multipliers
for Aeven()/x% and (:)/Je)n(x) calculation are shared to
update A"+?)(z) as in Line 1 and 2 and also reused for
the A&”;L,L(x) and (L)Sf,)en(x) initialization. Each iteration has
two clock cycles and the initialization needs one. Hence,
142(t;—t;—1) clock cycles are required to finish the nested
KES over one sub-word in decoding round ¢ using this
split polynomial updating. This latency is much shorter than
the 5+(¢;—t;—1) clock cycles for the SFNK design when
(t;—t;—1) is small, such as in the case of the short code with
[to, t1, ta, t3]=[3, 5,6, 11].

In the above split polynomial updating, Aeven()/x? and
@e(ven() are first computed and then Ar+2) () is updated.
However, only A(x) is needed as the KES output. If the
order of polynomial updating can be switched, then the
Ag;)en(:c) /2% and @g,)en(m) computation for the last iteration
can be skipped. Accordingly, the nested KES latency can be
reduced by one clock cycle, which is a significant reduction
when (¢;—t;_1) is small. It can be observed from Algorithm 1
that the Ag,ﬁ)(x) in Line 1 multiplied with S, happens to
be the sum of the third items in the two parentheses of Line
3. Besides, the A(()EQ) (x) in Line 2 multiplied by S,/ is
the sum of the second items in the parentheses of Line 3.
Hence, AUy52) () and A2 (2) can be reused to calculate
Agjﬁ)(x) in the next clock cycle. Besides, the critical path
can be kept as one multiplier since the rest of the two terms
in the Ag’{,ﬁ)(az) formula also have one single scalar each.

Our proposed reformulated nested GII-BCH KES algorithm
is listed in Algorithm 2. This algorithm also takes the output
of the KES results from the sub-word decoding or the previous
nested decoding round as the input. In the first nested decoding
round, S,,_; is set to zero. Hence, the computations in Line
1 and 2 of Algorithm 2 are essentially the same as the
polynomial initialization in Algorithm 1. Accordingly, the

I — 2
@ keoee B0, oo @ k— @ o [CTRL]
PElO eee y/1 eoed PE1, k— PElh
i [D] keee 201 eveq [D] K K{DKEE,
— —
@ k| @ keose y0/s, seed] @
PEQ, ok—PEO 1 *** &/5; ***<PEQ , i DHéts‘
A D A 0 b s, et O R
e
@ K— @ keesey@/s, jeeed] @ @@:ﬂ
PEOLOHPEOLﬁ'-'Eg)/SM'-'@PEOLh D 5, B
0 @ — @ Deee Eg;)a‘q oo @ é;
1.

Fig. Overall architecture for proposed nested GII-BCH KES.

constant coefficient of A.(gfj)en (z) is the discrepancy coefficient.
In the next clock cycle, all the computations in Line 3 through
13 are carried out. The dashed line in Algorithm 2 is used to
separate the computations executed in the even and odd clock
cycles. The updating of A&ﬁ)() and Aggf)(m) are identical
to those in Algorithm 1. At the same time, the first items in
the two parentheses in Line 3 of Algorithm 1 are multiplied
with the corresponding scalars as in Line 5 of Algorithm 2.
The result is denoted by AQ;;?) (z). Then in the first clock
cycle of the next iteration, Aéﬁﬁ) (x) is further added with
another two items as in Line 1. As explained previously, the
sum of these two terms equals the sum of the other four
terms of the Ag}ﬁ) (z) formula in Algorithm 1. Therefore, the
Ag))m(a:) computed in Line 1 of Algorithm 2 is the same as
the Aég,)en(x) in Algorithm 1. Similar computations are carried
out to derive (;)g,)en(x) At the end of the second clock cycle
of the last iteration, A(*)(x) is computed. Hence this process
takes 2(t; — t;—1) clock cycles for nested decoding round .
The Agfgn(x) and C:)ge)n(z) derived in the end are updated
to Aéﬁj@n(x) and (:)éﬁ)gn(x) respectively, at the beginning of
the KES of the next nested decoding round according to Line
1 and 2 of Algorithm 2.

IV. HARDWARE ARCHITECTURES AND COMPARISONS

An efficient architecture is developed in this section to
implement the proposed low-latency nested KES algorithm for
the decoding of short GII-BCH codes. Then the hardware com-
plexity is analyzed and compared with prior designs using the
example code over GF(2'%) with [to, 1, t2, t3]=[3, 5, 6, 11].

Fig. 1 shows the overall architecture of the nested KES
for GII-BCH decoding. It consists of [(t,+1)/2] groups of
processing elements (PEs) and a control unit. The PEs carry
out the polynomial updating in Algorithm 2 in parallel. In
the first clock cycle of each iteration, they implement Lme
1 and 2 of Algorithm 2. The discrepancy coefficient, AO ,
is calculated in the leftmost PE1 at the end of this clock
cycle. Then in the second clock cycle of each iteration, AE)T)
is sent to each PE through the control logic to update the rest
polynomials. Only the highest coefficient of (:)g,)en(x) needs
to be calculated by the two highest PEOs. Hence, they are
simplified to two multipliers and one adder as in Fig. 1.

The details of one group of PEs are illustrated in Fig. 2(a).
The critical path is denoted by the ticker wires. Applying re-

TABLE I
COMPLEXITIES OF NESTED GII-BCH KES ARCHITECTURES FOR EXAMPLE CODE OVER G F(210) WITH [to, t1,t2,t3] = [3, 5, 6, 11]

Mult. | Add | Reg. | Mux Mux with Inv. total crit. path # clks/sub-word of KES normalized ATP

const. input # XORs # gates in nested round 1, 2, 3 nested round 1, 2, 3
re-init. [4] 86 58 36 28 0 0 16904 10 3,2,6 (14+(t; —ti—1)) 1.60, 2.13, 1.28
SNK [7] 46 42 98 18 39 0 11739 9 5,3, 11 (142(t; — ti—1))* 1.67, 2.00, 1.47
SENK [9] 78 57 85 37 40 2 18042 10 7, 6,10 (5+(t; — ti—1)) 3.98, 6.83, 2.28
proposed 38 43 48 28 9 0 8807 9 4,2,10 (2(t; — ti—1)) 1.00, 1.00, 1.00

a0 [CTRY
7@

oM []
oM

By

oM
PEO, 1 | 1; A *

r—1
[
B 5] Bg' Ag)

Dk{3 5

Fig. 2. PE architectures for proposed nested GII-BCH KES: (a) before re-
timing; (b) after re-timing.

54

PE1,

PEOg PEO, {

Bér) Bo(r)

PEO, ;.

Bl(v) Bl(r)

timing along the cutsets denoted by the dashed lines, the crit-
ical path is reduced to 1 multiplier and 3 adders/multiplexers
as shown in the architecture of Fig. 2(b).

The complexity of the proposed design is listed in Table
I. The control unit is simple and its area is negligible. Since
ty,=11, h4+1=[(11+41)/2]=6 groups of PEs are needed. Over
GF(2'°), each multiplier using normal basis representation
can be implemented by the area of around 174 XOR gates
with 6 gates in the critical path. The areas of each adder,
register, and multiplexer are about those of 10, 30, and 10 XOR
gates, respectively. A multiplexer with a constant input has a
half of the complexity of a general multiplexer. From these
assumptions, the overall complexity of the proposed design
for the example code can be estimated as listed in Table I.

For comparisons, the complexities of the nested KES archi-
tecture using the re-initialization scheme [4], SNK architecture
[7], and SENK architecture [9] are also included in Table I. In
the design of [4] for the example code, 50 multipliers and 40
adders organized in tree structures are required to re-initialize
Aeven(m) and é)even(a:), before a simplified version of the
riBM architecture for BCH codes is used to carry out the KES
process. As a result, this design requires around twice the area
with longer critical path compared to the proposed design.

Even though the SNK and SFNK designs have the same
number of PE groups as the proposed architecture and each
group also has 6 multipliers, they require many more multi-
pliers for scalar pre-computation. Besides, the application of
the slow-down technique in the SNK architecture doubles the
number of registers. Also an inverter over GF(2!°) takes the
area of around 390 XOR gates to implement. Accordingly,
it can be estimated that the proposed design requires 25%
and 51% smaller area than the SNK and SFNK architectures,

respectively. Additionally, the SFNK design has one more gate
in the critical path.

The numbers of clock cycles needed for the KES over one
sub-word in the i-th nested decoding round of different designs
for the example GII-BCH code are listed in Table I. Note that
the SNK design interleaves the decoding of two sub-words
and hence its latency for two sub-words is the same as that for
one sub-word. Despite that the proposed design requires two
clock cycles for each iteration, it does not have the complicated
scalar pre-computation as in the SFNK design, which takes 5
clock cycles regardless of ¢;—t;_1. As a result, the proposed
design achieves lower latency for the short example code in
the first two nested decoding rounds. Earlier nested decoding
rounds are carried out with much higher probabilities than
later rounds in GII decoding. Also, the proposed reformulation
saves one clock cycle compared to the SNK architecture.
Although the design from [4] has even lower latency in terms
of the clock cycle number, its area requirement is almost twice.
ATP is usually used to compare designs with different area and
latency. It can be calculated that the proposed design achieves
at least 1-(1/1.60+1/2.13+1/1.28)/3=37% lower ATP averaged
over the three nested decoding rounds for the example code
compared to prior efforts.

For GII-BCH codes with smaller t,, the area saving of
the proposed design would be even larger, because the scalar
pre-computation takes a significant portion of the overall area
in the SNK and SFNK architectures and its complexity does
not change with ¢,. For codes with larger v, which have bet-
ter error-correcting performance under the same redundancy,
t;—t;—; are even smaller. In this case, the proposed design
can achieve even more significant latency reduction.

V. CONCLUSIONS

This paper proposes an efficient design to reduce the area
complexity and decoding latency of the nested KES for short
GII-BCH codes. The proposed split polynomial updating re-
duces the critical path to one multiplier without pre-computing
combined scalars. Besides, substantial area saving is achieved
by sharing hardware units for polynomial updating. Addition-
ally, one clock cycle is eliminated from the nested KES of each
decoding round by reformulating the nested KES algorithm.
Efficient hardware architectures are also developed and the
critical path is further reduced by re-timing. Overall, the
proposed nested KES design can achieve significant reductions
in the area and latency for short GII-BCH codes compared
to previous designs. Future work will study other decoder
components for short GII-BCH codes.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(11]

REFERENCES

X. Tang and R. Koetter, “A novel method for combining algebraic
decoding and iterative processing,” in Proc. IEEE Int. Symp. Inf. Theory,
Seattle, WA, USA, Jul. 2006, pp. 474-478.

Y. Wu, “Generalized integrated interleaved codes,” IEEE Trans. Inf.
Theory, vol. 63, no. 2, pp. 1102-1119, Feb. 2017.

D. V. Sarwate and N. R. Shanbhag, “High-speed architecture for Reed-
Solomon decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 9, no. 5, pp. 641-655, Oct. 2001.

W. Li, J. Lin, and Z. Wang, “A 124-Gb/s decoder for generalized
integrated interleaved codes,” IEEE Trans. Circuits and Syst. I: Reg.
Papers, vol. 66, no. 8, pp. 3174-3187, Aug. 2019.

X. Zhang and Z. Xie, “Efficient architectures for generalized integrated
interleaved decoder,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 66,
no. 10, pp. 4018-4031, Oct. 2019.

Z. Xie and X. Zhang, “Scaled nested key equation solver for generalized
integrated interleaved decoder,” IEEE Trans. Circuits Syst. II: Exp.
Briefs, vol. 67, no. 11, pp. 2457-2461, Nov. 2020.

Z. Xie and X. Zhang, “Reduced-complexity key equation solvers for
generalized integrated interleaved BCH decoders,” IEEE Trans. Circuits
Syst. I: Reg. Papers, vol. 67, no. 12, pp. 5520-5529, Dec. 2020.

Z. Xie and X. Zhang, “Fast nested key equation solvers for generalized
integrated interleaved decoder,” IEEE Trans. Circuits Syst. I: Reg.
Papers, vol. 68, no. 1, pp. 483-495, Jan. 2021.

Z. Xie and X. Zhang, “Scaled fast nested key equation solver for
generalized integrated interleaved BCH decoders,” in Proc. IEEE Int.
Conf. Acoust. Speech Signal Process., Toronto, Canada, Jun. 2021, pp.
7883-7887.

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968.

K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation, John Wiley & Sons, 1999.

